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this paper, we show that a simple, frictionless, model explains empirical
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Cyclical Dispersion in Expected Defaults

Abstract

A growing literature shows that credit indicators forecast aggregate real out-

comes. While researchers have proposed various explanations, the economic

mechanism behind these results remains an open question. In this paper, we

show that a simple, frictionless, model explains empirical findings commonly

attributed to credit cycles. Our key assumption is that firms have heteroge-

neous exposures to underlying economy-wide shocks. This leads to endogenous

dispersion in credit quality that varies over time and predicts future excess

returns and real outcomes.
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1 Introduction

Are business cycles driven by fluctuations in credit supply? Recent work in

macroeconomics and finance suggests that they are.1 However, in a frictionless

economy, funds should flow to the highest value projects. Credit market

conditions should not impact real investment and subsequent economic growth,

though they might reflect future investment opportunities. For a so-called

credit cycle to trigger a recession, as the literature suggests, financial frictions

need to be severe, or agents irrational.

In this paper, we show how credit cycles can appear to drive asset prices

and real outcomes, when in fact it is only investment opportunities that matter.

We build a frictionless model in which investment opportunities vary over time

and differentially across firms. Taken together, these two plausible assumptions

are enough to generate the observed co-movements between credit variables

and macro aggregates, creating the appearance of a credit cycle.

Our first contribution is empirical and designed to sharpen the implications

of earlier studies. We show that a measure of dispersion in credit quality

across firms is a robust predictor of both asset prices and macroeconomic

aggregates. Specifically, dispersion in credit quality forecasts excess returns

on investment-grade and high-yield corporate bonds as well as output and

investment growth. This joint predictability of bond returns and of economic

outcomes is at the core of the idea of a credit cycle. Predictability of bond

returns is often used to validate various indicator of credit market conditions,

while forecasting power for economic aggregates is generally interpreted as

evidence that credit market conditions impact real activity.

We base our measure of credit dispersion on the differential observed credit

quality of firms that are repaying their debt versus those that are issuing debt.

1See, for example, Baron and Xiong (2017), Belo, Lin, and Yang (2017), Christiano,
Motto, and Rostagno (2014), Gilchrist and Zakraǰsek (2012), Greenwood and Hanson (2013),
Jermann and Quadrini (2012), Muir (2016).

1



Unlike previous studies, we show that this measure is driven almost entirely by

variations in the credit quality of firms repaying debt. This finding plays an

important role in our modeling choices.

Our second contribution is to develop a tractable quantitative model of

optimal firm behavior that accounts for these findings. We assume a cross

section of heterogeneous firms making investment decisions under uncertainty.

Shocks that are large and rare impact firms’ capital stocks and productivity

levels. The degree of risk varies both cross-sectionally and in the time series.

These simple assumptions have powerful implications. Periods of elevated

risk co-occur with low investment rates and low valuations in the aggregate.

Moreover, firms with greater risk exposure cut their investments even relative

to the aggregate; when risk increases, their relative valuations and credit

worthiness decline. These firms will find it optimal to repay their investors at

higher rates.

We show that, in both model and data, recessions are associated with

spikes in dispersion in credit quality, driven by firms that are repaying their

debt. Moreover, because most firms optimally choose lower investment during

recessions, changes in measured credit quality predict future adverse economic

outcomes, even if a rare shock does not actually occur. When calibrated to

match average investment rates and measures of cross-sectional dispersion,

our model successfully replicates the sign and the magnitude of the predictive

regression results found in the data.

Our paper relates to work by Greenwood and Hanson (2013), who show

that a measure of bond issuer quality forecasts excess bond returns. Their

findings motivate our focus on cross-sectional dispersion of credit quality. They

interpret their results in terms of the importance of bond issuer quality, and

argue that this quality deteriorates over the credit cycle. Unlike us, Greenwood

and Hanson do not demonstrate predictability of macro-aggregates.2 Our

2Subsequent work uses the Greenwood and Hanson (2013) measure as a proxy for credit
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empirical findings also relate to those of Gilchrist and Zakraǰsek (2012). They

show that credit spreads, constructed using proprietary bond data, forecast

recessions. We show that our dispersion measure, though constructed using

only Compustat data, has similar predictive power.3

Our model offers an explanation of both the predictability of bond excess re-

turns and of macro-aggregates seen in the literature. By offering a parsimonious

account of these diverse empirical findings, we show that evidence taken as

pointing toward the importance of credit frictions readily admits an alternative

interpretation. However, it is not the purpose of our study to show that credit

market frictions are necessarily unimportant, nor do we rule out credit frictions

as an alternative interpretation for this evidence.4 Differentiating between

these hypotheses remains an objective for future research.

The model developed in the paper is related to a now vast literature on

corporate investment, asset prices, and the business cycle, and perhaps more

specifically to recent papers by Gourio (2012) and Kuehn and Schmid (2014).

We deploy the same neoclassical investment approach to address a substantively

different set of questions relating to the credit cycle. Finally, our paper is in

similar spirit to recent work by Santos and Veronesi (2016) who show that

stylized facts about the movements in leverage and asset prices during “credit

booms” arise naturally in a frictionless endowment economy and by Haddad,

Loualiche, and Plosser (2017) who use a reduced-form model to argue that

it is risk premia, combined with optimal decision making of firms, that drive

market conditions (Bordalo, Gennaioli, and Shleifer, 2016; Lopez-Salido, Stein, and Zakraǰsek,
2015).

3The link between credit indicators and future economic activity is also present in
studies such as Atkeson, Eisfeldt, and Weill (2014), Bernanke, Gertler, and Gilchrist (1999),
Carlstrom and Fuerst (1997), Rampini (2005), Gertler and Kiyotaki (2015) and Gomes and
Schmid (2017).

4A related recent paper is Elenev, Landvoigt, and Van Nieuwerburgh (2017) that shows
how credit supply impacts recessions even in the absence of explicit credit supply shocks. In
their model, cross-sectional dispersion in investment opportunities can deepen a downturn
caused by a productivity shock, through a channel of constrained intermediaries.
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variation in buyout activity.

2 Empirical Findings

In this section we develop a new indicator of credit market conditions that is a

robust predictor of both macro aggregates and bond excess returns. Our basic

measure shares several similarities with that of Greenwood and Hanson (2013)

but differs in some key respects discussed below. Crucially, it also suggests a

very different interpretation of the evidence and the role that credit supply

shocks play in business cycle fluctuations. We then show that our measure is a

good predictor of changes in macroeconomic activity and returns on financial

assets at multiple horizons.

The main source of data for firm and portfolio level statistics is the

CRSP/Compustat merged database. We limit the analysis to nonfinancial firms,

excluding regulated and public service firms. To be included in our study, a

firm must have positive sales, and assets. Data for the relevant macroeconomic

aggregates comes from FRED, while our bond indices are from Barclays. We

use quarterly data covering the period between 1976 and 2013. Appendix A

provides further details on the definitions and construction of variables used

in the study. We provide several additional empirical results in an Online

Appendix.

2.1 Characteristics of debt repayers and issuers

To document time-variation in credit market conditions we start by sorting

firms into quintiles each quarter according to their net debt repayment. We

define net debt repayment as the change in book value of equity minus the

change in book value of assets, which we normalize by the book value of assets

in the previous quarter. By definition, firms with negative net debt repayment
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have issued debt during the quarter.5

Table 1 summarizes the cross-sectional distribution of repayment activity

over the sample period. The table shows that there are about as many

debt issuers as repayers during a typical quarter. Debt issuance is especially

concentrated in quintile 1, while repayments are concentrated in quintile 5.

Henceforth we concentrate on the properties of these extremes and refer to

them as the portfolios of issuers and repayers, respectively.

Table 2 reports statistics for the two extreme portfolios. Beyond their

descriptive value, these results establish an early basis for our subsequent

analysis. We first compute the Expected Default Frequency (EDF) using the

Merton (1974) model. That is, for firm i, we compute:

EDFit = N

− log Vit
Bit
−
(
µVit −

σ2
Vit

2

)
σVit

 , (1)

where N (·) denotes the standard normal cumulative density function, Vit is

the market value of the firm i’s assets, Bit is the book value of debt, µVit is

the expected asset return, and σVit its asset return volatility. Details on the

computation of these values are included in Appendix A.

Table 2 highlights some important differences and similarities between the

two extreme portfolios. First, net debt repayers have a higher average expected

default frequency than issuers: 0.8% per quarter for repayers versus 0.3% for

issuers.6 Repayers have a strikingly lower investment rate than issuers: 3.5%

versus 7.6%. Leverage for repayers is slightly higher than for issuers (33% versus

27%). On the other hand, repayers and issuers are of similar size (logarithm of

5Covas and Den Haan (2011) also document cyclical behavior of repayment/issuance.
However they focus on repayment behavior across the size distribution instead of the
characteristics of repayers and issuers themselves.

6EDF is highly positively skewed. Most firms have very small EDFs so the averages are
driven by the right tails in both portfolios.
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book assets is about 4.77 for both repayers and issuers).

Its popularity and wide acceptance make EDF a natural benchmark to

measure credit quality. Still, as we report in the Online Appendix, the default

probability measure of Campbell, Hilscher, and Szilagyi (2008) leads to very

similar findings. We are, however, agnostic as to the best way to predict default.

Our model explains why EDF, as measured, has the properties that it does.

2.2 Dispersion in expected defaults

The previous section shows that an important difference between repayers and

issuers is their Merton (1974) default probability. When measured over the

sample, average EDF for firms in the top debt repayment quintile (the repayers)

is significantly higher than that for firms in the bottom quintile (the issuers).

We now examine time-series properties of these default probabilities.

In each period, we construct a cross-sectional average of EDFs for repayers

and for issuers. Panel A of Figure 1 shows the time series of these cross-sectional

averages. Notably, the average EDF for repayers lies above that for issuers in

nearly every period. That is, the findings in Table 2 hold not only on average

but at almost every point in time. The average EDF for repayers is also far

more volatile than that for issuers, taking on especially high values during

recessions. For instance, while the average EDF for repayers is below 2% (per

quarter) for most of the sample, it spikes to 7% during the financial crisis.

Motivated by these findings, we define dispersion in credit quality as the

difference between average EDF of repayers and average EDF of issuers:

Dispersion t =
1

Nrepayers

∑
j∈Repayers

EDFjt −
1

Nissuers

∑
i∈Issuers

EDFit, (2)

where Nrepayers and Nissuers are the number of firms in top and bottom quintile

respectively. Panel B of Figure 1 shows the time series of Dispersion. Consistent
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with the discussion above, Dispersion is almost always positive throughout the

sample, and reflects mainly time-series variation in the EDFs of repayers.

Our measure recalls the credit quality proxy of Greenwood and Hanson

(2013). One key difference, however, is that Greenwood and Hanson replace

the actual value of EDF for each firm with the NYSE decile of the EDF. This

obscures important features of the underlying series; for example, the sign.7 As

we show in Figure 1, the difference between the average EDF of repayers and

that of issuers is nearly always positive. Firms that repay debt are closer to

default, as one might expect from a rational model. In addition, a decile-based

measure also obscures asymmetry: namely the fact that it is the EDF of

repayers that drives the difference in default frequencies during recessions .

Significantly, Greenwood and Hanson’s interpretation of variation in credit

dispersion focuses on the behavior of issuers, rather than repayers (they call

their measure “Issuer EDF”). They argue that times when issuers have relatively

high EDFs are times when markets inefficiently oversupply credit. However,

our portfolio EDFs show clearly how the cross-sectional distribution is driven

by repayers that are close to default. While repayers and issuers EDFs are

not dramatically different during booms, the creditworthiness of repayers

deteriorates sharply in recessions. It is this sharply countercyclical behavior

of repayers’ default frequencies that drives the variation in EDF spreads over

time. This evidence is not an easy fit with a narrative based on inefficient

credit booms.

2.3 Predicting macro aggregates

A recent influential line of works shows that measures of credit conditions

forecast the business cycle (e.g., Gilchrist and Zakraǰsek, 2012). We now show

7Another difference, which at first glance seems trivial but also obscures interpretation, is
that they subtract the average decile for repayers from the average decile for issuers rather
than the other way around.
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that this is also the case for our measure.

Table 3 presents results from fitting an ordinary least squares (OLS) re-

gression of the average k-quarter GDP and investment growth on Dispersion.

Specifically, we estimate the following regression

∆yt→t+k = α + β1 Dispersiont + β2 ∆yt−1→t + εt,t+k. (3)

where ∆yt→t+k denotes the average GDP or investment growth between period

t and t+ k. Panel A shows that Dispersion predicts 1-quarter ahead with a

highly statistically significant coefficient. Predictability remains statistically

significant at horizons up to about one year.

Panel B shows that Dispersion is an even more powerful predictor of

investment growth. At the 1-quarter horizon, a decrease of 1 percentage point in

Dispersion, i.e. a lower spread in cross sectional default risk, is associated with a

1.17 percentage point increase in the future quarterly growth rate in investment

and a 0.29 percentage point quarterly increase in GDP. We conclude that the

cross-sectional dispersion in portfolio EDFs captures important information

about future economic conditions.

2.4 Forecasting bond excess returns

Dispersion also strongly forecasts excess bond returns. Table 4 reports results

from an OLS regression of continuously-compounded realized bond returns

for investment-grade and high-yield bonds, less the continously-compounded

government bond return of comparable maturity. That is, we estimate

rxt→t+k = α + β1 Dispersiont + β2 ∆yt−1→t + εt,t+k. (4)

where rxt→t+k denotes the continuously compounded excess return measured

from period t to t+ k and rxt→t+k is the average, namely this quantity scaled

8



by k. In this regression we also control for lagged GDP growth, ∆yt−1→t.

Table 4 shows that high Dispersion forecasts high excess returns on investment-

grade and high-yield bonds at horizons ranging from 6 months to 2 years.

R2-statistics are economically significant: 15% at the one-year horizon and

11% at the 2-year horizon for investment grade bonds. The results appear even

stronger for high-yield bonds, with R2-statistics rising as high as 33% at the

2-year horizon.

Researchers often interpret the predictability of excess bond returns as

evidence for periods in which investors over-supply credit (e.g. Greenwood and

Hanson (2013)). However, the documented time series behavior of Dispersion

suggests an alternative interpretation, which we now pursue.

3 Model

In this section we show how we can interpret the empirical findings above

through the lens of a representative agent asset pricing model with heteroge-

neous firms. The model’s structure is purposefully kept simple to highlight its

key mechanisms.8

We assume a continuum of heterogenous firms that produce a common final

good and maximize the value of their assets by making optimal production,

investment and payout decisions. Firms differ in their productivities and in

their exposures to aggregate shocks. They own and accumulate capital by

taking advantage of stochastic investment opportunities while responding to

unexpected changes in the economic environment. In our model, these changes

are characterized as shifts in the probability of an extreme, economy-wide,

8In particular we do not link consumption to output of firms through a market clearing
condition, but rather we value the firms using no-arbitrage. Given that our model has
a detailed cross-section of long-lived firms, imposing market clearing would significantly
complicate the model without affecting the main economic results. Kuehn and Schmid (2014)
adopt a similar approach.
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adverse event.

Perhaps the most striking assumption is that we do not characterize the

firm’s choice of capital structure, relying instead on a setting in which Modigliani

and Miller (1958) holds. While this is an extreme view, it allows us to highlight

the exact role of real production and investment decisions in generating the

main empirical findings. Importantly, this makes it clear that credit market

frictions are not required to replicate the empirical evidence. Methodologically,

this approach resembles that in Philippon (2009) who shows how bond prices

are informative about a firm’s investment decisions even in a frictionless setting.

3.1 The stochastic discount factor

We assume all financial claims are owned and priced by an infinitely-lived

representative investor with an Epstein and Zin (1989) utility function. Let

β ∈ (0, 1) be the time-preference rate, γ relative risk aversion and ψ the

elasticity of intertemporal substitution, so that the stochastic discount factor

(SDF) equals

Mt+1 = βθ
(
Ct+1

Ct

)−γ (
St+1 + 1

St

)−1+θ
, (5)

where St is the ex-dividend wealth-consumption ratio at time t and θ = 1−γ
1− 1

ψ

.

The representative agent consumes the endowment Ct. The log of the

endowment follows the stochastic process

logCt+1 − logCt = µc + εc,t+1 + ξt+1xt+1, (6)

where εc,t+1
iid∼ N(0, σ2

c ) is the normal-times shock, and µc is the normal-times

growth rate. Conditional on time-t information, xt+1 is a Bernoulli random

variable which takes on the value 1 with probability pt and 0 otherwise. The

10



probability pt follows a first-order Markov process:

log pt+1 = (1− ρp) log p̃+ ρp log pt + εp,t+1, (7)

where εp,t+1
iid∼ N

(
0, σ2

p

)
and independent of (εt+1, ξt+1, xt+1). Equation (7)

implies that the unconditional expectation of pt equals:

p̄ = exp

{
log p̃+

σ2
p

2(1− ρ2p)

}
. (8)

In what follows, we refer to the event xt = 1 as a disaster at time t, and pt as the

disaster probability. We assume that the disaster size ξt+1
iid∼ N(µξ −

σ2
ξ

2
, σ2

ξ ),

and independent of εc,t+1. Wachter (2013) assumes a similar structure in

continuous time.

Under assumptions (5)-(7), the wealth-consumption ratio depends on pt

alone and solves the fixed-point problem

Et

[
βθ
(
Ct+1

Ct

)1−γ (
S(pt+1) + 1

)θ]
= S(pt)

θ. (9)

Note that (9) is a first-order condition for the representative investor.

Following Barro (2006), we use as a reference asset the short term govern-

ment bill, which may default in the case of disaster. Formally, define a random

variable ξg,t such that ξg,t = ξt with probability q and 0 otherwise. That is, if

a disaster occurs (xt = 1), the government partially defaults with probability

q, and the resulting loss in face value is the same, in percentage terms, as the

decline in consumption.9 Under these assumptions, the price of the government

9Conditional on a disaster, the default event is independent of the disaster size.
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bill is

Pgt = Et[Mt+1(1− xt+1 + eξg,t+1xt+1)]

= Et[Mt+1(1− xt+1 + (1− q + qeξt+1)xt+1)], (10)

The yield is then equal to 1/Pgt while realized return is given by

Rg,t+1 =
1− xt+1 + eξg,t+1xt+1

Pgt
. (11)

While outright government default is possible, this assumption mainly captures

the likelihood of inflation and currency devaluation to lower the real values of

debt in the event of a disaster.

3.2 Firms

The production sector comprises a continuum of heterogeneous firms. Firms

maximize the present value of their distributions, taking the investors’ stochastic

discount factor as given.

3.2.1 Technology

Firm i uses capital Kit to produce output Yit according to the Cobb-Douglas

production function

Yit = z1−αit Kα
it, (12)

where α determines the returns to scale of production and zit is the firm-specific

productivity level. We assume zit follows the process

log zi,t+1 − log zit = µi + εc,t+1 + φiξt+1xt+1 + ωi,t+1. (13)

During normal-times, firm-i productivity grows at rate µi and is subject to the

same shocks as consumption (εc,t+1). Idiosyncratic shocks also hit each firm:

12



we let ωi,t+1
iid∼ N (0, σ2

ω), and assume ωi,t+1 and ωj,t+1 are independent for

i 6= j, and that ωi,t+1 is independent of other t+ 1 shocks for all i. Importantly,

firms are exposed to the same Bernoulli shocks as consumption through the

term φiξt+1xt+1, where φi captures heterogeneous exposure to these shocks.

To ensure firms grow, on average, at the same rate, we normalize firm-

specific normal-times growth to

µi = µc + log
(
E[eξt+1xt+1 ]

)
− log

(
E[eφiξt+1xt+1 ]

)
, (14)

For simplicity, we assume firms have the same exposure to εc,t+1. Hence, this

structure implies that firms are subject to common and idiosyncratic shocks

to current productivity, plus an additional independent shock that affects the

distribution of future productivity.

3.2.2 Investment opportunities

The law of motion for firm i’s capital stock is:

Ki,t+1 =
[
(1− δ)Kit + Iit

]
eφiξt+1xt+1 , (15)

where δ is depreciation and Iit is firm i’s investment at time t. Equation (15)

captures the depreciation cost necessary to maintain existing capital stock.

Following Gourio (2012), it also captures destruction of capital that occurs

during disasters. This can proxy for either a literal capital destruction (in the

case of war) or a large misallocation in capital due to economic disruption.

Firms face further costs when adjusting capital. Following Hayashi (1982)

we assume that each dollar of added productive capacity requires 1 + λ(Iit, Kit)

dollars of expenditures, where

λ (Iit, Kit) = η

(
Iit
Kit

)2

Kit, (16)
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and where η > 0 determines the severity of the adjustment cost. Firm i’s net

total payout to its investors is thus

Πit = z1−αit Kα
it − Iit − λ (Iit, Kit) . (17)

3.2.3 Firm value, optimal investment and payout

Given production and investment decisions, the total value of firm i obeys the

following Bellman equation:

Vi(Kit, zit, pt) = max
Iit

[
z1−αit (Kit)

α − Iit − λ (Iit, Kit) +

Et[Mt+1Vi(Ki,t+1, zi,t+1, pt+1)]

]
,

subject to (15), where Vi is cum-dividend value for firm i.

Appendix B characterizes the full model solution. Optimal investment for

each firm i satisfies the Euler equation

Et

[
Mt+1R

I
i,t+1

]
= 1, (18)

where the endogenous return to capital accumulation, RI
i,t+1, equals

RI
i,t+1 =

eφiξt+1xt+1

1 + λI (Iit, Kit)

(
α
Yi,t+1

Ki,t+1

− λK (Ii,t+1, Ki,t+1) + (1− δ)
(

1 + λI (Ii,t+1, Ki,t+1)
))

.

(19)

and λj(·) denotes the derivative of λ(·) with respect to variable j.

Given this optimal investment choice, investor total payout relative to the

book value of assets equals

Πit

Kit

=

(
zit
Kit

)1−α

− Iit
Kit

− λ (Iit, Kit)

Kit

. (20)
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The quantity Πit/Kit is the analogue of repayment in the model. Equation (20)

highlights the direct link between optimal investment and payout choices. In

particular, it becomes apparent that firms with negative payouts (issuers), are

also those with relatively high investment rates, a feature that is evident in

the summary statistics reported in Table 2.

3.2.4 Debt claims

In this Modigliani-Miller setting, optimal capital structure is not defined. We

must therefore assume an exogenous capital structure. As we will show, our

results are quite robust to this choice.

Let Bit equal the face value of the debt issued by firm i at time t. For

simplicity, we assume this debt is due in full in the next period. The firm thus

defaults if its value cannot cover the face value of debt: that is Vi,t+1 < Bit.

If default occurs, bondholders receive a portion ν of the value. To ensure

corporate debt remains riskier than government debt, we assume corporate

debt suffers the same loss as government debt when disasters occur. The pricing

of debt is consistent with the pricing of firm cash flows. That is, the price at

time t of the debt claim for firm i is

(21)Dit = Et

[
Mt+1(Bit1Vi,t+1>Bit [(1− xt+1) + (1− q + qeξt+1)xt+1]

+ νVi,t+11Vi,t+1<Bit)
]
,

while the return is

(22)Rit = (Bit1Vi,t+1>Bit [(1− xt+1) + eξg,t+1xt+1] + νVi,t+11Vi,t+1<Bit)
1

Dit

.

Although bondholders may experience losses on their claims, we assume that

there is no deadweight loss and the value of the firm remains unchanged and

equal to Vit.
10

10Effectively, corporate bonds equal a zero-coupon government bill, short a put option
with the face value of debt as the exercise price. Culp, Nozawa, and Veronesi (2018) use
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3.2.5 Aggregation and the cross section of firms

Given an exogenous distribution of firms f(φi), it is straightforward to construct

any relevant economy-wide aggregates. Specifically, we compute aggregate

output and investment as

Yt =

∫
Yitdf , It =

∫
Iitdf, (23)

where Iit is the optimal investment for firm i and Yit is the resulting output.

4 Model Implications

We now describe the quantitative implications of our model and compare them

with the empirical results in Section 2. We solve the model using standard

numerical methods and simulate the resulting artificial economy to investigate

its properties. Section 4.1 describes our parameter choices. Section 4.2 compares

summary statistics from the model to those in the data. Section 4.3 describes

the model solution and illustrates its dynamics using impulse-response functions.

We then directly compare regressions in data simulated from the model to

those in the historical data in Section 4.4. Our quantitative results are based

on 400 independent samples of length 38 years (152 quarters) of firm-level data.

Each sample path contains 2500 firms. Appendix C provides additional details

on the computation.

4.1 Calibration

To match the sampling frequency in the data, we calibrate the model at a

quarterly frequency. Tables 5 and 7 report the values of our key parameters.

similar reasoning to show, empirically, that pseudo-bond spreads constructed using options
have predictive power for macroeconomic aggregates. Like our work, their results suggest
that bond-market specific frictions do not account for the predictive power of bond spreads.
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We choose the normal-times growth rate and volatility, µc and σc to match

post-war U.S. consumption data. Due to their nature as rare events, precise

calculations of the probability and distributions of rare events are not possible.

We generally choose parameter values that are conservative given prior studies.

We set the average probability of a disaster p̄ to be 2% per annum (Barro and

Ursua (2008) estimates 2.9% based on OECD countries and 3.7% based on all

countries). We assume the average consumption lost in a disaster state is 30%

with a volatility of 15% (Backus, Chernov, and Martin, 2011). These values

are also conservative given that 30% is close to the average disaster size, and

that the distribution of disasters appears to have a tail that is much fatter

than that implied by the normal distribution.11

The process for pt is latent to the econometrician. We assume values that

give a reasonable amount of volatility and persistence, while implying stability

of the numerical solution. We set the autoregressive coefficient to be 0.94

(quarterly) with an unconditional standard deviation of 1.93. We solve for

the equilibrium wealth-consumption ratio using (9), assuming a seven-node

Markov chain for pt.

Given the wealth-consumption ratio, the SDF follows from (5). We then

compute yields and returns on the government bill rate from (10) and (11). We

follow Barro (2006) and many subsequent studies, and choose the probability of

government default conditional on disaster to be 40%. We calibrate the model

so that average yield on government debt in the model matches the average

government bill rate, and so that the average premium on the consumption

claim, E
[
S(pt+1)+1
S(pt)

Ct+1

Ct
−Rg,t+1

]
, matches the unlevered equity premium. We

match the latter with a value of γ of 3.9, while the former implies a value of β

equal to 0.99. Following Gourio (2012), we set ψ to equal 2. Table 6 reports

moments for the government bill yield and the consumption claim.12

11We use per-capita annualized data on personal consumption expenditures from the BEA.
We compute quarterly values from annual data by dividing by 4 (µc) and by 2 (σc).

12We compute the return on the value-weighted CRSP index from 1951 to 2013. Following
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For firms, we follow Cooper and Ejarque (2003) and set the returns-to-scale

parameter α = 0.7. We set depreciation δ = 4% per quarter to match the

average investment-to-capital ratio in the data, and then choose η to match

the volatility of investment growth relative to the volatility of output growth

in the data.

The process for firm-specific productivity (13) combines two normal com-

ponents with differential sensitivities, φi, to disaster realizations. As a result,

firm-level investment and repayment decisions reflect a mixture of temporary

variation in individual investment opportunities and differential exposure to

aggregate shocks. We choose the average value for φ so that a firm with this

sensitivity has an unlevered equity premium equal to the consumption claim.

Because of the implied dividend policy, this φ is around 1.25. The value of the

other sensitivities are then assumed to be uniformly distributed between 1 and

1.5. Because our results are essentially based on the highest and lowest quintiles,

they are not particularly sensitive to the exact form of this distribution. We

assume a debt recovery rate in default of 60%, which equals the value-weighted

recovery rate for senior unsecured debt estimated by Moody’s Investor Services

(Ou, Chlu, and Metz, 2011).

It remains to characterize the exogenous process for the face value of debt.

Firms are endowed with face value equal to Bi1. In order that debt scales

with productivity, we define a process for bit = Bit/zit. Define vit = Vit/zit and

assume that leverage partially adjusts with firm value:

bi,t − bi,t−1 = κi(vi,t−1 − vi,t−2), (24)

Thus when firm value rises, the firm takes on more debt. Moreover, the

adjustment is partial, so that 0 ≤ κi < 1. The parameters characterizing the

exogenous process for debt are set to match the average portfolio leverage

Barro and Ursua (2008), we adjust for leverage by dividing by 1.5.
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ratios.13 We discuss the role of our leverage assumption and the impact of

possible alternatives in Section 5.2.

Given simulated series for bit = Bit/zit and vit = Vit/zit, as well as asset

returns Vi,t+1/(Vit − Πit), we now compute the value of EDFit for each firm

i at time t by applying equation (1) in artificial data. The volatility of the

idiosyncratic shocks, which has a second-order effect on firm value, but a

first-order effect on σV , is set to match the average EDFs on the portfolios.

4.2 Portfolio characteristics in simulated data

For each time point in each artificial sample, we sort the cross-section of firms

based on repayment, defined by (20). Table 8 reports average characteristics of

repayers (the top repayment quintile) and issuers (the bottom quintile), and

compares them with their counterparts in historical data.

Our model implies the correct relation between repayment and EDF. Table 8

shows that, on average, repayers have higher default probabilities (EDF) than

issuers, and that magnitudes of both are similar to those in the data. Repayers

have an average EDF of 0.6%, compared with 0.8% in the data, while issuers

have an average EDF of 0.1%, compared with 0.3% in the data. Repayers

also exhibit lower average rates of investment — 0.02 versus 0.07 for issuers –

and higher (beginning of period) average leverage ratios. These moments also

match, qualitatively and quantitatively, their counterparts in the data. These

results show that our calibration is plausible, and that the model captures the

basic cross-sectional relation between repayment, leverage, investment, and

EDF.

13This implies values of κi that are increasing in φi and range between 0.2 and 0.3.

19



4.3 Dynamics of investment, value, and credit quality

To understand the joint dynamics of macroeconomic quantities, firm values,

and credit quality, we calculate how these respond to a shift in the probability

of a disaster (our main state variable).

Figure 2 shows impulse responses for an increase in pt from its unconditional

average to 2.3% per quarter.14 The left panel shows the path of the disaster

probability: it increases, and then mean-reverts to its average level over the

subsequent periods. The middle panel shows the response of the key corporate

policies. When the disaster probability increases, firms reduce their investment

immediately. The reason is that future cash flows produced by investment

are now riskier: they have a lower mean, and are discounted at a higher risk

premium. Increased risk also incentivize firms to invest more for precautionary

reasons, but, at least given our parameter values, the first two effects dominate.

Adjustment costs ensure that investment remains depressed for several years.

Because cash flows from productive activities are now both riskier and

lower in expectation, firm values decline, as the middle panel also shows.

Over the subsequent years, firm value drifts upward, representing the required

compensation to investors for bearing the risk of a disaster which, in this

sample, has not occurred. Because the firm’s decisions at t − 1 determine

capital at time t (in the absence of a disaster), and because productivity is

itself not affected, output responds only with a lag. Eventually, however, lower

levels of investment reduce the stock of capital and, with it, firm output. We

see both of these responses in the middle panel.

The right panel shows the response of EDF. Because firm value falls when

pt rises, EDF increases on impact. The magnitude of the increase in EDF is

much greater, in percentage terms, than the decline in firm value because of

the nonlinearity embedded in the calculation of EDF. Usually, EDF is close to

14We set productivity shocks to zero. EDF values are computed using µV = µ1 and
σV = 0.34. We consider a firm with φi = 1; however, these patterns hold for all firms.
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zero. A substantial decline in firm value relative to debt outstanding leads the

probability that value crosses the default boundary (according to the Merton

model) to be revised sharply upward. This result does not depend on our

specification of Bit. As we discuss in Section 5.2, EDF will rise as firm values

fall, unless firms implausibly reduce debt at a rate faster than the decline in

value.15

Figure 3 focuses on our measure of dispersion (credit quality of repayers

minus credit quality of issuers) and its relation to macro-aggregates. As we

have seen, when the probability of disaster rises, the typical firm’s value falls.

Firms do not suffer this effect equally, however, with those that more exposed

to disaster risk, through high φi, suffering the largest drops in value, and

moving closer to default. At the same time, these firms will also experience the

largest reduction in investment opportunities making them much more likely

to repay their debt. This endogenous behavior of firms naturally produces a

cross section where debt repayers exhibit especially high values of EDF.

Putting these facts together, we then find that cross-sectional dispersion in

credit quality will increase following an increase in the probability of disaster.

Moreover, because all firms face lower investment opportunities, investment

falls throughout the economy, and, eventually, so does output. Figure 3 shows

how lower levels of investment, and a slow decline in output, follow a spike in

Dispersion.

Importantly, although the model implies that repayers are high EDF firms,

they are not always high φi firms. Improvements in pt, as well as firm het-

erogeneity arising from idiosyncratic shocks, can lead high-sensitivity firms

to experience increases in value and declines in EDF. At these times, high

sensitivity firms become net issuers. However, the relation between EDF and

economic conditions is strongly asymmetric. While almost all firms are far

15As firms adjust their leverage over time, EDF reverts back to its mean. In our benchmark
calibration, the process occurs quickly. We discuss alternative calibrations in Section 5.2.
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from their default boundary in good times, recessions produce a sharp rise in

EDFs for a subset of firms.

4.4 Predictive regressions in model and data

We now discuss how the qualitative results in Section 4.3 translate into quanti-

tative findings that match the data.

4.4.1 Predictability of macro aggregates

Table 3 shows median betas and R2-statistics in simulated data, along with

these statistics from historical data. We repeat the exact same predictive

regressions in the model as discussed previously in the paper. The table shows

that the model can replicate the forecastability of both GDP and investment

growth. While R2 statistics are smaller at some horizons in the model, the

coefficients on Dispersion are of a similar magnitude and the predictability is

economically meaningful as in the data.16

The reasons for this predictability are apparent in Figure 3. In the model, a

rise in Dispersion indicates an increase in the probability of economic disaster.

This is because some firms are affected more strongly by this probability

than others, and EDF is very sensitive to fluctuations in overall firm value.

Importantly, because firms that are most affected are also those repaying debt,

a sort based on repayment behavior can have much predictive value for macro

aggregates.

Although the declines in investment and output growth follow a deterioration

in credit quality and create what might appear to an econometrician as a

tightening of credit, this is clearly not the case here. The response of output

16In the Online Appendix, we report predictability of macro-aggregates by the credit
spread and bond premia in the data, replicating the results of Gilchrist and Zakraǰsek (2012).
After controlling for lagged macro aggregates, these results are less strong than what we find
for Dispersion. Because credit spreads and risk premia increase with risk, our model also
explains credit spread and bond premia predictability, as the Online Appendix shows.
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and investment in the model is driven solely by variation in risk premia and

associated investment opportunities.

4.4.2 Predictability of bond returns

Besides capturing the predictive power of Dispersion for macro-aggregates, our

model also explains why Dispersion predicts excess returns on corporate bonds,

the key empirical finding of Greenwood and Hanson (2013).

Table 4 shows the model’s implications for the predictability of bond

returns. To construct theoretical counterparts to investment-grade and high-

yield portfolios we first sort firms in the model, in every period, according to

their EDF and construct five credit quality portfolios. We label the firms in

the lowest credit quality portfolio as High Yield and the remaining quintiles as

Investment Grade. We then construct bond return indices for both types by

weighting individual firm returns by the face value of their debt.17

Table 4 shows that the model can also replicate the economically significant

R2 and coefficients found in the data. In the model, Dispersion predicts excess

bond returns precisely because it proxies for changes in the probability of

a disaster. Bonds are priced by the same economic agents who make real

investment decisions. When the probability of a disaster rises, firms are more

likely to default. Moreover, risk overall increases; the marginal utility of

investors rises, leading investors to demand a greater risk premium on bonds.

These effects cause bond prices to fall, and their required rates of return to

rise. Note that Table 4 does not indicate higher rates of return due to a Peso

problem (namely, investors are simply receiving payments in states without

disasters). Rather, a high disaster probability leads to a higher population risk

17Average (annualized) default rates on investment grade and high yield bonds in the
model are 0.3% and 3.9% respectively. This compares with 0.2% and 2.8% default rates in
Moody’s data on BBB and B bonds respectively (data from 1920 to 2010). Credit spreads
are 0.5% for investment grade bonds and 7% for high-yield bonds, compared with 1.6% and
5.7% in the data (from Bank of America, 1997 to 2010).
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premium.

Thus, while Greenwood and Hanson (2013) interpret low values of Dispersion

as a sign of irrational exuberance in credit markets (which is then followed

by low subsequent bond returns), our findings suggest that such low values

should instead be viewed as indicators of a period of low aggregate risk. When

Dispersion is low, even firms with poor investment opportunities (repayers)

remain unlikely to default. Periods of low excess returns naturally follow from

this drop in required premia.

Finally, even though true risk premia in our model are always positive, the

OLS regressions predict, at a 1-quarter horizon, negative excess returns on

investment-grade debt in some samples. This is because the relation between

the disaster probability, default dispersion, and expected returns is nonlinear.

Hence, fitted excess returns will sometimes be negative, even without assuming

investors are irrational.

5 Robustness

Although we have made a number of important assumptions and simplifications

in our analysis above, our results are generally robust to many alternative

choices. In this section, we consider two types of robustness analysis. In

Section 5.1 we examine the robustness of our empirical results to the measure

of repayment. In Section 5.2 we discuss the robustness of our theoretical results

to the firm’s leverage policy.

5.1 Alternative measures of repayment

In the data, we identify repayment as the negative of the change in book value of

debt as a fraction of the previous period’s assets.18 That is, we consider change

18We can also identify repayment as actual cash flows to debtholders. However these data
are only available annually. In the Online Appendix, we show that Dispersion based on
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in book equity (BE) minus change in assets, divided by assets in the previous

period. In this, we follow the prior literature (Greenwood and Hanson, 2013).

Our model, however, raises the question of whether we should distinguish at all

between debt repayments and total (debt plus equity) repayments to investors.

It is interesting to ask whether the predictive power of Dispersion in the data

hinges on this distinction.

To answer this question, we now form portfolios on the basis of total

repayments. By the balance sheet identity, total repayments equal the amount

the firm earns, less the growth in its balance sheet. We therefore compute

earnings before interest and taxes (EBIT ), minus change in assets, divided by

assets in the previous period. If At represents assets at time t,

Total repaymentsit =
EBITit −∆Ait

Ai,t−1
. (25)

This is precisely the sorting variable that the model suggests. The analogue to

EBIT in the model is operating earnings minus depreciation and adjustment

costs:

EBITit = Yit − λ(Iit, Kit)− δKit.

Then, (25) equals the definition of payout in (20).19

Figure 4 shows that the resulting series for Dispersion is very similar to

our original series. Moreover, the regression results, shown in Tables 9 and 10

this sort has comparable properties, namely the EDF for repayers is more higher and more
cyclical. Its predictive power remains equally high.

19It follows from (17) and the evolution of capital Kt in (15) that

Πit = Yit − λit − Iit
= Yit − λit − δKit︸ ︷︷ ︸

EBIT

−
(
K̂i,t+1 −Kit

)
︸ ︷︷ ︸

∆At+1

where K̂i,t+1 is the capital that prevails if there is no disaster, and λit − λ(Iit,Kit). Along

no-disaster simulation paths, K̂t = Kt. If there were a disaster, presumably it would be
represented, in accounting, as a charge against earnings.
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are also nearly identical. Sorting firms based on total repayments identifies the

same information as sorting on debt repayments.20

Finally, our model also suggests that we can ignore repayment entirely and

simply sort firms directly based on their investment behavior.21 Figure 4 shows

when we construct portfolios based on disinvestment, or −∆Ait, the resulting

series for Dispersion is virtually identical to that obtained when we use total

repayments. Tables 9 and 10 confirm that the regression results are again very

similar.

These results support our view that the main driver of fluctuations in credit

quality in the data is the optimal investment response of firms to underlying

shocks. As implied by our model, the behavior of debt repayment, per se, does

not hold any unique predictive power.22

5.2 Alternative leverage models

The previous evidence also serves to illustrate how dispersion in debt behavior

is strongly correlated with variation in investment and total repayments. For

the same reason we expect that departures from the partial adjustment model

for debt (see Eq. (24)) will not play a crucial role in our theoretical results.

In this section we investigate this issue and ask what characteristics does the

leverage rule need to have for the model to match the data, and whether those

characteristics are realistic features of leverage in the data.

First, we consider two very simple, though unrealistic, leverage rules. The

20Total repayments are also closely related to free cash flow. Note that the net change in
total firm assets is

∆A = I + ∆NWC︸ ︷︷ ︸
Non-cash investment

+∆Cash,

where NWC is net working capital. Thus free cash flow equals total repayment plus change
in cash. However change in cash has no predictive power for macro variables or returns.

21Again, see (20).
22Cooper, Gulen, and Schill (2008) show that, in the cross-section, firms that grow their

assets more earn lower subsequent returns. This finding is in the spirit of our model, where
growing firms are less exposed to disaster risk and have a lower required rate of return.
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first is that debt simply scales with productivity so Bit = Bizit. The second

is that leverage is constant, so that Bit = κiVit. Our benchmark rule can be

thought of as in between these extremes. Note that a perhaps even simpler

rule, namely constant debt, would clearly not work in our model, because the

fraction of debt to value would become negligible as the firms, and the economy,

grow.

Tables 11 and 12 repeat the key predictive regressions for these two simple

rules. Nearly all of our results hold, qualitatively, in these two extreme cases.

Again, high credit dispersion forecasts both low growth in macroeconomic

aggregates and high excess returns on corporate bonds, so that our results are

robust to even very wide variations on the leverage rule.

To understand why even these extreme cases can capture our main findings,

consider the formula for EDF in (1) where EDF depends negatively on the

value-to-debt ratio. When debt scales with productivity, as well as in our

benchmark case, the value-to-debt ratio encodes investment opportunities.

Thus repayers, which have low investment opportunities in times of economic

stress, will also have high EDFs during this time. This reasoning holds as long

as debt adjusts only partially to firm value, and is quite robust to the form

that this adjustment takes.23

How is it then that our results hold even when the leverage ratio remains

a constant? The answer is that, even though the value-to-debt ratio is the

most important source of variation in EDF, it is not the only source. Another

source is asset volatility. Even when value-to-debt is constant, in times of

economic stress, repayers are those that have high σ2
V . This leads them to have

23There is one notable difference between the benchmark case and the case when debt
scales with productivity, and has to with investment growth regressions at a longer horizon.
To capture the forecastability of investment growth, EDF must depend to some extent on
changes in investment opportunities. As Figure 2 shows, when the disaster probability
changes, investment changes immediate, and so there is an immediate change in the growth
rate. Investment level continues to change, slowly, due to adjustment costs. However,
investment growth (either positive or negative), converges toward zero.
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higher EDFs than issuers, even in the constant leverage case. Because this

effect is small, however, EDF variation is unrealistically low, and the regression

coefficients are not empirically reasonable.

As a final exercise, we also consider the case of a leverage rule that is

directly estimated from the data. We consider a leverage rule that is based on

firm characteristics and evolves slowly over time (e.g. Lemmon, Roberts, and

Zender (2008)).24 Applying this detailed empirical leverage rule to the model

confirms the key findings that high EDF dispersion forecasts downturns, and

high bond risk premia.

6 Additional implications: expected equity re-

turns

Our model rests on a dispersion of loadings on aggregate risk. Firms that are

more exposed to risk become repayers when aggregate risk is greater. That

means that, while unconditionally firms that are riskier might be either repayers

or issuers, sorting on a repayment variable will find firms whose exposure to

the risk is greater when the risk itself is greater. As a result, we expect that

these firms, because they have greater exposure during the worst times, will

command a higher risk premium for equities as well as bonds. In the baseline

model, the expected return on total assets for repayers exceeds that of issuers

by about 1.3% per annum.

We now ask whether this difference is identifiable in the data. Table 13

shows expected returns and αs relative to the 4-factor model on the repayment

quintile portfolios. The difference in expected returns between repayers and

issuers is 3% per annum, which is similar to the model in the sense that the

model reports returns on total assets. The α relative to the 4-factor model

24Specifically, leverage now responds to past book leverage, profitability, and Tobin’s Q.
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is smaller but still statistically significant. Interestingly, the repayer-minus-

issuer portfolio (RMI) loads positively on the HML factor and negatively on

the momentum factor, suggesting that these firms share some of the risks of

value firms, and that they are “anti-momentum.” These findings are intuitive.

The higher expected returns on repayers suggests again a narrative based on

fundamental properties of these firms, rather than excessive optimism in the

bond market per se.

7 Conclusions

This paper makes three contributions. First, we show that firms who are

on average repayers of securities have an Expected Default Frequency (EDF)

that is both higher and more sensitive to cyclical fluctuations than those who

are issuers of securities. Moreover, we observe that repayers exhibit lower

investment rates and a higher leverage before rebalancing their debt.

Second, the spread between the EDF of repayers and issuers forecasts

movements in key macroeconomic aggregates and bond returns. As a result,

this measure appears as a strong leading indicator for the economic cycle and

for bond returns. Those facts provide the basis for the theoretical analysis

which is perhaps our major contribution.

Finally, we build a rational framework where heterogeneous firms make

optimal investment decisions while facing differential exposures to a rare

economic disaster. We show that our model is capable of matching the key

empirical facts even though our firms face no independent stochastic variation

in financial conditions, as would be suggested, by a model with credit frictions.

What allows us to explain a complicated, and seemingly unrelated set of

facts with a simple model, is that the same mechanism causing credit quality to

fall for repayers also causes lower investment in the aggregate. Lower investment

naturally leads to lower output. This result occurs not only when a higher
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disaster probability predicts an actual disaster, but even in the absence of a

disaster. Thus our paper provides a basis for fear-driven business cycles that

are predictable, correlated with risk premia, and fully rational.
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Appendix A Variable Definitions and Data

This appendix offers a detailed description of the data sources, and variable

construction.

A.1 U.S. Economic Data

Real GDP per Capita: The data are from FRED and are in chained 2009

dollars. The series is taken from the US. Bureau of Economic Analysis and the

series ID is A939RX0Q048SBEA.

Real Investment per Capita: To compute Investment growth we use the

following data from FRED:

1. Gross private domestic investment, fixed investment, nonresidential and

residential, BEA, NIPA table 1.1.5, line 8, billions of USD, seasonally

adjusted at annual rates.

2. Personal consumption expenditures on durable goods, BEA, NIPA table

1.1.5, line 4, billions of USD, seasonally adjusted at annual rates.

3. Civilian non-institutional population over 16, BLSLNU00000000Q.

4. Gross Domestic Product, BEA, NIPA table 1.1.5, line 1, billions of USD,

seasonally adjusted at annual rates.

5. Real Gross Domestic Product, BEA, NIPA table 1.1.6, line 1, billions of

USD, in 2009 chained dollars.

6. GDP deflator equals to the ratio of 4 to 5
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A.2 Financial Data

US Corporate High Yield Index: The Barclays US Corporate High Yield

Bond Index measures the USD-denominated, high yield, fixed-rate corporate

bond market. Securities are classified as high yield if the middle rating of

Moody’s, Fitch and S&P is Ba1/BB+/BB+ or below. Bonds from issuers

with an emerging markets country of risk, based on Barclays EM country

definition, are excluded. The data range from 1987 to 2013. We use continuously

compounded returns.

US Credit Index (Investment Grade): The Barclays US Credit Index

measures the investment grade, US dollar-denominated, fixed-rate, taxable

corporate and government-related bond markets. It is composed of the US

Corporate Index and a non-corporate component that includes foreign agencies,

sovereigns, supranationals and local authorities. The data range from 1976 to

2013. We use continuously compounded returns.

Intermediate Treasuries - 10 yr constant maturity: Returns for the 10

year constant maturity treasury bonds are from GFD. We use continuously

compounded returns.

Bond Excess Returns: Barclays’ High Yield or Credit Index net of 10 yr

constant maturity Treasury.

Equity returns: Firm level equity returns come from CRSP.

A.3 Firm Characteristics: Definitions and Data

Firm-level data are from CRSP/Compustat merged. We exclude companies in

the following 2- or 3-digits NAICS sectors: 22 (Utilities); 491 (Postal Service); 52

(Finance & Insurance); 61 (Educational Services); 92 (Public Administration);

and 99 (Unclassified), as the model is inappropriate for regulated, financial, or

public service firms. Our sample starts from 1976. As regards market-based

firm-level variables, we use only common ordinary shares to compute the market
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capitalization.

Debt Repayment: Debt repayment is the change in equity minus the change

in assets, scaled by lagged assets. Book equity is stockholder’s equity, plus

deferred taxes and investment tax credits (txditcq) when available, minus

preferred stock (pstkq). For stockholder’s equity we use seqq ; if seqq is missing

we use the book value of common equity (ceqq) plus the book value of preferred

stock (pstkq); finally, if still both of those are missing, we use assets (atq)

minus total liabilities (ltq) minus minority interest (mibq). We replace negative

stockholder’s equity with small positive values of 1$, following a recent literature

concerned with possible mis-measurement in those negative book value of equity

firms (Campbell et al., 2008). For each quarter, we compute debt repayment

in the top and in the bottom NYSE quintile and split all the firms accordingly.

EDF: EDF is computed using the procedure in Bharath and Shumway (2008).

For each firm i and year t, we use compute the EDF in (1). In this equation,

Vit is the market value of the firm’s equity plus debt, Bit. The debt Bit, is a

proxy for the debt coming due that quarter (Campbell et al., 2008), namely one

fourth of short-term debt (dlcq) plus one-eighth of its long-term debt (dlttq).

To compute µVi and σVi , we use monthly returns. µVi equals the log average

(gross) equity return. σVi = Eit
Eit+Bit

σEi + Bit
Eit+Bit

(0.05/
√

12 + 0.25σEi), where

σEi is the monthly volatility of the equity return (Bharath and Shumway, 2008).

The mean and volatility of equity returns are computed using 12-month rolling

windows. Bit equals the short-term debt (dlcq) plus half of long-term debt

(dlttq), an estimate commonly used by scholars for the market value of debt.

When using these quantities in (1), we multiply µVi by 3 and σVi by
√

3 to

express in quarterly terms.
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Appendix B Firm’s Problem

We define firm value recursively, using the Bellman equation. Unlike in the

standard investment problem, capital at time t+1 is stochastic given information

at time t. We therefore define planned capital, namely the capital that the

firm would have in the absence a disasters:

K̃j,t+1 =
Kj,t+1

eφjξt+1xt+1
.

The value function for firm i then solves

Vj(K̃jte
φjξtxt , zjt, pt) = max

Ijt,K̃i,t+1

[
z1−αjt

(
K̃jte

φjξtxt
)α
− Ijt − λ

(
Ijt , K̃jte

φjξtxt
)

+

+ Et

[
Mt+1Vj(K̃j,t+1e

φjξt+1xt+1 , zj,t+1, pt+1)

]]
(B.1)

s.t. K̃j,t+1 = (1− δ)K̃jte
φjξtxt + Ijt. (B.2)

Let qjt be the Lagrange multiplier on (B.2). The first-order conditions with

respect to the level of investment and next-period planned capital are

[Ijt] qjt = 1 + λI

(
Ijt, K̃jte

φjξtxt
)

(B.3)

[K̃j,t+1] qjt = Et

[
Mt+1e

φjξt+1xt+1
∂Vj,t+1

∂K̃j,t+1

]
. (B.4)

Taking the derivative on both sides of (B.1), we obtain

eφjξtxt
∂Vjt

∂K̃jt

= αz1−αjt K̃α−1
jt eαφjξtxt−λK̃

(
Ijt, K̃jte

φjξtxt
)

+qjt(1−δ)eφjξtxt . (B.5)

The derivatives of the adjustment cost function with respect to investment
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and capital are

λI

(
Ijt, K̃jte

φjξtxt
)

= 2η

(
Ijt

K̃jteφjξtxt

)
(B.6)

λK̃

(
Ijt, K̃jte

φjξtxt
)

= −η

(
Ijt

K̃jt

)2

e−φjξtxt . (B.7)

Substituting (B.5) and (B.7) into (B.4), yields

(B.8)

qjt = Et

Mt+1e
φjξt+1xt+1

αz1−αj,t+1

(
K̃j,t+1e

φjξt+1xt+1

)α−1

+ η

(
Ij,t+1

K̃j,t+1

)2

e−2φjξt+1xt+1 + qj,t+1(1− δ)

 .
Linking actual to planned capital, we rewrite (B.8) in terms of the original

state variables:

(B.9)qjt = Et

[
Mt+1e

φjξt+1xt+1

(
α
Yj,t+1

Kj,t+1

+ η

(
Ij,t+1

Kj,t+1

)2

+ qj,t+1(1− δ)

)]
.

We use (B.3) and (B.6) to find the Euler equation in the text:

Et

Mt+1
eφjξt+1xt+1

1 + 2η
Ijt
Kjt

(
α
Yj,t+1

Kj,t+1

+ η

(
Ij,t+1

Kj,t+1

)2

+ (1− δ)
(

1 + 2η
Ii,t+1

Kj,t+1

))
︸ ︷︷ ︸

RIj,t+1

 = 1.

(B.10)

With no adjustment costs, equation (B.10) simplifies to

Et

Mt+1 e
φjξt+1xt+1

(
α
Yj,t+1

Kj,t+1

+ 1− δ
)

︸ ︷︷ ︸
RIj,t+1

 = 1. (B.11)
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Appendix C Model Solution

We use numerical dynamic programming to obtain approximations of the

Value function V (·) and Investment policy function I(·) which solve the firm’s

optimization problem. However, because our firm-specific productivity is a

random walk, it is useful to scale individual variables so that we work with a

stationary model. Hence, we define the following stationary variables for firm

j:

yjt =
Yjt
zjt
, kjt =

Kjt

zjt
, ijt =

Ijt
zjt
, vjt =

Vjt
zjt

The stationary output and the firm’s capital law of motion now become:

yjt = kαjt (C.1)

kj,t+1 =
(1− δ)kjt + ijt
eµj+εc,t+1+ωj,t+1

(C.2)

The problem is complicated by the fact that the agent does not choose

kt+1, because this object is stochastic. So, we define k̃j,t+1 =
K̃j,t+1

zjt
to be the

level of capital next period that the firm chooses so as to maximize its value.

k̃j,t+1 = kj,t+1e
µj+εc,t+1+σωωj,t+1 = (1− δ)kjt + ijt is known at time t.

The stationary value function then solves:

(C.3)

vj(kjt, pt) = max
ijt,k̃j,t+1

[
kαjt − ijt − λ (ijt, kjt)

+ Et

[
Mt+1 e

µ+εc,t+1+ωj,t+1+φjξt+1xt+1 vj(kj,t+1, pt+1)

]]

where λ (ijt, kjt) = η

(
ijt
kjt

)2

kjt.

We discretize the distributions of the i.i.d. shocks εc,t+1 and ωj,t+1 using

the method of Tauchen (1986). We discretize the process for pt using a 7-
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node Markov chain based on the method of Rouwenhorst (1995), which better

captures persistent processes (Kopecky and Suen, 2010).

For each firm j, we use an iterative procedure to jointly approximate the

value function and the investment policy function on discrete grids for capital

k ∈ [k, k̄] and disaster probability p. For each firm j, we start with an initial

guess for the value function v0j (kj,0, p) and iterate over the Bellman equation

recursively so that after l iterations, firm j solves:

vl+1
j (kjt, pt) = max

ijt,k̃j,t+1

kαjt − ijt(kjt, pt)− λ (ijt(kjt, pt), kjt)

+ Et

[
Mt+1 e

µj+εc,t+1+ωj,t+1+φjξt+1xt+1 vlj(kj,t+1, pt+1)
]

s.t. kj,t+1 =
(1− δ)kjt + ijt(kjt, pt)

eµj+εc,t+1+ωj,t+1

After solving the problem of each individual firm j we obtain model-implied

moments by taking the averages across 400 simulated economies of 38 years

each. Each economy consists of 2500 companies equally distributed across 5

equidistant values of the disaster sensitivity φj ∈ [1, 1.5]. The burn-out sample

for each simulation consists of the first 1000 periods.
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Table 1. Debt Repayment by Portfolios

Portfolio 10% 50% 90% Average

1 (Issuers) −0.313 −0.092 −0.048 −0.178
2 −0.043 −0.027 −0.015 −0.028
3 −0.015 −0.006 0.001 −0.007
4 0.002 0.010 0.021 0.011
5 (Repayers) 0.024 0.050 0.156 0.078

Source: CRSP/Compustat merged

Notes: Each quarter, we sort firms into quintiles based on debt repayment. We

define debt repayment as the change in book value of equity minus change in book

value of assets over the quarter divided by lagged book value of assets. The table

shows the average debt repayment in each portfolio, as well as the 10th, 50th, and

90th percentile. Negative values imply issuance of debt during the quarter. Data are

from 1976 to 2013.



Table 2. Characteristics of Repayers and Issuers: Data

Variable 10% Median 90% Average Standard Dev.

EDF - Repayerst 0.000 0.000 5.32e−08 0.008 0.070

EDF - Issuerst 0.000 0.000 8.51e−11 0.003 0.039

Investment - Repayerst 0.000 0.023 0.091 0.035 0.062

Investment - Issuerst 0.006 0.042 0.178 0.076 0.120

Leverage - Repayerst−1 0.030 0.283 0.721 0.332 0.256

Leverage - Issuerst−1 0.018 0.215 0.629 0.273 0.232

Size - Repayerst−1 2.212 4.613 7.549 4.768 2.046

Size - Issuerst−1 2.162 4.623 7.580 4.769 2.072

Source: CRSP/Compustat merged, CRSP

Notes: Each quarter, we sort firms into quintiles based on debt repayment. We

define debt repayment as the change in book value of equity minus change in book

value of assets over the quarter divided by lagged book value of assets. Repayers

are the firms in quintile five, while issuers are the firms in quintile one. EDF is the

quarterly expected default frequency from the Merton (1974) model. Investment is

quarterly capital expenditures minus sale of property divided by the book value of

property plant and equipment. Leverage is financial debt in current liabilities plus

long-term debt divided by market value of assets (market value of equity plus book

value of debt). Size is the logarithm of book value of assets in millions of dollars. We

restrict the analysis to companies whose assets are greater than $1 Mln. Investment

is Winsorized at the 1 percent level. Data are from 1976 to 2013.



Table 3.
Forecasting Macroeconomic Quantities

Horizon k

1 2 3 4 8

Panel A: ∆ GDP t→t+k

β1 Data −0.29∗∗∗ −0.22∗∗∗ −0.18∗∗ −0.13∗ −0.039
[−3.79] [−2.77] [−2.45] [−1.92] [−0.56]

Model −1.21 −0.76 −0.70 −0.58 −0.32

R2 Data 0.186 0.172 0.143 0.117 0.035

Model 0.099 0.257 0.277 0.276 0.199

Panel B: ∆ Investment t→t+k

β1 Data −1.17∗∗∗ −0.99∗∗∗ −0.72∗∗∗ −0.46∗ −0.001
[−4.40] [−3.47] [−2.69] [−1.85] [−0.01]

Model −9.09 −3.20 −1.20 −022 2.52

R2 Data 0.277 0.227 0.169 0.110 0.023

Model 0.185 0.062 0.035 0.033 0.036

Source: Bureau of Economic Analysis, CRSP/Compustat merged, CRSP

Notes: Estimation of

∆yt→t+k = α+ β1 Dispersiont + β2 ∆yt−1→t + εt,t+k.

The table reports the slope coefficients and R2 statistics from predictive regressions of

average GDP (Panel A) and average investment growth (Panel B) over various horizons onto

dispersion in credit quality (Dispersion) and growth in GDP between time t−1 and t both in

the data and (the median values) within the model. We define dispersion as average EDF of

repayers minus average EDF of issuers. We present t-statistics from Newey and West (1987)

standard errors, with k − 1 lags, where k is the regression horizon, in squared parentheses.

Data are quarterly from January 1976 until September 2013. Statistical significance levels at

5% and 1% are denoted by ** and ***, respectively. For the model, simulations are run on

N = 400 time-series paths of the same length as the empirical sample.



Table 4.
Forecasting Excess Returns on Bonds

Horizon k

1 2 3 4 8

Panel A: Investment Grade

β1 Data 0.36 0.71∗∗∗ 0.75∗∗∗ 0.77∗∗∗ 0.46∗∗

[0.84] [2.81] [3.13] [3.28] [2.46]

Model 0.24 0.13 0.10 0.08 0.06

R2 Data 0.008 0.089 0.126 0.149 0.112

Model 0.582 0.324 0.271 0.249 0.180

Panel B: High Yield

β1 Data 0.67 1.26∗∗ 1.66∗∗∗ 1.61∗∗∗ 0.86∗∗

[0.90] [2.22] [3.40] [3.46] [2.38]

Model 2.51 1.48 1.15 0.88 0.69

R2 Data 0.048 0.144 0.198 0.243 0.334

Model 0.524 0.288 0.254 0.240 0.184

Source: Barclays Capital, Global Financial Data, CRSP/Compustat merged, CRSP

Notes: Estimation of

rxt→t+k = α+ β1 Dispersiont + β2 ∆yt−1→t + εt,t+k.

The table reports the slope coefficients and R2 statistics from predictive regressions of

average excess log returns on bonds over various horizons onto dispersion in credit quality

(Dispersion) and growth in GDP between time t − 1 and t. Panel A reports results for

investment grade bonds; panel B reports results for high yield bonds. We define dispersion as

average EDF of repayers minus average EDF of issuers. We present t-statistics from Newey

and West (1987) standard errors, with k−1 lags, where k is the regression horizon, in squared

parentheses. Investment-grade bond data are quarterly from January 1976 until September

2013. High-yield bond data are quarterly from January 1987 to June 2013. Statistical

significance levels at 5% and 1% are denoted by ** and ***, respectively. To construct the

investment grade and high-yield indices within the model, each period we sort companies

based on their expected default frequency. High yield bonds are bonds issued by firms in the

top quintile of EDF. Investment grade bonds are bonds issued by firms in the first quintile

of EDF. Simulations are run on N = 400 time-series paths of the same length as the sample

for January 1976 to September 2013 at the quarterly frequency.



Table 5. Parameter Values for the Aggregate Economy

Description Parameter Value

Relative risk aversion γ 3.88
Rate of time preference β 0.99
Elasticity of intertemporal substitution ψ 2
Persistence of probability of disaster ρp 0.94
Volatility of log probability of disaster σp 0.66
Average probability of disaster p 0.0052
Mean of the disaster distribution µξ log(1− 0.30)
Volatility of the disaster distribution σξ 0.15
Average growth in log consumption (normal times) µc 0.00495
Volatility of log consumption growth (normal times) σc 0.0089
Probability of government default given disaster q 0.40

Notes : The representative agent has Epstein and Zin (1989) utility with risk
aversion γ, elasticity of intertemporal substitution ψ, and time discount factor
β. The aggregate endowment is given by

Ct+1 = Cte
µc+εc,t+1+ξt+1xt+1

where xt+1 is a disaster indicator that takes the value 1 with probability

pt. The variable ξt+1 is normally distributed with mean µξ −
σ2
ξ

2
and standard

deviation σξ. We assume that the logarithm of pt follows a Markov process with
persistence ρp and volatility σp. In the model, we assume that the government
bill experiences a loss, conditional on a disaster, with probability q; in this case
the percentage loss is equal to the percent decline in consumption.
We calibrate the model at a quarterly frequency.



Table 6. The Consumption Claim and the Government Bill Rate

Moment Data Model

Average government bill yield 0.0101 0.0100

Government bill yield volatility 0.0222 0.0233

Average premium on the consumption claim 0.0532 0.0598

Volatility of the consumption claim return 0.1226 0.0893

Notes: This table reports aggregate moments in the data and in simulations
from the model. All data and model moments are in annualized terms. In the
data we compute the average premium and volatility on the consumption claim
using the CRSP value-weighted return, divided by 1.5 to adjust for leverage.
Data are from 1951-2013. Model moments are from a quarterly simulation of
length 250,000 years.



Table 7. Parameter Values for Individual Firms

Description Parameter Value

Returns to scale α 0.70
Depreciation rate δ 0.04
Adjustment cost on capital η 7.5
Volatility of idiosyncratic TFP shock (normal times) σω 0.13
Minimum sensitivity to disasters mini(φi) 1.00
Maximum sensitivity to disasters maxi(φi) 1.50
Recovery value given default ν 0.60

Notes : The table shows parameter values for the firm’s problem. We assume
that each firm i has a Cobb-Douglas production function of the form

Yit = z1−αit Kα
it

where the logarithm of the firm-specific productivity level, zit, follows a random
walk process given by:

log zi,t+1 = log zit + µi + εc,t+1 + φiξt+1xt+1 + ωi,t+1

Firms net cash flows to its investors are given by

Π(Kit, zit) = z1−αit Kα
it − Iit − η

(
Iit
Kit

)2

Kit

and the law of motion for each firm’s capital stock is:

Ki,t+1 =
[
(1− δ)Kit + Iit

]
eφiξt+1xt+1

We calibrate the model at a quarterly frequency. Values for the sensitivity of
disaster are in equal increments starting from the minimum and going to the
maximum.



Table 8. Characteristics of Repayers and Issuers

Variable Data Model

EDF - Repayerst 0.008 0.006

EDF - Issuerst 0.003 0.001

Investment - Repayerst 0.035 0.020

Investment - Issuerst 0.076 0.070

Leverage - Repayerst−1 0.332 0.357

Leverage - Issuerst−1 0.273 0.312

Notes : We simulate 400 paths at a quarterly frequency of length equal to the
1976–2013 sample. Each sample path contains 2500 firms. Along each sample
path we follow the procedure for forming repayment-based portfolios described
in Table 2. We report averages for the portfolios over the sample paths and
compare them with averages from the data. EDF, Investment, and Leverage
are computed in a method comparable to the data. For example, investment
is Iit in the model divided by capital Kit. Leverage is defined using the book
value Bit of debt divided by the market value of assets Vit.



Table 9. Forecasting Macroeconomic Quantities: Alternative Sorting Variables

Horizon k (quarters)

Sorting
variable

1 2 3 4 8

Panel A: ∆ GDP t→t+k

Total
repayments

β1 −0.27∗∗∗ −0.20∗∗∗ −0.17∗∗ −0.12∗∗ −0.04
[−3.85] [−2.75] [−2.47] [−2.16] [−0.79]

R2 0.195 0.176 0.146 0.119 0.037

Disinvestment β1 −0.22∗∗∗ −0.16∗∗∗ −0.13∗∗ −0.09∗ −0.032
[−3.79] [−2.77] [−2.19] [−1.74] [−0.62]

R2 0.188 0.173 0.140 0.113 0.035

Panel B: ∆ Investment t→t+k

Total
repayments

β1 −1.08∗∗∗ −0.93∗∗∗ −0.68∗∗∗ −0.46∗∗ −0.03
[−4.55] [−3.63] [−2.81] [−2.17] [−0.15]

R2 0.282 0.234 0.174 0.115 0.023

Disinvestment β1 −0.93∗∗∗ −0.77∗∗∗ −0.53∗∗ −0.32∗ −0.003
[−4.65] [−3.72] [−2.52] [−1.66] [−0.01]

R2 0.285 0.231 0.166 0.107 0.023

Source: Bureau of Economic Analysis, CRSP/Compustat merged, CRSP

Notes: Estimation of

∆yt→t+k = α+ β1Dispersiont + β2 ∆yt−1→t + εt+k.

The table reports the slope coefficients and R2 statistics from predictive regressions

of average GDP growth (Panel A) and investment growth (Panel B) over various

horizons onto dispersion in credit quality (Dispersion) and the dependent variable

between time t− 1 and t. We define dispersion in two different ways. Dispersion is

the average EDF of firms in the highest quintile of total repayments (EBIT- change

in assets) minus firms in the lowest. We also sort on disinvestment only (−∆At).

Total repayments and disinvestment are both relative to the lagged value of assets.

We construct t-statistics from Newey and West (1987) standard errors, with k − 1

lags, where k is the regression horizon. Data are quarterly from January 1976 until

September 2013. Statistical significance levels at 10%, 5% and 1% are denoted by *,

** and ***, respectively.



Table 10. Forecasting Excess Returns on Bonds: Alternative Sorting Variables

Horizon k (quarters)

Sorting
variable

1 2 3 4 8

Panel A: Investment Grade

Total
repayments

β1 0.19 0.52∗∗ 0.57∗∗ 0.61∗∗∗ 0.38∗∗

[0.49] [2.07] [2.44] [2.87] [2.35]

R2 0.003 0.071 0.101 0.124 0.102

Disinvestment β1 0.45 0.58∗∗ 0.55∗∗ 0.54∗∗ 0.34∗∗

[1.17] [2.42] [2.41] [2.59] [2.12]

R2 0.023 0.101 0.120 0.135 0.113

Panel B: High Yield

Total
repayments

β1 0.20 0.77 1.11∗∗ 1.23∗∗∗ 0.72∗∗

[0.27] [1.19] [2.42] [2.81] [2.22]

R2 0.043 0.127 0.158 0.209 0.328

Disinvestment β1 0.84 1.07∗∗ 1.24∗∗∗ 1.19∗∗∗ 0.65∗∗

[1.30] [2.02] [2.73] [2.87] [1.97]

R2 0.058 0.153 0.194 0.235 0.335

Source: Bureau of Economic Analysis, CRSP/Compustat merged, CRSP

Notes: Estimation of

rxt→t+k = α+ β1Dispersiont + β2 ∆yt−1→t + εt+k.

The table reports the slope coefficients and R2 statistics from predictive regressions of

average excess log returns on investment grade bonds (Panel A) and high yield bonds

(Panel B) over various horizons onto dispersion in credit quality (Dispersion) and

growth in GDP between time t− 1 and t. We define dispersion in two different ways.

Dispersion is the average EDF of firms in the highest quintile of total repayments

(EBIT- change in assets) minus firms in the lowest. We also sort on disinvestment

only (−∆At). Total repayments and disinvestment are both relative to the lagged

value of assets. We construct t-statistics from Newey and West (1987) standard

errors, with k − 1 lags, where k is the regression horizon. Investment-grade bond

data are quarterly from January 1976 until September 2013. High-yield bond data

are quarterly from January 1987 to June 2013. Statistical significance levels at 10%,

5% and 1% are denoted by *, ** and ***, respectively.



Table 11.
Forecasting Macroeconomic Quantities: Alternative Leverage Models

Horizon k

1 2 3 4 8

Panel A: ∆ GDP t→t+k

β1
Bt
Vt

= χ −7.11×105−7.17×105−5.01×105−4.46×105−2.40×105

bt = χ −0.08 −0.06 −0.05 −0.05 −0.03

Estimated −2.19 −1.68 −1.57 −1.48 −1.03

R2 Bt
Vt

= χ 0.053 0.195 0.210 0.217 0.184

bt = χ 0.133 0.308 0.323 0.314 0.237

Estimated 0.089 0.238 0.254 0.270 0.214

Panel B: ∆ Investment t→t+k

β1
Bt
Vt

= χ −3.66×106−3.94×105−2.77×104−6.82×103−1.61×103

bt = χ −0.34 −0.02 0.21 0.37 0.91

Estimated −22.86 −13.97 −8.81 −5.85 4.51

R2 Bt
Vt

= χ 0.012 0.012 0.015 0.019 0.023

bt = χ 0.050 0.018 0.035 0.049 0.096

Estimated 0.084 0.035 0.031 0.033 0.039

Notes: Estimation of

∆yt→t+k = α+ β1 Dispersiont + β2 ∆yt−1→t + εt+k.

The table reports the β1 coefficients and R2 statistics computed from alternative models of
leverage. In the first case (Bt

Vt
= χ), we fix market leverage to a constant value dependent

on the level of sensitivity φi. In the second scenario we keep the scaled book value of debt
constant and variations in market leverage will come only through variation in the market
value of assets. In the final case, firms choose the book value of debt according to the
following rule (which was estimated in our empirical sample)

Bt

Kt
− κ0 = 0.886

(
Bt−1

Kt−1
− κ0

)
− 0.0077

Πt−1

Kt−1
− 0.0013

Vt−1

Kt−1

Simulations are run on N = 400 time-series paths of the same length as the sample for

January 1976 to September 2013 at the quarterly frequency.



Table 12.
Forecasting Excess Returns on Bonds: Alternative Leverage Models

Horizon k

1 2 3 4 8

Panel A: Investment Grade

β1
Bt
Vt

= χ 1.90×104 1.72×104 1.11×104 1.09×104 0.49×104

bt = χ 0.04 0.03 0.02 0.02 0.01

Estimated 1.01 0.76 0.62 0.53 0.32

R2 Bt
Vt

= χ 0.154 0.156 0.153 0.152 0.130

bt = χ 0.810 0.680 0.608 0.518 0.339

Estimated 0.376 0.327 0.309 0.276 0.182

Panel B: High Yield

β1
Bt
Vt

= χ 1.01×105 1.05×105 0.83×105 0.61×105 0.29×105

bt = χ 0.34 0.25 0.20 0.17 0.12

Estimated 7.84 5.43 4.43 3.73 2.09

R2 Bt
Vt

= χ 0.150 0.156 0.153 0.148 0.125

bt = χ 0.411 0.391 0.415 0.394 0.298

Estimated 0.418 0.354 0.326 0.293 0.205

Notes: Estimation of

rxt→t+k = α+ β1 Dispersiont + β2 ∆yt−1→t + εt+k.

The table reports the β1 coefficients and R2 statistics computed from alternative models of
leverage. In the first case (Bt

Vt
= χ), we fix market leverage to a constant value dependent

on the level of sensitivity φi. In the second scenario we keep the scaled book value of debt
constant and variations in market leverage will come only through variation in the market
value of assets. In the final case, firms choose the book value of debt according to the
following rule (which was estimated in our empirical sample)

Bt

Kt
− κ0 = 0.886

(
Bt−1

Kt−1
− κ0

)
− 0.0077

Πt−1

Kt−1
− 0.0013

Vt−1

Kt−1

To construct the investment grade and high-yield indices within the model, each period we

sort companies based on their expected default frequency. High yield bonds are bonds issued

by firms in the top quintile of EDF. Investment grade bonds are bonds issued by firms in the

first quintile of EDF. Simulations are run on N = 400 time-series paths of the same length

as the sample for January 1976 to September 2013 at the quarterly frequency.



Table 13. Expected Returns on Debt Repayment Portfolios

Issuers R2 R3 R4 Repayers RMI

R 11.71∗∗∗ 10.93∗∗∗ 13.00∗∗∗ 14.27∗∗∗ 14.63∗∗∗ 2.91∗∗

(2.87) (2.62) (2.50) (2.53) (2.66) (1.32)

α −0.10 −0.08 0.09 0.15∗∗ 0.14∗ 0.24∗∗

(0.06) (0.06) (0.06) (0.06) (0.07) (0.10)

βMkt 1.07∗∗∗ 1.01∗∗∗ 0.98∗∗∗ 1.00∗∗∗ 1.02∗∗∗ −0.05
(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

βSMB 0.13∗∗∗ −0.02 0.01 0.02 0.13∗∗∗ −0.01
(0.03) (0.03) (0.03) (0.04) (0.04) (0.06)

βHML −0.25∗∗∗ −0.20∗∗∗ -0.06∗ 0.04 0.05 0.30∗∗∗

(0.03) (0.03) (0.04) (0.04) (0.04) (0.06)

βMom 0.05∗∗ 0.01 −0.04∗∗ −0.04∗∗ −0.05∗∗ −0.09 ∗∗∗

(0.02) (0.02) (0.02) (0.02) (0.02) (0.03)

Source: CRSP/Compustat merged, CRSP
Notes: This table reports time-series averages of annualized value-weighted
portfolio returns with standard errors in parentheses (Panel A), and results
from the time-series estimation for the CAPM (Panel B). Each quarter, we
sort firms into quintiles based on debt repayment. We define debt repayment
as the change in book value of equity minus change in book value of assets
over the quarter divided by lagged book value of assets. Repayers are the firms
in the top quintile; issuers are the firms in the bottom. RMI is repayers minus
issuers. For each repayment portfolio (i), we estimate the 4-factor model

Re
it = αi + βMkt

i Re
mt + βSMB

i RSMB
t + βHML

i RHML
t + βMom

i RMom
t + εit.

where Ri, RM , RSMB, RHML, and RMom are respectively the excess returns
for portfolio i, the market excess return, the size, the value and the momentum
factor. The sample period spans from January 1975 to March 2016. Statistical
significance levels at 10%, 5% and 1% are denoted by *, ** and ***, respectively.



Panel A: Expected default frequency (EDF) of repayers and issuers

1980  1990  2000  2010  
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Panel B: Dispersion in credit quality
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Fig. 1. Expected default frequency and its dispersion. Each quarter, we
sort firms in the data into quintiles based on debt repayment. We define debt
repayment as the change in book value of equity minus change in book value
of assets over the quarter divided by lagged book value of assets. Repayers are
the firms in the top quintile; issuers are the firms in the bottom. EDF is the
quarterly expected default frequency from the Merton (1974) model. Panel A
shows the EDF for repayers (solid line) and for issuers (dashed line). Panel B
shows the difference: the EDF for repayers minus the EDF for issuers. Shaded
areas correspond to NBER recessions.
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Fig. 2. Impulse response function of investment, output and firm
value (middle) and EDF (right) to an increase in disaster probability
(left). The figure shows the response to a temporary increase in the quarterly
disaster probability. We simulate 20,000 series for the economy. In each series,
we enforce the second observation on pt following the burn-in sample, to equal
2.2%. We set productivity shocks to zero. We show investment, output, and
firm value scaled by firm-specific productivity. All quantities are for φi = 1.
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Fig. 3. Impulse response function of dispersion (right axis), and in-
vestment and output (left axis) to an increase in disaster probability.
The figure shows the response to a temporary increase in the quarterly disaster
probability from 0.52% to 2.23%. To calculate impulse responses, we repeat
the procedure described in the caption of Figure 2. Given series for firm-level
variables, we calculate debt repayment, EDF, and Dispersion. Dispersion is
defined as the average EDF of repayers minus average EDF of issuers.
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Fig. 4. Dispersion in Expected default frequency: Total Repayments.
Each quarter, we sort firms in the data into quintiles based on total repayment.
Total Repayments are defined as EBIT net of the change in assets (scaled by
total assets). Repayers are the firms in the top quintile; issuers are the firms in
the bottom. EDF is the quarterly expected default frequency from the Merton
(1974) model. The solid line represents the difference in EDF between firms
repaying the most and firms issuing the most. The dashed line instead shows
the difference in EDF when the same exercise is repeated on disinvestment
only (−∆Assets). Shaded areas correspond to NBER recessions.


