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Proof of Proposition 1

No-test. The dominant bidding strategy result follows from Krishna (2002). Since the marginal cost of

recruiting a supplier is nondecreasing (as k(m) is increasing convex), to show convexity of total cost in mN

it suffices to show that the expected per-unit purchase price is decreasing discrete convex in the number of

recruited suppliers. This in turn is implied by regularity; to see this, take the auction’s expected per-unit

clearing price, a+
∫ b
a

(1− F (s))n+mNds+
∫ b
a

(n+mN)F (s)(1− F (s))n+mN−1ds, and integrate the last term

by parts and then differentiate with respect to mN twice.

Test. We first characterize the buyer’s “best response” m∗T under the supposition that suppliers remain in

an auction until either winning or reaching their true cost. We then show that given the buyer’s strategy the

supposed supplier strategy indeed constitutes an equilibrium.

Note that the buyer’s recruitment decision depends on whether the test auction reserve price is met or

not, and we analyze both cases one by one. If the reserve price is not met, no units are awarded in the test

auction and all incumbents are discarded. So the second auction is equivalent to running a no-test strategy

to auction off Q units with zero incumbents to start with.

If the reserve price is met, then the outcome of the test auction is x= min{r1,X(2:n)} (due to our supposi-

tion of suppliers’ equilibrium bidding strategy). For the second auction, let E[MBm(x)] denote the expected

per-unit purchasing price when m− 1 entrants are recruited minus the same when m entrants are recruited.

Let
ˆ̂
X represent the random variable following distribution

ˆ̂
F (y) = F (y)/F (x) for y ∈ [a,x]. We can write

E[MBm(x)] = F (x)

[m−1∑
i=0

(
m− 1

i

)
F (x)i(1−F (x))m−1−i[E[

ˆ̂
X(2:i+1)]−E[

ˆ̂
X(2:i+2)]]

]
,

where E[
ˆ̂
X(2:1)], x. The leading F (x) reflects the fact that the mth entrant has an effect only if its cost lies

below x, and the summation over i corresponds to i of the other m− 1 entrants having a cost below x as

well. Similarly, we can write

E[MBm+1(x)] =(1−F (x))E[MBm(x)]

+
(
F (x)

)2[m−1∑
i=0

(
m− 1

i

)
F (x)i(1−F (x))m−1−i[E[

ˆ̂
X(2:i+2)]−E[

ˆ̂
X(2:i+3)]]

]
<E[MBm(x)]

where the inequality follows since E[
ˆ̂
X(2:i+1)] − E[

ˆ̂
X(2:i+2)] > E[

ˆ̂
X(2:i+2)] − E[

ˆ̂
X(2:i+3)] by regularity of

ˆ̂
F

(which follows from regularity of F ). Since the supplier recruitment cost is convex, the buyer’s expected total

(recruitment plus second-auction purchase) cost is discrete convex in mT .
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To prove that the buyer’s optimal number of entrants to recruit is nondecreasing in the clearing price, we

first establish the following lemma.

Lemma EC. 1. The expected marginal benefit of adding the mth supplier is nondecreasing in x.

Proof of Lemma 1 This can be seen using a sample path argument: Suppose there are m− 1 entrants.

Order the cost of the incumbent who won the test auction and the m− 1 realizations of entrant costs such

that x1 ≤ x2 ≤ · · · ≤ xm. Now consider adding an mth entrant with cost realization z. We will show that the

buyer’s marginal benefit does not decrease in the test auction clearing price x under any sample path. We

know that x1 ≤ x since the incumbent’s cost is at most x. There are two cases to consider.

Case 1. x1 ≤ x≤ x2 or m= 1. The buyer’s marginal benefit of recruiting the mth entrant is

x−x1 if z ≤ x1 ≤ x, (12)

x− z if x1 ≤ z ≤ x, and (13)

0 if x1 ≤ x≤ z. (14)

Now consider the case where the test auction clearing price is x′ >x. Under this sample path, (12) becomes

min{x′, x2} − x1, (13) becomes min{x′, x2} − z (where if m = 1 we take x2 =∞), and (14) becomes a

nonnegative quantity (as the second auction’s clearing price cannot increase when the mth entrant is added).

Thus, the buyer’s marginal benefit of adding the mth entrant when the clearing price is x′ is greater than or

equal to her marginal benefit when the clearing price is x under all sample paths where x1 ≤ x≤ x2.

Case 2. x2 ≤ x. The buyer’s marginal benefit of recruiting the mth entrant is x2− x1 if z ≤ x1 ≤ x2; x2− z

if x1 ≤ z ≤ x2; and 0 if x1 ≤ x2 ≤ z. Hence the marginal benefit is unchanged when clearing price is x′ >x.

In conclusion, since the stated result holds for any sample path, it must hold in expectation. �

Note that the marginal cost of adding an additional entrant is independent of x. Hence, by Lemma 1,

the buyer’s expected total (recruitment plus second-auction purchase) cost is submodular in the number of

entrants to recruit and the clearing price. Hence, the optimal number of entrants to recruit is nondecreasing

in the clearing price.

We now address the supplier bidding strategy. Working backwards, in the second auction, the result holds

as it is analogous to a single auction. In the test auction, if supplier i remains in the auction at a price below

his true cost xi, he will lose money on any units he is awarded and can only make negative profit because the

second auction opens at the clearing price of the test auction. If the supplier drops out of the test auction

at a price above his true cost xi, if he does not meet the test auction reserve price, he is discarded and earns

zero profit. If he does meet the reserve price, he still loses the test auction and cannot make more profit

in the second auction than if he bid down to xi because the number of entrants the buyer will recruit is

nondecreasing in the outcome of the test auction. In either case, the supplier would have been better off

remaining in the auction until winning or reaching his true cost, whichever happens first.

Note that the above analysis holds for any quantity auctioned off in the test auction. That is, the incumbent

cost information gleaned by the buyer in the test auction is the same regardless of the quantity auctioned

off in the test auction (as long as that quantity is at least y, the minimum quantity needed to entice the
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incumbents to participate in the auction). Thus, it is optimal for the buyer to auction the minimum quantity

possible in the test auction, y, because when the reserve price is met, the clearing price in the second auction

is no higher than the test auction, and when the reserve price is not met, this quantity does not affect the

buyer’s cost.

Proof of Proposition 2

(i)(a). Although an increase in y does not affect the buyer’s cost under the no-test strategy, it weakly

increases her expected cost under any given sample path using the test without reserve price strategy. For

y = 0, the test without reserve price strategy weakly dominates the no-test strategy as the buyer could

achieve the same expected cost as the no-test strategy by recruiting m∗N entrants regardless of the outcome

of the test auction.

(i)(b). As discussed in Proposition 1’s proof, the expected unit cost under the no-test strategy is decreasing

discrete convex in the number of recruited suppliers and approaches a as n+m→∞. As the marginal cost

of recruiting an entrant is nondecreasing, there must exist a n∗ such that m∗N = 0 ∀ n≥ n∗. If m∗N = 0, the

test without reserve price strategy is a weakly dominant strategy.

(i)(c). We model the new supplier recruitment cost growing proportionately larger by letting γ ·k(m) denote

the recruitment cost, and considering the constant γ. As k(1)> 0, there exists a constant, γ, such that when

γ = γ the buyer prefers the test without reserve price strategy because m∗N = 0, and the test without reserve

price strategy weakly dominates the no-test strategy. Further, the test without reserve price strategy will be

preferred for all γ > γ as m∗N = 0 for all such γ.

(i)(d). First we establish the following lemma:

Lemma EC. 2. Let the scaled distribution f̃ be such that f̃(x) = f(x/α)/α. As α becomes large (that is,

the distribution is scaled up), the buyer prefers the no-test strategy. Similarly, as α becomes small (that is,

the distribution is scaled down), the buyer prefers the test without reserve price strategy.

Proof of Lemma 2. We show that scaling up (down) the distribution by α is equivalent to scaling down

(up) the recruitment cost function by α. Then the result follows from part (i)(c). Define scaled distribution

F̃ (x), F (x/α), and scaled recruitment cost function k̃(m), αk(m). Let X̃(i:j) represent the ith-lowest order

statistic out of j draws from the distribution F̃ . Then the buyer’s problem given by the parameters F̃ , k̃(m),

Q, y, and n can be written as follows. For the no-test strategy,

E[total cost under no-test|mN ] = E[X̃(2:n+mN )]Q+ k̃(mN) = α
(
E[X(2:n+mN )]Q+ k(mN)

)
. (15)

The analysis for the test without reserve price strategy is analogous. So, the problem with scaled parameters

f̃ and k̃(m) is equivalent to the original problem with all supplier and recruitment costs scaled by α. �

Now consider the effect of shifting the distribution by ∆. A ∆-shift of the suppliers’ cost distribution is

represented by the distribution f̃ with f̃(x) = f(x+ ∆). It is trivial to show that such a shift will not change

the buyer’s strategy preference — it will simply shift the expected cost of both strategies by ∆ ·Q.

Combining this result with Lemma 2 completes the proof of (i)(d).

(ii). The test strategy results in an expected cost that is less than or equal to the buyer’s expected cost

under the test without reserve price strategy as r1 = b is a feasible reserve price. Thus, if the test without

reserve price strategy has an expected cost less than the no-test strategy, so does the test strategy.



4 Beil, Chen, Duenyas, and See: Online Supplement to When to Deploy Test Auctions in Sourcing

Proof of Proposition 3

As the first step in proving the optimal mechanism, we first establish that the revelation principle can be

applied to our setting. To do so, consider the following class of multi-stage mechanisms featuring a form

of costly communication between the buyer and suppliers. In particular, incumbents are free to initiate

communication with, but entrants are costly to initiate communication with. Incumbents and entrants each

have a production cost, which is their private information. The buyer’s contract award decision and payments

to suppliers are based on the information reported by the set of suppliers the buyer communicated with, and

not on information from suppliers the buyer did not communicate with. Finally, there are two additional

points: (i), the buyer cannot convey information about the mechanism to a supplier without communicating

with them; and (ii), communication does not occur between the suppliers themselves (this is meant to disallow

mechanisms where the buyer, say, recruits one entrant and then asks that entrant to gather information from

the other entrants).

McAfee and McMillan (1988) formally establish that the revelation principle holds for such dynamic mech-

anisms, which are “principal-initiated (point (i) above) and “principal-centered (point (ii) above). Namely,

the revelation principle implication is that for any Bayesian Nash equilibrium of a mechanism described

above, there exists a direct, truthful sequential (the buyer communicates with suppliers one at a time)

mechanism which produces the same distribution of decisions and suppliers communicated with. In such a

mechanism, the buyer seeks out suppliers one-by-one and asks them to report their cost, and the suppliers

report truthfully; once the buyer decides to stop, based on the costs reported up to that point a payment

and allocation decision is made.

Restricting our search for an optimal mechanism to the class of direct sequential mechanisms greatly

simplifies the problem at hand. Moreover, when searching for an optimal direct sequential mechanism, because

it is costless to communicate with incumbent suppliers, without loss of optimality we can assume that the

buyer communicates with all incumbent suppliers before she ever decides to communicate with an entrant.

We will call stage 1 the stage where the buyer costlessly and simultaneously communicates with all the

incumbents.

Up to now, we have described a class of multi-stage mechanisms with costly communication for which,

without loss of optimality, to find an optimal mechanism we only have to consider mechanisms in which

the buyer initially communicates with all the incumbents, and then one-by-one communicates with entrants.

However, in our setting, as mentioned in the Introduction, to complete the procurement process in a timely

manner the entrants must be recruited simultaneously. We can account for this while still deploying the

revelation principle: Namely, we consider a sequential mechanism to be feasible only if the buyer commits to

ignoring the information she collects from the entrants until she has communicated with every entrant she will

communicate with. Of course, this can be collapsed into one simultaneous recruitment and communication

stage for the entrants. We will call this stage 2.

To summarize, we wish to find an optimal multi-stage mechanism in which recruitment of entrants is costly

and must be done simultaneously. The above arguments imply that to find such a mechanism, it suffices to

restrict our search to the following class of two-stage direct mechanisms: In stage 1 the incumbents report
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their true costs to the buyer; in stage 2 the buyer recruits entrants who then report their true costs to the

buyer; the buyer then makes contract allocation and payment decisions based on the costs of the incumbents,

and recruited entrants (if any).

Given that the revelation principle allows us to focus on direct mechanisms, incentive compatibility con-

straint (7) can be stated as ui(xi),maxsi{pi(si)− xiqi(si)}. By the envelope theorem, this gives u′i(xi) =

−qi(xi), which implies that ui(xi) = ui(b) +
∫ b
xi
qi(si)dsi. Solving for pi(xi) gives

pi(xi) = ui(b) +

∫ b

xi

qi(si)dsi +xiqi(xi). (16)

It is easy to check (e.g., Lemma 2 in Myerson (1981)) that, if (16) determines the payment rule, then qi

nonincreasing implies that incentive compatibility constraint (7) holds, and ui(b)≥ 0 for all i implies that

the individually rationality constraint (6) holds. Moreover,

∞∑
l=0

∫
{xI |mT (xI)=l}

[∫
xE,l

Pi(x
I , xE,l)f(xE,l)dxE,l

]
f(xI)dxI =

∫
xi

pi(xi)f(xi)dxi

=ui(b) +

∫
xi

ψ(xi)qi(xi)f(xi)dxi by applying (16) and integrating,

=ui(b) +

∞∑
l=0

∫
{xI |mT (xI)=l}

[∫
xE,l

ψ(xi)Qi(x
I , xE,l)f(xE,l)dxE,l

]
f(xI)dxI .

Given these observations, we can rewrite the buyer’s mechanism design problem (5)–(9) as

min
Qi(·),mT (·)

∞∑
l=0

∫
{xI |mT (xI)=l}

[
k(l) +

n+l∑
i=1

ui(b) +

n+l∑
i=1

∫
xE,l

ψ(xi)Qi(x
I , xE,l)f(xE,l)dxE,l

]
f(xI)dxI (17)

s.t. ui(b)≥ 0 ∀i (18)

qi(·) nonincreasing ∀i (19)

constraints (8)− (9).

Note that an optimal mechanism will have ui(b) = 0 for all i. For now, relax constraint (19). Since ψ(·) is

increasing, for any given number of recruited entrants mT (xI), objective function (17) is minimized by

Q∗i (x
I , xE,mT (xI)) =

{
Q if xi = x(1:n+mT (xI))

0 otherwise,
(20)

where x(1:n+mT (xI)) is the lowest cost among the incumbents and recruited entrants.

Given (20), consider the optimal number of entrants to recruit, m∗T (xI). Note that m∗T (xI) is not

affected by the incumbents with costs xI(2:n), x
I
(3:n), . . . , x

I
(n:n) because they are “out of the running” and

Q∗i (x
I , xE,mT (xI)) = 0 for these incumbents. Hence, the optimal number of entrants to recruit only depends

on the lowest-cost incumbent’s cost, xI(1:n), and (10) describes the optimal recruitment rule. We establish the

following lemma.

Lemma EC. 3. The optimal number of entrants to recruit, m∗T (xI), is nondecreasing in xI(1:n).

Proof of Lemma 3 Similar to the proof of Proposition 1, we show (i) the buyer’s total expected payment

plus recruitment cost is discrete convex in mT and (ii) the expected marginal benefit of recruiting the mth

entrant is nondecreasing in xI(1:n). Let H be the distribution of ψ(·). Note that E[ψ(X(1:n+m))|xI(1:n)] =
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∫ ψ(xI(1:n))

0 (1−H(x))mdx is decreasing discrete convex in m. Since the supplier recruitment cost function is

increasing convex in m, the buyer’s expected total (recruitment plus purchase) cost is discrete convex in m.

Next, note that the marginal reduction in expected purchase cost from recruiting the mth entrant equals

E[ψ(X(1:n+m−1))|xI(1:n)]−E[ψ(X(1:n+m))|xI(1:n)] =

∫ ψ(xI(1:n))

0

(1−H(x))m−1H(x)dx,

and the derivative of the right hand side with respect to xI(1:n) equals (1−H(xI(1:n)))
m−1H(xI(1:n)), which is

positive. Thus, the buyer’s optimal number of entrants to recruit is nondecreasing in xI(1:n). �

Thus far we have shown that (20) and (10) minimize the objective function (17). Furthermore, it is easy

to check that constraints (8)-(9) are satisfied. We next show that qi is nonincreasing (constraint (19)).

Suppose i is an entrant supplier. Since supplier i’s report only affects the buyer’s allocation decision, which

is to give the contract to the lowest-cost bidder, clearly entrant i can not improve its allocation probability

(increase qi) by reporting a higher cost. Next suppose i is an incumbent supplier. For any number of entrants

recruited by the buyer, supplier i’s quantity allocation is nonincreasing in his cost report per (20). Moreover,

the quantity allocation per (20) is nonincreasing in the number of recruited entrants he competes against.

Since this number, m∗T , is nondecreasing in supplier i’s report (by Lemma 3), we must have that supplier

i cannot increase his allocation probability by reporting a higher cost. In summary, the purchase quantity

rule qi is nonincreasing in xi for all i, so the mechanism is incentive compatible.

To summarize, (20) and (10) solve program (17)-(19), (8)-(9). To complete Proposition 3’s proof, it remains

only to show that payment rule (11) implements (16) and so is an optimal payment rule. Define xI−i ,

(x1, . . . , xi−1, xi+1, . . . , xn), and xE−i , (xn+1, . . . , xi−1, xi+1, . . . , xn+|xE |).

If i is an entrant, then (11) is equivalent to P ∗i (xI , xE) =Q∗i (x
I , xE)xi +

∫ b
si=xi

Q∗i (x
I , (si, x

E
−i))dsi, hence

p∗i (xi) =

∞∑
l=0

∫
{xI |mT (xI)=l}

[∫
x
E,l
−i

{
Q∗i (x

I , xE,l)xi +

∫ b

si=xi

Q∗i (x
I , (si, x

E,l
−i ))dsi

}
f(xE,l−i )dxE,l−i

]
f(xI)dxI

=q∗i (xi)xi +

∫ b

si=xi

{
∞∑
l=0

∫
{xI |mT (xI)=l}

[∫
x
E,l
−i

Q∗i (x
I , (si, x

E,l
−i ))f(xE,l−i )dxE,l−i

]
f(xI)dxI

}
dsi,

=q∗i (xi)xi +

∫ b

si=xi

q∗i (si)dsi, which matches (16).

Finally, if i is an incumbent, then (11) is equivalent to

P ∗i (xI , xE) =Q∗i (x
I , xE)xi +

∫ b

si=xi

∫{
x̃E
∣∣|x̃E |=m∗

T
(si,xI)−m∗

T
(xI)

}Q∗i ((si, xI−i), (xE, x̃E)
)
f(x̃E)dx̃E

dsi,

and hence

p∗i (xi) =

∞∑
l=0

∫
{xI−i

|mT (xi,x
I
−i

)=l}

[∫
xE,l

Q∗i (x
I , xE,l)xif(xE,l)dxE,l

]
f(xI−i)dx

I
−i

+

∞∑
l=0

∫
{xI−i

|mT (xi,x
I
−i

)=l}

[∫
xE,l

∫ b

si=xi

{∫{
x̃E
∣∣|x̃E |=m∗

T
(si,xI)−m∗

T
(xi,x

I
−i

)

}
Q∗i
(
(si, x

I
−i), (x

E,l, x̃E)
)
f(x̃E)dx̃E

}
f(xE,l)dxE,l

]
f(xI−i)dx

I
−i

= q∗i (xi)xi +

∫ b

si=xi

[ ∞∑
l=0

∫
{xI−i

|m∗
T
(xi,x

I
−i

)=l}

{∫
x
E,m∗

T
(si,x

I
−i

)
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Q∗i

(
(si, x

I
−i), x

E,m∗
T (si,x

I
−i)
)
f(xE,m

∗
T (si,x

I
−i))dxE,m

∗
T (si,x

I
−i)
}
f(xI−i)dx

I
−i

]
dsi,

= q∗i (xi)xi +

∫ b

si=xi

[ ∞∑
l=0

∫
{xI−i

|m∗
T
(si,x

I
−i

)=l}

{∫
xE,l

Q∗i
(
(si, x

I
−i), x

E,l)
)
f(xE,l)dxE,l

}
f(xI−i)dx

I
−i

]
dsi,

= q∗i (xi)xi +

∫ b

si=xi

q∗i (si)dsi, which matches (16) and completes the proof of Proposition 3.

Proof of Proposition 4

(i)(a). Regardless of the suppliers’ bidding strategies, for y = 0 the test without reserve price strategy can

do no worse in expectation than the no-test strategy: Under the test without reserve price strategy, a feasible

strategy is to always recruit m∗N entrants and not use the outcome of the test auction as a cap on the second

auction, which achieves the expected cost of the no-test strategy.

(i)(b). Under the no-test strategy, the bidders are ex ante symmetric so by the revenue equivalence theorem,

the buyer will pay the same expected cost (up to a constant) under the open-bid second-price, sealed-bid

first-price, and Dutch auction formats. Thus, as in Proposition 2(i)(b), as the marginal cost of recruiting

an entrant is nondecreasing, there must exist a n∗ such that m∗N = 0 ∀ n≥ n∗ for these auction formats. If

m∗N = 0, the test without reserve price strategy is a weakly dominant strategy since the buyer could replicate

the outcome of the no-test strategy by announcing that she will always recruit zero entrants after the test

auction.

(i)(c). The proof of Proposition 2(i)(c) continues to hold, where as in part (i)(b) above we use the fact that

the test without reserve price strategy weakly dominates the no-test strategy when m∗N = 0.

(i)(d). The proof of Proposition 2(i)(d) holds with the following change: To prove the equivalent of Lemma 2,

let CP and C̃P represent the clearing price of a sealed-bid first-price or Dutch auction when suppliers have cost

distribution F and F̃ , respectively. Then replacing X(2:n+mN ) and X̃(2:n+mN ) with CP and C̃P, respectively,

provides the result. Finally, note that if the bidders’ costs are shifted by ∆, then one can just make the

following change: Suppose the bidders’ play exactly the same strategy as before the shift, except that they

add ∆ to their bid(s). The buyer’s best response to this bidding strategy does not change (the buyer’s total

cost just shifts by ∆ ·Q), so the bidders earn exactly the same payoffs as before. Thus the shifted bidding

strategy and the buyer’s original strategy form an equilibrium in which the buyer’s total cost shifts by ∆ ·Q

under both strategies but her preference over the two remains unaffected.

(ii). The proof of Proposition 2(ii) continues to hold.

Proof of Proposition 5

(i). Consider a supplier’s bidding strategy under the no-test strategy and in the second auction of the test

strategy. It is still a weakly dominant strategy for a supplier to remain in the auction until the price reaches

their true cost for the same reasons as in Proposition 1. Now consider the test auction. Due to the restriction

that only the incumbent supplier who is awarded units in the test auction can compete in the second auction,

incumbent suppliers will not remove themselves from the test auction while the price is greater than their cost

because they will lose the test auction and will not be considered in the second auction. Further, incumbent

suppliers will not stay in the test auction when the price is less than their cost because they would make
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negative profit if they win the test auction, and the test auction’s clearing price serves as a cap on the unit

price of the second auction.

(ii). Suppose the buyer uses a test auction reserve price of r1 and the test auction clears. Then, fol-

lowing the test auction, the buyer aims to minimize her expected cost by choosing to recruit m∗T =

arg minmT∈N

{
E[X̂(2:n+mT )|r1, b1, b2, . . . , bn−1](Q−y)+k(mT )

}
entrants where X̂ follows the buyer’s updated

supplier cost distribution based on the realizations of the drop-out bids b1, . . . , bn−1 of the n− 1 incumbent

suppliers who do not win the test auction, where the ith drop-out bid bi =X(n−i+1:n) if X(n−i+1:n) ≤ r1, or

“N/A” otherwise. Thus, m∗T is a function of the test auction reserve price r1 and the drop-out bids of the

incumbent suppliers that do not win the test auction. An analogous argument holds when the test auction

reserve price r1 is not met.

Proof of Proposition 6

(i)(a)-(i)(c). The proofs of Proposition 2(i)(a)-(i)(c) continue to hold.

(i)(d). The proof of Proposition 2(i)(d) applies to the information updating case with one supplementation

to Lemma 2. Define the scaled distribution F̃ (x), scaled recruitment cost function k̃(m), and X̃(i:j) as before.

Let the n−1 incumbent drop-out bids be binc , [b1, b2, . . . , bn−1] (where inc stands for incumbent) and let the

scaled version of the n− 1 incumbent drop-out bids be b̃inc , binc/α= [b1/α, b2/α, . . . , bn−1/α]. Then, for any

recruitment rule, the test without reserve price strategy’s equivalent to (15) is given by

E[total cost under test without reserve price] =E[X̃(2:n)]y+Eb̃inc
[
E[X̃(2:n+mT (b̃inc)) |̃binc](Q− y) + k̃(mT (̃binc))

]
= α

(
E[X(2:n)]y+Ebinc

[
E[X(2:n+mT (binc))|binc](Q− y) + k(mT (binc))

])
.

(ii). The proof of Proposition 2(ii) continues to hold.
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