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Abstract

We examine the hypothesis that the slowdown in productivity following the Great

Recession was in significant part an endogenous response to the contraction in demand

that induced the downturn. We first present some panel data evidence that technology

diffusion is highly cyclical. We then develop and estimate a macroeconomic model with

an endogenous TFP mechanism that allows for both costly development and adoption

of new technologies. We then show that the model’s implied cyclicality of technology

diffusion is consistent with the panel data evidence. We next use the model to assess the

sources of the productivity slowdown. We find that a significant fraction of the post-

Great Recession fall in productivity was an endogenous phenomenon. The endogenous

productivity mechanism also helps account for the slowdown in productivity prior to the

Great Recession, though for this period shocks to the effectiveness of R&D expenditures

are critical. Overall, the results are consistent with the view that demand factors have

played a role in the slowdown of capacity growth since the onset of the recent crisis.

More generally, they provide insight into why recoveries from financial crises may be so

slow.
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1 Introduction

One of the great challenges for macroeconomists is explaining the slow recovery from major

financial crises (see, e.g. Reinhart and Rogoff (2009)). Many popular explanations involve

persistent demand shortfalls.1 For example, a number of authors emphasize the deleveraging

process as an important cause of a sustained decline in spending by borrowers as they saved

to reduced their indebtedness. Others emphasize how constraints on macroeconomic policy

likely also contributed to sluggish demand. The zero lower bound on the nominal interest

rate limited the ability of monetary policy to stimulate the economy, and the political fight

over the national debt ceiling effectively removed fiscal policy as a source of stimulus.

While these demand side factors have undoubtedly played a central role, it is unlikely

that they alone can account for the extraordinarily sluggish movement of the economy back

to the pre-crisis trend. This has led a number of authors to explore the contribution of

supply-side factors. Both Hall (2014) and Reifschneider et al. (2015) have argued that

the huge contraction in economic activity induced by the financial crisis in turn led to

an endogenous decline in capacity growth. Hall (2014) emphasizes how the collapse in

business investment during the recession brought about a non-trivial drop in the capital

stock. Reifschneider et al. (2015) emphasize not only this factor but also the sustained

drop in productivity. They conjecture that the drop in productivity may be the result of

a decline in productivity-enhancing investments, and thus an endogenous response to the

recession.

Indeed, sustained drops in productivity appear to be a feature of major financial crises.

This has been the case for the U.S. and Europe in the wake of the Great Recession. The

same phenomenon holds broadly for financial crises in emerging markets: in a sample of

East Asian countries that experienced a financial crisis during the 1990s, Queralto (2015)

finds a sustained drop in labor productivity in each case to go along with the sustained

decline in output. Using panel data Huber (2018) finds that banking distress in Germany

induced persistent declines in output and productivity, and he associates the latter with

declines in R&D.

What accounts for reduced productivity growth following financial crises? There are two

candidate hypotheses: bad luck versus an endogenous response. Fernald (2014) and Fernald

et al. (2017) make a compelling case for the bad luck hypothesis. As they emphasize, the

productivity slowdown began prior to the Great Recession, raising questions on whether

the crisis itself can be a causal factor. Figure 1 illustrates the argument. The figure plots

1See, for example Christiano et al. (2015) for a taxonomy of possible explanations for the slow recovery.
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Figure 1: Detrended Capacity Adjusted TFP and Labor Productivity
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All series are log-linearly detrended. Labor productivity is GDP divided by hours worked (see Ap-

pendix A.1 for data sources). TFP is Utilization-Adjusted Total Factor Productivity (available at

http://www.frbsf.org/economic-research/total-factor-productivity-tfp/; see Fernald (2012) for details).

detrended total factor productivity, specifically the utilization corrected measure described

in Fernald (2012), along with labor productivity. Both measures show a sustained decline

relative to trend in the years after the Great Recession, but the decline appears to begin

around 2004-05.

There are several different theories of how the productivity slowdown could reflect an

endogenous response to the crisis. The one on which we focus involves a reduction in

productivity enhancing investments.2 Specifically, to the extent that the crisis induced a

drop in these investments, the subsequent decline in productivity could be an endogenous

outcome.

We focus on two types of productivity enhancing investments: (i) the creation of new

technologies through research and development (R&D) and (ii) the diffusion of new tech-

2Our hypothesis is similar to Reifschneider et al. (2015). An alternate approach stresses misallocation
of productive inputs following a financial crisis. See for example Garcia-Macia (2015) who emphasizes
misallocation between tangible and intangible capital. A further alternative, studied by Decker et al. (2017)
is that declining business dynamism has led to declines in productivity.

3



nologies via adoption expenditures. In Section 2 we present evidence that each of these

types of investments is highly procyclical. The cyclicality of R&D is readily apparent from

aggregate data. It declined nontrivially during the Great Recession, but exhibited an even

sharper decline relative to economic activity during and after the 2001-2002 recession.3 We

will argue that this decline contributed to the productivity slowdown prior to the Great Re-

cession. Unfortunately there is no aggregate data series on technology adoption. However,

using a panel of survey data on technology adoption, we estimate a highly cyclical pace of

diffusion. Indeed our subsequent analysis will find much of the endogenous productivity

slowdown during and after the Great Recession attributable to a drop in adoption intensity.

To assess the quantitative relevance of an endogenous technology response to the crisis on

the evolution of TFP, we develop and estimate a macroeconomic model modified to allow for

endogenous technology via R&D and adoption. The endogenous productivity mechanism

we develop is based on Comin and Gertler (2006), which uses the approach to connect

business cycles to growth. The Comin/Gertler work, in turn, is a variant of Romer (1990)’s

expanding variety model of technological change, modified to include an endogenous pace of

technology adoption. We include adoption to allow for a realistic period of diffusion of new

technologies, and we allow for endogenous adoption intensity to capture cyclical movements

in productivity that may be the product of cyclical adoption rates. We then show that

the cyclical speed of diffusion generated by our model is consistent with the panel data

evidence presented in Section 2. We also include an exogenous TFP shock that can capture

the Fernald (2014) bad luck hypothesis.

We find that a sharp decline in endogenous adoption intensity accounts for much of the

productivity decline during the Great Recession and after. On the other hand, a decline in

the efficiency of R&D is mainly responsible for the pre-Great Recession slowdown. Exoge-

nous TFP movements do not explain much of the productivity variation over this period.

We conclude by providing independent evidence that supports the plausibility of our key

findings. In particular, we provide a measure of R&D productivity based on the ratio of new

patents relative to R&D researchers that displays the same pattern as the R&D productiv-

ity shocks we estimate. Similarly, we show that a measure of expenditures by companies in

licensing new technologies developed by universities resembles the evolution of the intensity

of adoption implied by our model.

To be sure, we are not suggesting that a sustained productivity slowdown should follow

3Further, the decline in R&D in 2001 was reasonably widespread across sectors. Using COMPUSTAT
data, we observe that out of 29 sectors with R&D expenditures of at least $100 million in 2000, 19 experienced
a decline in R&D expenditures between their peak in the period 1998-2000 and 2002. As a benchmark,
computers and software experienced the 9th and 10th largest declines, of approximately 20% in each case.
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every recession. What is key is that there are other factors, such as constraints on policy,

that contribute to a slow recovery. In the case of the Great Recession, the combination of

the zero lower bound on the nominal interest rate, fiscal policy constraints and the delever-

aging process created an environment where declines in productivity enhancing intangible

investments could have a sizable effect on productivity. This contrasts, for example, with

the 1981-82 recession following which there was a rapid bounce back in output, due in large

part to aggressive fiscal and monetary policy, without any tangible impact on productivity.

In addition to the literature cited above, there are several other papers related to our

analysis. Schmookler (1966) and Shleifer (1986) emphasize the role of aggregate demand on

the timing of innovation and technology adoption. Queralto (2015), Guerron-Quintana and

Jinnai (2014) and Garcia-Macia (2015) have appealed to endogenous growth considerations

to explain the persistence of financial crises. The paper most closely related to ours is

Bianchi et al. (2017), who also estimate a macroeconomic model with endogenous growth

and are the first to use R&D data. In addition to variation in details and focus, there

are three key differences between our analysis and that in Bianchi et al. (2017). First, our

model of R&D and adoption is more explicit, which imposes discipline on the lags in the

diffusion process, and allows a clearer interpretation of the technology parameters. Second,

and perhaps most importantly, we use the panel data evidence presented in Section 2 as

an external validity check to ensure that the cyclical behavior of adoption in the model is

plausible. This distinction is important because cyclical diffusion plays an important role

in this literature but is not directly observable in the aggregate, necessitating some form

of external validity. A final notable difference is that our solution method allows us to

take account of a binding zero lower bound on monetary policy, which turns out to be an

important factor propagating the endogenous decline in productivity in the wake of the

Great Recession.

The rest of the paper is organized as follows. Section 2 presents evidence of the cyclical

behavior of R&D and technology adoption. Section 3 presents the model. Section 4 describes

the econometric implementation and presents our estimation results. In addition, we show

that estimates of the cyclicality of technology diffusion from artificial data generated by

the model are consistent with the estimates in 2. Finally, using a historical decomposition

of productivity growth, section 5 analyzes the extent to which the endogenous growth

mechanism can account for the evolution of productivity both before and after the Great

Recession.
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2 Evidence on R&D and the speed of technology diffusion

In this section, we present evidence on the cyclical behavior of R&D and technology adop-

tion. The goal is twofold: first to motivate our formulation of endogenous productivity; and

second to present external evidence that we use in Section 4.7 to validate the quantitative

predictions of our estimated model.

Figure 2 plots expenses on R&D conducted by US corporations. The figure shows a clear

procyclical pattern, consistent with the evidence found in other studies (see e.g. Comin and

Gertler (2006)).4 While there is a noticeable decline in R&D expenditures during the Great

Recession, there is a substantially larger decline relative to economic activity following the

2001-2002 recession. Overall, the figure raises the possibility that the productivity slowdown

prior to the Great Recession was in part a consequence of the sharp R&D contraction that

preceded it.

We next turn to technology adoption. As noted earlier, an aggregate time series mea-

suring adoption is not available. To explore the cyclicality of technology diffusion we resort

to survey data on the speed of technological diffusion, of the type used in the productivity

literature, for example, Griliches (1957) and Mansfield (1961). The specific data we have

available is time series data of the fraction of companies that have adopted a technology, for

a sample of 26 production technologies, detailed in Table 1, that diffused at various times

over the period 1947-2003 in the US (5) and the UK (21). We use the data to estimate

the effect of the business cycle on the speed of diffusion, after controlling for the normal

diffusion process.

Specifically, we denote by mit the fraction of potential adopters that have adopted a

specific technology i in t. The ratio of adopters to non-adopters rit is

rit = mit/(1−mit). (1)

The speed of diffusion is then the percentage change in rit :

Speedit = 4 ln(rit) (2)

As shown by Mansfield (1961), if the diffusion process follows a logistic curve, the speed

of diffusion (2) is equal to a constant αi. In reality, however, the speed of diffusion is not

constant; it tends to be faster in the early stages. Therefore, rit declines with the age of

4There is a long literature documenting the cyclicality of R&D expenditures (see Barlevy (2007), for a
summary). Barlevy (2007) presents evidence based on firm-level data on the importance of both sectoral
demand as well as firms’ financial conditions for the pro-cyclicality of R&D expenditures.
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Figure 2: R&D Expenditures by US Corporations, 1983-2013
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Log-linearly detrended data. Source: R&D Expenditure by US corporations (National Science Foundation).

Data are deflated by the GDP deflator and divided by the civilian population older than 16 (see Appendix

A.1 for data sources).
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Table 1: Technologies in diffusion panel data

UK Technologies

Special presses Foils
Wet suction boxes Gibberellic acid
Automatic size boxes Accelerated drying hoods
Basic oxygen process Vacuum degassing
Vacuum melting Continuous casting
Electrical hygrometers Synthetic fabrics
Tunnel kilns Computer-controlled processing
Tufted carpets Computer typesetting
Photo-electrically controlled cutting Shuttleless looms
Numerical control printing presses Numerical control turning machines
Numerical control turbines

US Technologies

CT scanners Computerized numerical control machines
Automated inspection sensors 3-D CAD
Flexible manufacturing systems

Source: UK data from Davies (1979). US data from Trajtenberg (1990) and Bartel et al. (2009)

the technology. Additionally, we want to explore whether the speed of technology diffusion

varies over the cycle. To this end, we consider the following specification

Speedit = αi +G(lagit) + β ∗ ŷt + εit, (3)

where G(.) is a polynomial in the years since the technology was first introduced, and ŷt

is a measure of cyclical fluctuations in GDP, specifically detrended real GDP per capita

(following Comin and Gertler (2006) we detrend GDP using a bandpass filter to capture

high- and medium- frequency fluctuations).

Table 2 presents the estimates of equation (3). The main finding is that the estimates

of the elasticity of the speed of diffusion with respect to the cycle, β, are robustly positive

and significant. In particular, the point estimate is between 3.6 and 4.1 depending on the

specification. These estimates of β provide a benchmark on the cyclicality of the speed of

technology diffusion in the micro-data. In our analysis, we use this benchmark to externally

validate the sensitivity of diffusion to the cycle in our model and in this way ensure that

the productivity dynamics induced by the endogenous adoption mechanisms in the model

are consistent with the micro-evidence.
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Table 2: Cyclicality of the Speed of Technology Diffusion

I II III IV

ŷt 3.73 3.7 3.64 4.12
(3.59) (2.81) (3.94) (3.17)

ŷt * US 0.07 -0.74
(0.04) (0.53)

lagit -0.057 -0.057
(5.22) (4.76)

lag2it 0.001 0.001
(2.52) (2.12)

ln(lagit) -0.29 -0.29
(6.68) (6.65)

R2 (within) 0.11 0.11 0.13 0.13
N technologies 26 26 26 26
N observations 327 327 327 327

Notes: (1) dependent variable is the speed of diffusion of 26 technologies, (2) all regressions include technology

specific fixed effects. (3) t-statistics in parenthesis, (4) ŷt denotes the cycle of GDP per capita in the country

and represents the high and medium frequency components of output fluctuations, (5) ŷt*US is the medium

term cycle of GDP per capita times a US dummy, (6) lag represents the years since the technology first

started to diffuse.

The effect of years since the technology started diffusing is negative and convex (i.e. it

vanishes over time). The results are robust to specifying the function G as a second order

polynomial or in logarithms. Finally, we do not observe any significant differential effect of

the cycle on US versus UK technologies.

To illustrate the cyclicality of the speed of technology diffusion for U.S. data, Figure 3

plots the speed of diffusion for the balanced panel of four US technologies for which we have

data from 1981 to 2003. Specifically, for each of the technologies we remove the acyclical

component of the diffusion rate (αi +G(lagit)). We then average the residual (β ∗ ŷt + εit)

over the four technologies. The dashed line is a plot of this average, while the solid line is

a three year centered moving average. The figure reveals a positive correlation between the

speed of diffusion and the cycle. Diffusion speed was lowest in the deep 1981-82 recession;

it recovered during the 80s and declined again after the 1990 recession. It increased notably

during the expansion in the second half of the 90s and declined again with the 2001 recession.

Unfortunately we do not have comprehensive data on technology diffusion during the

Great Recession. We do, however, have two types of limited evidence. First, Eurostat
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Figure 3: Speed of Diffusion in the US
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provides information on the diffusion of three relevant internet-related technologies in the

UK.5 Figure 4 plots their average diffusion from 2004 until 2013 with the business cycle

downturns in the UK. The figure confirms the pro-cyclicality of the speed of diffusion of

these technologies. In particular, during the downturn corresponding to the Great Recession

(2008-2009), the average speed of diffusion of our three technologies sharply declined by

75%. After the Great Recession, the speed of diffusion recovered but remained below

trend, converging to approximately 10% below average. Beyond its cyclicality, the second

observation we want to stress from the Figure is that fluctuations in the speed of diffusion

are very wide, ranging from 86% above average in 2004 to 74% below the average diffusion

speed in 2009.6

Second, for the U.S., we have an aggregate time series for fees paid for licensing new

technologies. Licensing fees may be interpreted as expenses paid for adopting new tech-

nologies. We defer further discussion of this data, which shows a marked a decline during

the Great Recession, to Section 5.

We make two uses of the data presented in this section in our subsequent analysis. We use

the R&D series directly as an observable in our estimation procedure. And, in Section 4, we

develop and estimate a model analogy to Equation (3), and use the panel regression results

presented in this section as an external validity check of the cyclicality of technological

diffusion generated by our estimated model.

3 Model

Our starting point is a New Keynesian DSGE model similar to Christiano et al. (2005)

and Smets and Wouters (2007). We include the standard features useful for capturing the

data. In addition, monetary policy obeys a Taylor rule with a binding zero lower bound

constraint. The key non-standard feature is that total factor productivity depends on two

endogenous variables: the creation of new technologies via R&D and the speed of adoption

5 The measures we consider are the fraction of firms that (i) have access to broadband internet, that
(ii) actively purchase online products and services and that (iii) actively sell online products and services
(actively is defined as constituting at least 1% of sales/purchases). For each of these three measures we
construct the speed of technology diffusion using expression (2), and then filter the effect of the lag since
the introduction of the technology using expression (3) and the estimates from column 3 of Table 2. The
resulting series are demeaned so that they can be interpreted as percent deviations from the average speed
of technology diffusion.

6Andrews et al. (2015) have recently provided complementary evidence that technology diffusion in OECD
countries may have slowed during the Great Recession. In their study, they show that the gap in productivity
between the most productive firms in a sector (leaders) and the rest (followers) has increased significantly
during the Great Recession. They interpret the increase in the productivity gap as evidence that followers
have slowed down the rate at which they incorporate frontier technologies developed by the leaders.
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Figure 4: Diffusion of Technologies on Business use of Internet in UK, 2004-2013
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of these new technologies. Skilled labor is used as an input for the R&D and adoption

processes. We do not model financial frictions explicitly; however, we allow for a shock that

transmits through the economy like a financial shock, as we discuss below. We begin with

the non-standard features of the model before briefly describing the standard ones.

3.1 Production Sector and Endogenous TFP: Preliminaries

In this section we describe the production sector and sketch how endogenous productivity

enters the model. There are two types of firms: (i) final goods producers and (ii) intermedi-

ate goods producers. There are a continuum, measure unity, of monopolistically competitive

final goods producers. Each final good firm i produces a differentiated output Y i
t . A final

good composite is then the following CES aggregate of the differentiated final goods:

Yt =

(ˆ 1

0
(Y i
t )

1
µt di

)µt
(4)

where µt > 1 and log(µt) follows an exogenous stochastic process:

log(µt) = (1− ρµ)µ+ ρµ log(µt−1) + σµε
µ
t (5)

where εµt is i.i.d. N(0, 1). Each final good firm i uses Y i
mt units of intermediate goods

composite as input to produce output Y i
t , according to the following simple linear technology

Y i
t = Y i

mt (6)

We assume each firm sets its nominal price P it on a staggered basis, as we describe later.

There exists a continuum of measure At of monopolistically competitive intermediate goods

firms that each make a differentiated product. The endogenous predetermined variable

At is the stock of types of intermediate goods adopted in production, i.e., the stock of

adopted technologies. Intermediate goods firm j produces output Y j
mt. The intermediate

goods composite is the following CES aggregate of individual intermediate goods:

Ymt =

(ˆ At

0
(Y j
mt)

1
ϑdj

)ϑ
(7)

with ϑ > 1. Let Kj
t be the stock of capital firm j employs, U jt be how intensely this capital

is used, and Ljt the stock of labor employed (we allow for variable utilization intensity of

capital U jt so as not to mistakenly attribute all high frequency variation in the Solow residual
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to endogenous technology). Then firm j uses capital services U jtK
j
t and unskilled labor Ljt

as inputs to produce output Y j
mt according to the following Cobb-Douglas technology:

Y j
mt = θt

(
U jtK

j
t

)α
(Ljt )

1−α (8)

where θt is an aggregate productivity shock whose growth rate follows a stationary AR(1)

process,

log(θt) = ρθ log(θt−1) + σθεθ,t (9)

where εθ,t is i.i.d. ∼ N(0, 1). Finally, we suppose that intermediate goods firms set prices

each period. That is, intermediate goods prices are perfectly flexible, in contrast to final

good prices.

Given a symmetric equilibrium for intermediate goods, it follows from equations (7) and

(8) that to a first order we can express the aggregate production function for the final good

composite Yt as7

Yt =
[
Aϑ−1t θt

]
· (UtKt)

α(Lt)
1−α (10)

The term in brackets is total factor productivity, which is the product of a term that

reflects endogenous variation, Aϑ−1t , and one that reflects exogenous variation θt. In sum,

endogenous productivity effects enter through the expansion in the variety of adopted in-

termediate goods, measured by At. As per Equation 9 θt is stationary so the driving force

of long term growth is the endogenous TFP mechanism. We next describe the mechanisms

through which new intermediate goods are created and adopted.

3.2 R&D and Adoption

The processes for creating and adopting new technologies are based on Comin and Gertler

(2006). Let Zt denote the stock of technologies, while as before At is the stock of adopted

technologies (intermediate goods). In turn, the difference Zt−At is the stock of unadopted

technologies. R&D expenditures increase Zt while adoption expenditure increase At. We

distinguish between creation and adoption because we wish to allow for realistic lags in

the adoption of new technologies. We first characterize the R&D process and then turn to

adoption.

7The production function implies Yt = Ωt · Y t where Y t is average output per firm and Ωt =(´ 1
0

(Y it /Y t)
1
µt di

)µt
= 1 to a first order. Next, given the total number of final goods firms is unity, given

the production function for each final goods producer (6), and given that Yt ≈ Y t, it follows that to a first
order Yt ≈ Ymt. Equation (10) then follows from (7) and (8).
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3.2.1 R&D: Creation of Zt

There are a continuum of measure unity of innovators that use skilled labor to create new

intermediate goods. Let Lpsrt be skilled labor employed in R&D by innovator p and let ϕt

be the number of new technologies available at time t+ 1 that each unit of skilled labor at

t can create. We assume ϕt is given by

ϕt = χtZtL
ρz−1
srt (11)

where χt is an exogenous disturbance to the R&D technology which follows an exogenous

process

log(χt) = (1− ρχ) log(χ̄) + ρχ log(χt−1) + σχε
χ
t (12)

where εχt is i.i.d. N(0, 1), and Lsrt is the aggregate amount of skilled labor working on

R&D, which an individual innovator takes as given. Following Romer (1990), the presence

of Zt, which the innovator also takes as given, reflects public learning-by-doing in the R&D

process. We assume ρz < 1 which implies that increased R&D in the aggregate reduces the

efficiency of R&D at the individual level. This congestion externality permits us to have

constant returns to scale in the creation of new technologies at the individual innovator

level, which simplifies aggregation, but diminishing returns at the aggregate level. Our

assumption of diminishing returns is consistent with the empirical evidence (see Griliches

(1990)); further, with our specification the elasticity of creation of new technologies with

respect to R&D becomes a parameter we can estimate, as we make clear shortly.8

Let Jt be the value of an unadopted technology, Λt,t+1 the representative household’s

stochastic discount factor and wst the real wage for a unit of skilled labor. We can then

express innovator p’s decision problem as choosing Lpsrt to solve

max
Lpsrt

Et{Λt,t+1Jt+1ϕtL
p
srt} − wstL

p
srt (13)

The optimality condition for R&D is then given by

Et{Λt,t+1Jt+1ϕt} − wst = 0

which implies

Et{Λt,t+1Jt+1χtZtL
ρz−1
srt } = wst (14)

8An added benefit from having diminishing returns to R&D spending is that, given our parameter es-
timates, steady state growth is relatively insensitive to tax policies that might affect incentives for R&D.
Given the weak link between tax rates and long run growth, this feature is desirable.
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The left side of Equation (14) is the discounted marginal benefit from an additional

unit of skilled labor, while the right side is the marginal cost. Given that profits from

intermediate goods are pro-cyclical, the value of an unadopted technology, which depends

on expected future profits, will be also be pro-cyclical. This consideration, in conjunction

with some stickiness in the wages of skilled labor which we introduce later, will give rise to

pro-cyclical movements in Lsrt.
9

Finally, we allow for obsolescence of technologies. Let φ be the survival rate for any

given technology. Then, we can express the evolution of technologies as:

Zt+1 = ϕtLsrt + φZt (15)

where the term ϕtLsrt reflects the creation of new technologies. Combining equations (15)

and (11) yields the following expression for the growth of new technologies:

Zt+1

Zt
= χtL

ρz
srt + φ (16)

where ρz is the elasticity of the growth rate of technologies with respect to R&D, a parameter

that we estimate.

3.2.2 Adoption: From Zt to At

We next describe how newly created intermediate goods are adopted, i.e. the process of

converting Zt to At. Here we capture the fact that technology adoption takes time on average

(as documented, for example by Comin and Hobijn (2010)), but the adoption rate can vary

pro-cyclically, consistent with the evidence in Comin (2009) and Section 2. In addition, we

would like to characterize the diffusion process in a way that minimizes the complications

from aggregation. In particular, we would like to avoid having to keep track, for every

available technology, of the fraction of firms that have and have not adopted it. To do so,

we suppose there is a competitive group of “adopters” who convert unadopted technologies

into ones that can be used in production. They buy the rights to the technology from the

innovator, at the competitive price Jt, which is the value of an unadopted technology. They

then convert the technology into use by employing skilled labor as input. This process

takes time on average, and the conversion rate may vary endogenously. In particular, the

pace of adoption depends positively on the level of resources devoted to adoption in the

9Other approaches to motivating procyclical R&D, include introducing financial frictions (Aghion et al.
(2010)), short term biases of innovators (Barlevy (2007)), or capital services in the R&D technology function
(Comin and Gertler (2006)).
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following simple way: an adopter succeeds in making a product usable in any given period

with probability λt, which is an increasing and concave function of the amount of skilled

labor employed, Lsat:

λt = λ(ZtLsat) (17)

with λ′ > 0, λ′′ < 0.10 We augment Lsat by a spillover effect from the total stock of tech-

nologies Zt - think of the adoption process as becoming more efficient as the technological

state of the economy improves. The practical need for this spillover is that it ensures a

balanced growth path: as technologies grow, the number of new goods requiring adoption

increases, but the supply of labor remains unchanged. Hence, the adoption process must be-

come more efficient as the number of technologies expands. Unlike the specification used for

R&D, there is no separate shock to the productivity of adoption activities in (17). We are

forced to introduce this asymmetry because we do not have a direct observable to measure

adoption labor or λt.

Our adoption process implies that technology diffusion takes time on average. If λ̄ is the

steady state value of λt, then the average time it takes for a new technology be adopted is

1/λ̄. Away from the steady state, the pace of adoption will vary with skilled labor input

Lsat. We turn next to how Lsat is determined.

Once in usable form, the adopter sells the rights to the technology to a monopolistically

competitive intermediate goods producer that makes the new product using the production

function described by Equation (8). Let Πmt be the profits that the intermediate goods firm

makes from producing the good, which arise from monopolistically competitive pricing. The

price of the adopted technology, Vt, is the present discounted value of profits from producing

the good, given by

Vt = Πmt + φEt{Λt,t+1Vt+1} (18)

Then we may express the adopter’s maximization problem as choosing Lsat to maximize

the value Jt of an unadopted technology, given by

Jt = max
Lsat

Et{−wstLsat + φΛt,t+1[λtVt+1 + (1− λt)Jt+1} (19)

with λt as in Equation (17). The first term in the Bellman equation reflects total adoption

expenditures, while the second is the discounted benefit: the probability weighted sum of

10In the estimation, we assume that
λ(•) = κλ ∗ (•)ρλ .

where κλ and 0 < ρλ < 1 are constants.
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the values of adopted and unadopted technologies. The first order condition for Lsat is

Ztλ
′ · φEt{Λt,t+1[Vt+1 − Jt+1]} = wst (20)

The term on the left is the marginal gain from adoption expenditures: the increase in the

adoption probability λt times the discounted difference between the value of an adopted

versus an unadopted technology. The right side is the marginal cost. The term Vt − Jt
is pro-cyclical, given the greater influence of near term profits on the value of adopted

technologies relative to unadopted ones. Given this consideration and the stickiness in wst

which we alluded to earlier, Lsat varies pro-cyclically. The net implication is that the pace

of adoption, given by λt, will also vary pro-cyclically.

Since λt does not depend on adopter-specific characteristics, we can sum across adopters

to obtain the following relation for the evolution of adopted technologies

At+1 = λtφ[Zt −At] + φAt (21)

where Zt −At is the stock of unadopted technologies.

3.2.3 Technology diffusion: mapping to the data

Before continuing with the model, we make a detour to map the notion of diffusion in

our framework to the econometric analysis presented in Section 2. The data diffusion

corresponds to the number of companies at time t+j that have adopted a single technology

invented at some time t. Within our model, only one firm adopts a technology but multiple

technologies are invented in a given period. Accordingly, the natural notion of diffusion in

the model is the share of technologies invented at time t that have been adopted at time

t+ j.

Formally, denote by Ztt+k the mass of technologies that was invented at time t that

survives (i.e. is not obsolete) at time t+k, and Att+k the mass of vintage t technologies that

have been adopted at time t+ k. Then, we can define the fraction of vintage t technologies

adopted at time t+ k by

mt
t+k ≡

Att+k
Ztt+k

. (22)

Analogously to Equations 1 and 2, we define r and the speed of diffusion in the model as:

rtt+k ≡
mt
t+k

1−mt
t+k

(23)
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and

Speedtt+k ≡ log

(
rtt+k
rtt+k−1

)
= log

(
1 + λt+k−1/r

t
t+k−1

1− λt+k−1

)
(24)

Where the second equality comes from substituting in the law of motion for rtt+k, as de-

tailed in Appendix A.3. Equation (24) has two relevant implications. First, the speed of

technology diffusion, Speedtt+k, is pro-cyclical because it varies positively with the adoption

probability λt+k−1, which is pro-cyclical. Second Speedtt+k declines with the diffusion level

of the technology as measured by rtt+k−1. This prediction is consistent with the panel data

evidence from Table 2.11

3.3 Households

The representative household consumes and saves in the form of capital and riskless bonds

which are in zero net supply. It rents capital to intermediate goods firms. As in the standard

DSGE model, there is habit formation in consumption. Also as is standard in DSGE models

with wage rigidity, the household is a monopolistically competitive supplier of differentiated

types of labor.

The household’s problem differs from the standard setup in two ways. First it supplies

two types of labor: unskilled labor Lht which is used in the production of intermediate goods

and skilled labor which is used either for R&D or adoption, Lhst. Second, we suppose that

the household has a preference for the safe asset, which we motivate loosely as a preference

for liquidity and capture by incorporating bonds in the utility function, following Krish-

namurthy and Vissing-Jorgensen (2012). Further, following Fisher (2015), we introduce a

shock to liquidity demand %t.
12 As we show, the liquidity demand shock transmits through

the economy like a financial shock. As the estimated model reveals, it turns out to be the

main source of cyclical variation, particularly during the Great Recession period.

Let Ct be consumption, Bt holdings of the riskless bond, Πt profits from ownership of

monopolistically competitive firms, Kt capital, Qt the price of capital, Rkt the rate of return,

and Dt the rental rate of capital. Then the households’ decision problem is given by

max
Ct,Bt+1,Lht ,L

h
st,Kt+1

Et

∞∑
τ=0

βτ
{

log(Ct+τ − bCt+τ−1) + %tBt+1 −
[
υ(Lht )1+ϕ + υs(L

h
st)

1+ϕ

1 + ϕ

]}
(25)

11To control for this non-linear “vintage” effect, which is due to the geometric nature of diffusion in the
model, we introduce (see Section 4.7) a vintage-control when estimating the cyclicality of diffusion in the
model, analogous to that included in the panel data regression in Section 2.

12As Fisher (2015) discusses, the liquidity demand shock is an explicit formulation of the risk shock in
Smets and Wouters (2007). Del Negro et al. (2017) incorporates a similar shock.
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subject to

Ct = wht L
h
t + whstL

h
st + Πt +RktQt−1Kt −QtKt+1 +RtBt −Bt+1 (26)

with Rkt ≡ (Dt + Qt)/Qt−1. Let Λt,t+1 ≡ βu′(Ct+1)/u
′(Ct) be the household’s stochastic

discount factor and ζt ≡ %t/u
′(Ct) be the liquidity demand shock in consumption units.

The shock itself is given by the following exogenous process:

ζt = (1− ρζ) ζ̄ + ρζζt−1 + σζε
ζ
t , (27)

where εζt is i.i.d. N(0, 1). Then we can express the first order necessary conditions for

capital and the riskless bond as, respectively:

1 = Et{Λt,t+1Rkt+1} (28)

1 = Et{Λt,t+1Rt+1}+ ζt (29)

As equation (29) indicates, the liquidity demand shock distorts the first order condition

for the riskless bond. A rise in ζt acts like an increase in risk: given the riskless rate

Rt+1 the increase in ζt induces a precautionary saving effect, as households reduce current

consumption in order to satisfy the first order condition (which requires a drop in Λt,t+1). It

also leads to a drop in investment demand, as the decline in Λt,t+1 raises the required return

on capital, as equation (28) implies. The decline in the discount factor also induces a drop

in adoption and R&D. Overall, the shock to ζt generates positive co-movement between

consumption and investment similar to that arising from a monetary shock. To see this,

combine equations (28) and (29) to obtain

Et{Λt,t+1(Rkt+1 −Rt+1)} = ζt (30)

To a first order an increase in ζt has an effect on bothRkt+1 and Λt,t+1 that is qualitatively

similar to that arising from an increase in Rt+1. In addition, note that an increase in ζt

raises the spread Rkt+1 − Rt+1. In this respect it transmits through the economy like a

financial shock. Indeed, we show later that our identified liquidity demand shock is highly

correlated with credit spreads. We defer to the next section a description of the household’s

wage-setting and labor supply behavior.
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3.4 Standard DSGE model features

Since the remaining features of the model are standard, we present only the equilibrium

conditions (a full derivation of the model is available as an online appendix).

3.4.1 Intermediate goods firms: factor demands

Intermediate goods firm j chooses capital Kj
t , utilization U jt , and labor Ljt to minimize costs

given the relative price of the intermediate goods composite pmt, the price of capital Qt,

the rental rate Dt, the real wage wt and the desired markup ς. Following Greenwood et al.

(1988), we endogenize the capital utilization decision by assuming that the depreciation

rate δ(U jt ) is an increasing and convex function of capital utilization U jt .

The first order conditions from the firm’s cost minimization problem for Kj
t , U

j
t and Ljt

are then given by

α
pmtY

j
mt

Kj
t

= ς[Dt + δ(U jt )Qt] (31)

α
pmtY

j
mt

U jt
= ςδ′(U jt )QtK

j
t (32)

(1− α)
pmtY

j
mt

Ljt
= ςwt (33)

We allow ς to be smaller than the optimal unconstrained markup ϑ due to the threat of

entry by imitators as is common in the literature (e.g., Aghion and Howitt (1998)).

3.4.2 Capital producers: investment

Competitive capital producers use final output to make new capital goods, which they sell

to households, who in turn rent the capital to firms. Let It be new capital produced and

pkt the relative price of converting a unit of final output into new capital (the replacement

price of capital), and γy the steady state growth in It. Following Christiano et al. (2005), we

assume flow adjustment costs of investment: the adjustment cost function f(It/(1+γy)It−1)

is increasing and concave, with f(1) = f ′(1) = 0 and f ′′(1) > 0. The first order condition

for It relates the ratio of the market value of capital to the replacement price (i.e. “Tobin’s
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Q”) to investment, as follows:

Qt
pkt

= 1 + f

(
It

(1 + γy)It−1

)
+

It
(1 + γy)It−1

f ′
(

It
(1 + γy)It−1

)
− EtΛt,t+1

(
It+1

(1 + γy)It

)2

f ′
(

It+1

(1 + γy)It

)
(34)

We assume that log(pkt) follows an AR(1) process with parameters ρpk and σpk. Finally,

the law of motion for capital is

Kt+1 = It + (1− δ(Ut))Kt (35)

3.4.3 Price and Wage Setting

Following Smets and Wouters (2007), we assume that both nominal prices and wages are

set on a staggered basis, following the “Calvo” adjustment rule. Let ξp be the probability

a firm cannot adjust its price and let ξw be the probability a firm cannot adjust its wage.

Conversely, let ιp be the degree of indexing prices to past inflation and let ιw the analogue

for wages. The only difference from the standard model is that households in our economy

supply two types of labor, skilled and unskilled. We assume that each type of labor has the

same frequency of wage adjustment.

Denoting by πt the inflation rate and by mct the marginal cost of final goods producers

in log-deviation from steady state, the price Phillips curve is:

πt = κmct +
ιp

1 + ιpβ
πt−1 +

β

1 + ιpβ
πt−1Et [πt+1] + εµt (36)

with κ ≡ (1−ξpβ)(1−ξp)
ξp(1+ιpβ)

and εµt is a shock to the final goods markup that follows an AR(1)

process with parameters ρµ and σµ.

The unskilled wage Phillips curve is:

(1 + κw)w̃t =
1

1 + β

(
w̃t−1 + ιwπt−1 − (1 + β̃ιw)πt

)
+

β

1 + β
Et [w̃t+1 + πt+1]

+ κw(ũc,t − ϕl̃t) + εµw,t (37)

with κw ≡ (1−ξwβ)(1−ξw)
(ϕ(1−1/µw)−1+1)ξw(1+β)

is the steady state wage markup. ũc, w̃, l̃, are the marginal

utility of consumption and unskilled wage and hours in log deviation from steady state, and

εµw,t is a shock to the wage markup that follows an AR(1) process with parameters ρµw
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and σµw. The skilled wage Phillips curve is identical, replacing unskilled wage and hours

for skilled equivalents.13

3.4.4 Monetary policy

The nominal interest rate Rnt+1 is set according to the following Taylor rule:

Rnt+1 = rmt

(( πt
π0

)φπ ( Lt
Lss

)φy
Rn

)1−ρR

(Rnt)
ρR (38)

where Rn is the steady state nominal rate, π0 the target rate of inflation, Lt total em-

ployment and Lss steady state employment; φπ and φy are the feedback coefficients on the

inflation gap and capacity utilization gap respectively and log(rmt ) follows an AR(1) process

with parameters ρmp and σmp. We use the employment gap to measure capacity utilization

as opposed to an output gap for two reasons. First, Berger et al. (2015) show that measures

of employment are the strongest predictors of changes in the Fed Funds rate. Second, along

these lines, the estimates of the Taylor rule with the employment gap appear to deliver a

more reasonable response of the nominal rate to real activity within this model than does

one with an output gap.14 In addition, we impose the zero lower bound constraint on the

net nominal interest rate, which implies that the gross nominal rate cannot fall below unity.

Rnt+1 ≥ 1 (39)

3.5 Resource constraints and equilibrium

The resource constraint is given by

Yt = Ct + pkt

[
1 + f

(
It

(1 + γy)It−1

)]
It +Gt (40)

where government consumption Gt is financed by lump sum taxes and follows (in logs)

an AR(1) process:

log(Gt/(1 + γy)
t) = (1− ρg)ḡ + ρg log(Gt−1/(1 + γy)

t−1) + εgt , (41)

13In estimating the model we introduce wage markup shocks to the wage setting problem of unskilled
labor only, so the markup for skilled labor is constant at its steady state level.

14Part of the problem may be that the behavior of the flexible price equilibrium output is quite complex
in the model, particularly given the endogenous growth sector. As a robustness check on our specification of
the Taylor rule, we estimate a version of the model in which we adjust the employment gap for demographic
effects on the size of the labor force; our estimation results are robust to this change.
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The market for skilled labor must clear:

Lst = [Zt −At]Lsat + Lsrt (42)

Finally, the market for risk-free bonds must clear, which implies that in equilibrium,

risk-free bonds are in zero net supply Bt = 0.

This completes the description of the model.

4 Estimation

4.1 Identification of the Endogenous Productivity Mechanism

What is different about our model from the standard DSGE framework is the presence of

the endogenous productivity mechanism. To identify this mechanism we use data on R&D

expenditures and the restrictions of the model. Ideally we would like to also use data on

expenditures on technological adoption, but we are not aware of a data series that could

serve this purpose. In our estimation procedure we therefore treat the stock of adopted

goods At as a latent variable and use the Kalman filter/smoother to identify it’s temporal

evolution. To do so we estimate the model using the “standard” macro series used to

estimate DSGE models (see below), augmented by a measure of US R&D expenditures.

In the model the driving force of long term growth (that is to say, growth on the balanced

growth path) is the endogenous productivity mechanism driven by the adoption of new

technologies, At. In the estimation procedure, the steady state growth rate of At is identified

by estimating the trend growth rate in real output. For this reason we do not detrend the

variables we use in our estimation procedure, since the information contained in the trend

identifies the long run behavior of At. From Equations 17 and 21, the trend growth rate in

At together with the calibrated adoption lag (λ̄) and obsolescence (φ) parameters pin down

the steady state level of skilled labor used in the adoption of new technologies. Further,

since in the balanced growth path At and Zt grow at the same rate, Equation 16 pins down

the steady state level of skilled labor used in R&D. Finally, since R&D expenditure in the

model is equal to the product of the skilled labor wage and labor hours used in R&D, the

steady state skilled labor wage is pinned down by targetting a steady state ratio of R&D

expenditure to GDP of 1.8%, which is the calibration target for the elasticity parameter ρλ

(the details of the model’s steady state are in the Online Appendix).

How do we separate endogenous from exogenous variation in productivity? The endoge-

nous component varies with the stock of adopted technologies At, which from Equation 21
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in turn depends on the stock of technologies Zt and labor used in adoption. Our model de-

composes the utilization adjusted Solow residual into an exogenous, stationary component

(the pure TFP shock θt) and an endogenous component, At. Variations in R&D expenditure

do not mechanically translate into TFP for two reasons. The first is that technologies need

to be adopted, and this occurs with an uncertain lag. The second is the R&D productivity

shock, which is identified from the first order condition for R&D expenditures, Equation

14.

4.2 Estimation Methodology

We estimate our model using Bayesian methods (see for example An and Schorfheide (2007),

Smets and Wouters (2007) and Justiniano et al. (2010)). We estimate using quarterly data

from 1984:I to 2008:III on eight US series: the growth rates of real output, consumption,

investment, and real wages, the log-level of hours worked, inflation (as measured by the

growth rate of the GDP deflator), the nominal risk-free interest rate and the growth rates

of expenditures on R&D by US corporations. Unlike the other series, R&D expenditures

are annual. We deal with the mixed frequency of the data in estimation using a version of

the Kalman filter adapted for this purpose. Appendix A.1 describes the data in detail.

We do not use data beyond 2008:III in the estimation of the structural parameters be-

cause the zero lower bound (ZLB) on the nominal interest was binding after that period,

rendering estimation using a log-linear approximation of our baseline model problematic.

However we do use the data from 2008:III to 2015:IV to identify shocks and other latent

variables of our model, including the endogenous component of TFP. We do so by modify-

ing the standard log-linear approximation of the model with the technique introduced by

Guerrieri and Iacoviello (2015) to deal with occasionally binding constraints, as described

in Appendix A.2.

We estimate all the standard parameters that appear in the conventional DSGE model

with the exception of the markup in the final goods sector. The presence of an additional

markup in the intermediate goods sector along with the elasticity of substitution between

goods in this sector makes identification problematic, leading us to calibrate these param-

eters.

Of the four technological change parameters, we estimate the elasticity of the creation of

new technologies with respect to R&D. The first order condition for R&D (14) allows us to

identify ρz, along with the shock to R&D productivity, χt. We calibrate the other technolog-

ical parameters using evidence from other studies and long-run restrictions. Additionally,

we use the panel data evidence from section 2 as a check that the elasticity of the diffusion
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rate with respect adoption expenditure ρλ that results from our model is reasonable. We

next discuss the calibrated parameters and describe the prior and posterior estimates of the

remaining parameters.

4.3 Calibrated parameters

As is standard we calibrate the steady state depreciation rate δ and the steady state ratio

of government expenditures to output to match the data. The markups on final (µ) and

intermediate goods (ς) are set to 1.1 and 1.18 respectively. We set the markup on final goods

towards the lower end and the markup on intermediate goods in the middle of the range of

estimates in the literature.15 We set markups conservatively low because the R&D share

of GDP is increasing in markups and decreasing in ρλ, so setting markups low makes our

calibration of ρλ more conservative. The parameter ϑ is set to 1.35 to produce an elasticity

of substitution of 3.85 between intermediate goods, in line with the estimates from Broda

and Weinstein (2006). We calibrate the steady state liquidity demand shock ζ̄ to match

an annual liquidity premium of 50 bps, consistent with the estimates in Del Negro et al.

(2017).

The three endogenous technological change parameters we calibrate include: the steady

state adoption lag λ̄, the obsolescence rate (1 − φ), and the elasticity of the adoption

probability λ with respect to adoption expenditures, ρλ. λ̄ is set to produce an average

adoption lag of 5 years which is consistent with the estimates in Cox and Alm (1996), Comin

and Hobijn (2010) and Comin and Mestieri (2015). 1 − φ is set to 2% (quarterly) which

is the average of the estimates of the obsolescence rate that come from the rate of decay

of patent citations (see Caballero and Jaffe (1993)) and patent renewal rates (Bosworth

(1978)). Finally, ρλ is set to 0.925 to induce a ratio of private R&D to GDP consistent with

post-1970 U.S. data (approximately 1.8% of GDP). As discussed earlier, though, since ρλ

governs the cyclicality of technological diffusion, we check that cyclicality in the model is

consistent with the panel data evidence. Table 3 presents the calibrated parameters and

their values.

4.4 Parameter estimates

Table 4 presents the prior and posterior distributions for the parameters that we estimate.

For the conventional parameters we use similar priors to the literature (e.g. Justiniano et al.

(2010)). For the new parameter we estimate, the elasticity of R&D parameter (ρz) we use

15Jaimovich (2007) reports markup estimates in gross output data between 1.05 and 1.15 and in value
added data from 1.2 to 1.4.
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Table 3: Calibrated Parameters

Parameter Description Value

δ Capital depreciation 0.02
G
Y SS government consumption/output 0.2
µ SS final goods mark up 1.1
ς SS intermediate goods mark up 1.18
ϑ Intermediate goods elasticity of substitution 1.35
ζ̄ SS liq. demand 50/4 bps

1− φ Obsolescence rate 0.08/4
λ̄ SS adoption lag 0.2/4
ρλ Adoption elasticity 0.925

a beta prior centered around a mean of 0.6, which is at the lower end of estimates provided

in Griliches (1990).

Table 4: Prior and Posterior Distributions of Estimated Parameters

Parameter Description Prior Posterior
Distr Mean St. Dev. Mean St. Dev.

ρR Taylor rule smoothing Beta 0.70 0.15 0.833 0.0007
φπ Taylor rule inflation Gamma 1.50 0.25 1.638 0.0540
φy Taylor rule labor Gamma 0.30 0.10 0.385 0.0049
ϕ Inverse Frisch elast. Gamma 2.00 0.75 2.726 0.7445
f ′′ Investment adj. cost Gamma 4.00 1.00 5.630 0.6452
δ′(U)
δ Capital util. elast. Gamma 4.00 1.00 4.045 0.9615

ξp Calvo prices Beta 0.50 0.10 0.932 0.0002
ξw Calvo wages Beta 0.75 0.10 0.933 0.0008
ιp Price indexation Beta 0.50 0.15 0.252 0.0115
ιw Wage indexation Beta 0.50 0.15 0.386 0.0175
µw SS Wage Markup Normal 0.15 0.05 0.151 0.0025
b Consumption habit Beta 0.70 0.10 0.486 0.0017
ρz R&D elasticity Beta 0.60 0.15 0.376 0.0105
α Capital share Normal 0.30 0.05 0.200 0.0009

β̃ Discount factor Gamma 0.25 0.10 0.512 0.0110
100 ∗ γy SS output growth Normal 0.46 0.03 0.454 0.0005

Most of our estimates are similar to those in the literature. The price and wage rigidity

parameters are higher than the estimates in, for example, Smets and Wouters (2007), likely

reflecting that inflation was low and stable over our sample.16 Our estimate of the elasticity

16In a more recent study, Del Negro et al. (2015) report estimates of wage and price rigidity parameters
of similar magnitude to our results.
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of new technologies with respect to R&D, ρz, is 0.376, which is somewhat below the Griliches

(1990) estimates. The value of ρz is identified from the co-movement between the series on

R&D expenditures and the model estimates of the value of un-adopted technologies. The

discrepancy in the estimate of ρz may reflect the fact that (effectively) we use quarterly

data while the literature uses annual data: one would expect greater diminishing returns to

R&D (and hence smaller co-movement with the market value of new technologies) at higher

frequencies due to frictions in adjusting skilled labor input.

Finally, with respect to the shocks, we find lower estimates of the persistence of exogenous

TFP than in the literature (the prior and posterior distributions of parameters of the shock

processes can be found in Table 9 in the appendix). This reflects the fact that our model

produces significant endogenous persistence in TFP.17

4.5 Sources of Variation and the Liquidity Demand Shock

Here we establish that demand shocks - and the liquidity demand shock in particular - is

not only an important source of variation in output, but an important source of variation

in endogenous productivity as well. In addition, this importance is especially pronounced

during recessions.

Our key finding is that the liquidity demand shock is the most important source of

cyclical variation as well as the most important driver of recessions, including the Great

Recession. We ascertain the relative importance of each shock by calculating a set of

variance decompositions. To do so we simulate the model a large number of periods taking

into account the ZLB as described in Appendix A.2. Table 5 presents the results. There are

several important takeaways. As noted, liquidity demand is the main source of variation.

It explains 42.7% of output growth, 54.7% of hours and 52.3% of endogenous productivity.

In addition, the “demand” shocks overall are dominant. The two main demand shocks

(liquidity demand and money) combined account for more than half the volatility of output

and more than two thirds of the variation in hours and endogenous productivity variation.

The next most important shock is the exogenous component of total factor productivity,

which accounts for 18.5% of output variation, 10.8% of hours variation, and 9.5% of the

variation in endogenous TFP.

Next we show that the liquidity demand shock is by far the most important shock driving

recessions. Figure 5 plots the historical evolution of per capita output growth as well as

17Estimating our model without the endogenous technology mechanism over the same sample period gives
an estimate for the AR(1) parameter of the exogenous TFP process of 0.9685 versus 0.953 in the model with
endogenous technology.
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Table 5: Variance Decomposition (%)

Variables Liquidity Money Govt Price of TFP R&D Mark up Wage
Demand Exp Capital mark up

Output Growth 42.7 13.6 16.6 6.1 18.5 0.0 2.2 0.3
Consumption 45.8 14.6 16.7 0.7 19.9 0.0 1.9 0.3
Investment 16.8 4.9 2.9 64.6 7.7 0.3 1.8 0.9
Inflation 0.3 0.0 0.2 0.0 3.3 0.0 80.6 15.5
Nominal R 35.4 33.0 1.3 2.0 7.5 0.3 14.2 6.4
Hours 54.7 18.2 5.7 4.6 10.8 0.2 4.3 1.5
Endo. TFP 52.3 18.0 4.2 0.7 9.5 8.4 1.6 5.3

Variance decomposition with ZLB (10,000 simulations, HP filtered series, filter parameter = 1600).

the components that are accounted for by the liquidity demand and the exogenous TFP

shock, the disturbance that is second most important in driving recessions.18 In each of

the three recessions, the liquidity demand shock accounts for most of the decline in output.

In addition to moving the economy to the trough during the Great Recession, the liquidity

demand shock is also responsible for its duration. In particular, the historical decomposition

shows that if the only shock that had hit the economy was the liquidity demand shock the

recovery of output growth after the GR would have been even slower. It is important to

mention that the model does not require a sequence of large negative shocks to explain the

drop in output and binding ZLB observed during the GR. Instead, one large shock (of the

order of 4.9 standard deviations) is sufficient . This is due partly to the estimated persistence

of the liquidity shock but importantly also to the amplification and persistence generated

by the endogenous productivity mechanism, as illustrated by the impulse responses plotted

in Figure 7.

Finally, we present some evidence in support of our interpretation of the liquidity demand

shock as a financial shock. As noted in Section 3.3, a negative liquidity demand shock causes

the spread between the return on capital and the riskless rate to widen. Figure 6 compares

the spread implied by our estimated liquidity shocks to the spread between the twenty year

Baa corporate bond rate and the ten year US treasury bond rate. To compute the model

spread, we use the expectations hypothesis to convert the one period spreads implied by

the model to the maturity of the Baa spread.

18The decomposition takes into account the ZLB (as described in Appendix A.2), which makes the model
nonlinear for the period 2008:I-2015:IV. Because of this nonlinearity, the sum of the contribution of each
shock does not equal the value of the smoothed variable being decomposed (output growth in this case) for
the mentioned period. This “nonlinear residual” emerges because the interaction between shocks is relevant
in nonlinear models. However, our results indicate that the only shock that moves the economy to the ZLB
is the liquidity demand shock. We therefore assign the nonlinear residual to this shock.
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Figure 5: Output Growth Decomposition
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Data sources are described in Appendix A.1. Smoothed shocks from model estimated using data as described

in Section 4.4 and Appendix A.1.
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Figure 6: Model Spread vs Data
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turity from FRED. Both spreads series are demeaned. Model implied long run spreads are computed using

the expectations hypothesis. To be consistent with the Baa spread, we use a 20-year horizon for the capital

return and a 10-year one for the risk free rate.

The model estimated spread has a correlation of 0.66 with the bond spread. It displays

similar countercyclical movement over recessions and expansions. Also, the magnitude of

the model and data spreads are similar. The one important difference, however, is that the

model spread displays more persistence following the Great Recession than the Baa spread.

Del Negro et al. (2017) obtain similar results for their measure of the model spread. One

possibility is that the Baa spread, which reflects credit costs for publicly traded companies,

is not always representative of the wedge between borrowing and safe rates that households

face. For example, while financial conditions may have normalized for large firms shortly

after the Great Recession, households and small and medium-sized companies continued to

face borrowing frictions. Though we do not report the results here, the two year personal

loan rate for households has remained persistently high following the Great Recession.
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Figure 7: Impulse Response to 1 std. dev. Liquidity Demand Shock
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4.6 Endogenous Technology Mechanism

Before analyzing how our model can account for productivity dynamics, we do two exercises.

First, in this sub-section we analyze how shocks to the economy transmit into endogenous

movements in productivity. We consider a shock to liquidity demand, given the importance

of this disturbance as a source of variation. In the next sub-section, we show that the cyclical

movements in technology diffusion the model generates are consistent with the panel data

evidence in section 2.

Figure 7 presents the responses of some key variables to a one standard deviation liquidity

demand shock.19 To isolate the effects of our endogenous productivity mechanism, we plot

the responses of our model and a version where technology is purely exogenous.

An increase in the demand for the liquid asset, all else equal, induces households to

reduce their consumption demand and their saving in risky assets (See equations 28-30).

As a result there is upward pressure on the required return to capital, Rkt+1, and downward

19In the online Appendix we report the impulse response functions to the money shock and the shock to
the R&D productivity.
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pressure on the safe real rate Rt+1. The former leads to a fall in both physical investment

demand as well as in the demand for productivity enhancing investments, including both

R&D and adoption expenditures. The latter cushions the drop in consumption. Given

nominal rigidities, the overall drop in both investment and consumption demand leads

to a decline in output. The drop in productivity enhancing investments, further, induce

a decline in productivity, magnifying both the overall size and persistence of the output

decline relative to the version of the model where technology is exogenous.

One additional interesting result is that the endogenous productivity mechanism mutes

the decline in inflation following the contractionary demand shock. As in conventional New

Keynesian models, inflation declines when aggregate demand falls. However, the endogenous

decline in productivity growth lessens the decline in marginal costs, which in turn dampens

the decline in inflation, making it almost negligible. This feature can offer at least part of

the explanation for the surprising failure of inflation to decline by any significant amount

during the Great Recession.

Finally, the main part of our analysis involves analyzing productivity over a period

where the ZLB is binding. Our historical decomposition, further, suggests that it is the

liquidity demand shock that moves the economy into the ZLB. Accordingly it is useful to

understand the implications of the ZLB for how a contractionary liquidity demand shock

influences endogenous productivity. Figure 8 plots the impulse response functions with and

without a binding ZLB. When the ZLB is binding, monetary policy cannot accommodate a

recessionary shock. This results in higher interest rates than when the ZLB is not binding.

The higher real rates amplify the drops in investment, R&D and adoption intensity. In the

short term, this leads to lower aggregate demand and a larger output drop. It also leads to

larger declines in the growth rate of the number of adopted technologies and to lower levels

of TFP in the medium and long term.20

4.7 Technology Diffusion: Model vs. Data

In this section we investigate whether the cyclicality of diffusion in our model is reasonably

similar to that in the micro data. This exercise is important to validate the realism of the

diffusion mechanism in the model. To do so, we derive a model analogue to the estimating

Equation (3) of Section 2.

20One interesting observation on how the endogenous technology mechanism interacts with the ZLB is
that in contrast with standard neo-keynessian models with exogenous technology, in our model once the
economy enters in the ZLB region, it naturally remains there without the need of additional contractionary
shocks. This is the case because of the additional amplification and propagation generated by the endogenous
contraction in TFP. This feature is also analyzed in Benigno and Fornaro (2017).
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Figure 8: Liquidity Demand Shock and the ZLB

0 10 20 30 40 50
-6

-4

-2

0

0 10 20 30 40 50
-1.5

-1

-0.5

0

0 10 20 30 40 50
-1

0

1

2

3

4

0 10 20 30 40 50
0

2

4

6

8

10

Impulse response functions to a large (10 standard deviation) positive liquidity demand shock.

Recall from Equation (24) that due to the geometric nature of diffusion in the model, the

vintage of the technology affects the speed of diffusion. In particular, absent any cyclical

fluctuations, rtt+k is increasing in k, the time elapsed since invention. Accordingly, we define

the vintage effect as the speed that a given vintage would have in the absence of business

cycle fluctuations; that is, if the adoption rate was equal to its constant steady state level,

λ̄. Formally, the vintage effect on speed is

Speed
t
t+k = log

(
1 + λ̄/rtt+k−1

1− λ̄

)
(43)

Using this definition, we model the regression equation for the effect of the cycle on the

speed of diffusion as

Speedtt+k = α+ Speed
t
t+k + βŷt+k + εt+k (44)

where ŷt+k denotes the same measure of the output gap as in Section 2. Note that the

vintage-effect on the speed is akin to the lag control we included in regression (3) to capture
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Table 6: Cyclicality of diffusion speed: model versus data

Data Model

β̂ 3.73 1.88
[1.7,5.8] [1.53,2.23]

β̂ is the estimated elasticity of speed of diffusion with respect to the output gap. Numbers in brackets are

95% confidence intervals. Model confidence intervals are constructed by averaging across regression results

of 100 period long sub-samples of the model simulated data.

the deterministic effect of the lag on the average speed of diffusion.

We estimate equation (44) in a synthetic sample constructed from 100,000 period sim-

ulations of our estimated model. As described in Appendix A.3, we estimate the panel by

weighting each observation by the share of age k technologies in the steady state. Table 6

reports the point estimates together with the 95% confidence intervals of the estimates of β

in the data simulations as well as from the panel estimates in section 2. The point estimate

in the model is smaller (1.88 versus 3.73) but falls within the 95% confidence interval of the

point estimate in the data.

Table 7 reports a sensitivity analysis to ρλ of the cyclicality of the speed of diffusion and

our calibration target, the share of R&D expenditures in GDP. To obtain these results we

reestimate the model for alternative values of ρλ and simulate the model using the resulting

parameter estimates. The lower the values of ρλ the higher the share of R&D in GDP in

steady state. This is because, for a given λ, a lower ρλ produces greater curvature in the

value of unadopted technologies raising the rents earned from engaging in R&D. For a ρλ

of 0.85, R&D represents 3.3% of GDP while for a ρλ of 0.95 the R&D share is 1.2%. The

cyclicality of the speed of diffusion increases with the value of ρλ. For ρλ equal to 0.95, the

elasticity of the speed of diffusion with the cycle produced by the model is 2.14 which falls

within the confidence interval for the technology panel in Section 2. However, for values

of ρλ smaller than our baseline of 0.925 the elasticities of the speed of diffusion with the

cycle fall outside the confidence interval. For example, for a ρλ of 0.85, the elasticity is 1.19.

Nonetheless, for completeness, we show in the Online Appendix that our main results on

the evolution of endogenous productivity are robust to calibrating ρλ to 0.85.

We conclude from this analysis that the cyclical response of the speed of diffusion in

our model is similar to that estimated in the panel data, falling in the lower part of the

confidence interval.
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Table 7: Effect of varying ρλ on estimated elasticity β̂ and R&D expenditure share

ρλ β̂ R&D/GDP

0.85 1.19 3.3%
0.9 1.59 2.3%

0.925 1.88 1.8%
0.95 2.14 1.2%

Values in bold are for baseline calibration (ρλ=0.925). Values for alternative ρλ are obtained by re-estimating

and simulating the model as described in Sections 4 and 4.7.

5 Analysis of Productivity Dynamics and Inflation

We now explore the model’s implications for the evolution of productivity, with particular

emphasis on the periods before, during and after the Great Recession. We focus on TFP but

also consider labor productivity. The latter allows us to consider the impact of the demand

shortfall during the Great Recession on the supply side that operates via the conventional

capital accumulation channel (as emphasized by Hall (2014) and others), as well as our

endogenous productivity channel.

To begin, we use equation (10) to derive the following expression that links labor pro-

ductivity with TFP and capital intensity:21,22

Yt
Lt

= θt · (At)ϑ−1︸ ︷︷ ︸
TFP

· (UtKt/Lt)
α . (45)

The first two terms capture total TFP, which is the product of an exogenous component

(θt) and an endogenous one ((At)
ϑ−1). The third term measures capital intensity which

includes both capital per hours worked and the capital utilization rate.

Figure 9 plots the evolution of (detrended) labor productivity together with TFP and

the endogenous component of TFP. Labor productivity corresponds exactly to the data.

The other two series are identified from the model. It is worth noting, though, that the

evolution of TFP and labor productivity are qualitatively similar.23

21This expression holds to a first order approximation.
22We focus on labor productivity for two reasons. First, our measure of capital includes residential

investment. Therefore, there is a discrepancy between our measure of TFP and that from standard sources
(e.g., BLS). Second, labor productivity also captures the effect of variation in capital per hour. This is
another channel by which fluctuations in demand can affect the potential supply in the economy.

23One can obtain the capital intensity component of labor productivity from the figure by taking the
difference between labor productivity and TFP.
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Figure 9: Endogenous TFP, TFP and Labor Productivity
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Labor productivity is GDP divided by hours worked (see Appendix A.1 for data sources). Smoothed shocks

from model estimated using data as described in Section 4.4 and Appendix A.1.

Except for the middle to late 1990s, the endogenous component of TFP accounts for

much of the cyclical variation in TFP. The model attributes the rise in TFP during the

late 90s mainly to its exogenous component; the labor productivity surge in this period

is explained by both exogenous innovations to TFP and capital deepening. After 2000,

however, the endogenous component plays a predominant role in the evolution of TFP.

Importantly, the endogenous component explains most of the decline in TFP between 2005

and 2008, as well as the decline during and after the Great Recession. In particular, between

the starting point of the recent productivity slowdown, 2005, and the end of our sample,

2015, total TFP declined by approximately 8 percentage points (relative to trend). The

endogenous component accounts for around 6 percentage points of decline. This factor also

accounts for most of the drop in labor productivity, which declined 8.5 percentage points

over the same period. A drop in capital intensity after 2009 mainly accounts extra the drop

in labor productivity relative to TFP (consistent with Hall (2014)).

While endogenous TFP declines steadily after 2005, the main sources of the drop varies
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Figure 10: Endogenous TFP Decomposition
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over time. Figure 10 presents a historical decomposition of endogenous productivity that

isolates the effects of the two shocks that were the main causes of the decline: (i) shocks

to the productivity of R&D and (ii) the liquidity demand shock. We note first that the

liquidity demand shock accounts for nearly all of the decline in endogenous TFP after the

start of the recession at the end of 2007. This result is consistent with our earlier findings

that: (i) the liquidity demand shock was the main disturbance driving the recession (see

Figure 5); and (ii) the liquidity demand shock has a significant impact on endogenous TFP,

especially at the ZLB (see Figure 8).

In the period just prior to the Great Recession, 2005-2007, however, the liquidity demand

shock is unimportant. Instead the decline in endogenous TFP is mainly the result of negative

shocks to the productivity of R&D. The downward trend in R&D productivity actually

begins in the mid 1990s, which is consistent with Gordon (2012)’s hypothesis of a secular

decline in the contribution of technological innovations to productivity. After a brief upturn

following the 2000-01 recession, shocks to R&D productivity induce a sharp downturn in

TFP from 2005 until the height of the crisis.
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Intuitively, the exogenous decline in R&D productivity generated fewer technologies

for a given level of R&D spending, which ultimately slowed the pace of adoption of new

technologies. The slow diffusion of technologies generates a lag between the decline in R&D

productivity and the reduction in TFP growth. In this respect, a shock to R&D productivity

is very different from a shock to exogenous TFP, which shows up immediately in measured

TFP. An additional difference comes from the identification of the shocks. While exogenous

TFP is identified from the Solow residual, shocks to R&D productivity are identified from

the difference between observed R&D and R&D predicted by the free entry condition (14).

The magnitude of the decline in R&D around the 2001 recession indicates a significant drop

in R&D productivity. In the next sub-section, we present direct evidence that supports this

finding.

We next explore the relative importance of the specific mechanisms that drove endoge-

nous TFP. From equation (21), fluctuations in the stock of adopted technologies, At, (and

hence endogenous TFP), are driven by the product of two factors: the adoption rate λt

and the total stock of unadopted technologies, Zt−At. Fluctuations in λt reflect the effect

of cyclical variation in adoption intensity on endogenous productivity while fluctuations in

Zt reflect the effect of cyclical variation in R&D. To analyze the relevance of these two

channels, Figure 11 plots (relative to trend) the evolution of Zt, At and λt.
24 Note that the

evolution of At mirrors the evolution of endogenous productivity (At
ϑ−1).

We emphasize several points. First, cyclicality in λt is the main driver of cyclical fluctu-

ations in endogenous productivity. That is, λt co-moves closely with At while Zt does not.

During each of the recessions, λt declines along with At, implying that the slowdown in

adoption activity in turn accounts well for the the cyclical contraction in endogenous TFP.

These results are consistent with our earlier findings that: (i) liquidity demand shocks

are important drivers of recessions (see Figure 5) and (ii) that these shocks can induce

contractions in adoption rates and endogenous productivity (See Figure 7).

Fluctuations in Zt, however, also play a role in the evolution of endogenous productivity.

Following the 2000-01 recession there is a steady decline in Zt, consistent with the negative

shocks to R&D productivity over this period that Figure 10 identifies.25 This drop in Zt,

in turn, helps account for the pre-Recession drop in productivity that Fernald emphasizes,

complementing the analysis of Figure 9. After the start of the Great Recession, though, the

contraction in the adoption rate becomes the main driver of the productivity decline. The

failure of the adoption rate to return to normal levels, after a brief recovery in 2010, is the

24For λt we plot on the right-hand axis the level of the quarterly adoption rate.
25The decline in endogenous productivity induced by the negative shocks to R&D productivity lags the

decline in Zt (compare figures 9 and 10) due to the lags in the adoption process.
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Figure 11: Sources of Endogenous Technology
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Smoothed variables from model estimated using data as described in Section 4.4 and Appendix A.1.

reason endogenous TFP continues to decline.

Interestingly, while λt remains low following the Great Recession, the stock of unadopted

technologies, Zt−A, reaches a peak over the sample. This occurs mostly because the stock

of adopted technologies, At, declines, but also because there is a modest increase in Zt. This

finding is consistent with the evidence by Andrews et al. (2015) that suggests that innovation

by leading edge firms continued after the Great Recession but adoption by followers slowed.

An important implication is that the economy may not be doomed to low productivity

growth for the foreseeable future. Given the high stock of unadopted technologies, to the

extent enhanced economic activity pushes up the adoption rate, productivity growth should

pick up. Conversely, if the economy continues to stagnate, adoption rates will remain low,

keeping productivity growth low.

5.1 Evidence on the two key findings

In the previous section we presented two main findings regarding the recent productivity

slowdown: first, the decline in R&D productivity after the 2001 recession contributed to the

40



pre-Great Recession slowdown that began in 2005. Second, the drop in adoption intensity

during and after the Great Recession was mainly responsible for the rest. We conclude our

analysis by providing independent historical evidence in support of these two conclusions.

First we focus on the evolution of R&D productivity. A natural way to measure R&D

productivity is by the number of patent applications relative to the number of R&D re-

searchers. Patent applications are a proxy for R&D outputs while researchers employed is

a proxy for its inputs. Because the outcomes of today’s R&D efforts may lead to appli-

cations at some point in the near future, we propose the following measure of the average

productivity of R&D in years t− 1 and t :

R&D prodt−1,t = log

(
Patentst + Patentst−1

2 ∗R&D empt−2

)
(46)

where Patentst is the number of patent applications in year t, and R&D empt−2 denotes

the number R&D researchers at year t− 2.26

Figure 12 plots the linearly detrended level of R&D prodt−1,t together with the average

of the estimated log-level of the model measure of R&D productivity, χt, between years t−1

and t (which we label χ̄t−1,t).
27 The main observation is that the model and direct measures

of R&D productivity evolve similarly around the three recessions in the sample. Both series

drop significantly around 1991, and 2001. In particular, the magnitude of the decline after

2001 is similar in the model estimates of χ̄t−1,t and in the data proxy, R&D prodt−1,t.

This finding supports our model’s prediction that the pre-GR productivity slowdown may

partly reflect the decline in R&D productivity after 2001. The measure of R&D prodt−1,t

is also consistent with our finding that R&D productivity was relatively high during and

after the GR. Admittedly, the model estimate, χ̄t−1,t, remains higher than R&D prodt−1,t

during 2009 and 2010, but overall the patterns in both series between 2008 and 2013 are

similar. Based on these observations, we conclude that the independent measure of R&D

productivity is consistent with the evolution of R&D productivity that we have estimated.

As we have noted, our analysis also finds that the critical driver of the productivity

slowdown during and after the Great Recession is the slowdown in the intensity of adoption

of new technologies in response to the liquidity demand shock. One approach to measuring

adoption activity is through the investments of companies in adopting new technologies.

26The patent applications come from the United States Patent and Trademark Office and measure the
total number of applications in the US during the calendar year. The series on the number of researchers
in the US comes from the OECD. The patterns for the number of US researchers closely resembles that for
R&D expenditures in Figure 2.

27One reason to detrend the measure of R&D prod are the changes in the law that strengthened patent
protection during the 80s inducing patent applications.

41



Figure 12: R&D efficiency in data versus model
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The solid line is detrended level of R&D prodt−1,t and the dashed line is average of the estimated log-level

of χt between years t− 1 and t (χ̄t−1,t). Source: Patent data from the United States Patent and Trademark

Office; R&D research employment from the OECD; model implied R&D efficiency estimated using data as

described in Section 4.4 and Appendix A.1.

While there does not exist a measure that covers all adoption expenditures for the US econ-

omy, the Association of University Technology Managers (AUTM) compiles the revenues by

universities and research hospitals from selling licenses of technologies to companies.28 The

expenditures to license new technologies are one component of firms’ overall investments in

technological adoption.

Figure 13 shows the evolution of linearly detrended licensing revenues from 1995 to

2014 together with linearly detrended GDP.29 The two series are highly correlated with a

coefficient of 0.69. Both around 1999 and 2006 licensing fees start to decline in a protracted

way coinciding with the cyclical declines in GDP. The decline in licensing fees continued after

the Great Recession and by the end of the sample in 2014 there was no sign of a recovery

in the revenues from licensing university technologies. This evidence is thus consistent with

28Approximately 180 institutions complete the survey. Their combined R&D budgets in 2011 was $60
billion of which $53 billion corresponded to universities. This sample represents a large majority of total
R&D activity by higher education institutions which according to the NSF amounted to $62 billion in 2011.

29Both series are deflated by the GDP deflator and scaled by population older than 16 years old.
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Figure 13: Revenues from Licensing Technologies, 1993-2013
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our key finding that a significant and protracted decline in adoption activity underlies the

slowdown in productivity growth since 2008.

5.2 Inflation

Finally, we explore the extent to which the endogenous productivity mechanism can help

account for the higher than expected inflation during and after the Great Recession. To

do so, we take the structural shocks identified from our baseline model with endogenous

productivity and then feed them into the model with exogenous productivity. Figure 14

then reports the behavior of (GDP deflator) inflation for the baseline model versus the

model with exogenous productivity. From the beginning of the recession through 2011, the

inflation rate is very similar in each case. However, starting in in 2012, inflation in the

baseline model moves persistently above its value in the exogenous productivity case. The

differences range between thirty and eighty basis points.

Intuitively, the persistent endogenous decline in total factor productivity in the baseline

model increases marginal cost, pushing up inflation relative to the exogenous productivity

setting. Absent the endogenous productivity mechanism, GDP deflator inflation would have
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Figure 14: Inflation Rates: Baseline vs Exogenous TFP Model
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Note: The Exogenous TFP model inflation is the rate that this model predicts when the economy is hit by

the shocks identified by the baseline model.

been roughly sixty basis points lower over the period 2012 to 2016.

6 Conclusions

We have estimated a monetary DSGE model with endogenous productivity via R&D and

adoption. We then used the model to assess the behavior of productivity, with particular

emphasis on the slowdown following the onset of the Great Recession. Our key result

is that this slowdown mainly reflected an endogenous decline in the speed at which new

technologies are incorporated in production. The endogenous decline in adoption, further,

was a product of the recession. We also find that our endogenous productivity mechanism

can help account for the productivity slowdown that preceded the Great Recession. Shocks

to the productivity of the R&D process play an important role, consistent with Fernald

(2014)’s view that acyclical factors were important over this period. Finally, we find a very

limited role for an exogenous decline in TFP in the slowdown of productivity. Overall, the

results suggest that the productivity slowdown following the start of the Great Recession
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was not simply bad luck, but rather another unfortunate by-product of the downturn.

Our analysis also sheds light on two open debates. First, it provides a time series for

the productivity of R&D activities that can be used to explore the hypothesis advanced by

Gordon (2012) that the U.S. economy is experiencing a secular deterioration in its innovation

capacity. Consistent with Gordon’s hypothesis we find low levels of productivity of R&D

activities between 2002 and 2007 that contributed to the decline in TFP between 2005 and

2009. However, this episode is short-lived and the estimates suggest that the slowdown in

productivity reflects medium term cyclical factors rather than secular ones. We provide

independent evidence on the evolution of patent applications relative to research labor

that supports this interpretation of our estimates. The second relevant debate concerns

the stability of inflation during the Great Recession in spite of the very significant decline

in economic activity. Our model and estimates suggests that the endogenous decline in

TFP has increased production costs (relative to trend) counteracting to some degree the

traditional Phillips- curve effect of economic contractions on inflation.

Overall, our results emphasize the importance of the effects that demand shocks have on

the supply side over the medium term. This is an important take away that can be used to

explain productivity dynamics more generally.
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A Appendix

A.1 Data

The data used for estimation are available from the FRED (https://research.stlouisfed.org/fred2/)

and NSF (http://www.nsf.gov/statistics/) websites. Descriptions of the data and their cor-

respondence to model observables follow (the standard macro series used are as in Del Ne-

gro et al. (2015)).30 To estimate the model we use data from 1984:I to 2008:III. Real

GDP (GDPC), the GDP deflator (GDPDEF), nominal personal consumption expenditures

(PCEC), and nominal fixed private investment (FPI) data are produced by the BEA at

quarterly frequency. Average weekly hours of production and nonsupervisory employees

for total private industries (AWHNONAG), civilian employment 16 and over (CE16OV)

and civilian noninstitutional population 16 and over (CNP16OVA) are released at monthly

frequency by the Bureau of Labor Statistics (BLS) (we take quarterly averages of monthly

data). Nonfarm business sector compensation (COMPNFB) is produced by the BLS ev-

ery quarter. For the effective federal funds rate (DFF) we take quarterly averages of the

annualized daily data (and divide by four to make the rates quarterly). Letting ∆ denote

the temporal difference operator, the correspondence between the standard macro data

described above and our model observables is as follows:

• Output growth = 100 ×∆LN((GDPC)/CNP16OVA)

• Consumption growth = 100 ×∆LN((PCEC/GDPDEF)/CNP16OVA)

• Investment growth = 100 ×∆LN((FPI/GDPDEF)/CNP16OVA)

• Real Wage growth = 100 ×∆LN(COMPNFB/GDPDEF)

• Hours worked = 100 × LN((AWHNONAG × CE16OV/100)/CNP16OVA)

• Inflation = 100 ×∆LN(GDPDEF)

• FFR = (1/4) × FEDERAL FUNDS RATE

The R&D data used in estimating the model is produced by the NSF and measures

R&D expenditure by US corporations. The data is annual, so in estimating the model

and extracting model-implied latent variables (see Appendix A.2) we use a version of the

Kalman filter adapted for use with mixed frequency data.

30Del Negro et al. (2015) include consumer durables in consumption as opposed to investment. Our results
are robust to including them in investment. Neither approach, of course, is ideal.
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A.2 Extracting Model-Implied Latent Variables during ZLB period

The piece-wise linear solution from the OccBin method developed by Guerrieri and Iacoviello

(2015) can be represented in state space form as

St = C(Nt, θ) +A(Nt, θ)St−1 +B(Nt, θ)εt

Yt = H(Nt, θ)St

Where θ is a vector of structural parameters, St denotes the endogenous variables at time t,

Yt are observables, and εt are normally and independently distributed shocks. Nt is a vector

that identifies whether the occasionally binding constraint binds at time t and whether it

is expected to do so in the future. In particular, Nt is a vector of zeros and ones indicating

when the constraint is or will be binding. For example, the vector Nt = (0, 1, 1, 1, 0, 0, 0...) is

a situation in which the constraint does not bind at time t (denoted by the first zero in the

vector), but is expected to bind in t+1, t+2 and t+3. Note that the matrices A, B and C,

which in a standard linear approximation depend only on parameters are here also functions

of Nt. The matrix H might also be a function of Nt because some observables might become

redundant when the occasionally binding constraint binds. This is the case for the Taylor

rule interest rate when the ZLB binds. OccBin provides a way of computing the sequence

of endogenous variables {St}Tt=1 and regimes {Nt}Tt=1 for a given initial condition S0 and

sequence of shocks {εt}Tt=1. The vector Nt is computed by a shooting algorithm and its

resulting value will depend on the initial state and shocks at time t. We refer the reader to

Guerrieri and Iacoviello (2015) for a detailed description of the method. We construct the

Kalman filter and smoother from the nonlinear state space representation presented above

by taking advantage of the fact that a given sequence of regimes, say {N̂t}Tt=1, uniquely

defines a sequence of matrices {Ĉt, Ât, B̂t, Ĥt}Tt=1. It follows that for that specific set of

regimes the state space representation becomes linear:

St = Ĉt + ÂtSt−1 + B̂tεt

Yt = ĤtSt

For this linear state space representation it is straightforward to compute the Kalman filter

and smoother. We use this fact in our algorithm by running two blocks: (i) one in which

we compute the Kalman filter and smoother for a given set of regimes {Nt}Tt=1; and (ii)

another where we use OccBin to compute the regimes given a sequence of shocks {εt}Tt=1.

The algorithm steps are the following.
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1. Guess a sequence of regimes {N (0)
t }Tt=1;

2. Use the guess from the previous step and define the sequence of matrices {Ct, At, Bt, Ht}Tt=1

using OccBin;

3. With the matrices from the previous step, compute the Kalman Filter and Smoother

using the observables {Yt}Tt=1, and get the Smoothed shocks {ε̂t}Tt=1 and initial con-

ditions of endogenous variables;

4. Given the smoothed shocks and initial conditions from the previous step, use OccBin

to compute a new set of regimes {N (1)
t }Tt=1;

5. If {N (0)
t }Tt=1 and {N (1)

t }Tt=1 are the same, stop. If not, update {N (0)
t }Tt=1 and go to

step 2.

Once it converges, this algorithm yields a sequence of smoothed variables and shocks,

consistent with the observables, and taking into account the occasionally binding constraint.

A.3 Comparing diffusion speed in the model to the data

We calibrate ρλ, the elasticity of adoption with respect to skilled labor input, by targeting a

ratio of R&D expenditure to GDP consistent with the data (around 1.8%). In our baseline

calibration, this results in a value of ρλ of 0.925. To check that this calibration does not lead

to a rate of technological diffusion that is at odds with the data, we compare the sensitivity

of speed of diffusion in the model to the regression analysis presented in Table 2. There are

three conceptual obstacles to overcome in carrying out this comparison. The first is that

the data in the regressions of Table 2 concerns the diffusion of specific technologies in the

cross section of potential adopters over time. In our model instead each new technology is

adopted either fully or not at all. The second is that the diffusion process in the data is

approximately logistic, whereas the diffusion process in our model is geometric. Finally, in

the model, unlike in the data available for analysis, technologies become obsolete over time.

To address the first challenge, we define speed of diffusion in our model as relating to the

speed at which technologies invented at different times are adopted. Formally, denote by

Ztt+k the mass of technologies invented at time t that survives (i.e. is not obsolete) at time

t + k, and Att+k the mass of vintage t technologies that have been adopted at time t + k.
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Then, we can define the fraction of vintage t technologies adopted at time t+ k as

mt
t+k ≡

Att+k
Ztt+k

. (47)

Analogously to Equation 1, we define

rtt+k ≡
mt
t+k

1−mt
t+k

(48)

The stock of vintage t total and adopted technologies evolve as follows:

Ztt+k = φZtt+k−1 (49)

Att+k = φAtt+k−1 + λt+k−1φ
(
Ztt+k−1 −Att+k−1

)
(50)

With initial conditions Ztt = Zt − φZt−1 and Att = 0. These laws of motion and initial

conditions imply that mt
t+k and rtt+k follow:

mt
t+k = mt

t+k−1 + λt+k−1
(
1−mt

t+k−1
)

and

rtt+k =
rtt+k−1 + λt+k−1

1− λt+k−1
(51)

With initial conditions mt
t = 0 and rtt = 0. In each period, a fraction 1− φ of technologies

becomes obsolete, so the total stock of vintage t technologies decreases over time. The stock

of adopted vintage t technologies increases as a fraction λt+k−1 of the remaining unadopted

technologies (note that all unadopted technologies, irrespective of vintage, have the same

probability λt+k−1 of being adopted). By analogy to Equation (2) we define the speed of

diffusion at time t+ k for a vintage t technology as

Speedtt+k ≡ ∆ log
(
rtt+k

)
= log

(
rtt+k
rtt+k−1

)
(52)

The regression analysis we conduct measures the sensitivity of the speed of technological

diffusion to fluctuations in the output gap. If the fraction of adopters is a logistic function

of time (see Mansfield (1961)), diffusion speed is constant absent any cyclical fluctuations.

In contrast, the diffusion process in the model is geometric, which implies that speed is

a declining function of the age of a technology. To remove this non-cyclical variation,
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we construct a detrended model measure of speed, which we denote Ŝpeed
t

t+k, defined as

follows:

Ŝpeed
t

t+k ≡ Speedtt+k − Speed
t
t+k (53)

Where

Speed
t
t+k = log

(
r̄tt+k
rtt+k−1

)
(54)

and

r̄tt+k =
rtt+k−1 + λ̄

1− λ̄
(55)

Intuitively, r̄tt+k is the value that rtt+k would take if the diffusion process returned to steady

state. Our detrended measure therefore captures cyclical variation in the diffusion process.

Figure 15 illustrates the effect of detrending on our measure of speed.

The data used in our regression analysis is a panel of technologies. In the model however

the relative masses of technologies of different vintages is not constant over time, due to

obsolescence, adoption and trend growth in the stock of technologies. In calculating a

population average of speed of diffusion, we take account of the effect of these three factors to

make the data and model regressions comparable. To do so, we run the following regression

using model-simulated data

Ŝpeed
t

t+k = α+ βkŷt + εk,t (56)

where k denotes the age of a technology, for a range of values of k. To construct a population

average, we weight each βk by the relative steady state fraction of technologies of age k in

the population, wk, defined as:

wk =
(

1−mk
)

︸ ︷︷ ︸
adoption

φk−1︸︷︷︸
obsolescence

(1 + ga)−(k−1)︸ ︷︷ ︸
growth in tech

The population average elasticity of speed with respect to the output gap is then

β =

K∑
j=1

wj

w̄
βj ,

where w̄ = 1
K

∑K
j=1w

j . For the estimation results reported in Section 5 we set K to a large

number (50) so that the effect of adding additional vintages to the average is negligible. To

obtain the point estimates and confidence intervals reported in 6 we estimate regression (56)
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in 100 period subsamples of our model-simulated data and average across these subsample

results.

Figure 15: Speed and Ŝpeed: Simulated and Steady State

10 20 30 40 50k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
p
ee

d

10 20 30 40 50
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

d
S
p
ee

d

Simulation Steady State

This figure plots Speed (left panel) and detrended Ŝpeed (right panel) as a function of the age of a technology k

. In both cases the dotted line is the steady state value of speed and the solid line is a typical model simulation.

A.4 Other Tables and Figures

As a check of the fit of the estimated model, Table 8 presents the theoretical standard

deviations of the observable variables generated by the model and compares them with the

data in our sample. Roughly speaking the model is in line with the actual volatilities of the

key variables.
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Table 8: Comparison of Standard Deviations

Variable Data Model

Output Growth 0.55 0.63
Consumption Growth 0.51 0.71
Investment Growth 1.54 1.52

Inflation 0.23 0.36
Nominal R 0.60 0.55

Hours (level) 1.82 1.53
R&D Expenditure Growth 4.00 6.83

Table 9: Prior and Posterior Distributions of Shock Processes

Parameter Description Prior Posterior
Distr Mean St. Dev. Mean St. Dev.

σζ Liq. Demand Inv. Gamma 0.10 2.00 0.225 0.0013
σχ R&D Inv. Gamma 0.10 2.00 2.202 0.1749
σg Govt. exp. Inv. Gamma 0.10 2.00 2.559 0.0350
σmp Monetary Inv. Gamma 0.10 2.00 0.097 0.0001
σµ Markup Inv. Gamma 0.10 2.00 0.093 0.0002
σpk Investment Inv. Gamma 0.10 2.00 1.270 0.0092
σθ TFP Inv. Gamma 0.10 2.00 0.489 0.0013
σµw Wage markup Inv. Gamma 0.10 2.00 0.284 0.0014
ρζ Liq. Demand Beta 0.50 0.20 0.924 0.0006
ρχ R&D Beta 0.50 0.20 0.803 0.0073
ρg Govt. exp. Beta 0.50 0.20 0.968 0.0001
ρmp Monetary Beta 0.50 0.20 0.465 0.0068
ρµ Markup Beta 0.50 0.20 0.401 0.0186
ρpk Investment Beta 0.50 0.20 0.899 0.0014
ρθ TFP Beta 0.50 0.20 0.953 0.0007
ρµw Wage markup Beta 0.50 0.20 0.288 0.0101
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