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Abstract 

Crowdfunding platforms have attracted the attention of practitioners and scholars alike. The term 
‘crowdfunding’, first coined in the early 2000s, describes a new institutional form in the financial 
markets which utilizes digital platforms to originate and aggregate funding. There is abundant 
research on the topic. Yet extant work mainly consists of single-platform studies. We argue that 
observing patterns on one platform does not necessarily advance our understanding of other 
platforms. Specifically, we use data from eight major crowdfunding platforms to conduct a 
variance decomposition analysis of funding success. The findings suggest factors associated with 
success in a given platform do not replicate to the other platforms. It underscores the 
generalizability challenge facing the crowdfunding literature. We therefore highlight the need to 
complement single-platform studies with cross-platform studies. 
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Are We Missing the Platforms for the Crowd? 
Comparing Investment Drivers Across Multiple Crowdfunding Platforms 

 
The crowdfunding phenomenon has grabbed the attention of scholars in the fields of 

entrepreneurship, strategy, and beyond. The term “crowdfunding” was coined in the late 2000s to 

describe a new institutional form which utilizes digital platforms to originate and aggregate 

funding. It covers a wide set of activities ranging from the facilitation of for-profit start-up 

investments to the charitable funding of social ventures in faraway continents. Although a recent 

phenomenon, the academic archive SSRN lists over six hundred entries on the topic, with half of 

the posts dated 2015 or later.1 The work exhibits many virtues. For example, recent studies 

document success drivers on the reward-based platform Kickstarter (Mollick, 2014; Mollick and 

Nanda, 2016), or fundraising pricing on the lending-based platform Prosper (Lin, Prabhala, 

Viswanathan, 2013; Hildebrand, Puri, Rocholl, 2016). Each study presents insights based on 

analyses of detailed transactions within a single platform. Yet, it often remains silent as to the 

rationale for selecting the focal platform to begin with. The issue is exacerbated as there are 

hundreds of crowdfunding platforms across the world (Dushnitsky et al., 2016).   

This observation raises questions regarding generalization. Why is that an issue? Because 

platforms differentiate. Specifically, the proliferation of crowdfunding platforms stimulated 

research on the topic, but extant work has yet to acknowledge platform differentiation (Figure 1). 

The fact that platforms differentiate suggests empirical patterns observed on one platform cannot 

be assumed to generalize to other platforms. Indeed, practitioners are apprehensive that funding 

patterns vary across platforms. Consider a Quora posting contrasting two prominent lending 

platforms (e.g., “What's the difference between Lending Club and Prosper?”), and similar posts 

regarding donation and reward platforms.2 They underscore the fact each platform seeks to 

                                                           
1 SSRN searched on March 31, 2018. 
2 A post suggesting donation platforms differ ( “Why would anyone choose GoFundMe over YouCaring…”), and 
anther contrasting two reward platforms (“Which is better and why: Kickstarter or IndieGoGo?”). Quora links 
accessed on 18.5.2018; www.quora.com/Whats-the-difference-between-Lending-Club-and-Prosper; www.quora.com/Which-
is-better-and-why-Kickstarter-or-IndieGoGo;  www.quora.com/Why-would-anyone-choose-GoFundMe-over-YouCaring-when-
GoFundMe-takes-8%E2%84%85-and-YouCaring-takes-3-from-your-donation-amount  



2 

differentiate itself from the competition. Its choices affect (a) the crowds that self-select to go on 

the platform, and (b) the drivers of funding success within the platform. It begs the question 

whether patterns observed within a given platform necessarily advance our understanding of 

investment drivers in other crowdfunding platforms.  

What are the implications to research? The situation described above suggests that 

crowdfunding is a complex phenomenon, and using one term “crowdfunding” to describe it can 

be counter-productive because it overlooks the heterogeneity of the context. In fact, doing so can 

hinder the accumulation of knowledge across studies. To see that, recall Thorngate (1976) who 

notes it is impossible for a theory of social behaviour to simultaneously pursue (a) accuracy, (b) 

parsimony, and (c) generality. The current approach which focuses on detailed examinations 

within single platforms results in accurate analyses and parsimonious theory. Per Thorngate’s 

argument, however, this approach raises the question of generalisability as it remains unclear 

whether the accurate data from within one platform carries general insights to other – 

differentiated – crowdfunding platforms. A review of the literature illustrates this conundrum. For 

example, a popular assertion is that investment location will become irrelevant because 

crowdfunding platforms are easily accessible by individuals across the world. Yet, the impact of 

location remains inconclusive. A few studies report crowdfunding does indeed attract funding 

from faraway (e.g., Agrawal, Catalini and Goldfarb, 2017; Stroube, 2017), while others record a 

strong preference to invest locally (Lin and Viswanathan, 2016; Gunther, Johan, and Schweizer, 

2017). Crucially, each of these studies uses data from a different platform.  

The purpose of this study is to explore generalizability in the crowdfunding literature. How 

does the current ‘modus operandi’ of single-platform studies affect generalizability? To that end, 

we investigate whether factors that are common across platforms also exhibit comparable impact 

on ultimate funding success. We accomplish this by using a variance decomposition methodology 

(e.g., McGahan and Porter, 2002; Rumelt, 1991; Fitza et al., 2009). The results inform the question 

of generalizability. For example, we find that on one platform, the location of the project explains 
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over a third of the variance in its ultimate funding success, while location has no explanatory 

impact on other platforms. Similarly, most of the platforms group projects into categories as a way 

of helping contributors search for projects of interest. Yet there is a remarkable disparity in the 

association of such categories with funding success; the impact of category differs a hundred-fold 

across the platforms we analysed. We discuss the implication to the accumulation of knowledge 

in the conclusion section.  

Before turning to our study, we would like to highlight its contributions by addressing a 

common criticism; “The study compares apples to oranges. It is not surprising that investment 

patterns differ across platforms. It is because of the varied goals across such platforms which in 

turn may have very different investors self-selecting and participating in these platforms.” Our 

response is threefold. First, we emphasize the difference are observed not only across 

crowdfunding types (i.e., reward vs. lending), but also between platforms of a similar type (e.g., 

differences between lending platforms). Second, we are in full agreement with the argument; 

crowdfunding platforms are so different that scholars should not generalize from one platform to 

another. Unfortunately, our reading of the literature is that such generalization takes place, if not 

explicitly then implicitly. We believe that what may be viewed as intuitive upon seeing our 

findings, is actually non-trivial given the current state of the literature. In short, we provide 

evidence-based support for that intuition. Third, the criticism rightfully hints that participants self-

select onto a platform that fit their interests. It is well-understood that failure to account for self-

selection could lead to erroneous inferences.  However, we are not aware of studies that account 

for self-selection of crowdfunders onto the studied platform. Hopefully, this study will stimulate 

further work and richer understanding of crowdfunding success.  

------- Insert Figure 1 about here ------- 

 

THE CROWDFUNDING PHENOMENON 



4 

Crowdfunding refers to the practice of funding a project or a venture by raising small 

amounts of money from a large number of people via the Internet. Formally, a crowdfunding 

platform features five traits: (a) it is a digital platform, (b) aggregating funds from multiple 

individuals, where (c) each individual generally contributes a small fraction of the requested 

amount, (d) based on a set of goals and objectives (e.g., securing financial gains, seeking material 

gain (rewards), donating to social cause) and (e) his/her assessment of the focal project.  

Unfortunately, the term “crowdfunding” is often extended to include many fundamentally 

different activities. It is partly because digital platforms exhibit similar “look and feel”. At the 

extreme, this is because the same exact website interface is duplicated across different platforms. 

For example, “With Thrinacia Atlas you can quickly create white label CrowdFunding portals. 

Build fundraising, reward, donation, real estate, loan or equity CrowdFunding websites” 

(www.thrinacia.com/). More often, the reason is not outright duplication, but merely an outcome 

of being a digital platform with similar interface and user experience. Oftentimes, platforms 

feature identical fields; e.g., they usually list projects by categories and location.  

As a result, the term “crowdfunding” is often extended to include many different digital 

platforms. It can be misleading. Platforms critically differ on four traits (i.e., aforementioned traits 

(b) through (e)). Ignoring this may result in an incomplete understanding of the factors associated 

with crowdfunding success. Crucially, the differences are not only between different 

crowdfunding types (e.g., reward vs. lending), but also within a given type (e.g., different donation 

platforms). For example, donation platforms (where contributions are given in the form of 

donations) differ substantially in their focus and goals; Kiva facilitates pro-social donations based 

on individuals giving to projects in faraway emerging markets; whereas FundRazr enables 

crowdfunding by sharing one’s local project or cause with friends and family; and DonorsChoose 
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focuses on a particular cause of supporting US public schools. Likewise, there are notable 

differences among reward platforms3, as well as lending platforms.4  

A careful review of scholarly work uncovers incongruent findings. Below, we focus on 

three broad factors that attracted much attention in extant work, but have yet to accumulate a 

consistent set of results. These factors are the impact of projects’ location, category and year. 

Consider the role of project location. Because crowdfunding is an Internet-based phenomenon, 

there is an expectation that location need not affect funding success. Many platforms include data-

fields for crowdfundees and projects location. Past work leveraged these data. Yet, the impact of 

location remains ambiguous. A few studies investigate the prevalence of home bias; a common 

investment bias in offline setting denoting investors’ inclination to finance projects located 

nearby. They find that home bias persists online; both on the lending platform, Prosper (Lin and 

Viswanathan, 2016) as well as the equity platform, ASSOB (Gunther, Johan, and Schweizer, 

2017). At the same time, other studies allude to an opposite pattern. Analysis of a China-based 

lending platform finds a preference for distant projects (Stroube, 2017). And investment in distant 

projects is common on the equity-like platform Sell-A-Band, where it is also associated with 

herding behaviour (Agrawal, Catalini and Goldfarb, 2017).  

Next, consider the role of project category. Many platforms group projects into categories 

as a way of helping crowdfunders find projects of interest. It is probably the first field they use to 

filter through projects. As such, category considerations have been incorporated into many 

crowdfunding studies. Yet, the impact of category affiliation features inconclusive observations. 

First, we know little about the way category information is utilized. Leung and Sharkey (2013) 

                                                           
3 Reward platforms differ in their approach to funding success. To this date, Kickstarter follows an ‘All or Nothing’ 
(AoN) approach where a crowdfundee sets a funding threshold and collects the proceeds if and only if total funds 
exceeds the threshold. Indiegogo, in contrast, allows participants to opt for an alternative approach; under ‘Keep it 
All’ (KiA) a crowdfundee receives whatever amount was contributed irrespectively of the threshold. 
4 Lending platforms differ significantly in the nature of loans they facilitate. Some platforms follow a peer-to-peer 
focus (e.g., Lending Club); providing loans solely to individuals (e.g., consolidating credit card debt). Other platforms 
facilitate peer-to-business lending (e.g., Funding Circle), where crowdfundees are small or medium size companies 
(e.g., purchasing equipment or inventory). Others yet support both approaches (e.g., Zopa and Prosper). 
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report that Prosper’s decision to conceal category information had a notable impact on funding 

success. If platforms vary in their approach to category information, it may result in meaningful 

cross-platform heterogeneity in funding patterns.  Second, some studies’ findings are category 

agnostic. For instance, a positive association between professional investors and crowdfunders on 

Kickstarter is observed both in the Arts category (Mollick and Nanda, 2015) and the Technology 

category (Roma et al., 2017). Yet, others report nontrivial category-by-category variation; such as 

the likelihood of funding CleanTech projects on Indiegogo (Cumming, Leboeuf, and 

Schwienbacher, 2015), or the effect of crowdundees’ narratives in Kickstarter (Manning & 

Bejarano, 2017; Parhankangas & Renko, 2017).  

Finally, consider the year of funding. We note investment patterns vary annually, and to a 

different extent for different platforms. First, crowdfunding is a nascent industry. During the mid 

2000s, Kiva, Zopa and Kickstarter were crowdfunding pioneers. A handful of platforms were 

educating the market about crowdfunding and mainly attracted enthusiasts. The landscape changes 

in the following decade as it gained substantial media coverage and regulatory legitimacy. 

Hundreds of platforms entered, competed and sought to differentiate (Dushnitsky et al., 2016). 

Second, annual fluctuation in macroeconomic conditions and government policy critically affect 

crowdfunding. For example, investment patterns on the lending platform Prosper are shaped by 

fluctuation in interest rates (Rigbi, 2013) and access to bank loans (Butler et al., 2016). Taken 

together, the observations suggest a strong temporal (i.e., year) effect.  

In sum, the discussion illustrates open puzzles in the crowdfunding literature. It shows 

findings based on examination of one platform need not necessarily generalise to all platforms.  

METHODOLOGY 

Our analysis explores whether drivers of crowdfunding success generalize across 

platforms. Whereas past work ‘goes deep’ with detailed data from a single platform, we aim to 

‘go broad’ and employ consistent data-fields across multiple platforms (Figure 2). We ask, do 

factors common across crowdfunding platforms equally explain funding success in each and every 
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platform?  To that end, we identify a set of data-fields that appear in many crowdfunding 

platforms; category, location and project year. A variance decomposition analysis uncovers the 

impact these factors on ultimate fundraising success. The analysis is repeated for every platform. 

We then compare the impact of each factor across the different platforms.  

Variance decomposition has been used frequently in the strategy and management 

literatures (Bowman and Helfat, 2001; Brush et al., 1999; McGahan and Porter, 2002; Rumelt, 

1991) and more recently adopted by entrepreneurship scholars (Fitza et al., 2009; Short et al., 

2009). It is used to estimate the proportion of variance in a dependent variable that can be 

attributed to, or explained by, certain factors called “effect-classes”. The methodology is 

particularly advantageous for cross-platform analysis because it (a) addresses limited data 

availability across platforms and (b) facilitates meaningful cross-platform comparisons. We 

expand on these advantages below. 

First, consider the issue of data availability. Recall that any one study cannot be 

simultaneously accurate, general and parsimonious (Thorngate, 1976). In the crowdfunding 

literature, most studies focus on a single platform. A major strength of single-platform studies is 

the rich and fine-grained data they collect. Inevitably, a study of multiple platforms sacrifices 

some level of accuracy. The variance decomposition methodology enables us to get around this 

issue. It estimates the overall impact of each effect-class and does not require fine-grained 

measures thereof.5 Table 1 shows the effect-classes we use in our study and provides some general 

information for each class across the eight crowdfunding platforms.  

 Second, the methodology facilitates meaningful cross-platform comparisons. We can 

understand and compare the impact of an effect-class while being agnostic of the specific values 

                                                           
5 To illustrate the benefit, consider an example from the well-known profitability variance decomposition studies 
(Bowman and Helfat, 2001; McGahan and Porter, 1997, 2002). Among other effects, these studies estimate the 
industry effect. Certain industry features such as market size, economies of scale, regulatory intensity, etc. might 
affect firm profitability. However, it is often impossible to collect fine grained information on every possible industry 
feature. A variance decomposition methodology does not require information on each feature. Instead it looks at the 
overall effect of industry by measuring the amount of variance in firm performance that can be explained by the 
industry to which firms belong. Our study uses variance decomposition for similar reasons.   
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that effect-class undertakes on any given platform. For example, consider the effect-class of 

project location. On one platform, the location variable may take the values “New York City” and 

“San Francisco”, while on another platform it takes the values “Berlin” and “Frankfurt”. Our paper 

does not study the marginal contribution of specific effect values (e.g., NYC versus SF). Rather, 

we study the impact of the location effect-class; the extent to which funding success is sensitive 

to variation in project location. Thus for the purpose of our analyses, the specific values within a 

given effect-class are irrelevant. Rather, all that matters is whether the dependent variable varies 

as a function of variation in the effect-class. To the extent that a past study included a given effect 

(e.g., category) in its analysis, it implicitly assumes that the effect can be informative in explaining 

funding success. It is not clear, however, whether the impact of the effect in one platform is telling 

us anything about its role in another platform. Our analyses allow for direct comparisons of effect 

sizes across platforms. It thus informs the generalizability of results across platforms. 

Study Sample.  The data comes from eight major crowdfunding platforms; Lending Club 

(lending), Funding Circle (lending), Prosper (lending), Zopa (lending), Kickstarter (rewards), 

Indiegogo (rewards), Kiva (donations), and FundRazr (donations).  

Analysis: We follow McGahan and Porter (2002), and Fitza (2015) and use a simultaneous 

ANOVA approach to determine the sizes of the individual classes of effects (see also: McGahan 

and Victor 2010, Fitza 2014; Ma et al, 2013; Quigley and Hambrick, 2014; Graffin and Quigley, 

2017; Fitza and Tihanyi, 2017). For each crowdfunding platform we capture the amount of 

variance in funding success that can be explained by three effects: year, location and category. 

We estimate the following equation for each platform:   IVp,s  = µs + αy,s + βcat,s + νl,s  + εo,s, where 

IVp,s  represents the dependent variable of interest for each project p on crowdfunding platform s. 

On the right-hand side, the first term µs is a constant equal to the grand mean of the dependent 

variable for each platform. The other terms on the right side represent our effects of interest. The 

term αy,s represents the Year effect for each crowdfunding platform; βcat,s depicts the Category 

effect, and νl,s captures how much of the variance in the dependent variable of each crowdfunding 
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platform can be attributed to the Location of the projects; and finally, εp,s represents the residual 

for each crowdfunding platform. As indicated by the subscript s, we apply this model to each 

crowdfunding platform separately.  

All effects are represented by vectors of dummy variables. The size of a specific effect is 

determined by measuring the increase in the explained variance of the model, once a vector of 

dummies representing this effect has been included. To compensate for the fact that our sample 

sizes, as well as the degrees of freedom for each effect, differ between different crowdfunding 

platforms, we follow recent studies and use the adjusted R2 as our measure of the explained 

variance (e.g., Fitza, 2009, Graffin and Quigley, 2017). The simultaneous ANOVA controls for 

covariance between the individual effects (e.g., Fitza 2014, McGahan and Victor 2010). Some 

recent studies have used hierarchical linear modeling (HLM) (Misangyi et al., 2006; Short et al., 

2007) to control for such covariance. However, HLM assumes a clear hierarchical or nested 

structure in the data. Our effects of interest are year, category, and location; these three effects are 

not in any hierarchical relationship because year cuts across all observations, and categories and 

location are not nested in each other either. Our use of a simultaneous ANOVA allows us to 

measure all effects without the need for a nested structure.6  

Measures of Crowdfunding Success:  The dependent variable is a measure of a project’s funding 

success. For each crowdfunding platform, we employ a measure of success which is appropriate 

for that crowdfunding type. To that end, we are guided by extant work for the main crowdfunding 

types.7 For reward-based (e.g., Burtch, Ghose, Wattal, 2015) and donation-based (e.g., Galak, 

Small, Stephen, 2011) platforms, we follow past work and use the total amount contributed (US$) 

as our measure of funding success. As for lending crowdfunding, past work has focused on the 

                                                           
6 When both approaches can be used HLM usually yields somewhat smaller effect (e.g., Quigley and Graffin 2017, 
Fitza 2017). While this is important for certain research questions, the absolute magnitude of the effect size is not the 
focus of our study. Instead, we examine the relative effect size; namely, how does the magnitude of the focal effect-
class (e.g., location) compares across the eight crowdfunding sites we study.  
7 Past variance decomposition studies also utilized multiple performance measures. For example, variance 
decomposition studies in the strategy literature used at least three measures, including firm profitability based on 
accounting data, market share, or financial returns based on Tobin’s Q (e.g., Bowman and Helfat, 2001). 
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cost of the loan – rather than the loan amount – as a measure of success. The lower the interest 

rate necessary to attract funding, the more successful the crowdfundee is considered to be (Pope 

and Sydnor, 2011; Duarte et al., 2012; Lin et al., 2013). Hence, we use the mean interest rate on a 

project as a dependent variable in our analysis of lending platforms.  

RESULTS 

Table 2 summarizes descriptive statistics by platform. Although Kickstarter and Indiegogo 

pursue a reward-based model, the average project size, or amount pledged for each project, differs 

substantially: $7,557 for Kickstarter versus $2,948 for Indiegogo. Likewise, discrepancies are 

observed for lending platforms; Lending Club has an average interest rate of 14.0% (St.Dev. 

4.4%), while Zopa has an average rate of 7.0% (St.Dev 1.3%).  

------- Insert Figure 2 and 3, and Tables 1-3 about here ------- 

The preceding table, Table 1, offers insights into common effect-classes such as project 

category and location. Specifically, six of the eight platforms include a project category field. A 

similar number of platforms also include a location field. Given that location and category are 

prevalent fields across different platforms, it is not surprising that most scholarly studies 

incorporate them in their analyses. We do observe a certain degree of disparity in terms of values 

or levels within each effect-class. The category effect-class takes as little as 15 unique values on 

Kiva, and as many as 58 unique values on reward platform Kickstarter. The values for location 

effect-class range from a low of 15 (Zopa) to a high of over 9,000 (Kickstarter). Our 

methodological approach controls for the resulting differences in degrees (also see Appendix A).   

Table 3 reports our results, the size of the year, category and location effect for each 

platform. The key takeaway is twofold. First, the total variance explained by all three effects is 

different for each and every platform. Taken together, the three effect-classes of interest explain 

44.54% of the dependent variable variance on the donation platform Kiva. They explain between 

about 7% and 11% in the lending platforms (i.e., LendingClub, Prosper, Zopa, and Funding 
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Circle), and only very small magnitude of variance on reward platforms (i.e., FundRazr, 

Kickstarter, and Indiegogo).  

Second, while location, year, and category are common across platforms, they play 

different roles within each one. The magnitude of the effect-classes varies across platforms. For 

easier comprehension we demonstrate these magnitudes graphically in Figure 3. Consider the 

impact of location; while it explains about 43% of the variance in funding success in the donation-

based Kiva, it exhibits negligible explanatory power for the other platforms. The category effect 

exhibits an important, yet smaller, impact. It explains only 0.03% of the variance in funding 

success on the reward-based Indiegogo and has over a hundred-fold larger effect on LendingClub, 

where it explains 3.82% of funding success. Finally, the year effect is relatively small for the 

reward platforms (0.16% for Kickstarter and 0.0% for Indiegogo), while it is larger on average for 

lending platforms (from a low 3.96% for LendingClub, to high 10.77% for Zopa).  

Importantly, the results underscore significant disparity in funding patterns even within 

each crowdfunding type. Consider the size of the category effect on lending platforms. It accounts 

for 3.82% of the variance in funding success on LendingClub, yet it is almost tenfold smaller for 

the other USA-based lending platform, Prosper (only 0.48% of explained variance). We observe 

similar differences for the location effect. While the location effect explains 0.01% of the variance 

for Zopa, it is almost a fifty-fold larger on the other UK-based platform Funding Circle, where it 

accounts 0.49% of the full model variance. The year effect shows similar differences even within 

one crowdfunding type, ranging for example from a low of 3.96% for Lending Club to  high of 

10.77% for UK Zopa.  

CONCLUSIONS 

Our understanding of crowdfunding platforms is at a critical juncture. We explore whether 

crowdfunding patterns are generalizable across platforms.  The results are striking. For example 

many platforms report the location of the project or its owner. We find that the association between 

location and ultimate funding success differs across platforms; on some platforms, it informs over 
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a third of the variance, yet it has no explanatory impact on others. Similarly, most platforms group 

projects into categories as a way of speeding up and supporting funding allocation. We document 

a notable disparity in the ability to explain funding success; the impact of category varies a 

hundred-fold across the platforms we analyzed.   

Our findings carry immediate implications. Consider a scholar who leverages 

crowdfunding data to study the role of location. Kickstarter and Indiegogo are two immediate 

choices as each platform lists over 8,000 locations. However, in our analysis Kiva is the platform 

where location explains the highest percentage of variance in funding success. Similarly, consider 

a scholar who studies the effect of sectoral affiliation (e.g., the impact of gender in traditionally 

feminine vs masculine sectors). Again, Kickstarter and Indiegogo emerge as the ideal setting as 

they have the largest number of sectors and categories. It is Lending Club, however, where funding 

success is most sensitive to project categories. Taken together, our results suggest scholars should 

carefully contemplate whether a platform’s main dimension of variation fits with their theoretical 

focus. 

Our work also highlights the opportunity for future crowdfunding work. At the current 

juncture, the literature has amassed studies that are both accurate and parsimonious. It now stands 

to benefit from work that is generalizable (Thorngate, 1976), such as in the opportunity to add to 

current studies which offer insights based on rich transactional data from a single platform and 

complement them with cross-platform studies that explicitly test for the heterogeneity among 

platforms (for notable exception, see Anglin et al., 2018; Cumming and Zhang, 2018). We hope 

whatever is lost in the way of accuracy is compensated by way of addressing issues of 

generalizability. The current study documents heterogeneity in funding patterns across platforms. 

Future work can build on this effort to advance a deeper understanding of crowdfunding 

investment drivers and contingencies.  
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Table 1. Characteristics of each crowdfunding platform 

 Kiva FundRazr  Kickstarter  Indigogo 
Lending 

club 
Prosper UK Zopa 

Funding 
Circle 

Type Donation Donation  Reward  Reward  Lending Lending Lending Lending 

Geographic 
focus 

Africa/ 
Asia 

Mostly 
North 

America 

Mostly  
USA 

Global 
Mostly  
USA 

USA 
United 

Kingdom 
United 

Kingdom 

Dependent 
variable  

Amount 
pledged 

Amount 
pledged 

Amount 
pledged 

Amount 
pledged 

Interest 
Rate 

Interest 
Rate 

Interest 
Rate 

Interest 
Rate 

Available 
effects  

Year 
category 
location 

-- 
category 

-- 

Year 
category 
location 

Year 
category 
location 

Year 
category 

-- 

Year 
-- 

location 

Year 
-- 

location 

Year 
category 
location 

Period 
(years)  
in dataset 

2005-14 n.a. 2009-14 2008-14 2014-17 2014-15 2011-13 2010-17 

Number of 
different 
categories 

15 21 58 31 22 29 n.a. 23 

Number of 
different 
locations 

2,586 n.a. 9,133 8,762 n.a. 79 15 32 

         

 
Table 2. Descriptive statistics for each crowdfunding platform  

 Kiva FundRazr  Kickstarter  Indigogo 
Lending 

club 
Prosper UK Zopa 

Funding 
Circle 

Number of 
observations  

518,047 14,846 105,598 44,323 275,064 108,422 13,924,547 29,543 

Dependent 
variable 
mean  

453.4 1,247 7,557.2 2,948.37 14.0% 19.3% 7.0% 9.8% 

Dependent 
variable 
standard 
deviation 

228.8 3,331 70,880.1 61,338 4.4% 7.5% 1.3% 2.3% 

 

 

Table 3. Variance Decomposition results for each crowdfunding platform  

Effect Kiva Fund- 
Razr 

Kick-  
starter Indigogo 

Lending 
Club 

Prosper UK Zopa 
Funding 
Circle 

Yeara 0.86 n.a. 0.16 0.00 3.96 9.25 10.77 4.05 

Categorya 0.87 0.23 1.32 0.03 3.82 0.48 n.a. 2.19 

Locationa 42.81 n.a. 0.00 0.00 n.a. 0.51 0.01 0.49 

Full Modela 44.54 0.23 1.48 0.03 7.78 10.24 10.78 6.73 

Notes:       a: In percent  
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Figure 1: Forces Shaping the Crowdfunding Phenomenon:  
      Platform Proliferation and Differentiation  
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Figure 2: Looking Within a Platform versus Looking Across Platforms. 

  
 
 
Figure 3: Graphical Comparison of Effect Sizes by Platform and Effect-Class. 
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Appendix A -- Sensitivity Analyses 

We report a couple of robustness tests. The first addresses any concerns regarding the 
varying number of specific values for the location effect-class. The second tackles concerns 
regarding the fact there is a high variation in platform sample size across the eight platforms. 

First, consider the issue of specific values for the location effect-class. Recall that our main 
analysis finds a large location effect for the Kiva platform. We are mindful of the fact that, on this 
platform, location is reported at the fine-grained level of a town, and because the platform covers 
projects from many different countries, the location effect undertakes some 2,586 different values 
(i.e., the names of 2,586 distinct towns). Other platforms report location at a coarser level (e.g., 
the state or the country). Therefore, one may be concerned that our results are merely an artifact 
of “location inflation”, that the Kiva findings are merely due to the platform’s use of town-level 
location effect of which there are 2,586 distinct values.  

This concern is assuaged for the following reasons. First, there are two other platforms 
which utilize fine-grained location information: Kickstarter, with 9,133 unique values, and 
Indiegogo, with 8,762 unique values. Yet the location effect for these two platforms is an order of 
magnitude lower than that of Kiva’s. Second, we conducted additional sensitivity analyses 
whereby we “aggregated up” Kiva’s location from the town to the country level. The exercise 
yielded 64 distinct location values instead of the 2,586 unique values at the level of the town. We 
ran the variance decomposition again using these country-level location effect. The variance 
explained by location effect is now 32.2%. It is lower than the 42.8% we report for the original 
analysis based on town-level location effect. That said, at 32.2%, the location effect on the Kiva 
platform continues to dwarf the effect size on any other platform. Therefore, the additional 
analysis offers comfort that the location effect is not merely an artifact of “location inflation”, but 
rather is indicative of the deep and meaningful role location has for participants on the Kiva 
platform. We conducted a similar analysis for Kickstarter. We “aggregated up” location, which 
decreased the number of unique location values from 9,133 to only 96. The results of the additional 
variance decomposition did not reveal any change to the location effect.  

Second, consider the fact that sample size varies across the eight platforms. It ranges from 
14,846 observations for the FundRazr platform to 13,924,547 for the Zopa platform. Our 
methodological approach controls for these differences (e.g., see Fitza, 2015, Graffin and Quigley, 
2017). Nonetheless, we conducted additional analyses to further examine whether the results are 
an artifact of different sample sizes. To do so, we drew random subsamples of 15.000 observations 
from each crowdfunding dataset. Thus, in this analysis, the sample size for each platform has the 
same number of observations. To ensure that any specific subsample analysis is not an artifact of 
the specific subsamples, we followed Fitza and Tihanyi (2017) and conducted this analysis on 
multiple (100) subsamples for each platform and aggregated the results.  

 

Table App-A. Results based on 100 randomly drawn samples from each platform of equal size. 

Effect Kiva Fund- 
Razr 

Kick-  
starter 

Indi-
gogo 

Lending 
Club 

Prosper UK 
Zopa 

Funding 
Circle 

Year 0.78 n.a. 0.55 0.28 3.91 9.30 10.72 4.07 

Category 0.65 0.23 1.75 0.29 3.74 0.47 n.a. 1.94 

Location 42.20 n.a. 0.19 0.73 n.a. 0.54 0.02 0.46 

Notes:       a: In percent 
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Appendix B – More detailed results 

 

Table App-B. Detailed description of variance decomposition results for each crowdfunding platform 

 Kiva Fund- 
Razr 

Kick-  
starter Indigogo 

Lending 
Club 

Prosper UK Zopa 
Funding 
Circle 

Year Effect         

Fraction of full model 
variance explained be the 

effect 
1.93 n.a. 10.94 0.00 50.90 90.41 99.89 60.15 

F Value 38.29 n.a. 28.12 0.73 1688.05 1398.02 560028.00 184.06 

Pr>F <.0001 n.a. <.0001 0.65 <.0001 <.0001 <.0001 <.0001 

Category Effect                 

Fraction of full model 
variance explained be the 

effect 
1.95 1.00 89.06 100.00 49.10 4.64 n.a. 32.53 

F Value 24.83 2.69 26.95 1.48 877.34 29.69 n.a. 7.86 

Pr>F <.0001 <.0001 <.0001 0.06 <.0001 <.0001 n.a. <.0001 

Location Effect                 

Fraction of full model 
variance explained be the 

effect 
96.12 n.a. 0.00 0.00 n.a. 4.95 0.11 7.32 

F Value 7.65 n.a. 0.31 0.03 n.a. 13.23 169.76 18.26 

Pr>F <.0001 n.a. 1.00 1.00 n.a. <.0001 <.0001 <.0001 

Variance explained by 
full modela 

44.54 0.23 1.48 0.03 7.78 10.24 10.78 6.73 

 
Notes:  
     a: in percent 

 

 
 


