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ABSTRACT

We derive analytical relationships between shock responses and theory-implied causal effects (com-

parative statics) in dynamic settings with linear profits and linear-quadratic stock accumulation

costs. For permanent profitability shocks, responses can have incorrect signs, undershoot, or over-

shoot depending on the size and sign of realized changes. For profitability shocks that are i.i.d.,

uniformly distributed, binary, or unanticipated and temporary, there is attenuation bias, which

exceeds 50% under plausible parameterizations. We derive a novel sufficient condition for prof-

itability shock responses to equal causal effects: martingale profitability. We establish a battery of

sufficient conditions for correct sign estimation, including stochastic monotonicity. Simple extrap-

olation/error correction formulae are presented.
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In applied microeconomics fields such as corporate finance, theory-implied causal effects are gen-

erally derived using comparative statics. For instance, as Heckman (2000) writes, “Comparative

statics exercises formalize Marshall’s notion of a ceteris paribus change which is what economists

mean by a causal effect.” Athey, Milgrom, and Roberts (1998) similarly observe that “most of the

testable implications of economic theory are comparative static predictions.” In assessing implica-

tions of tradeoff theory, Welch (2010) states that “The comparative statics analysis are simple and

obvious: The firm should have more debt if the interest rate is higher, if the corporate tax rate is

higher, and the cost of distress is lower.”

The objective of much econometric work is to empirically estimate signs and magnitudes of

causal effects. The estimates can be compared to theory-predicted causal effects and can also be

used to inform welfare analysis. Theories predicting incorrect signs are informally referred to as

“falsified,” while those with small estimated causal effects are informally referred to as “second-

order.” Small empirical estimates of causal effects have been used to argue that government-induced

behavior distortions generate small deadweight losses (see, for example, Slemrod (1990) and Aaron

(1990)).

In their textbook, Mostly Harmless Econometrics: An Empiricist’s Companion (MHE here-

after), Angrist and Pischke (2009) imply that the primary barrier to correct empirical estimation

of causal effects is endogeneity and selection bias: “The goal of most empirical research is to over-

come selection bias, and therefore to have something to say about the causal effect of a variable.”

They then state that “A principle that guides our discussion is that most of the estimators in

common use have a simple interpretation that is not heavily model dependent.” The perceived

conjunction of credibility and simplicity of interpretation has led to a surge in the popularity of

the MHE methodology.

A limitation of the MHE methodology in practice, however, is that it is silent on how to ad-

dress the inherent complications arising from dynamic uncertainty. Indeed, while there is much

discussion about shock exogeneity, there is little discussion, let alone formal estimation, of the data-

generating process responsible for the exploited shocks. Moreover, there are few formal attempts

to map observed shock responses back to theory-implied causal effects (theory testing), extrapolate

shock responses across stochastic environments (external validity), or estimate causal parameters

entering welfare calculations. In some cases, researchers may have a prior suggesting that dynamic
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uncertainty is a second-order concern. In other cases, researchers are aware that inference is some-

how clouded, but do not know the exact nature of the problems or how to address them at an

operational level without resorting to full-scale structural estimation.

Issues arising from dynamic uncertainty are avoided if one claims that an exploited shock is

unanticipated and permanent. However, this common assumption suffers from a host of problems.

First, confining attention to truly rare events means that timely evidence is unlikely to exist.

Second, the notion that an exploited shock is permanent generally contradicts the underlying

motivation for empirical work, namely, to help optimize policy in the future and/or to forecast

responses to future shocks. Third, inspection of time series for many policy variables such as the

effective corporate tax rate and the real minimum wage reveals changes to be the norm, not the

exception. Finally, there is a fundamental difference between shocks never occurring and shocks

taking place infrequently, say, once a decade in expectation. In the latter case, the arrival of a

shock today might be casually treated as a “surprise.” Nevertheless, as we show, the bias arising

from expectations in such cases can still be quite large.

What special challenges does dynamic uncertainty pose for researchers performing shock-based

inference, how important are they, and what can be done to overcome them without resorting to

full-scale structural estimation? To address these questions, we develop a canonical model of firm

decision-making flexible enough to capture a broad range of commonly studied dependent variables

and alternative causal theories. In our baseline model, a firm dynamically accumulates a (divisible)

stock, such as capital, inventories, patents, debt, cash, or employees, that provides a (linear) flow

of benefits over time while facing (linear-quadratic) accumulation costs.

Using the model as our laboratory, we consider an econometrician whose objective is to infer

whether the shock responses she observes are consistent with the theory-implied causal effects.

Fortunately, we know the theory-implied causal effects, which we compute using comparative stat-

ics. In contrast, our econometrician is forced to rely upon shock responses for inference. Critically,

however, we consider a setting in which the endogeneity challenges to which MHE devotes exclusive

attention are a non issue. Specifically, we assume that shocks take the form of exogenous Markov

chain transitions. Examining the relationship between theory-implied causal effects and shock re-

sponses in this laboratory allows us to assess whether the MHE tool kit suffices for inference of

theory-implied causal effects in dynamic settings.

3



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

Our primary focus is on inference when the econometrician exploits shocks that bring about

changes in the flow of periodic benefits generated by the stock, for example, shocks to taxes,

regulations, competition, productivity, input prices, or yields on cash/debt. To begin, we derive a

set of tractable analytical formulae relating shock responses to theory-implied causal effects. Each

formula can be used to perform back-of-the-envelope bias calculations or inverted to correct for

bias.

The bias formulae reveal troubling implications. If the shock is, say, binary, then shock responses

can represent severely downward-biased estimates of theory-implied causal effects. For example,

under our baseline parameterization, attenuation bias exceeds one-half the causal effect if the shock

probability exceeds just 5.26%. Worse still, shock responses can be biased upwards and even have

signs opposite to that of the causal effect. For example, if a shock is permanent, the shock response

will overshoot the causal effect if the realized change is opposite in sign to the expected change.

Intuitively, objectively good (bad) news becomes great (terrible) news if bad (good) news was

expected. Even worse still, the shock response will have the wrong sign if the realized change is

sufficiently small relative to the expected change. Intuitively, objectively good (bad) news becomes

bad (good) news if even better (worse) news was expected.

The problems that these examples highlight are not theoretical curiosities. To illustrate, we

use the time series of historical effective tax rates to estimate a Markov chain approximating

the data-generating process confronting corporations. We then analytically compare simulated

shock responses to theory-implied causal effects. Under our baseline parameterization, we find that

attenuation bias is severe, with shock responses generally falling just below one-half the theory-

implied causal effect. Intuitively, real-world transience in tax rates makes firms much less responsive

to shocks than would be the case if the shocks were unanticipated and permanent. Such severe

magnitude bias has important policy implications. After all, as we show, the same 50% attenuation

bias exhibited by shock responses carries over directly to estimated tax elasticity and excess burden

calculations.

To make sense of shock responses, mapping them back to theory-implied causal effects or ex-

trapolating them, one must move beyond exogeneity by estimating the stochastic process for the

shocks (that is, the “data-generating process”). With this estimation accomplished, we show ana-

lytically how theory-implied causal effects can be recovered from shock responses, so that empirical
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evidence can speak directly to theoretical predictions or fed directly into welfare calculations. We

also show how shock responses can be extrapolated within and across data-generating processes to

overcome the challenge that dynamic uncertainty poses to external validity.

In some circumstances the econometrician will be unable to estimate the underlying data-

generating process but will want to argue that her setting satisfies some identifying assumption

that guarantees equality of shock responses and causal effects. As we show, one valid identify-

ing assumption is that all state-contingent shock probabilities are infinitesimal, that is, shocks are

almost perfectly unanticipated and permanent. However, we also show that under the classical

linear-quadratic technology, another valid identifying assumption is that the flow of benefits pro-

vided by the stock be a martingale. In some applied settings, this may be viewed as a more plausible

identifying assumption since a stochastic process can change frequently and still be a martingale.

In some cases, an empiricist will set a lower bar and aim to at least avoid incorrect estimation of

causal effect signs. Here we derive a battery of sign identification assumptions that can be invoked:

i.i.d. shocks, unanticipated temporary shocks, binary shocks, transitory uniformly distributed

shocks, a permanent change opposite in sign to the expected change, a permanent change equal in

sign but with absolute value exceeding the expected change, or stochastic monotonicity. We note

that the latter – stochastic monotonicity – may be a reasonable sign identification assumption to

invoke in many applied settings as an increase in the causal variable today implies a first-order

stochastic dominant shift in the variable at all future dates.

We also examine shocks to the stock variable price and shocks to adjustment costs. Here we find

that under the linear-quadratic technology, measured shock responses are equal to theory-implied

causal effects regardless of the underlying stochastic process. However, this finding is due to a

special property of the linear-quadratic technology: the amount of stock accumulated this period

has no effect on the feasibility, cost, or benefit flow arising from accumulation in future periods.

To illustrate, in extensions we consider the relationship between shock responses and causal

effects under alternative technologies. As discussed above, with linear benefits and quadratic ad-

justment costs, the stochastic process matters for interpreting benefit shocks but not for interpreting

shocks to the price of the stock variable. We show that if the firm instead faces concave benefits

to the stock variable with zero adjustment cost, these conclusions are reversed. In particular,

in this case the stochastic process for the shocks is irrelevant for interpreting the benefit shocks
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but critical for interpreting the price shocks. Thus, our analysis shows that correctly interpreting

shock responses requires making joint assumptions about underlying stochastic processes and real

technologies, in addition to the traditional orthogonality assumption.

We turn now to related literature. Bowen, Frésard, and Taillard (2016) find that in the top-three

finance journals, the share of empirical corporate finance papers using what they term “identification

technologies” has risen from roughly 0% in the late 1980s to over 50% by 2012, with 126 published

papers using difference-in-difference techniques applied to quasi-natural experiments.

The most common identification technologies are “shock-based,” with inferences being drawn

from responses to changes in causal variables. For example, an extensive literature studies capital

structure responses to tax code changes.1 Shock-based inference is also pervasive, and increasing,

in corporate governance research. In an exhaustive analysis, Atanasov and Black (2016) document

that use of shock-based designs approximately doubled from 4% to 11% of empirical governance

papers between the 2001–2006 and the 2007–2011 periods. As surveyed by Karpoff and Wittry

(2015), changes in state-level anti-takeover laws are often exploited as a source of quasi-exogenous

variation in governance pressure.2 As a final example, shock-based inference is common in studying

real investment, which, along with leverage, is perhaps the most commonly studied dependent

variable in empirical corporate finance.3

Our analysis is in the spirit of Lucas (1976), who highlights the perils of extrapolating macro-

econometric evidence across policy rules. Our focus is on the inadequacy of the random assignment

assumption taken in isolation. Naturally, Lucas does not analyze the relationship between treatment

responses under dynamic random assignment and theory-implied causal effects, derive sufficient

conditions for correct identification of causal effect signs and magnitudes, or derive formulae for

error correction and extrapolation.

Abel (1982) analyzes the effects of permanent versus temporary tax policies with no policy

variable uncertainty. Specifically, he assumes, in potential violation of rational expectations, that

1See Gordon and MacKie-Mason (1990, 1997), Givoly et al. (1992), Chetty and Saez (2004), Hanlon and Joopes

(2014), Heider and Ljungqvist (2015), Schepens (2016), and Schandlbauer (2017).
2See Garvey and Hanka (1999).
3See Cummins, Hassett, and Hubbard (1994), Yagan (2015), Bertrand and Mullainathan (1999, 2003), Atanassov

(2013), Greenstone (2002), Alesina et al. (2005), Kilian (2008), Gan (2007), Chaney et al. (2012), Banerjee et al.

(2015), Crepon et al. (2015), and Mukherjee, Singh, and Zaldokas (2017).
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the policy change is completely unanticipated, with policy being binary and deterministic after the

complete surprise policy change. Incorporating rational expectations, as well as the probability

distribution of shocks, is essential for our results. House and Shapiro (2008) also ignore uncertainty

and present response approximations assuming arbitrarily short-lived policy changes. In their

setting, the shadow value of capital is left unchanged by policy changes. In contrast, we analyze the

behavior of shadow values and optimal accumulation, allowing for policy uncertainty and expected

regime lives of arbitrary duration.

Auerbach (1986) and Auerbach and Hines (1988) present investment Euler equations under

stochastic tax rates. Cummins, Hassett, and Hubbard (1994) estimate adjustment cost parameters

based on tax experiments. They assume that each tax change is a complete surprise and is viewed

as being permanent, in violation of rational expectations. Hassett and Metcalf (1999) present a real

options model with a one-time investment that they use to assess whether uncertainty regarding tax

credits encourages investment. Gourio and Miao (2008) numerically compare effects of permanent

and temporary dividend tax cuts.

The paper closest to our own is Keane and Wolpin (2002). One of the underlying messages of

the two papers is similar, with both stressing the need to account for dynamics and uncertainty

in statistical inference. However, there are also numerous important differences. First, in terms

of context, they analyze a granular dynamic model of contraceptive use and welfare participation,

while we offer a more general analysis of the effect of dynamic uncertainty on shadow values, the key

determinant of optimal accumulation of a broad array of commonly studied stock variables. Sec-

ond, they offer numerical solutions featuring polynomial approximations, while we present analytic

solutions amenable to direct analysis. Third, and related to the second point, we present simple

analytic expressions for biases, and bias probabilities, stated in terms of expectations and shock

probabilities, while they do not address this question. Finally, we present necessary and sufficient

conditions for correct signs and/or magnitudes, while again they do not address this question.

Our work is in the spirit of Chetty (2012), who also attempts to straddle reduced-form and

structural work. Writing that “The identification of structural parameters of stylized models is

one of the central tasks of applied economics,” Chetty (2012) examines how to recover structural

elasticity parameters if there are transaction costs or inattention. In this paper, we instead develop

a model to understand and correct empirical estimates derived from random assignment in dynamic
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settings, with recovery of adjustment cost parameters being an interim step.

Our paper is related to but distinct from the literature contesting the external validity of

estimates derived from instrumental variables, for example, Heckman (1997) and Deaton (2010).

To begin, in the setting we consider, there is absolutely no instrumentation and by construction

no possibility of self-selection, so the oft-discussed issues surrounding the correct interpretation of

the local average treatment effect (LATE) are extraneous. Second, issues concerning heterogeneous

treatment effects are also extraneous to our analysis.

The remainder of the paper is organized as follows. Section I describes the economic setting. Sec-

tion II derives the relationship between shock responses and theory-implied causal effects. Section

III presents identifying assumptions. Section IV shows how shock responses can be extrapolated.

Section V presents a numerical example. Section VI considers alternatives to the linear-quadratic

technology. Section VII concludes.

I. Theory and Models

Our objective is to develop an analytical framework that allows researchers to both understand

and bridge the gap between underlying theories and empirical tests of those theories that rely on

exogenous time-series variation in variables for the purpose of causal identification.

We begin by writing down a classical linear-quadratic model of how a firm optimally accumulates

a stock variable over time. As demonstrated below, this model is general and flexible enough to

encompass a broad set of causal theories and dependent variables. With the model in-hand, we

perform comparative statics with respect to its causal parameters.4 We thus mimic the methodology

that theorists and empiricists generally rely upon when attempting to formally flush out the testable

implications of underlying theories. We next develop a companion model that captures the same

underlying theoretical trade-offs as the original model, but mimics the real-world data-generating

process exploited by the econometrician.

The body of the paper presents only those equations necessary for the empirical implications.

Formal solutions, including derivation of the value function, are relegated to the Appendix.

4As in Heckman (2000), a “causal parameter” is a model parameter whose effect on outcomes we would like to

predict. Causal parameters are a subset of a model’s structural parameters.
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A. Theory-Implied Causal Effects

This subsection presents a general linear-quadratic model of optimal accumulation of a stock

variable.5 The stock variable provides a linear benefit flow, and the firm faces linear-quadratic costs

of adjusting the stock.

In the interest of generality, we treat the model’s benefit and cost parameters as primitives.

Depending on the theory being considered, alternative factors would lead to changes in these

parameters. For example, in tax-based theories of investment and financial structure, a higher

corporate tax rate is associated with a lower flow of benefits from the accumulation of real and

financial assets. To take another example, in theories emphasizing transaction costs, streamlining

the bond flotation process through shelf-registration would be associated with lower costs to ad-

justing debt stocks. Similarly, labor market deregulation would be associated with lower costs to

adjusting the number of employees.

Time is discrete and horizons are infinite. Agents are risk-neutral and discount at rate r > 0.

The firm accumulates a stock s that decays at rate δ ≥ 0. The firm starts the current period

with stock s and receives an end-of-period net after-tax benefit inflow equal to bs′, where s′ is the

end-of-period stock and b > 0. Notice that corporate saving and borrowing are subsumed here,

with s > 0 corresponding to a positive liquid asset balance and s < 0 corresponding to debt.

The firm can buy and sell the stock variable at price p. The variable a denotes accumulation.

The law of motion for the stock variable is

s′ = (1− δ)s+ a. (1)

We do not impose a nonnegativity constraint on the stock. Indeed, for the model to accom-

modate corporate borrowing, we must admit s < 0. A nonnegative steady-state stock can be

guaranteed by imposing p ≤ b/(r + δ). Alternatively, one can simply assume that the initial stock

held by the firm is arbitrarily large.

The stock variable price p represents the second causal parameter in the model. Finally, there

are quadratic costs to adjusting the stock equal to a2/2ξ. Here, ξ > 0 is the third and final causal

5Hennessy and Strebulaev (2015) show how geometric Brownian motion stocks are readily incorporated with small

modifications to the formulas. For simplicity we abstract from standard errors but note that magnitude bias can

bring about sign reversals accounting for standard errors.
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parameter in the model, capturing the ease of adjusting the stock. Importantly, this linear-quadratic

framework can be understood as an implicit formal foundation for much empirical work since, as

shown below, it maps into the classical linear causal effects econometric model. We consider a more

general class of cost functions as an extension in Section VI.

A wide range of dependent variables is subsumed in this model. The most obvious interpretation

of the stock variable is that it represents tangible or intangible capital, for example, PPE, patents,

brand value, or reputation. Alternatively, s can represent a buffer stock of net working capital, such

as cash or inventories that provide convenience yields. One can think of a negative value of s as

representing default-free debt. As a final example, following Hammermesh (1989), s can represent

the number of employees.

Despite its simplicity, a broad range of real-world causal effects can be captured by this model.

Consider first causal factors that change the benefit inflow b. Changes in taxes and regulations

change profits per unit of capital. Demand and supply shocks change flexible input prices and

thereby affect operating profits.6 Consider next just some of the causal factors that can change

the stock price p, as well as the ease of stock adjustment ξ. Tariffs, regulation, and competition

change equilibrium prices of capital goods. The government affects the net price of capital through

investment tax credits and R&D tax credits. The imposition of a zoning restriction changes the

price of real estate, as do natural disasters. Labor market regulations affect the ease (ξ) of hiring

and firing employees, and securities market regulations affect the ease of adjusting debt stocks.

At each point in time, it is optimal for the firm to increase accumulation up to the point that

the marginal value of the stock variable, call it q, is just equal to the marginal cost. Equating

marginal benefits and costs we have

q = p+ ξ−1a∗∗ ⇒ a∗∗ = ξ(q − p). (2)

Notice that in equation (2) we use double stars to denote the optimal policy obtained in the

present setting. We will use this notation to consider the effects of changes in the causal parameter

vector (b, p, ξ) by way of standard comparative statics analysis.

Accounting for the fact that the stock variable decays at rate δ, the Gordon growth formula can

6See Abel and Eberly (1994) for calculations.
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be used to pin down the present value of the flow of benefits. Anticipating, in the next subsection

we let b be a Markov process with i indexing the state. With this in mind, we write

b = bi ⇒ q =
bi

r + δ
≡ qi∞. (3)

In the remainder of the paper, we refer to the variable qi∞ as permanent q. This variable measures

the shadow value of a unit of the stock variable if the benefit inflow variable is permanently fixed

at bi.

The two preceding equations imply that the optimal accumulation policy is

a∗∗(b, p, ξ) = ξ

[
b

r + δ
− p
]
. (4)

We then obtain the following theory-implied causal effects:

∂a∗∗(b, p, ξ)
∂p

= −ξ (5)

∂a∗∗(b, p, ξ)
∂ξ

=
b

r + δ
− p

∂a∗∗(b, p, ξ)
∂b

=
ξ

r + δ
.

Intuitively, the theory here predicts that optimal stock accumulation is decreasing in the price

p of the stock, increasing (decreasing) in the efficiency of stock adjustments when it is optimal to

increase (decrease) the stock, and increasing in the periodic benefit flow b.

In the case of discrete changes, as opposed to infinitesimal changes, causal effects are evaluated

by computing the difference between optimal policies evaluated at different values of the causal

parameters. We have the following definition of a discrete causal effect associated with a move

from causal parameter vector i to causal parameter vector j:

CEij ≡ a∗∗(bj , pj , ξj)− a∗∗(bi, pi, ξi). (6)

Substituting the optimal policies from equation (4) into the preceding equation, we obtain the
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following theory-implied causal effects:

p : CEpij = −ξ(pj − pi) (7)

ξ : CEξij =

(
b

r + δ
− p
)

(ξj − ξi).

b : CEbij = ξ

(
bj − bi
r + δ

)
.

Alternatively, following Heckman (2000), the fact that the causal effects are linear (equation (5))

implies that the preceding expressions for discrete causal effects can be computed by multiplying

partial derivatives by the contemplated discrete change in causal parameters.

The steady-state stock here, call it s∗∗, is such that optimal periodic accumulation is just

sufficient to cover depreciation on the stock. Thus

s∗∗ =
a∗∗

δ
⇒ ∆s∗∗ =

∆a∗∗

δ
. (8)

Even though there are no shocks here, there are dynamics. Specifically, if the stock is initially

below (above) s∗∗, the stock will increase (decrease) since accumulation is greater (less) than de-

preciation. Finally, notice that the comparative static properties of the flow variable a∗∗ carry over

to the stock variable s∗∗, being scaled by δ−1. Thus, under the linear-quadratic technology, causal

effects are linear whether they are expressed in terms of the flow variable (a∗∗) or the steady-state

stock value (s∗∗).

B. Shocks and Firm Decisions

We consider now a companion economy in which the underlying theoretical trade-off is exactly

as in the preceding subsection: the optimal stock accumulation of the firm weighs linear-quadratic

accumulation costs against the periodic benefit inflow b provided by the stock. However, we con-

struct this companion economy to mimic the data-generating process actually being exploited by

the econometrician who performs shock-based inference. One can think of the econometrician as

observing firms before and after an exogenous shock, or as comparing shocked firms with otherwise

identical nonshocked firms.

By construction, we strip our laboratory economy of selection and endogeneity bias. In partic-

ular, the evolution of the three causal variables b, p, and ξ is governed by an exogenous N -state
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Markov chain. The shocks are also clean in the sense that only one of the three causal variables

is changing over time, with the other two variables assumed to be constant. This ensures that

inferences regarding firm responsiveness to a specific causal variable cannot be clouded by changes

in some other causal variable.

Let state 1 denote the best state in the sense of being associated with the highest benefit inflow,

highest stock adjustment efficiency, and lowest stock variable price:

b1 ≥ ... ≥ bN (9)

ξ1 ≥ ... ≥ ξN

p1 ≤ ... ≤ pN .

When considering experiments involving shocks to a given causal variable, say b, there will be N

strict inequalities for that variable, for example, b1 > ... > bN , and N equalities for the remaining

two variables that are then assumed to be constant over time.

The timing convention is as follows. If the current (beginning-of-period) state is i, then the firm

makes its current accumulation decision knowing that the price of the stock is pi, the ease of stock

adjustment is ξi, and the end-of-period benefit inflow is bis
′, where s′ reflects the current period’s

accumulation decision in accordance with equation (1). Further, if the current state is i, then with

probability Λi there will be a shock causing the state to be different at the start of the next period.

Finally, the conditional probability of a transition to state j, given that a transitional shock out of

state i has taken place, is denoted Πij , with Πii = 0.

Since the underlying theory is assumed to be the same as in the preceding subsection, the optimal

accumulation policy again equates the marginal value of the stock variable with the marginal cost of

accumulation. However, we must now depart from equation (2) and account for state-contingency

in the marginal stock value, stock price, and efficiency of stock adjustment. If the current state is

i, then the optimal state-contingent accumulation policy, call it a∗i , solves

qi = pi + ξ−1
i a∗i ⇒ a∗i = ξi(qi − pi). (10)

Notice, that in equation (10), single stars are used to denote the optimal policy for a firm occupying

the same economy as the econometrician, an economy that features exogenous shocks to causal
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variables. In the remainder of the paper, we refer to the variable qi as transient q since it measures

the value of a unit of the stock variable in an economy in which the benefit b is subject to shocks.

Consider now the marginal value of a unit of the stock variable if the current state is i. At the

end of the period, one unit of accumulation will generate a known benefit inflow bi. In addition,

1 − δ units of decayed stock will carry over to the subsequent period. However, the state in the

subsequent period is uncertain. With probability (1 − Λi) the state will not change and so each

unit of the decayed stock will have value qi. With probability ΛiΠij the state will change to j and

each unit of decayed stock will have value qj . It follows that state-by-state, the marginal value of

the stock satisfies

q1 =

(
1

1 + r

)
b1 + (1− δ)


(1− Λ1)q1 + Λ1

∑

j 6=1

Π1jqj




 (11)

...

qN =

(
1

1 + r

)
bN + (1− δ)


(1− ΛN )qN + ΛN

∑

j 6=N
ΠNjqj




 .

Equation (11) is a simple linear system. Solving it, we find that the marginal value of the stock

state-by-state is




q1

...

qN


 =

[
T−1

]




b1

...

bN


 , (12)

where T denotes the following augmented transition matrix :

T ≡




r + δ + (1− δ)Λ1 −(1− δ)Λ1Π12 ... −(1− δ)Λ1Π1N

−(1− δ)Λ2Π21 r + δ + (1− δ)Λ2 ... −(1− δ)Λ2Π2N

... ... ... ...

−(1− δ)ΛNΠN1 −(1− δ)ΛNΠN2 ... r + δ + (1− δ)ΛN



. (13)

Conveniently, the preceding linear system accounts for all shocks over time and also performs the

necessary discounting.

In the special case in which the benefit flow has only two possible values, equation (12) can be

written as

14
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qi =
bi

r + δ
+

(1− δ)Λi(bj − bi)
(r + δ)[r + δ + (1− δ)(Λi + Λj)]

. (14)

II. Shock Responses and Causal Effects

This section describes the relationship between shock responses and causal effects. Conveniently,

in contrast to the real-world environment confronting the econometrician, here we know the theory-

implied causal effects (equations (5) and(7)). Thus, we are able to determine the conditions under

which shock responses recover the sign and/or magnitude of the causal effects. Moreover, when

there is indeed a wedge, we are able to derive expressions that allow econometricians to back out

the causal effect implied by a measured shock response.

A. Defining Shock Responses

As discussed above, the econometrician occupies a stochastic economy in which the firm’s op-

timal state-contingent accumulation policy (a∗i ) is described by equation (10). The econometrician

then relies on observed shock responses for causal inference. The shock response associated with a

transition from state i to j is denoted by SRij . We thus have

SRij ≡ a∗j − a∗i . (15)

Substituting the optimal policies from equation (10) into the preceding equation, it follows that

the econometrician in the stochastic economy will observe the following respective shock responses:

p : SRpij = −ξ(pj − pi) (16)

ξ : SRξij = (q − p) (ξj − ξi) =

(
b

r + δ
− p
)

(ξj − ξi)

b : SRbij = ξ(qj − qi).

B. Inference: Shocks to Stock Variable Price and Adjustment Costs

It follows directly from equation (16) that the shock responses observed by the econometrician

are identical to the theory-implied causal effects (equation (7)) associated with changes in the
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causal parameters related to the stock price and the efficiency of stock adjustment. We thus have

the following result.

PROPOSITION 1: With exogenous changes in either the price p of the stock or exogenous changes

in stock adjustment costs (ξ), measured shock responses directly recover theory-implied causal effects

regardless of the underlying stochastic process.

To understand the preceding result, some points are worth noting. First, since benefit inflows

are, by assumption, linear in the stock variable, the amount of accumulation that the firm chooses

this period has no effect on the benefits provided by units of stock added in future periods. Second,

in contrast to a real-options setting, in a neoclassical setup such as ours, stock accumulation this

period has no effect on the feasibility of stock accumulation in future periods. Finally, since

accumulation costs are, by assumption, linear-quadratic in a, the amount of accumulation that

the firm chooses this period has no effect on the cost of accumulation in future periods.

In such an environment, the firm can behave myopically when it evaluates paying the stock

variable price or incurring adjustment costs. Thus, the law of motion for these variables becomes

irrelevant to the firm’s stock accumulation decision in the current period. By way of contrast, in

Section VI we show that the law of motion does indeed become relevant for the interpretation of

price shock responses if one instead considers a setting with concave benefits and zero adjustment

costs. Thus, the preceding proposition is best viewed as a potentially useful identifying assumption,

but one that relies on strong functional form assumptions.

C. Inference: Shocks to Intertemporal Benefit Flows

This subsection considers econometric inference in economies, in which there are shocks to the

benefit variable b.

To begin the formal analysis, we note that theory-implied causal effects (equation (7)) can be

recovered from observed shock responses provided one has estimated the law of motion for the

shocks. The following proposition provides the general mapping formula.

PROPOSITION 2: With exogenous shocks to the intertemporal benefit flow b, the ratio of causal
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effect to shock response is given by

CEbij

SRbij
=
ξ (∆q∞)

ξ (∆q)
=

(bj − bi)/(r + δ)

qj − qi
, (17)

where qi and qj are determined by the law of motion for shocks per equation (12).

Proposition 2 describes a general algorithm for recovering causal effects from measured shock

responses. Intuitively, to infer causal effects one must scale the observed shock response by the

ratio of the change in permanent q∞ (equation (3)) to the change in transient q (equation (12)).

The key message of the proposition is simple: articulating/estimating the underlying stochastic

process describing shocks is a necessary precursor for extracting their economic meaning. Section

V provides an example of how to make Proposition 2 operational in applied settings.

As reflected in the preceding proposition, under the posited linear-quadratic technology, the

adjustment cost parameter drops out of the bias ratio formula since both causal effects and shock

responses are multiples of ξ. However, rearranging terms in the proposition, we see that bias, if

measured as the difference between shock responses and causal effects, increases linearly in ξ.7 In

particular, rearranging terms in the preceding proposition yields

BIASbij ≡ SRbij − CEbij = ξ

[
(qj − qi)−

bj − bi
r + δ

]
. (18)

Intuitively, greater ease of stock adjustment (ξ) magnifies the bias associated with the wedge

between transient and permanent q.

Proposition 2 also sheds light on structural econometric work by Cummins, Hassett, and Hub-

bard (1994, CHH) who provide an estimate, call it ξ̂, of the ease of stock adjustment, which has

true value ξ. If the shock generating process were known, equation (12) could be used to solve for

the true shadow value of capital in each state. Exploiting equation (16), the true value of the ease

of adjustment parameter could then be inferred from an observed shock response by solving

ξ =
SRbij
qj − qi

. (19)

CHH impute shadow values of capital under the assumption that each tax change comes as a

complete surprise and is viewed as being permanent. That is, the shadow value of capital in

7Notice that transient q does not depend on ξ under the posited linear-quadratic technology.
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equation (19) is treated as q∞ as defined in equation (3). From equations (17) and (19) it follows

that this imputation procedure delivers the parameter estimate

ξ̂ =
SRbij

qj∞ − qi∞
=

qj − qi
(bj − bi)/(r + δ)︸ ︷︷ ︸

SR/CE

SRbij
qj − qi︸ ︷︷ ︸

ξ

=

(
SRbij

CEbij

)
× ξ. (20)

At an operational level, equation (20) illustrates how all of our results on the ratio of shock

responses to causal effects have a direct mapping to structural parameter inference. In particular,

the CHH imputation procedure yields biased estimates of the parameter ξ, capturing ease of stock

adjustment, precisely when shock responses yield biased estimates of theory-implied causal effects.

To see the practical implications, consider instances in which reduced-form approaches, relying

on shock responses, produce downward-biased estimates of causal effects (SR/CE ∈ (0, 1)). In

those same instances, structural approaches using the CHH imputation method would produce

downward-biased estimates of the ease of stock adjustment. Econometricians using the former

approach erroneously conclude that the underlying causal theory is “second-order” while structural

econometricians erroneously conclude that stock adjustment is “sluggish” due to extremely high

adjustment costs.

In many instances, the econometrician does not have sufficient information to utilize Proposition

2, which requires knowledge or estimation of the stochastic process for the shocks. Nevertheless,

the econometrician may have a rough sense of the data-generating process. Our objective in the

remainder of this section is to provide useful takeaways in such settings. To begin, suppose that

econometric inference takes place in a setting in which the benefit variable b can assume one of

two possible values. For example, one might think of certain regulations as resulting in a binary

flow of profits, for instance, a particular business practice or production input is either allowed

or prohibited. Alternatively, one can think of mapping different genders and political parties to

different values for pecuniary and nonpecuniary benefits. Substituting the binary shadow value

formula from equation (14) into equation (20), we obtain the following proposition.

PROPOSITION 3: If the benefit variable is binary, with b ∈ {bi, bj}, the causal effect implied by

an observed exogenous shock response is given by

CEbij = SRbij ×
[
1− (1− δ)(Λi + Λj)

r + δ + (1− δ)(Λi + Λj)

]−1

,
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with sgn(CEbij) = sgn(SRbij) and
∣∣∣CEbij

∣∣∣ >
∣∣∣SRbij

∣∣∣ if Λi + Λj > 0.

Proposition 3 shows that if b is a binary random variable, there is always bias and this bias

takes the form of attenuation. That is, in binary settings, shock responses necessarily have the

same sign as the theory-implied causal effect but are smaller in absolute value. This result should

be of comfort to those researchers who care primarily about whether the sign of a shock response

is consistent with the underlying theory-implied comparative statics.

However, if the goal is to estimate economic magnitudes, as is necessary for policy analysis, or to

assess whether particular theories are “first-order,” then Proposition 3 raises important concerns. In

particular, the proposition implies that attenuation bias will be quite severe even in settings with

low shock probabilities. As an example, suppose the econometrician inhabits an economy with

r = 2.5% and δ = 7.25%, our baseline parameter assumptions. This real interest rate assumption

follows Hennessy and Whited (2004) while the assumed depreciation rate reflects an average of zero

for nondecaying stock variables and the 14.5% depreciation rate assumed by Hennessy and Whited

(2004) for real capital stocks. In this case, attenuation bias exceeds one-half the causal effect if the

shock probability (Λ) exceeds 5.26%.

Moving beyond binary settings, suppose b can take on N ≥ 2 possible values and that all

potential transition-to states are equally likely. That is, transitions are uniformly distributed in

the sense that Πij = 1/(N − 1) for all i 6= j. Suppose also that the shock probability is the same

for all N states (Λi = Λ for all i). As shown in the Appendix, the next proposition follows from

applying equation (12) to this stochastic process.

PROPOSITION 4: If the shock probability is a constant Λ for all N possible states and shocks

are uniformly distributed with Πij = 1/(N − 1) for all i 6= j, then the causal effect implied by an

observed shock response is given by

CEbij = SRbij ×
[
1− (1− δ)ΛN/(N − 1)

r + δ + (1− δ)ΛN/(N − 1)

]−1

,

with sgn(CEbij) = sgn(SRbij) and
∣∣∣CEbij

∣∣∣ >
∣∣∣SRbij

∣∣∣ if Λ > 0.

Proposition 4 shows that if there is a common shock probability and transitions are uniformly
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distributed, then there is necessarily bias and this bias features attenuated shock responses relative

to causal effects. Here too, the implied attenuation bias is quite severe. To illustrate, suppose

the econometrician inhabits an economy with r = 2.5% and δ = 7.25%, and suppose there are 10

possible states. In this case, the absolute value of the shock response will be less than one-half that

of the causal effect if the shock probability exceeds 9.47%.

As a second example of Proposition 4, suppose that the shock probability is Λ = (N − 1)/N.

In this particular case, the next-period state is an i.i.d. random variable with each state, including

the present state, occurring with probability 1/N. Here the absolute value of the causal effect will

be an order of magnitude larger than that of the shock response, with CE = SR(1 + r)/(r + δ).

In fact, this is just an example of a more general relationship. To see this, note that if the benefit

flow is an i.i.d. random variable, transient q can be expressed as

qi =
bi + (1− δ)E[b]/(r + δ)

1 + r
. (21)

Computing the implied ratio of shock responses to causal effects (equation (17)) and rearranging

terms yields the following proposition.

PROPOSITION 5: If the benefit flow b is an i.i.d. random variable, then the causal effect implied

by an observed shock response is given by

CEbij = SRbij ×
1 + r

r + δ
,

with sgn(CEbij) = sgn(SRbij) and
∣∣∣CEbij

∣∣∣ >
∣∣∣SRbij

∣∣∣ .

Proposition 5 shows that with i.i.d. shocks to the benefit flow, there will be attenuation bias.

Moreover, this bias will be very severe. Intuitively, with i.i.d. shocks, the current period’s flow

of benefits will constitute a relatively small fraction of the total shadow value. For example, if

r = 2.5% and δ = 7.25%, then the causal effect will be more than 10 times the shock response.

Consider next the case of unanticipated temporary changes to the flow of benefits. In partic-

ular, assume state i has the property that the probability of a transition out of that state (Λi)

is infinitesimal, which implies qi ≈ qi∞, but we place no restriction on this state’s conditional

transition-to probabilities, that is, one can assume Πik > 0 for all k 6= i. Suppose also that the
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potential transition-to state j has the property that if a transition from bi to bj occurs, the change

will be “temporary” in the sense that the benefit variable can only revert back to its initial value

bi without transitioning to any other state. We then have the following proposition.

PROPOSITION 6: Suppose that an observed transition from state i to state j was unanticipated

and temporary, with Λi infinitesimal and Πji = 1. Then the causal effect implied by the observed

shock response is

CEbij ≈ SRbij ×
[
1− (1− δ)Λj

r + δ + (1− δ)Λj

]−1

,

with sgn(CEbij) = sgn(SRbij) and
∣∣∣CEbij

∣∣∣ >
∣∣∣SRbij

∣∣∣ .

A few observations are worth noting regarding Proposition 6. First, although the proposition

labels the transition from state i to state j as temporary, since Πji = 1, the proposition holds

regardless of the expected state j occupation time Λ−1
j . Second, the bias here is identical in form to

the bias in the case of binary shocks, described in Proposition 3. In particular, the shock response

will have the correct sign but with an attenuated absolute value. Finally, this bias can be severe

even if the probability of shocks is small. For example, if r = 2.5% and δ = 7.25%, then the shock

response will be less than one-half the causal effect if the shock probability Λj is greater than 10.5%.

Having just analyzed the case of unanticipated temporary shocks, we turn to a characterization

of bias in the case of partially anticipated permanent shocks. We have the following result.

PROPOSITION 7: Suppose state i is such that any shock to the benefit flow b will be permanent. If

the realized transition is from bi to bk, then the causal effect implied by the observed shock response

is given by

CEbik = SRbik ×




1−
[
1 + Λ−1

i

(
r + δ

1− δ

)]−1

Expected Change︷ ︸︸ ︷∑

j 6=i
Πij(bj − bi)

bk − bi︸ ︷︷ ︸
Realized Change




−1

.
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Proposition 7 has a number of important implications. First, note that if the expected change

in the causal variable is zero, then the observed shock response is equal to its corresponding causal

effect. However, if the expected change is not zero, the shock response is necessarily a biased

estimator of the theory-implied causal effect. More importantly, from Proposition 7 it follows

that with permanent shocks, there can be attenuation bias, overshooting, and sign reversals. The

following corollary delineates the bias regions.

COROLLARY 1: Suppose state i is such that any shock to the benefit flow b will be permanent,

with the conditional expectation of the change not equal to zero. Then the sign and magnitude of the

wedge between causal effects and the shock response depend on the realized value bk. If the expected

change was positive, then

bk − bi < 0⇒ SRik < CEik < 0

bk − bi ∈


0,

∑
j 6=i

Πij(bj − bi)

1 + Λ−1
i

(
r+δ
1−δ

)


⇒ SRik < 0 < CEik

bk − bi ≥

∑
j 6=i

Πij(bj − bi)

1 + Λ−1
i

(
r+δ
1−δ

) ⇒ 0 ≤ SRik < CEik.

If the expected change was negative, then

bk − bi > 0⇒ SRik > CEik > 0

bk − bi ∈




∑
j 6=i

Πij(bj − bi)

1 + Λ−1
i

(
r+δ
1−δ

) , 0


⇒ SRik > 0 > CEik

bk − bi ≤

∑
j 6=i

Πij(bj − bi)

1 + Λ−1
i

(
r+δ
1−δ

) ⇒ 0 ≥ SRik > CEik.

The intuition for Corollary 1 is as follows. Consider, say, a setting in which the conditional

expectation of the change in b was positive. If the realized change is negative, the shock response

will have the correct (negative) sign but will overshoot the causal effect in absolute value terms.

Heuristically, an objectively bad shock becomes a terrible shock if the expected shock was positive.

If instead the realized shock involved a large increase in b, the shock response will have the correct

positive sign but be biased downwards. Heuristically, objectively great news becomes good news
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if positive news was expected. Finally, if the realized shock entails a sufficiently small (relative to

expectations) increase in b, the shock response will actually have the wrong sign. Heuristically, an

objectively good shock becomes a bad shock if a better shock had been expected.

Corollary 1 allows one to readily compute the ex ante probability of the various biases, atten-

uation, overshooting, and sign reversals, depending on the probability of a shock, the probability

distribution of shocks, the discount rate, and the rate of stock decay. One simply needs to compute

the probability of the shock falling into the respective bias regions described in the corollary.

To illustrate, suppose that r = 2.5% and δ = 7.25%. Suppose further that a shock is viewed

as relatively unlikely, with Λi = 20%, and that any change in b is uniformly distributed on [-0.15,

0.85]. It follows from Corollary 1 that the shock response will overshoot the causal effect if the

realized change is negative, a change that occurs with probability 15%. For positive shocks in the

interval [0,0.23], the shock response will actually be negative. That is, there is a 23% probability

of the shock response having the wrong sign. Finally, for the remaining 62% of potential shock

realizations, the shock response will undershoot the causal effect.

Continuing with the preceding example, Figure 1 plots the ratio of shock response to causal

effect under alternative depreciation rates of 0%, 7.25%, and 14.5%. In all cases, the shock response

differs from the causal effect, with overshooting for negative shocks, undershooting for sufficiently

large positive shocks, and incorrect signs for small positive shocks. Consistent with the corollary,

the measure of the sign reversal region decreases with the depreciation rate, implying that the

problem of sign reversals is less severe for shorter-lived assets.

III. Identifying Assumptions

In the preceding section we show that empirically observed responses to exogenous shocks to the

intertemporal benefit flow variable b will generally not recover the theory-implied causal effect. In

fact, we show that shock responses do not even necessarily have the same sign as the causal effect.

However, we provide a general correction algorithm (Proposition 2), as well as specific correction

formulae for binary settings (Proposition 3), transient uniformly distributed shocks (Proposition

4), i.i.d. shocks (Proposition 5), unanticipated temporary shocks (Proposition 6), and anticipated

permanent shocks (Proposition 7). The objective of this section is to provide empiricists with a set
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of identifying assumptions that would need to be demonstrated beyond exogeneity, ensuring that

shock responses are equal in magnitude or sign to theory-implied causal effects.

One expects shock responses to approximate causal effects if the shock process features al-

most completely unanticipated changes that are nearly permanent. Indeed, we have the following

proposition.

PROPOSITION 8: In the limit as all shock probabilities tend to zero, each measured shock response

converges to its respective causal effect.

The preceding result provides a formal justification for the invocation of “unexpected and

permanent shocks” as an identifying assumption for the recovery of theory-implied causal effects.

However, it suffers from two practical limitations. First, natural experiments exploiting rare events

must truly be short in supply. A second problem associated with claiming to exploit a permanent

shock is that one tends to be interested in analyzing a given historical shock response with the

goal of making forecasts of future shock responses or setting policy optimally in the future, which

contradicts the notion that the observed shock is permanent. Conveniently, we have the following

alternative identifying assumption.

PROPOSITION 9: The necessary and sufficient condition for shock responses to equal causal

effects for each possible jump in the intertemporal benefit flow is that b is a martingale: the best

state (1) and worst state (N) must be absorbing, with remaining states being absorbing or featuring

mean-zero changes.

To provide intuition for Proposition 9 it is convenient to express the value of a unit of stock as

the discounted value of the expected flow of benefits it provides. Under the martingale assumption,

this value can be written as
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qi =
∞∑

t=1

(
1

1 + r

)t
(1− δ)t−1{E0[b(t)|b(0) = bi]} (22)

=
∞∑

t=1

(
1

1 + r

)t
(1− δ)t−1bi

=
bi

r + δ
.

The second line in the preceding equation holds under the assumption that the benefit flow is a

martingale. Effectively, with the martingale assumption, the shadow value of the stock capitalizes

the current state as if it will last forever. And this holds before each and after each shock. Thus, at

each point in time the firm acts as if the current state will last forever despite knowing it will not.

In such environments, the econometrician can directly recover causal effects from shock responses–

and this is true even if shocks occur frequently. Thus, under the martingale assumption, transient

q is equivalent to permanent q∞ period-by-period, so that accumulation would be identical across

the stochastic and nonstochastic economies.

In some cases, an empiricist may be interested in the more limited objective of avoiding the

possibility of a shock response having a different sign than the theory-implied causal effect. A

description of identifying assumptions that ensure against sign reversals is therefore worthwhile.

Recall that we derive a number of such sign-identification conditions above. We now offer an

alternative sufficient condition for avoiding sign reversals.

Since bj > bi for all j < i, and accumulation is increasing in q, a sufficient condition for the

absence of sign reversals is qj ≥ qi for all j < i. This will necessarily be true under stochastic

monotonicity : for all j 6= i and b̂ ∈ {b1, ..., bN},

bj > bi ⇒ Pr
[
bt+1 ≤ b̂|bt = bj

]
≤ Pr

[
bt+1 ≤ b̂|bt = bi

]
.

That is, under stochastic monotonicity, if bj > bi, then the distribution of future states conditional

on current state bj is first order stochastic dominant to the distribution conditional on current

state bi. In practice, applied researchers might advance a verbal plausibility argument in defense of

a stochastic monotonicity assumption. More formally, Lee, Linton, and Whang (2009) offer a test

statistic for assessing the null hypothesis of stochastic monotonicity given an observed time series.

Alternatively, given an estimated Markov transition matrix, Keilson and Kester (1977) present
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necessary and sufficient conditions for stochastic monotonicity. Finally, as shown by Keilson and

Kester (1977), a number of common processes are stochastically monotone, such as random walks

with absorbing or impenetrable boundaries.

The following proposition summarizes the conditions that we derive for the avoidance of sign

reversals, but is insufficient for correct identification of causal effect magnitudes.

PROPOSITION 10: For changes in the intertemporal benefit flow b, the shock response has the

same sign as the causal effect if the benefit flow is binary (Proposition 3), shocks are transient and

uniformly distributed (Proposition 4), shocks are i.i.d. (Proposition 5), the shock is unanticipated

and temporary (Proposition 5), or the benefit process is stochastically monotone. If shocks are per-

manent with nonzero expected changes, sufficient conditions for the avoidance of sign reversals are

that the realized change differs in sign from the expected change or that the realized change is equal

in sign but not less than the expected change (Proposition 7).

IV. External Validity and Extrapolation

Up to this point we limit attention to determining the relationship between measured shock

responses and causal effects. In this section we consider the related question of how observed shock

responses can be extrapolated. In particular, we first consider how an observed shock response in

a specific economy can be used to forecast future shock responses in the same economy. We then

consider how an observed shock response in a given economy can be used to forecast future shock

responses in an otherwise identical economy endowed with a different shock-generating process.

A. Challenges to External Validity

An observation following directly from the model is that it is not generally valid to use the shock

response in one economy to forecast the shock response in another economy. This argument holds

even if the change in the policy variable is the same and the economies have identical production

technologies. To see this, note that it follows from equation (12) that if economies A and B have

different shock processes, then their augmented transition matrices will differ (TA 6= TB), implying

differences in q and different responses to shocks to the benefit flow b. In other words, as argued
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by Lucas (1976), if the data-generating process changes (represented here by T), the decision rules

(the SRbij) will change. This is a strong limitation on external validity.

In fact, the Lucas Critique is just one limit on extrapolation. The model illustrates another

important limit to external validity. Specifically, even if one considers a single economy and holds

fixed the augmented transition matrix T, so that the Lucas Critique does not apply, it is generally

not valid to directly use a previous shock response to forecast future shock responses.

To illustrate these two limits to external validity, we provide two numerical examples featuring

shocks to the benefit variable b. Specifically, it is assumed that the tax rate, call it τ , can take on 10

possible values ranging from a minimum of 0% to a maximum of 45% with the assumed benefit flow

taking the form b = 1− τ. Thus, the tax rate jump across neighboring states is 5 percentage points.

Both examples assume that the tax rate can jump only to one of its direct neighbors. Arguably,

small yet discrete jumps of the sort considered here are more realistic than infinitesimal jumps in

the tax rate. Finally, both examples use the previous parameter value assumptions, with r = 2.5%

and δ = 7.25%.

The first example considers an economy in which corporate tax rates have a tendency to drift

downward. Specifically, it is assumed that the probability of a decrease in the tax rate is 15% and

the probability of an increase is 5%. The shock responses are presented in Table I. As shown, the

fact that there is a higher probability of a tax rate reduction results in asymmetric shock responses.

In particular, since a tax decrease is more likely, the shadow value of the stock variable (qi) is

pushed upward, implying relatively large (small) responses to tax rate increases (decreases). For

example, starting at τ = 5%, the shock response for a 5 percentage point tax rate decrease is 0.236

while that for a 5 percentage point tax rate increase is -0.364, a 54% difference. In addition, the

magnitude of shock responses varies greatly across the different states. For example, the minimum

shock response is 0.236 and the maximum shock response is 0.503, a difference of 113%.

The previous example highlights the potential pitfall associated with extrapolating shock re-

sponses within a given economy. Consider now the challenge of extrapolating shock responses

across economies. To this end, suppose Table I captures shock responses in Economy 1, with Table

II capturing shock responses in an otherwise identical economy, but one where the tax rate has a

mean-reverting tendency. Specifically, Table II assumes that for tax rates in the low range, from

0% to 20%, the probability of a tax rate increase is 15% and the probability of a decrease is 5%.
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Conversely, for tax rates in the high range, from 25% to 45%, the probability of a tax rate increase

is 5% and the probability of a tax rate decrease is 15%. The first obvious point to note is that there

are large state-by-state differences in shock responses across the two economies. Moreover, there

is a systematic difference in the behavior of relative shock responses. In Economy 1 the smallest

shock responses are found at the low tax rates, while in Economy 2 the smallest shock response is

found for mid-range tax rates.

Despite the fact that the two economies are identical in terms of the technologies and objective

functions of their respective firms, the shock responses in Economy 1 provide little in the way of

directly useful information for forecasting shock responses in Economy 2. What is needed for valid

extrapolation is a procedure for making adjustments to shock responses to account for differences

in data-generating processes. We analyze the problem of extrapolation next.

B. Extrapolation and Parameter Inference

This subsection considers the problem of extrapolating shock responses both within and across

economies. Consider first the simplest case in which one observes the response of firms in Economy

1 to a transition in the price of the stock from pi to pj . The researcher wants to use the observed

shock response to forecast the behavior of firms in the same economy, or to forecast the behavior of

firms in another economy facing a different shock-generating process. In either case, one can think

of the objective as using the shock response SRpij to forecast shock responses to a transition in the

price of the stock from, say, ph to pk. From equation (16) we have

SRphk = (−ξ)(pk − ph) =

(
SRpij
pj − pi

)

︸ ︷︷ ︸
−ξ

(pk − ph) = SRpij ×
[
pk − ph
pj − pi

]
. (23)

Notice that the final inequality in equation (23) tells us that regardless of the underlying stochas-

tic processes, the correct procedure for extrapolating the measured price shock response is to simply

scale by the relative size of the shocks. The second inequality in equation (23) tells us that extrap-

olation of shock responses implicitly entails inferring the structural parameter ξ measuring ease of

stock adjustment. In fact, it is the implicit/explicit inference of a policy-invariant parameter that

allows for extrapolation.

Consider next the problem of extrapolating an observed shock to the cost of stock adjustment
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ξ either within a given economy or to another economy with a different shock-generating process.

The objective is to use an observed shock response SRξij to forecast shock responses to a transition

from ξh to ξk. From equation (16) we have

SRξhk = (q − p)(ξk − ξh) =

(
SRξij
ξj − ξi

)

︸ ︷︷ ︸
q−p

(ξk − ξh) = SRξij ×
[
ξk − ξh
ξj − ξi

]
. (24)

Again, the final inequality in equation (24) tells us that regardless of the underlying stochastic

processes, the correct procedure for extrapolating the measured adjustment cost shock response is

to simply scale by the relative size of the shocks. And again, the second inequality informs us that

extrapolation can be understood as based on implicit/explicit structural parameter inference, here

the gross gain to accumulation, q − p.
Consider finally the problem of extrapolating an observed shock to the intertemporal benefit

flow b either within a given economy or to another economy with a different shock-generating

process. The objective is to use an observed shock response SRbij to forecast shock responses to a

transition from bh to bk. From equation (16) we have

SRbhk = ξ(qk − qh) =

(
SRbij
qj − qi

)

︸ ︷︷ ︸
ξ

(qk − qh) = SRbij ×
[
qk − qh
qj − qi

]
. (25)

Note that there is a superficial resemblance between the extrapolation formula given in equation

(25) and those given in equations (23) and (24). However, the latter two formulae entail scaling the

observed shock response by the relative size of the shocks to the underlying causal variable, with

no need to consider the underlying stochastic processes. In contrast, equation (25) indicates that

extrapolating shocks to the intertemporal benefit flow b demands scaling by relative changes in the

shadow value of the stock variable. This requires a careful accounting for underlying stochastic

processes via equations (12) and (13).

Intuitively, the extrapolation formula in equation (25) can be understood as a two-step process.

In the first step, one computes the shock response per unit of shadow value (ξ) by normalizing the

historical shock response by the change in shadow value at the shock date. This is then re-scaled

by the change in shadow value associated with the contemplated future-date transition.
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V. Numerical Example: Taxes and Corporate Investment

This section provides a numerical example illustrating how one can go about inferring causal

effects and causal parameters based on observed shock responses assuming the observed stochastic

process for the causal variable b fails to satisfy one of the previously derived conditions for equality

of shock responses and causal effects. The primary objective here is to illustrate how one can apply

Proposition 2 in a real-world setting where the data-generating process must be inferred based

on an observed time series. In addition, the numerical example illustrates the potentially large

quantitative impact of dynamic tax policy uncertainty.

Consider an econometrician interested in estimating the sign and magnitude of the causal effect

of taxes on corporate investment. For the sake of the numerical illustration, we assume that the

periodic benefit flow per unit of capital is bt ≡ 1− τt, where τt is the observed history of effective

tax rates on corporate investment over the period from 1953 to 2005, as computed by Gravelle

(1994) and the Congressional Research Service (2006).8

To focus on the challenges arising from dynamic uncertainty, we abstract from concerns about

endogeneity here and assume that the observed tax rate series was generated by the exogenous

process

τt =
1

1 + exp(−εt)
, (26)

where εt is an AR(1) process with unconditional mean µ and autocorrelation ρ:

εt = µ(1− ρ) + ρεt−1 + ut. (27)

The shock ut is assumed to be normally distributed with mean zero and variance σ2. Note that the

posited logistic functional form for the effective tax rate, which has also been used to model factor

shares, has the property that the tax rate has support on the proper interval (0, 1).

We map the observed sequence of effective tax rates back to an implied sequence for the AR(1)

process by inverting equation (26):

εt = − ln(τ−1
t − 1).

8This is a simplification because we do not separate the total effective tax rate into its consitutent parts.
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We then estimate the parameters of the underlying AR(1) process using Maximum Likelihood. We

find that the estimate for the unconditional mean µ is 0.0158, that for the autocorrelation ρ is

0.917, and that for the innovation variance σ2 is 0.0261.

We next obtain a discrete state-space approximation for the estimated AR(1) process using the

method proposed by Adda and Cooper (2003), which is a variation of Tauchen (1986) and Tauchen

and Hussey (1991). Discretizing the state space into three points, we obtain a tax rate of 35.5% in

the best state (state 1), 50.4% in state 2, and 62.7% in state 3. If we instead discretize the state

space into four points, we obtain state-contingent tax rates of 33.3%, 45.9%, 54.9%, and 67.4%.

Table III provides details on the estimated transition rates for three and four states. In the

case of the three-state approximation, the probability of a shock falls between 15% and 25%. In

the case of the four-state approximation, the probability of a shock falls between 17% and 33%.

We next use equations (12) and (13) to estimate the shadow value of capital (q) in each tax

rate state. We then compute the implied ratio of shock responses to causal effects using equation

(17) under the assumed parameter values r = 2.5% and δ = 7.25%.

Table IV presents the implied ratios of shock responses to theory-implied causal effects for each

possible tax rate transition. From equation (17) it follows that two matrices are symmetric. In the

case of the three-state approximation, the implied ratio of shock responses to causal effects falls in

a narrow range from 0.425 to 0.427. In the case of the four-state approximation, the implied ratio

of shock responses to causal effects ranges from 0.440 to 0.548. In general, implied shock responses

amount to less than one-half the theory implied causal effect.

Clearly, a halving of the true causal effect can lead to erroneous conclusions. For example,

one might be led to conclude that taxes have only a second-order effect on real investment. More

importantly, this type of bias could lead to an erroneous halving of the estimated welfare loss from

taxation. For example, Rosen (1992) calculates the excess burden from taxation as the difference

between taxes collected and the loss to the firm. Applying his method, the per-period excess burden

from corporate taxes on the return to capital would be calculated as9

9See Rosen (1992), page 327.
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EB =
1

2
×∆q ×∆a (28)

=
1

2
× τqpretax × [ξ(qpretax − p)− ξ((1− τ)qpretax − p)]

=
1

2
τ2q2

pretaxξ.

Note that the excess burden is linear in ξ, which is the structural parameter capturing the “elastic-

ity” of investment to changes in the shadow value of capital. If an econometrician were to attempt

a calculation of the excess burden while failing to account for transience in the structural parameter

estimate, they would understate the excess burden from taxation by roughly 50%. To see this, note

that equation (20) implies that the estimated excess burden here would be

ÊB =
1

2
τ2q2

pretaxξ̂ =
1

2
τ2q2

pretax

(
SRbij

CEbij

)
ξ = EB ×

(
SRbij

CEbij

)
. (29)

VI. Alternative Technology Assumptions

Thus far we focus on the classical linear-quadratic technology whereby the firm receives a benefit

inflow that is linear in the stock and faces adjustment costs that are quadratic in accumulation.

This technology merits focus since, as shown above (equation (7)), it maps directly to the linear

causal effects econometric model. Specifically, with such a linear-quadratic technology, theory-

implied causal effects are proportional to changes in the underlying causal parameters, namely,

benefit inflow (b), price of the stock (p), and ease of stock adjustment (ξ). This section analyzes

the relationship between shock responses and theory-implied causal effects for firms endowed with

different benefit inflow and adjustment cost functions.

As argued by Summers (1981), to empirically replicate observed investment dynamics, it appears

necessary to impose large stock adjustment costs, as otherwise predicted investment appears to

be excessively sensitive to the shadow value of capital. Nevertheless, for light capital goods, large

adjustment costs may be considered unreasonable. With this in mind, we first consider the extreme

case of a firm enjoying the ability to adjust the stock variable s without incurring any adjustment

costs. Suppose also that the benefit inflow is concave, taking the form bF (s), where b is a stochastic

process and F is a strictly increasing concave function that satisfies the Inada conditions.10 As

10If profits were linear here, the firm would either buy or sell an infinite amount of the stock.

32



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

shown in the Appendix, the optimal policy at each point in time t is to increase the stock until its

discounted marginal product, inclusive of expected resale value, is just equal to its current market

price:11

pt =

(
1

1 + r

)[
btF
′(s∗t ) + (1− δ)Et[pt+1]

]
(30)

⇒ s∗t = [F ′]−1

[
(1 + r)pt − (1− δ)Et[pt+1]

bt

]
.

By way of comparison, in the context of a deterministic dynamic model in which b and p are

treated as parameters rather than processes, the optimal stock level can be expressed in terms of

the Jorgenson (1963) user cost of capital, (r + δ)p. In particular

s∗∗ = [F ′]−1

[
(1 + r)p− (1− δ)p

b

]
= [F ′]−1

[
(r + δ)p

b

]
. (31)

From equation (30) it follows that here the firm’s response to price shocks will depend on the

law of motion for the price. Intuitively, with frictionless stock adjustment, expected price dynamics

matter since the firm acts as if it will sell its asset stock at the end of each period and then re-

optimize. Comparing equation (30) with equation (31) it is also apparent that with frictionless

stock adjustment, responses to price shocks do not generally equal theory-predicted causal effects.

However, if the stock price is a martingale, or if price shocks are completely unanticipated and

permanent, then s∗ = s∗∗ and price shock responses directly recover causal effects.

Equation (30) also reveals that with frictionless stock adjustment, the firm’s response to benefit

shocks are actually invariant to the law of motion for the benefit inflow scalar b. Here benefit shock

responses equal theory-predicted causal effects. Intuitively, with frictionless stock adjustment, the

firm re-optimizes the level of the stock each period based on the currently observed inflow of benefits.

Summarizing, we have the following proposition.

PROPOSITION 11 (Concave Benefit Inflow and No Stock Adjustment Costs): With exogenous

changes in the spot price of the stock, shock responses recover theory-implied causal effects only if

the price is a martingale or the shock is completely unanticipated and permanent. With exogenous

changes in the benefit inflow scalar, measured shock responses directly recover theory-implied causal

11The derivations in this section do not impose Markov shocks.
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effects regardless of the underlying stochastic process.

Recall that in our baseline technology with linear benefits and quadratic adjustment costs,

price shock responses directly recover causal effects, while benefit shock responses do so only if

benefits are a martingale or if benefit shocks are completely unanticipated and permanent. In

contrast, Proposition 11 shows that with concave benefits and zero adjustment costs, benefit shock

responses directly recover causal effects, while price shock responses do so only if the stock price is

a martingale or if price shocks are completely unanticipated and permanent.

Consider next a firm facing quadratic adjustment costs (a2/2ξ), as in the baseline model, but

suppose as immediately above that the benefit inflow is concave in the stock, taking the form bF (s).

Comparative statics do not suffice to evaluate causal effects in this setting since, even with zero

uncertainty, the optimal accumulation policy (a) would vary over time depending on the level of

the capital stock relative to the steady state. In particular, as in the model of Summers (1981), a

completely unanticipated and permanent change in parameters would be modeled as a jump onto

a new saddle-point path converging to a new steady state. For example, starting at an initial

steady state, an increase in b (decrease in p) would be associated with an increase in accumulation

converging to a higher steady-state stock. Nevertheless, it is apparent that a correct interpretation

of real-world shocks to either the stock price or the benefit flow would here require correct modeling

of the stochastic process generating shocks. In particular, as shown in the Appendix, with shocks

to the stock price and/or the benefit flow, the optimal accumulation policy under the posited

technology takes the form

a∗t = ξ

[(
1

1 + r

)( ∞∑

τ=0

(
1− δ
1 + r

)τ
Et[bt+τF ′(st+τ )]

)
− pt

]
. (32)

The key implication of equation (32) is that if the benefit inflow function is concave, responses to

both price and benefit shocks will depend on the data-generating process for the shocks. To see

this, note that optimal accumulation at date t depends upon expectations of the future path of the

stock, which depend in turn on expectations regarding the future path of prices and benefits.

Finally, let us again consider a firm with a concave benefit function but assume now that adjust-

ment costs depend on the level of the stock. In particular, following Summers (1981), assume that
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adjustment costs take the form γa2
t /2st−1. As shown in the Appendix, under such an adjustment

cost function, the optimal rate of accumulation takes the form

a∗t
st−1

=
1

γ

[( ∞∑

τ=0

(
1− δ
1 + r

)τ
Et

{
bt+τF

′(st+τ ) +
1

1 + r

γ

2

(
at+τ+1

st+τ

)2
})
− pt

]
. (33)

The key implication of equation (33) is that with stock-dependent adjustment costs, responses

to both benefit shocks and price shocks depend on the data-generating process for the shocks.

Moreover, this is true even if the benefit function is linear. To see this, note that the optimal

accumulation rate at date t depends on expectations of the future accumulation rate squared,

which depends in turn on expected future prices. Intuitively, under the posited adjustment cost

function, installed capital provides a direct inflow of benefits as well as an indirect benefit in terms

of reducing future adjustment costs. The present value of the reduction in future adjustment costs

thus depends on expected future prices.

VII. Conclusions

The first objective of this paper is to highlight the existence of a large and important gap

between underlying theories and the types of empirical evidence often used to assess the validity

or importance of those theories.

On the one hand, modelers typically derive testable implications of underlying theories using

comparative statics analysis. Heuristically, comparative statics yields predictions regarding how

agents will respond to completely unanticipated completely permanent shocks. On the other hand,

empiricists routinely exploit data generating processes that differ markedly from the type of rare-

event shocks that comparative statics analysis approximates, for example, state-level anti-takeover

legislation or tax changes. Indeed, if empiricists were to confine attention to truly rare events,

they would need to wait a rather long time for nature to provide experiments that shed light on

important economic questions. Moreover, the fact that empirical evidence is often used to inform

policy decisions or to make predictions about responses to future shocks contradicts the assumption

that exploited shocks are permanent.

Deaton (2010) expresses reservations about instrumental variables estimation, specifically about

the lack of an ex ante characterization of what such estimation is credibly recovering, with estimates
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varying with the choice among valid instruments: “This goes beyond the old story of looking for

an object where the light is strong enough to see; rather, we have at least some control over

the light but choose to let it fall where it may and then proclaim that whatever it illuminates is

what we were looking for all along.” We show that a similar problem of interpretation emerges

with shock-based inference in dynamic environments. In general, shock responses do not directly

recover theory-implied causal effects (comparative statics). Moreover shock-based estimates are not

generally comparable to each other, as estimates vary within and across alternative data-generating

processes.

What is to be done? Wolpin (2013) and Rust (2014) argue for a general need to filter empirical

evidence through the prism of models, a point to which many pay lip service. The question is how

to make this prescription operational in a tractable way. The approach that we take here straddles

reduced-form and structural approaches. On the one hand, we focus on the best type of reduced-

form evidence–evidence that exploits exogenous shocks and thus avoids selection and endogeneity

bias. On the other hand, we build a general stylized model mimicking the data-generating process

exploited by the econometrician to flush out the economic meaning of broad classes of reduced-form

evidence derived in dynamic settings.

The second and primary point of our paper is constructive, showing how empiricists can address

head-on generally neglected issues associated with dynamic uncertainty, economic interpretability,

and external validity. In particular, we show how once the data-generating process has been es-

timated, observed shock responses can be mapped back to theory-implied causal effects, or gen-

eralized within or across shock-generating processes. In addition, we derive a battery of auxiliary

identifying assumptions, beyond exogeneity, that must be established to demonstrate lack of bias

in magnitudes/signs. Finally, we offer tractable bias adjustment formulae for various classes of

data-generating processes.

Our analysis also highlights the critical role played by alternative technological assumptions.

For example, with linear benefits and quadratic adjustment costs, the stochastic process matters

for interpreting benefit shocks but not for shocks to the price of the stock variable. With concave

benefits and zero adjustment costs, these conclusions are reversed. Thus, it is apparent that in-

terpreting shock responses requires making joint assumptions about orthogonality, data-generating

processes, and underlying real technologies. The first of these assumptions is often discussed, but

36



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

the latter two are generally neglected. Our paper makes a first attempt at addressing the latter

two problems, with heavy emphasis on the linear-quadratic economy. Future work should attempt

to provide reduced-form empiricists with analogous tractable methods and formulae for bias ad-

justment under alternative technological assumptions.
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Appendix: Proofs and Derivations

A. Constant Policy Model Solution

Letting β = 1/(1 + r), the Bellman equation can be written as

V (s) = max
a

βbs′ − pa− 1

2
ξ−1a2 + βV (s′),

subject to

s′ = (1− δ) + a.

We conjecture that the value function is of the form

V (s) = q̂s+G.

Note that q̂ represents the value of a unit of capital already in installed at the beginning of the

period–which will depreciate during the period. Under the conjectured functional form, the Bellman

equation can thus be written as

q̂s+G = max
a

βbs′ − pa− 1

2
ξ−1a2 + β{q̂s′ +G},

subject to the law of motion for capital. Substituting in the law of motion for capital we obtain

q̂s+G = max
a

−pa− 1

2
ξ−1a2 + β{(q̂ + b)[(1− δ)s+ a] +G}

Terms scaled by s must equate, so we have

q̂ =

(
1− δ
1 + r

)
(q̂ + b)⇒ q̂ =

b(1− δ)
r + δ

.

Optimal capital accumulation solves

max
a

(
1

1 + r

)
(b+ q̂)a− pa− 1

2
ξ−1a2.

To capture the value of capital installed during the period, we write

q ≡ q̂

1− δ ⇒
(

1

1 + r

)
(b+ q̂) = q.
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The investment program can then be written as

max
a

qa− pa− 1

2
ξ−1a2 ⇒ a∗∗ = ξ(q − p).

Finally, consider growth option value. At the optimal policy

qa− pa− 1

2
ξ−1a2 =

1

2
ξ(q − p)2.

Substituting the preceding equation into the Bellman equation and ignoring the terms scaled by s

(which cancel), we obtain

G =
1

2
ξ(q − p)2 +

(
1

1 + r

)
G⇒ G =

(
1 +

1

r

)
1

2
ξ(q − p)2.

B. Shock Model Solution

The Bellman equation is

Vi(s) = max
a
−pia−

1

2
ξ−1
i a2 +

(
1

1 + r

)
bis′ + (1− Λi)Vi(s

′) + Λi
∑

j 6=i
ΠijVj(s

′)


 ,

subject to

s′ = (1− δ) + a.

We conjecture that the value function is of the form

Vi(s) = q̂is+Gi.

Note that q̂i captures the value of a unit of capital already installed at the beginning of the period–

which will depreciate during the period. The Bellman equation can thus be written as

q̂is+Gi = −pia−
1

2
ξ−1
i a2 +

(
1

1 + r

)
(1− Λi)Gi + Λi

∑

j 6=i
ΠijGj




+

(
1

1 + r

)
bi + (1− Λi)q̂i + Λi

∑

j 6=i
Πij q̂j


 [a+ (1− δ)s].
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Terms scaled by s in the preceding equation must equate, so we have

q̂i =

(
1− δ
1 + r

)
bi + (1− Λi)q̂i + Λi

∑

j 6=i
Πij q̂j


 .

We therefore have a linear system for the value of the beginning-of-period stock:

q̂i[r + δ + (1− δ)Λi]− (1− δ)Λi
∑

j 6=i
Πij q̂j = (1− δ)bi.

Using the augmented transition matrix (equation (13)), the preceding linear system can be written

as




q̂1

...

q̂N


 =

[
T−1

]




(1− δ)b1
...

(1− δ)bN


 .

Next, consider optimal accumulation. From the Bellman equation it follows that we must solve

max
a

(
1

1 + r

)
bi + (1− Λi)q̂i + Λi

∑

j 6=i
Πij q̂j


 a− pia−

1

2
ξ−1
i a2.

To capture the value of newly installed units of the stock, we let

qi ≡
q̂i

1− δ .

Our program can then be written as

max
a

qia− pia−
1

2
ξ−1
i a2 ⇒ a∗i = ξi(qi − pi).

As stated in the text, we have the following solution for the value of a unit of new accumulation:




q1

...

qN


 =

[
T−1

]




b1

...

bN


 .

Now, consider the growth option value. Under optimal accumulation

qia− pia−
1

2
ξ−1
i a2 =

1

2
ξi(qi − pi)2.
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Substituting the preceding equation into the Bellman system and ignoring the terms scaled by s

(which cancel), we obtain

Gi =

(
1

1 + r

)
(1− Λi)Gi + Λi

∑

j 6=i
ΠijGj


+

1

2
ξi(qi − pi)2.

Rearranging terms, we obtain the following linear system:



G1

...

GN


 =

[
T−1
G

]




1
2(1 + r)ξ1(q1 − p1)2

...

1
2(1 + r)ξN (qN − pN )2


 ,

where

TG ≡




r + Λ1 −Λ1Π12 ... −Λ1Π1N

−Λ2Π21 r + Λ2 ... −Λ2Π2N

... ... ... ...

−ΛNΠN1 −ΛNΠN2 ... r + ΛN



.

C. Proof of Proposition 4

For brevity, let R ≡ r + δ. We have the following N ×N augmented transition matrix:

T ≡




R+ (1− δ)Λ −(1− δ)Λ/(N − 1) ... −(1− δ)Λ/(N − 1)

−(1− δ)Λ/(N − 1) R+ (1− δ)Λ ... −(1− δ)Λ/(N − 1)

... ... ... ...

−(1− δ)Λ/(N − 1) −(1− δ)Λ/(N − 1) ... R+ (1− δ)Λ



.

The shadow values are 


q1

q2

...

qN




= T−1




b1

b2

...

bN



,

where

T−1 =
1

R[R+ (1− δ)ΛN/(N − 1)]




R+ (1− δ)Λ/(N − 1) (1− δ)Λ/(N − 1) ... (1− δ)Λ/(N − 1)

(1− δ)Λ/(N − 1) R+ (1− δ)Λ/(N − 1) ... (1− δ)Λ/(N − 1)

... ... ... ...

(1− δ)Λ/(N − 1) (1− δ)Λ/(N − 1) ... R+ (1− δ)Λ/(N − 1)



.
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Taking differences across rows, the transition response of the shadow value is

qj − qi =

[
1− (1− δ)ΛN/(N − 1)

r + δ + (1− δ)ΛN/(N − 1)

](
bj − bi
r + δ

)
.

Thus, the change in transient q is the stated multiple of the change in permanent q. The result

then follows from the fact that ∆a = ξ∆q.�

D. Proof of Proposition 6

Under the assumptions stated in the proposition, the transition-to state shadow value takes the

form

qj =

(
1

1 + r

)
[bj + (1− δ)(1− Λj)qj + (1− δ)Λjqi]

⇒ qj =
bj + (1− δ)Λjqi
r + δ + (1− δ)Λj

.

Using the fact that qi ≈ qi∞, we have

qj ≈
bj

r + δ + (1− δ)Λj
+

[
(1− δ)Λj

r + δ + (1− δ)Λj

]
qi∞

=
bj

r + δ
−
[

(1− δ)Λj
r + δ + (1− δ)Λj

]
(qj∞ − qi∞)

= qj∞ −
[

(1− δ)Λj
r + δ + (1− δ)Λj

]
(qj∞ − qi∞).

It then follows that

CEbij

SRbij
=

ξ (∆q∞)

ξ (∆q)
=

(bj − bi)/(r + δ)

qj − qi

⇒ CEbij = SRbij ×
(bj − bi)/(r + δ)

qj − qi

= SRbij ×
[
1−

(
(1− δ)Λj

r + δ + (1− δ)Λj

)]−1

.�

E. Proof of Proposition 7

Suppose the state is i and all possible transition-to states are absorbing. From equation (7) it

follows that
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SRbik = CEbik + ξ

[
bi

r + δ
− qi

]
.

Further, since all possible transition-to states are absorbing, equation (11) can be written as

qi =

(
1

1 + r

)
bi + (1− δ)


(1− Λi)qi + Λi

∑

j 6=i
Πij

bj
r + δ






⇒ qi =
bi

r + δ + Λi(1− δ)
+

(1− δ)Λi
(r + δ)[r + δ + Λi(1− δ)]

∑

j 6=i
Πijbj

⇒ qi =
bi

r + δ
+

(1− δ)Λi
(r + δ)[r + δ + (1− δ)Λi]

∑

j 6=i
Πij(bj − bi)

⇒ qi =
bi

r + δ
+ (r + δ)−1

[
1 + Λ−1

i

(
r + δ

1− δ

)]−1∑

j 6=i
Πij(bj − bi).

From the preceding expression for qi it follows that

SRbik = CEbik − ξ(r + δ)−1

[
1 + Λ−1

i

(
r + δ

1− δ

)]−1∑

j 6=i
Πij(bj − bi)

= CEbik − ξ
[
bk − bi
r + δ

] [
1 + Λ−1

i

(
r + δ

1− δ

)]−1
∑

j 6=i Πij(bj − bi)
bk − bi

= CEbik

[
1−

[
1 + Λ−1

i

(
r + δ

1− δ

)]−1
∑

j 6=i Πij(bj − bi)
bk − bi

]
.�

F. Proof of Proposition 8

Since T is Strictly Diagonal Dominant, it is invertible. Moreover, each entry in the inverse

is the quotient of a polynomial and the determinant. Thus, fixing, say, the Euclidean norm, the

inverse function is continuous on the set of invertible matrices. It follows that

lim
Λ↓0

[T(Λ)]−1 = [T(0)]−1 = (r + δ)−1IN .

This implies that each qi converges to bi/(r+δ) and hence that each SRbij converges to each CEbij .�

G. Proof of Proposition 9
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Consider an array of distinct states 1 to N recalling that the indexing convention entails b1 >

... > bN . A necessary and sufficient condition for each treatment response to equal its respective

causal effect is that the difference between state-contingent shadow values is equal to their respective

difference in shadow values under permanent b values. That is, there must then exist some constant

κ such that for all i,

qi =
bi

r + δ
+ κ.

Under this functional form, the equilibrium conditions (11) can be stated as

(r + δ)κ =

(
1− δ
r + δ

)
Λ1

∑

j 6=1

Π1j(bj − b1)

(r + δ)κ =

(
1− δ
r + δ

)
Λ2

∑

j 6=2

Π2j(bj − b2)

...

(r + δ)κ =

(
1− δ
r + δ

)
ΛN−1

∑

j 6=N−1

ΠN−1j(bj − bN−1)

(r + δ)κ =

(
1− δ
r + δ

)
ΛN

∑

j 6=N
ΠNj(bj − bN ).

Next note that any solution to the preceding system entails κ = 0 since the right-hand side of

the first equation is nonpositive while the right-hand side of the last equation is nonnegative. It

follows that any candidate solution to the system entails Λ1 = ΛN = 0. Further, it must be the

case that for intermediate states, either Λi = 0 or the expected change in the benefit flow is zero.�

H. Proof of Proposition 11

The program is

max
{st}

Et
∞∑

τ=0

(
1

1 + r

)τ
{bt+τ−1F (st+τ−1)− [pt+τst+τ − (1− δ)st+τ−1]}.

The first-order condition with respect to st is

(
1

1 + r

)
btF
′(st) = Ut ≡ pt −

(
1− δ
1 + r

)
Et[pt+1].

Thus, the optimal stock is
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s∗t = [F ′]−1[(1 + r)Ut/bt].�

I. Solution to Model with Quadratic Adjustment Costs and Concave Profits

The program is

max
{st}

Et
∞∑

τ=0

(
1

1 + r

)τ




bt+τ−1F (st+τ−1)− pt+τ [st+τ − (1− δ)st+τ−1]

− ξ−1

2 [st+τ − (1− δ)st+τ−1]2



 .

The first-order condition with respect to st is

(
1

1 + r

)
btF
′(st)− pt − ξ−1at +

(
1− δ
1 + r

)
Et
[
pt+1 + ξ−1at+1

]
= 0.

The optimal accumulation policy is

at = ξ

[
btF
′(st)

1 + r
− Ut

]
+

(
1− δ
1 + r

)
Et [at+1] .

Iterating and applying the law of iterated expectations, we have

Et[at+1] = ξEt
[(

bt+1F
′(st+1)

1 + r
− Ut+1

)]
+

(
1− δ
1 + r

)
Et [at+2] .

Substituting back into the accumulation equation, we obtain

at = ξ

[
btF
′(st)

1 + r
− Ut +

(
1− δ
1 + r

)
Et
(
bt+1F

′(st+1)

1 + r
− Ut+1

)]
+

(
1− δ
1 + r

)
Et [at+2] .

Continuing to iterate in this fashion, we obtain

at = ξ
∞∑

τ=0

(
1− δ
1 + r

)τ
Et
[
bt+τF

′(st+τ )

1 + r
− Ut+τ

]
.

Next note that
∞∑

τ=0

(
1− δ
1 + r

)τ
Et [Ut+τ ] = pt.

It follows that

at = ξ

[(
1

1 + r

)( ∞∑

τ=0

(
1− δ
1 + r

)τ
Et[bt+τF ′(st+τ )]

)
− pt

]
.
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J. Solution to Model with Stock-Dependent Adjustment Costs and Concave Profits

The program is

max
{st}

Et
∞∑

τ=0

(
1

1 + r

)τ

 bt+τF (st+τ )− pt+τ [st+τ − (1− δ)st+τ−1]

−γ
2 [st+τ − (1− δ)st+τ−1]2 s−1

t+τ−1


 .

Letting α ≡ a/s, the first-order condition for st is

pt + γαt = btF
′(st) +

(
1

1 + r

)
Et
[
(1− δ)pt+1 + (1− δ)γαt+1 +

γ

2
α2
t+1

]
.

Rearranging terms, the optimal accumulation rate can be expressed in terms of the user cost of

capital U :

αt =
1

γ

[
btF
′(st)− Ut

]
+

1

2(1− δ)

(
1− δ
1 + r

)
Et
[
α2
t+1

]
+

(
1− δ
1 + r

)
Et [αt+1] .

Iterating on the accumulation equation and applying the law of iterated expectations, we have

Et[αt+1] =
1

γ
Et
[
bt+1F

′(st+1)− Ut+1

]

+
1

2(1− δ)

(
1− δ
1 + r

)
Et
[
α2
t+2

]
+

(
1− δ
1 + r

)
Et [αt+2] .

Substituting this term into the optimality condition, we obtain

αt =
1

γ
Et




[btF
′(st)− Ut] +

(
1−δ
1+r

)
[bt+1F

′(st+1)− Ut+1]

γ
2(1−δ)

((
1−δ
1+r

)
Et
[
α2
t+1

]
+
(

1−δ
1+r

)2
Et
[
α2
t+2

])



+

(
1− δ
1 + r

)2

Et [αt+2] .

Iterating in this fashion, we obtain

αt =
1

γ

[ ∞∑

τ=0

(
1− δ
1 + r

)τ
Et
(
bt+τF

′(st+τ )− Ut+τ +
1

1 + r

γ

2
α2
t+τ+1

)]
.

Canceling the offsetting terms involving the user cost of capital, the optimal accumulation policy

is

αt =
1

γ

[( ∞∑

τ=0

(
1− δ
1 + r

)τ
Et
{
bt+τF

′(st+τ ) +
1

1 + r

γ

2
α2
t+τ+1

})
− pt

]
.
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Table I 

Shock Responses in Economy with Decreasing Tax Rates 
The table shows the model-implied change in accumulation associated with a 5 percentage point 
change in the tax rate to one of its nearest neighboring tax rates. The assumed probability of a 5 
percentage point tax rate decrease is 15% and the assumed probability of a 5 percentage point tax 
rate increase is 5%. The assumed risk-free rate is 2.5% and the assumed depreciation rate is 7.25%. 

Initial Tax Rate Transition Down Transition Up 
0% NA -0.236 
5% 0.236 -0.364 

10% 0.364 -0.432 
15% 0.432 -0.470 
20% 0.470 -0.489 
25% 0.489 -0.500 
30% 0.500 -0.503 
35% 0.503 -0.493 
40% 0.493 -0.419 
45% 0.419 NA 

 

 

 

Table II 

Shock Responses in Economy with Mean-Reverting Tax Rates 
The table shows the model-implied change in accumulation associated with a 5 percentage point 
change in the tax rate to one of its nearest neighboring tax rates. For tax rates no greater than 20%, 
the probability of a tax rate increase is 15% and the probability of a tax rate decrease is 5%. For tax 
rates greater than 20%, the probability of a tax rate increase is 5% and the probability of a tax rate 
decrease is 15%. The assumed risk-free rate is 2.5% and the assumed depreciation rate is 7.25%. 

Initial Tax Rate Transition Down Transition Up 
0% NA -0.398 
5% 0.398 -0.451 

10% 0.451 -0.425 
15% 0.425 -0.355 
20% 0.355 -0.221 
25% 0.221 -0.355 
30% 0.355 -0.425 
35% 0.425 -0.451 
40% 0.451 -0.398 
45% 0.398 NA 
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Table III 

Estimated Tax Transition Rates 
The table shows the discrete state-space approximation for the estimated tax rate autoregressive 
process. The entries show the probability of a transition from a given rate to a given rate. Panel A 
assumes three possible tax rates and Panel B assumes four possible tax rates. The assumed risk-
free rate is 2.5% and the assumed depreciation rate is 7.25%. 

 Panel A. Three Possible Tax Rates  
   To     
  From 35.5% 50.4% 62.7%   
  35.5% 85.84% 14.13% 0.02%   
 50.4% 12.24% 75.51% 12.24%   
  62.7% 0.02% 14.13% 85.85%   
        
  Panel B. Four Possible Tax Rates  
  To    
  From 33.3% 45.9% 54.9% 67.4% 
  33.3% 83.0% 16.8% 0.2% 0.0% 
 45.9% 13.5% 67.4% 19.0% 0.2% 
  54.9% 0.2% 19.0% 67.4% 13.5% 
  67.4% 0.0% 0.2% 16.8% 83.0% 

 

Table IV 

Ratio of Shock Response to Causal Effects 
The table shows the model-implied ratio of shock response to causal effect based upon the estimated 
tax transition rates shown in Table III. Panel A assumes three possible tax rates and Panel B 
assumes four possible tax rates. The assumed risk-free rate is 2.5% and the assumed depreciation 
rate is 7.25%. 

 

 Panel A. Three Possible Tax Rates  
   To     
  From 35.5% 50.4% 62.7%   
  35.5% NA 0.425 0.426   
 50.4% 0.425 NA 0.427   
  62.7% 0.426 0.427 NA   
        
  Panel B. Four Possible Tax Rates  
  To    
  From 33.3% 45.9% 54.9% 67.4% 
  33.3% NA 0.440 0.485 0.478 
 45.9% 0.440 NA 0.548 0.487 
  54.9% 0.485 0.548 NA 0.443 
  67.4% 0.478 0.487 0.443 NA 
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Figure 1. Ratio of shock response to causal effect. The figure shows the model-implied ratio of shock 
response to causal effect with a 20% permanent shock probability drawn from a uniform distribution 
on the support from -0.15 to 0.85. The assumed risk-free rate is 2.5%. 

 


