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   Abstract—This research analyses the non-linear and complex 

effects of drivers of system imbalance prices in the GB electricity 

market. Unlike day-ahead prices, the balancing settlement prices 

are comparatively under-researched, yet their importance is 

growing with greater market risks. The fundamental drivers of 

these prices are analysed over 2016-2019. The result of a non-

linear modelling approach reveals that system imbalance price 

exhibits a regime-switching behaviour, driven by weather and 

demand forecast errors, as well as other system effects. 

Surprisingly, balancing prices are predictable out of sample and a 

regime switching specification is more accurate than a linear 

model for prediction.    
    Index Terms— Electricity Imbalance Prices; Balancing Market; 

Regime-switching; Forecasting 

I. INTRODUCTION 

LECTRICITY System Operators have always been faced 
with the task of balancing the real-time production and 

consumption of power to ensure that the load stays close to the 
target frequency. With liberalisation, market mechanisms are 
increasingly being implemented to provide these required 
balancing services on a competitive basis. In these situations, 
the System Operator (SO) becomes the counterparty to bids and 
offers from market participants, who are competing to provide 
the balancing services. Furthermore, it is the market 
participants themselves who cause the need for the balancing 
power, as they inevitably deviate to some extent in real time 
from their prior production and consumption nominations to the 
SO. To the extent that the participants’ nominations reflect their 
rational ex ante expectations of actual production and 
consumption during delivery periods, their ex post imbalance 
volumes (ie, metered deviations from nominations) should be 
surprises. Furthermore, the participants’ exposures to balancing 
costs will depend both upon their imbalance volumes and the 
imbalance prices applied according to the balancing market 
design. As balancing costs are increasing with the penetration 
of renewables and distributed resources [1, 2, 3, 4], forecasting 
imbalance prices is of material interest to participants in their 
risk management. Yet, if imbalance volumes are surprises, and 
imbalance prices flip from positive to negative depending upon 
the sign of the net market imbalances, then imbalance prices 
should be unpredictable, especially in a mature and liquid 
market. We test this efficiency conjecture by seeking to 
estimate and backtest a forecasting model for the British 
imbalance prices. The GB balancing market is a good test, 
having started in 2001, it is one of the most mature.  

In contrast to the day ahead wholesale prices, the forecasting 
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of balancing prices has not been researched so extensively. We 
contribute to methodology in this context and investigate the 
role of market transparency for improving predictability. We 
find that balancing prices are predictable and offer some 
comments on the implication of this for trading and risk 
management. A further contribution of the research is in the 
application of adaptive regime switching methods. The benefits 
of this class of nonlinear methods have been controversial, with 
various researchers having suggested that it is hard to 
outperform linear models, but with imbalance prices switching 
signs over time, this application turns out to be a successful case 
for regime-switching models.   

The analysis was applied to the daily data of 48 half hour 
delivery periods in the British electricity market during 2016 -
2019.  Britain reformed its electricity trading in 2001 to include 
a balancing market and that has since evolved through various 
market design changes, most notably in 2015, which is why we 
do not go back further. We use the entire sample for a 
descriptive analysis to understand the effects of potential 
drivers of price formation with Markov switching regressions. 
Then we consider out-of-sample forecasting using rolling 
window estimation. The use of the Markov non-linear approach 
outperforms a linear comparator.  

The paper is organised as follows. Section 2 gives an 
overview of studies relating to imbalance prices. Section 3 
describes the British balancing mechanism and electricity price 
behaviour. Section 4 presents the data and forecasting 
methodology. In Section 5 the results are presented, and Section 
6 concludes. 

II. RESEARCH ON BALANCING SYSTEMS 

 A balancing system includes a set of economic and technical 
arrangements that are used to ensure or restore short-term 
power balances [1]. Two economic mechanisms are involved: 
the balancing mechanism (for the SO to acquire balancing 
power) and the imbalance settlement system (to clear 
participant imbalances financially).  One of the earliest 
studies by Just and Weber [5] examines the pricing of reserves 
and the interdependencies between markets for spot electricity 
and secondary reserve capacity. Vandezande, Meeus, Belmans, 
Saguan and Glachant [6] examine the design of balancing 
markets in Europe taking into account the increasing wind 
power penetration. The Nordic balancing system is surveyed in 
Kristiansen [7]. A framework for policy-makers is provided in 
van der Veen and Hakvoort [8] with the aim of identifying the 
relevant performance criteria and design variables that are 
relevant in the design and analysis of European balancing 
markets. Möller, Rachev and Fabozzi [9] study the balancing 

 
 

Derek W. Bunn1, John N. Inekwe and David MacGeehan 
 

Analysis of the Fundamental Predictability of Prices 
in the British Balancing Market 

E



 2 
 

energy strategies in electricity portfolio management. In the 
analysis of bidding strategies for retailers with flexible 
demands, Song and Amelin [62] show the extent to which larger 
imbalances may be to the detriment of profits. 

Thus, while various studies have focused on the design of the 
balancing market [56-60], the forecasting of its price 
movements is under-researched [61-63]. Marneris, Roumkos, 
and Biskas [57] present a study on balancing market integration 
in the European region, while Wu and Zhou [59] recommend a 
dual pricing mechanism for balancing markets. Kraft, Keles, 
and Fichtner [61] identify the advantages of both neural and 
econometric approaches for forecasting balancing prices. In 
[13] the difficulty for forecasting balancing prices in the Nordic 
system was demonstrated. A theoretical model by Aïd, Gruet 
and Pham [29] aims at minimising the imbalance from 
electricity demand residuals, using thermal power generation to 
mitigate fluctuations in wind energy outputs. In the Spanish 
energy market, Bueno-Lorenzo, Moreno and Usaola [30] 
investigate the relationship between supply-demand imbalance 
and wind energy, whilst Garcia and Kirschen [31] found no 
clear linear relationship between imbalance volumes and other 
market variables. However, more recent studies than [31] have 
found some determinants of imbalance volumes and prices. 
Based upon lagged imbalances and loads, Lisi and Edoli [32] 
show that the sign of the zonal imbalance markets in Italy is 
predictable. Ocker and Ehrhart [33] provide the evidence that 
the German generators orientate their offers towards previous 
auction prices and that they coordinate on prices above the 
competitive levels. More general studies on electricity markets 
have mainly focused on predicting day-ahead electricity prices 
[9-16] as well as intra-day and related trading aspects [17-28]. 
In particular, Pape, Hagemann and Weber [14] find that a large 
part of electricity price variance is explainable by fundamental 
modelling.  

The impact of renewables on the balancing mechanism is 
receiving increasing attention. Kiesel and Paraschiv [19] use 
German quarter-hourly intraday electricity prices to assess the 
effect of intraday updated forecasting errors of wind and 
photovoltaic production on intraday prices. They show that 
intraday prices adjust asymmetrically to both the volume of 
trades and forecasting errors in renewables. Thus, prior 
information on renewables’ forecasts, as well as demand/supply 
exogenous variables are explanatory. Mureddu and Meyer-
Ortmanns [34] find that prices have skewed distributions 
because of renewable effects. A study by Goodarzi, Perera and 
Bunn [35] find that higher wind and solar forecast errors 
increase the absolute values of imbalance volumes and that 
these can pass through into higher spot electricity prices. They 
find that in Germany, solar forecasting errors impact spot prices 
less than wind forecast errors. 
 From the background of this research, we provide an 
extension to these existing studies by analysing the nonlinear 
determinants of imbalance prices and, most importantly, their 
potential predictability.  

III. GB BALANCING PRICE FORMATION AND BEHAVIOUR 

The British Balancing Mechanism operates on 30 minute 
intervals (“Settlement Periods”, SP) during which forward 
commitments are delivered and over which imbalance volumes 

are settled. An hour prior to each SP all participants must notify 
the SO of their expected physical positions for the SP, ie what 
they expect to generate or consume during that half-hour. This 
point is known as “gate-closure” and at this point all flexible 
generators (or demand side aggregators) also inform the SO of 
their offers/bids to increase/reduce generation (or 
reduce/increase demand). Based upon these offers and bids, the 
SO produces an order book and throughout the settlement 
period continuously accepts the most economic bids and offers 
to balance the system and ensure the system frequency remains 
at 50Hz. In practice many offers and bids are accepted on a 
minute by minute basis to control the balancing. In Figure 1, we 
see the sequence of accepted bids and offers over three SPs in 
2018. Since there are 48 SPs in a day, the periods 8, 9 and 10 
refer to 4am, 4.30am and 5am. Within each SP the sequence of 
progressively accepting higher offers and lower bids appears to 
be economically efficient. But then each settlement period is an 
episode and the process tends to repeat, as shown. This suggests 
that the episodic nature of the settlement period balancing is 
inducing potential predictability. Hence the reason for our 
predictability conjecture. 

 

Figure 1: Accepted bids and offers over three settlement periods 
in 2018. Data from Elexon: www.elexon.co.uk 

Evidently, the system requires the balancing services because 
individual participants are deviating from the nominations that 
they made at gate-closure, most significantly from demand 
forecasting error but also due to the variable production from 
renewables. The costs that the SO incurs in balancing should at 
least partially be recovered from pricing the extent to which 
individual participants are out of balance. Thus, there is a 
System Imbalance Price which each participant will pay on its 
imbalance volume (the difference between ex ante nomination 
and ex post metered volumes in the SP). This System Imbalance 
Price is computed, in GB, as the marginal cost to the SO in each 
SP. To get the marginal cost, the SO derives the Net Imbalance 
Volume for each SP as the net amount of offer and bid volumes 
accepted over the 30mins. Thus, if the system is short, the SO 
will be accepting more offers than bids, and the Net Imbalance 
Volume (NIV) will be positive. NIV will be negative 
conversely if the system is long (eg more wind production than 
anticipated). The System Imbalance Price will be the marginal 
offer accepted at a positive NIV, or marginal bid paid at a 
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negative NIV. Offers will be higher than the marginal 
generation cost of participants, whilst bids will be lower than 
the marginal generation costs; otherwise generators would not 
place those offers and bids for increasing or reducing output.  
Bids will be lower than marginal cost for a generator because if 
accepted it would allow the generator to fulfil its forward 
commitment (contract) by buying power from the system and 
reducing its own output. Thus the System Imbalance Price will 
be higher or lower than marginal costs according to whether the 
system is short or long in each period. Figure 2 shows System 
Imbalance Prices against NIVs for all SPs in September 2019. 
The negative values result from subsidised facilities, such as 
wind, whose marginal cost of production is not zero but the 
negative value of the subsidy paid for their production.  

 

Figure 2. System Imbalance Price (£/MWh) against NIV for 
July 2019. Source: Elexon (www.elexon.co.uk) 

All of this means that if a participant is out of balance in the 
opposite direction to the system, it may be profitable. For 
example, if a generator is short, ie it is producing less than it 
nominated, and the system is long, it may pay an imbalance 
price less than its marginal cost of production. Since its 
nomination reflected a forward sale, in this case it may be able 
to fulfil its sale at less than its marginal cost of production, 
Conversely it can profit by being long against a short market.  
The economic intuition is that in both cases the participant is 
helping the system by being out of balance in the opposite 
direction to the system, and therefore should benefit. The 
implication of this is that there is an incentive for participants 
to forecast the system imbalance and seek to be out of balance 
in the opposite direction. There is strong evidence this is 
happening in GB, and indeed that the regulatory authority 
tolerates it. 

 This speculative trading against the direction of NIV 
became possible after November 2015 when the trading rules 
changed to the new system. Figure 3 shows that since 2015 
there has been a steady increase in the growth of trading against 
NIV by the non-physical (speculating) market participants in 
particular. Furthermore, from April 2019, a further market rule 
change allows participants to trade after gate closure, 
throughout the hour prior to the SP. They cannot change their 
nominations to the SO but they can adjust their trading 

positions. Figure 4 shows how the volume of intraday trading 
increased following this rule change. Presumably this allows 
speculation on System Imbalance to be closer to real time as 
well as helping participants adjust to their own forecast errors 

 

Figure 3. The Increase in Trading Against NIV in GB. Left 
scale is daily NIV with light bars in NIV direction, dark bars 
against NIV direction; right scale is % against direction of NIV.  
(Source: Elexon, www.elexon.co.uk) 

 

Figure 4: Market Intraday Volume, with monthly averages and 
step change after April 2019. (Source: www.elexon.co.uk) 

As a consequence of  this, 30% of the intraday trading in 
2019 was within that final hour before real time, and 55% 
within two hours of the real time SP. The anecdotal evidence 
above suggests that much of that may be derived from the 
attraction of seeking to forecast the System Imbalance Prices 
and speculatively arbitrage against them. This raises the 
question of how it might be possible to forecast the imbalance 
prices, and, in particular, whether useful forecasts can be 
specified through models of transparent market fundaments. 

IV. FORECASTING SYSTEM IMBALANCE PRICES 

We therefore analyse the predictability of the system 
balancing prices. Recalling Figure 2, there is a clear attraction 
to consider a regime-switching model, as there are distinct 
empirical densities according to whether NIV is positive or 
negative. This is quite a different application of regime-
switching to that which has previously appeared in the 
electricity price modelling and forecasting research. Typically 
researchers have been attracted to regime switching models to 
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capture the recurrent episodes of scarcity in power markets 
manifesting price spikes and high volatility. The intuition has 
been that power price modelling reverts between two regimes, 
one characterising regular behaviour and the other scarcity. 
Markov regime switching can model this with essentially two 
distinct regression equations representing the regimes and a 
transition probability matrix driving the switches from one 
regime to the other. Thus, the existence of regime shifts in the 
price formation process was identified in [12], theoretically 
motivated by the multiple equilibria in electricity identified in 
auction theory [36, 37]. Following its econometric foundations 
[38-41], there have been many applications of Markov regime 
switching in electricity price modelling [42-50]. However, 
despite its in-sample fitting successes, whether it offers a robust 
accuracy advantages in out-of-sample forecasting has been 
doubted (see the discussion in [51]). Thus, one of the modelling 
questions in this research is to see if this is a case study in which 
regime-switching outperforms a linear comparator.  

We implement an extension of the conventional Markov 
regime-switching model of Hamilton [39, 54, 55] to allow for 
time varying probabilities.  The regime-switching regression 
with two regimes can be specified as: 

�� = ��
�β��

+ �� ,           (1) 

where ��~�(0, ���

� ). �� is the system price on day � and in load 
period �, (for simplicity, the subscript � is omitted), R� is a 
latent regime state variable at time �, indicating one of two 
regimes. �� is a vector of regressors at time �, β��

 is the regime 
dependent vector of regression coefficients, ���

�  is the regime-
dependent, error variance. The time-varying transition 
probability between the two regimes is specified through a 
logistic function to depend upon a lagged exogenous variable, 
in our case, NIV two periods earlier. The two period lag 
provides market participants time to act on the latest 
information revealed to the market. 

V. DATA 

The GB data were obtained from the Balancing Mechanism 
Reporting Service (BMRS) provided by ELEXON 
(www.elexon.co.uk), extracted using the Application 
Programming Interface (API) function of BMRS to query a 
range of market metrics. The sampling period was specified 
from 1st July 2016 to 30th June 2019, providing 3 years of 
historical data for developing and testing the statistical model. 
There are 48 data points per day, each representing an SP, 
resulting in a total of 52,560 data points within each time series. 

The variables selected for the model can be categorised as 
either market state measures (System Price, Net Imbalance 
Volume), demand and supply forecast errors (Wind Error, Solar 
Error, Demand Error), or scarcity indicators in the supply and 
availability of power volumes (De-rated Margin, NONBM, 
Inter Delta). Descriptions of the variables are in Table I, 
together with their anticipated effects on system imbalance 
prices. Each variable has data available within the forecast lead 
time of two periods, or is composed from real-time out-turn data 
and day-ahead forecasts that are readily available ahead of the 
forecast lead time. This is a more extensive set of fundamental 

variables than is often reported in research on electricity price 
forecasting. Note that SO actions that relate to operational 
factors such transmission constraints, voltage control, etc, are 
not included in the energy balancing calculations, and so we do 
not have to consider them in the price modelling. Some of the 
slower moving fundamentals such as gas and coal prices are not 
included as they will be picked up in the lagged price variable.    
Thus, imbalance prices are modelled and forecast entirely from 
short-term market information available to the market. 

TABLE I: DESCRIPTIONS OF VARIABLES 
Variable Description 

System 
Price 
(£/MWh) 

System Price is the dependent variable and we also use 
lags of two periods and beyond as predictive variables. 
We expect lagged effects to be positive on price. 

Net 
Imbalance 
Volume 
(MWh) 

Net Imbalance Volume is the sum of all energy balancing 
buy and sell actions, netted to give the overall system 
energy imbalance for each settlement period. A positive 
value represents a shortage of power in the market, and a 
negative value represents a surplus of power. 
We expect lagged effects to be positive on price. 

De-Rated 
Margin 
(MW) 

De-Rated Margin is the difference between the combined 
generation forecast and the capacity requirement for the 
market. It is a measure of how much spare generation 
capacity is available within the power network, ie an 
inverse measure of scarcity. 
We expect lagged effects to be negative on price. 

Wind Error 
(MW) 

Wind Error is the difference between actual total wind 
generation, including onshore and offshore assets, within 
each settlement period and the day-ahead forecast made 
the night before. This variable is a measure of the error in 
the day-ahead wind generation forecast 

Solar Error 
(MW) 

Solar Error is the difference between actual solar 
generation within each settlement period and the day-
ahead forecast made the previous day. It is a measure of 
the error in the day-ahead solar generation forecast 

NONBM 
(MWh) 

The Non-Balancing Mechanism Short Term Operating 
Reserve (STOR) is the volumes instructed by the system 
operator within each settlement period to either increase 
generation or reduce demand on pre-contracted terms with 
market participants. These are volumes outside of the 
balancing mechanism 

Inter Delta 
(MWh) 

Inter Delta is the change in interconnector import-export 
netted volumes between subsequent settlement periods, 
summed across five major UK interconnectors. It is a 
measure of the short-term change in power market volume 
supplied from outside of the UK 

Demand 
Error (MW) 

Demand Error is the difference between initial national 
demand out-turn for the settlement period and the day-
ahead national demand forecast made the previous day. 
National demand figures include transmission losses but 
exclude interconnector flows, station transformer demand 
and pumped storage demand. This variable is a measure of 
the error in the day-ahead national demand forecast 

 

As in Karakatsani and Bunn [12], the logarithmic 
transformation of electricity prices is not used. Using the level 
series is reasonable since the statistical price properties which 
are of interest in the study could be masked by the 
transformation, and the effects of fundamentals might become 
restricted to an exponential form, though other monotonic 
relationships are desirable 

Time series checks on all variables confirmed stationarity 
with Augmented Dickey-Fuller and Phillips–Perron unit root 
tests, and for the System Price series, the Bai and Perron [53] 
test of multiple breaks indicated multiple regimes. Figure 5 
shows the System Price time series, with is spikey episodes, 
volatility clustering and occasional negative prices. 
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Figure 5: System Prices 2016-2019 

VI. MODEL PERFORMANCE 

In Table 2 we report the results of the in-sample model as 
estimated in EViews. Note all exogenous variables are lagged 
by 2 to reflect market information availability. 

Table 2: In-sample 2-Regime Model 

 

We observe that all signs are as expected and generally all 
variables have high significance. By examination, Regime 1 
corresponds to positive NIV, and we observe that the negative 
coefficient for lagged NIV in Regime 2 is associated with 
negative NIVs, and so our sign expectations remain consistent. 
Interestingly wind forecast error is significant at 5.6% in regime 
1 and only at 16.2% in regime 2. This significance is weaker 
than expected and may imply that wind generators are able to 
hedge their risks, particularly for negative NIV when they may 
be curtailing. Likewise Non BM reserve is only significant in 

negative NIV, perhaps because of its more selective use for 
turn-down operation. The transition matrix parameters refer to 
a logistic regression on lagged NIV and the main take-away is 
the strong significance. In other words lagged NIV is a strong 
driver of regime-switching in the price formation model. The 
RMSE for this model is 19.29 and the Pseudo R-Sq is 38%. 

The inclusion of extra lags were significant but weakened the 
significance of some of the exogenous variables and only 
provided a tiny improvement in the RMSE to 19.27. As for the 
linear benchmark with extra lags, this offered comparable, very 
slightly better, fit with an RSq of 39% and RMSE of 18.98, but 
lower significance for the exogenous variables (see Table 3) 

Table 3: In-sample Linear Model 

 We also compared with a Linear GARCH(1,1) model to 
include volatility. Regime-switching captures volatility 
clustering to some extent, as there is a different variance term 
in each regime, but a GARCH model is a conventional 
benchmark. The In-sample GARCH fit is shown in Table 4. 

Table 3: In-sample Linear GARCH(1,1) Model

Whilst the volatility terms are clearly very significant, the 
fundamental drivers of the mean equation are similar, as 
expected with GARCH modelling, and the RSq is the same as 
the regime switching at 38%. Whilst GARCH models provide 
better representations of heteroskedasticity and the coefficient 
estimates, they rarely improve the mean forecasts. 

Overall, we would argue that the regime-switching in-sample 
model is satisfactory in its structural interpretation and gives 

Variable Coefficient Std. Error z-Statistic Prob.   
     
     WINDERROR(-2) 0.000118 9.35E-05 1.257558 0.2086 

SOLARERROR(-2) -0.004756 0.000373 -12.75347 0.0000 

NONBM(-2) 0.003932 0.002199 1.788210 0.0737 

NET_IMBALANCE_VOLUME__MWH_(-2) 0.006996 0.000355 19.72302 0.0000 

INTERDELTA(-2) 0.001690 0.000239 7.077209 0.0000 

DRM_1H(-2) -0.000570 4.18E-05 -13.63591 0.0000 

DEMANDERROR(-2) 0.002019 0.000242 8.332364 0.0000 

C 53.69590 0.785296 68.37667 0.0000 

AR(2) 0.386298 0.007068 54.65518 0.0000 

AR(3) 0.105567 0.006595 16.00836 0.0000 

AR(4) 0.051107 0.006100 8.378899 0.0000 

AR(5) 0.090805 0.005960 15.23626 0.0000 
     

      Variance Equation   
     
     C 94.53048 5.335302 17.71793 0.0000 

RESID(-1)^2 0.373924 0.012552 29.78964 0.0000 

GARCH(-1) 0.371616 0.023797 15.61641 0.0000 
     
     R-squared 0.385224     Mean dependent var 48.32822 
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clearer insight on the relative impact of the plausible exogenous 
variables of the two regimes for positive and negative 
Imbalance price formation. The two period lags indicate 
potential predictability but this needs to be confirmed with out 
of sample back-testing.  

To do this we looked at the final 4,000 observations in 2019, 
estimated the regime switching and linear models on the first 
2,000 observations of these and then successively forecast one 
period ahead with rolling re-estimation throughout the final 
2,000 out-of-sample observations. The forecasting results are in 
Table 4: 

Table 4: Out-of-sample Backtest Comparison 

 

The RMSE for the regime switching is clearly superior to the 
linear benchmark. Note these RMSEs are lower than the in –
sample since, from Figure 1, it is clear that 2019 is less volatile 
than data at the beginning of the time series in 2016. It is the 
comparative performance, however, that is important as 
evidence that out-of-sample prediction with regime switching 
can outperform a linear model with the same explanatory 
variables.  

We do however recognise that our results may not generalise 
to more highly volatile periods. With this in mind, we re-
estimated the model on the years 2017-2019 and then forecast 
the more data in  2016 as if it were following. The forecasting 
results are shown in Table 5 and again confirm the regime-
switching superiority. 

Table 5: Backtest on 2016 

Model Regime Switching Linear 

RMSE  22.1 24.5 

 

For greater comparability with the rolling re-estimation used for 
Table 4, we selected close to 2000 observations January- 
February 2017 for estimating the regime switching, linear and 
GARCH models and then successively forecast one period 
ahead with rolling re-estimation throughout the 2,000 out-of-
sample observations in November and December 2016, as if 
they were following. The results are shown Table 6. 

Table 6: Rolling Backtest on Nov-Dec 2016 

Model Regime Switching Linear  GARCH 

RMSE  20.8 23.0  23.4 

 

These again confirm the benefit of regime switching. In fact the 
performance is proportionally better over this more volatile 
period; perhaps not unexpected as regime switching is often 
advocated for data with episodes of unusually high (or low) 
values. However, regardless of the relative performance of the 

regime switching, one of the main contributions is to show that 
balancing prices are indeed predictable through a fundamental 
model with a fully intuitive structure.  

Finally, we observe the ability of the predictors to forecast 
positive or negative imbalance prices in Table 5. Over the 
period 1st of April 2019 to 30th of June 2019, the percentage 
correct prediction of both positive and negative prices is 99.5%. 
The model has about 0.4% false-positive predictions and 1% 
false-negative predictions.    

Table 7: In Sample Counter Factual Classification of Forecast Values 
 Observation Percent Cumulative 
Correct  4,346 99.50 99.50 
False Positive 18 0.41 99.91 
False Negative 4 0.09 100.00 

 

VII. CONCLUSIONS 

The GB balancing mechanism represents a mature and active 
market, evolving since 2001. One would therefore expect the 
balancing market to have become efficient and that the 
imbalance volumes would be surprises, predictable, at best, by 
adaptive noise-following heuristics. This is what happens 
elsewhere, for example, with technical traders in the highly 
efficient global stock markets. As a consequence of market 
efficiency, if it exists, the imbalance prices should therefore be 
hard to predict from intuitive fundamentals. However, we show 
that the imbalance prices do reflect the fundamental drivers of 
wind, solar and demand forecast errors, scarcity variables, 
lagged prices and lagged imbalance volumes. The lagged 
autoregressive influence is also significant and adds to the 
predictability. Thus, we find strong evidence of fundamental 
predictability, as specified through an intuitive model. We also 
find that this is a good application area for regime switching, 
whose forecasts perform better than linear and GARCH 
benchmark models. Elsewhere in electricity price forecasting, 
the evidence for the superiority of regime switching over linear 
models has been mixed. 

Reflecting upon this modelling evidence, it is understandable 
why there are profitable speculators on the British balancing 
market. Informal evidence with traders is that machine learning 
techniques are increasingly being used.to predict and optimise 
speculative trading strategies in the balancing market. Our 
research indicates that such approaches are likely to reflect 
fundamental econometric relationships as well as adaptive 
heuristics. 

All of which raises the question of why the balancing market 
should be sustainably predictable, for such a mature and liquid 
market. We conjecture that predictability appears to be induced 
by the episodic nature of the settlement periods in which SO 
actions are repeated. Recall Figure 1. Evidently different 
market arrangements with shorter settlement periods, or less 
transparent and timely release of information would reduce 
predictability. But that is not the regulatory intent in GB. 
Indeed, the regulatory body sees benefits in allowing 
participants to forecast, self-hedge and attempt to take actions 
which benefit themselves and the overall system balance. 
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