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Appendix A: Proofs

Proof of Proposition 1. The proof consists of two parts. In the first part we show that, for each con-

tract T , the manufacturers’ strategies for choosing payment terms {v−j ,vj}= {vC ,vC} is a Nash equilibrium

(Claim EC.1). In the second part, we show that {vC ,vC} is a unique equilibrium (Claim EC.5).

Claim EC.1. For all T , there exists no v′ 6= vC such that Πj([v−j ,vj ] = [vC ,v′])>Πj([v−j ,vj ] = [vC ,vC ]);

here vj denotes manufacturer j’s payment terms.

Proof: We first establish the two retailers’ equilibrium choices of payment terms when the manufactur-

ers payment strategy is {vC ,v′}. For each contract T , we show that the retailers’ equilibrium choices are

{v−i,vi}= {vC ,vC}, where vi denotes retailer i’s choice of payment terms. This implies that q̂1j + q̂2j = 0

and so Πj([v
C ,v′]) 6> Πj [v

C ,vC ]. Here we work with the extended contract structure T (w,f,α, ξ) = f +

wq + αR(q) − ξ/2q2, where R(q) denotes the revenue generated by the purchased quantity q. Note that

T encompasses the wholesale price (WP), revenue-sharing (RS), quantity discount (QD), and wholesale

price plus fixed fee (WPFF) contract structures: WP = T (w,0,0,0), RS = T (w,0, α,0), QD = T (w,0,0, ξ),

and WPFF = T (w,f,0,0). Note also that, similar to Cachon and Kök (2010), we need to only include the

quadratic part of the QD contract; the reason is that, if the retailer orders q̂ > (w− c)/ξ, then the manu-

facturer can increase w so that q̂ = (w− c)/ξ – that is, increase its profit by raising w without affecting the

retailer’s decision. The rest of this proof proceeds in three steps. First we show that, given T , the payment

strategy {v−i,vi}= {v′,v′} is not an equilibrium outcome for the retailers because retailer i can profitably

deviate from v′ to vC ; formally, πi([v−i,vi] = [v′,v′]) < πi([v−i,vi] = [v′,vC ]) (Claim EC.2). Next, we show

that {v−i,vi}= {vC ,vC} is an equilibrium outcome because retailer i would earn less profit by deviating from

vC to v′: πi([v−i,vi] = [vC ,v′])<πi([v−i,vi] = [vC ,vC ]); this is Claim EC.3. The combination of Claim EC.2

and Claim EC.3 establishes that, for each retailer, vC is an equilibrium choice under T . Finally, we prove

the same result for the minimum order quantity (MOQ) contract structure (Claim EC.4).

Claim EC.2. Under T , we have πi([v−i,vi] = [v′,v′])<πi([v−i,vi] = [v′,vC ]).

Proof: We first characterize the optimal purchase order quantities q̂jand q̂-j under T , after which we

complete the proof by showing that G([vC ,v′]) = Πj [v
′,v′] + πi=j([v

′,v′])− πi=j([v′,vC ])< 0. Note that the

inequality G([vC ,v′])< 0 implies πi([v
′,v′])< πi([v

′,vC ]) because, by definition, Πj ≥ 0. Here on wards, we

use Ψ(qi, q-i,v), to denote the retailers’ profit as a function of quantities q and contract payment terms v.

Under {v−i,vi}= {v′,v′}, the profit functions and G([vC ,v′]) can be written as follows:

Ψ−i =−f + (1−α)(a− b(q-i + qi))q-i−wq−i +
ξ

2
q2
−i, (EC.1)

Ψi =−f + (1−α)(a− b(q-i + qi))qi−wqi +
ξ

2
q2
i , (EC.2)

Πj = f +α(a− b(q-i + qi))qi=j +wqi=j −
ξ

2
q2
i=j − cqi=j , (EC.3)

G= (a− c− b(q̂-i + q̂i))q̂i−πi=j([v′,vC ]). (EC.4)
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It follows from equations (EC.1) and (EC.2) that ∂2
q-iΨ-i = ∂2

qi
Ψi = 2b(−1 +α+ ξ/2b)< 0 for each of the

four focal contracts: WP (α = 0, ξ = 0), RS (α ∈ [0,1), ξ = 0), QD (α = 0, ξ ∈ [0,2b)), and WPFF (α = 0,

ξ = 0). Solving the retailer’s first-order conditions for a symmetric solution yields

q̂i =
a−w′

b(3− ξ′)
, (EC.5)

where w′ = w/(1−α) and ξ′ = ξ/(b− bα). Since the retailer’s selection of payment terms is endogenous, it

follows that a necessary condition for {v−i,vi} = {v′,v′} to be an equilibrium switch from the status quo

{v-i,vi} = {vC ,vC} is that πi([v
′,v′]) > π([vC ,vC ]). Satisfying that condition requires the manufacturer j

to set v′ such that Ω[v′,v′] > Ω[vC ,vC ], where Ω denotes the combined manufacturers and retailers profit

(equivalently, the supply-chain profit) under the given payment terms. Note that if Ω[v′,v′] 6>Ω[vC ,vC ] then

both πi([v
′,v′])> πi([v

C ,vC ]) and Πj [v
′,v′]≥Πj [v

C ,vC ] = 0 cannot jointly hold together. For the payment

terms {v-j ,vj}= {vC ,vC}, we obtain q̂i = (a−c)/3b (using EC.5) and the total supply-chain quantity as QC =

Q([vC ,vC ]) = 2q̂i = 2(a− c)/3b. Observe that QC >Q∗ = (a− c)/2b, where Q∗ is the supply chain’s profit-

maximizing quantity (i.e., Q∗ = arg max(a− bQ)Q− cQ). This implies a necessary condition for Ω([v′,v′])>

Ω([vC ,vC ]) is Q([v′,v′])<Q([vC ,vC ]) because Ω(Q) is concave in Q and Q([vC ,vC ])>Q∗. Therefore,

a−w′

b(3− ξ′)
≤ a− c

3b
,

3a− 3w′ ≤ 3a− 3c− ξ′(a− c),

3(w′− c)− ξ′(a− c)≥ 0. (EC.6)

Next we solve for retailer i’s profit by deviating from v′ to vC . The retailer’s profit functions and corre-

sponding first-order conditions are then

Ψ−i = −f + (1−α)(a− b(q-i + qi))q-i−w′(1−α)q-i +
ξ′(b− bα)

2
q2
-i, (EC.7)

∂q-iΨ-i = (1−α)(a−w′− b(2− ξ′)q−i− bqi), (EC.8)

Ψi = (a− b(q-i + qi))qi− cqi, (EC.9)

∂qiΨi = a− c− 2bqi− bq-i. (EC.10)

Solving ∂qiΨi = 0 gives q̂i = (a− c− bq̂−i)/2b. Substituting q̂i into ∂q-iΨ−i = 0, we have

q̂−i =
a− 2w′+ c

b(3− 2ξ′)
. (EC.11)

Now substituting q̂-i back into ∂qiΨi = 0, we derive qi and Q([vC ,v′]) as follows:

qi =
a− 2c+w′− (a− c)ξ′

b(3− 2ξ′)
, (EC.12)

Q(T ([vC ,v′]) =
a− 2c+w′− (a− c)ξ′

3(b− 2ξ′)
+
a− 2w′+ c

b(3− 2ξ′)

=
2a− c−w′− (a− c)ξ′

b(3− 2ξ′)
. (EC.13)

Using equations (EC.4), (EC.5), (EC.12), and (EC.13), we can write G(vC ,v′) as

G=
(a− 3c+ 2w′− (a− c)ξ′) (a−w′)(3− 2ξ′)2− (a− 2c+w′− (a− c)ξ′)2

(3− ξ′)2

b(3− ξ′)2(3− 2ξ′)2
. (EC.14)
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Next we show that G< 0 for all ξ′ ∈ [0,3(w′−c)/(a−c)] (cf. equation (EC.6)). We start by putting G(ξ′) =

D(ξ′)N(ξ′), where D(ξ′) is equal to 1/b(3− ξ′)2(3− 2ξ′)2 and N(ξ′) is the numerator in equation (EC.14).

Since D(ξ′)> 0 for all ξ′, it is sufficient to show N(ξ′)< 0. We establish this inequality by demonstrating

that N is increasing in ξ′ (which follows from ∂2
ξ′N < 0, ∂ξ′N |ξ′=0 > 0, and ∂ξ′N |ξ′=3(w′−c)/(a−c) > 0) and

that N(ξ′ = 3(w′− c)/(a− c)) = 0. We now solve for ∂ξ′N(ξ′):

∂N

∂ξ′
= 3(a− c)2 + 30(w′− c)2 + 27(w′− c)(a− c)

− ξ′34(a− c)2 + ξ′2
(
12(a− c)2 + 18(a− c)(w′− c)

)
− ξ′

(
12(a− c)2 + 18(w′− c)2 + 44(a− c)(w′− c)

)
, (EC.15)

∂2N

∂ξ′2
=−12ξ′2(a− c)2 + 2ξ′

(
12(a− c)2 + 18(a− c)(w′− c)

)
− 12(a− c)2− 18(w′− c)2− 44(a− c)(w′− c)

=−12(a− 2c+w′− ξ′(a− c))2− 10(2− ξ′)(a− c)(w′− c)

− 2(w′− c) (3(w′− c)− ξ′(a− c))

< 0

by equation (EC.6) and ξ′ < 3/2 (by equation EC.12) . Equation (EC.15) now yields ∂ξ′N(ξ′ = 0)> 0 and

∂N

∂ξ′

∣∣∣∣
ξ′=3(w′−c)/(a−c)

= 3(a− c)2 + 30(w′− c)2 + 27(w′− c)(a− c)

− ξ′34(a− c)2 + ξ′2
(
12(a− c)2 + 18(a− c)(w′− c)

)
− ξ′

(
12(a− c)2 + 18(w′− c)2 + 44(a− c)(w′− c)

)
= 4ξ′2(a− c)(3(w′− c)− ξ′(a− c))

+ 10(w′− c)(3(w′− c)− ξ′(a− c))

+ ξ′2(12(a− c)2 + 6(a− c)(w′− c)) + 3(a− c)2

− ξ′(3(a− c)2 + 18(w′− c)2 + 34(a− c)(w′− c))

= 3(a−w′)(a− 2w′+ c)

> 0,

since a− 2w′+ c > 0 by equation (EC.12). Finally,

N

(
ξ′ =

3(w′− c)
a− c

)
= (a− 3c+ 2w′− (a− c)ξ′) (a−w′)(3− 2ξ′)2− (a− 2c+w′− (a− c)ξ′)2

(3− ξ′)2

= 9(a−w′)2(a− 2w′+ c)2− 9(a− 2w′+ c)2(a−w′)2

= 0.

Claim EC.3. Under T , we have πi([v−i,vi] = [vC ,v′])<πi([v−i,vi] = [vC ,vC ]).

Proof: Following the steps used to prove Claim EC.2, we can show that H([vC ,v′]) = Πj([v
′,vC ]) +

πi=j([v
′,vC ])−πi=j([vC ,vC ])< 0. From equations (EC.11), (EC.13), and (EC.5) for {v−j ,vj}= {vC ,vC}, we

obtain

H([vC ,v′]) =

(
9 (a− 2c+w′− (a− c)ξ′) (a− 2w′+ c)− (a− c)2(3− 2ξ′)2

9b2(3− 2ξ′)2

)
. (EC.16)



ec4 e-companion to Author: Online Appendix: Supply Chains and Antitrust Governance

Because the denominator of H is greater than zero, it is sufficient to show that the numerator of H (≡N)

is less than zero for all ξ′ ∈ [0,3(w′ − c)/(a− c)]. For this purpose, we establish that ∂ξ′N > 0 and N(ξ′ =

3(w− c)/(a− c)) = 0. From equation (EC.16) it follows that

∂N

∂ξ′
=−9(a− c)(a− 2w′+ c) + 4(a− c)2(3− 2ξ′)

= (a− c) (3 (a− 2w′+ c) + 8 (3(w′− c)− ξ′(a− c)))

> 0,

by equation (EC.6) and equation (EC.12). Finally, it is easy to verify that N(ξ′ = 3(w′ − c)/(a − c)) =

9 (a− 2w′+ c)
2− 9(a− 2w′− c)2 = 0.

Claim EC.4. For the MOQ contract structure, {vC ,vC} is an equilibrium payment strategy.

Proof: Under any deviation, retailer i either chooses the optimal purchase quantity based on the offered

w or is constrained to select a higher quantity qmin that, in turn, results in higher Q. In the former case,

Claim EC.2 results apply as it is. In the latter case, a higher Q results in a lower supply chain profit (see

the discussion in the proof of Claim EC.2); hence either the manufacturer or the retailers will incur a loss,

thus making deviation unprofitable. As this result is true for all values of qmin, we set qmin = q∗ similar to

channel coordinating MOQ contract terms (Tuncel et al. 2019).

Claim EC.5. For each contract T , {vC ,vC} is an unique equilibrium.

Proof: Because this setting exhibits symmetry, no asymmetric equilibrium will exist for the manufac-

turers’ decisions about payment terms. Now suppose there exists a payment term vector {v′,v′} 6= {vC ,vC}
that constitutes an equilibrium strategy for the manufacturers. For contracts WP, RS, and MOQ, the exis-

tence of that vector implies that Πj={1,2}([v
′,v′])> 0 because |{v |Π([v,v]) = 0}|= 1, where |S| denotes the

cardinality of set S. The implication is that manufacturer j can profitably deviate from v′ to v′−, a strategy

that passes a share ε (0< ε� πi([v
′,v′])) of Π([v′,v′]) to retailer i and, in turn, secures orders from both the

retailers. The combined orders from the two retailers compensate for the loss of ε and yield the inequality

Πj([v
′,v′−])>Πj([v

′,v′]). Under QD and WPFF, if the manufacturers choose v′ such that Πj={1,2}([v
′,v′])>

0 then – by the foregoing arguments – it is profitable for manufacturer j to deviate. Finally, we note that

|{v | Π([v,v]) = 0}| > 1 for the QD and WPFF contract structures; hence {v′,v′} under these contracts

may represent an equilibrium strategy with zero-profit outcome but with w′ > c. By Claim EC.2 we have

πi([v
′,v′])<πi([v

′,vC ]), where vC = {c,0}. Since retailer i’s individual profit function πi is continuous in w,

the preceding inequality implies the existence of a c <w′′ <w′ such that πi([v
′,v′])<πi([v

′,v′′])<πi([v
′,vC ]).

Hence the payment vector v′′ = {w′′
,0} amounts to a profitable deviation for manufacturer j from {v′,v′};

that is, Πj([v
′,v′′])>Πj([v

′,v′]). �

Proof of Proposition 2. This proof has two parts. First we show that collusion can occur only if the

retailers’ combined order quantity under collusion QA is lower than that in the competitive scenario QC

(Claim EC.6). We shall refer to this requirement as condition C4. Second, we analyze the joint maximization

problem under collusion, along with the necessary conditions C1, C2, and C4, to establish the result for each

contract structure separately.
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Claim EC.6. Collusion can occur only if QA <QC.

Proof: Note that conditions C1 and C2 (see Section 3.2) imply that a collusion can occur only if the total

supply chain profit under collusion is higher than that under competition. Optimizing the supply chain’s profit

(Ω(Q) = (a− bQ)Q− cQ), we derive the optimal quantity Q∗ as (a− c)/2b. Note that Q∗ <QC = 2(a− c)/3b,
which implies that Ω(Q)>Ω(QC) only if Q∈ [Q∗,QC) – that is, because Ω is concave in Q (since ∂2

QΩ =−2b)

Next, in Claim EC.7 we give results for WP, RS, and QD contracts using the extended contract structure

T (w,0, α, ξ) (see proof of Proposition 1 for the definition of T ). We conclude the proof by establishing results

separately for the WPFF (Claim EC.8) and MOQ (Claim EC.9) contract structures.

Claim EC.7. For T (w,0, α, ξ), there exist no ξ′ that satisfy conditions C1, C2, and C4.

Proof: Suppose there is a {w,α, ξ} 6= {c,0,0} such that C4 and C2 both hold. We can then use equa-

tion (EC.5) to evaluate C2 as follows:

(1−α)(a− 2bq̂)q̂−wq̂+
ξ

2
q̂2 ≥ (a− c)2

9b
,

(1−α)

(
1− ξ′

2

)
(a−w′)2

b(3− ξ′)2
≥ (a− c)2

9b
,

(1−α)

(
1− ξ′

2

)(
a−w
b(3− ξ′)

)2

≥
(
a− c

3b

)2

,

=⇒
(

a−w′

b(3− ξ′)

)
≥
(
a− c

3b

)/√
(1−α)

(
1− ξ′

2

)
,

a−w′

b(3− ξ′)
(≡ q̂(v′)) ≥ a− c

3b
(≡ q̂(vC)) as ξ ∈ [0,2b) and α∈ [0,1);

thus, by C4 we have a contradiction.

Claim EC.8. The manufacturers can collude using the WPFF contract structure.

Proof: We rewrite the manufacturers collusion problem using the Lagrange multiplier for C2 and expres-

sion for q̂ under WPFF as

max
w,f,λ

2F +
2(w− c)(a−w)

3b
+λ1

(
(a−w)2

9b
−F − (a− c)2

9b

)
, (EC.17)

s.t. ΠA > 0,

since ΠC
i = 0 for i= 1,2. We denote the modified objective function by G(v, λ). Solving for the first-order

conditions yields

∂G

∂w
=

(6− 2λ1)a−w(12− 2λ) + 6c

9b
, (EC.18)

∂G

∂F
= 2−λ. (EC.19)

We can now use equations (EC.18) and (EC.19) to obtain λ = 2 and w∗ = a+3c
4

. Given the wholesale

price w∗, each retailer would order qA = a−(a+3c)/4

3b
= a−c

4b
. Furthermore, the profit of each manufacturer is

Π = f+ (a−c)2

16b
and that of each retailer is π= (a−c)2

16b
−f . Finally, the conditions C1 (ΠA >ΠC , where ΠC = 0)

and C2 (πA ≥ πC , where πC = (a− c)2/9b) imply that f ∈
(
− (a−c)2

16b
,− 7(a−c)2

144b

]
.
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Claim EC.9. For the MOQ contract, there exist no v′ that satisfy conditions C1, C2, and C4.

Proof: Under collusion, (a) the manufacturers jointly decide on the values of w and qmin and (b) the

retailers’ q̂ is equal to max{qmin, (a−w)/3b}. As a consequence, if w is set such that qmin < (a−w)/3b, then

the retailers’ quantity equals the quantity under a WP contract and the manufacturers’ profit maximization

problem therefore reduces to the problem under a WP contract. For such w, collusion cannot occur (by

Claim EC.7). So for collusion to occur, there must exist a w < a and a qmin ∈ [0, a/2b] such that: (i) qmin >

(a−w)/3b; (ii) Ψ(qmin, qmin,w) ≥ πC (C2); and (iii) qmin < q̂C (C4). Suppose there does exist such a pair

{w,qmin}; then solving for Ψ(qmin, qmin,w)−πC gives

Ψ(qmin, qmin,w)−πC =(a− 2bqmin)qmin−wqmin− (a− c)2/9b,

=(a−w− 2bqmin)qmin− bq̂(vC)2 since q̂(vC) = (a− c)/3b,

<(3bqmin− 2bqmin)qmin− bq̂(vC)2 since a−w< 3bqmin by (i),

<b(q2
min− q̂(vC)2),

<0 by C4,

Thus C2 fails to hold – a contradiction. �

Proof of Proposition 3. That the WPFF contract structure facilitates collusion through slotting fees

(f < 0), follows directly from Claim EC.8. Further, we can use q̂C (derived from equation (EC.5) with w= c,

ξ = 0, and α= 0) and q̂A (from Claim EC.8) to obtain the consumer surplus CS and the total surplus TS

under competition and collusion. Thus, we have CSC = 2(a− c)2/9b, CSA = (a− c)2/8b, TSC = 4(a− c)2/9b,

and TSA = 3(a− c)2/8b. �

Proof of Proposition 4. In the absence of the IB ruling scenario, the manufacturers have to satisfy

conditions C1, C2, and C3 (see Section 3.2). In addition, for collusion to be beneficial, the manufacturers

have to also satisfy condition C4 (Claim EC.6). Following claims 7 and 9, we know that contracts WP, RS,

QD, and MOQ cannot satisfy the conditions C1, C2 and C4 simultaneously. Though the WPFF contract

satisfy these conditions, from Proposition 3 we know it fail to satisfy the condition C3 as consumer surplus

under collusive decision making is lower compared to that under the competitive scenario. �

Proof of Proposition 5. Following the same steps as in the proof of Claim EC.8, we can show that

the two manufacturers will set a w∗ such that the combined retailers’ quantity is equal to the expected

profit-maximizing quantity of the centralized supply chain. The manufacturers will compensate for any

loss in expected profits via the slotting fees mechanism. Using equations (EC.25) and (EC.29) from the

proof of Proposition 6 to follow, we have w∗ =
∫∞

3
2
bQA

{
a− 3

2
QAb

}
f(a)da; here QA is defined by the implicit

function (EC.29). �

Proof of Proposition 6. (a) Optimal Order Quantity under Competition. Solving for q̃ using the

Stage 3 (see Figure 1) order quantity–constrained revenue maximization problem, we have q̃(q) =
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min(a/3b, q). Substituting this equality into the retailer’s Stage 2 expected profit maximization problem now

yields

q̂i = arg max
q

Ea [{a− b (min(a/3b, q) + min(a/3b, q̂−i))}min(a/3b, q)]− cq, (EC.20)

= arg max
q

1

9

∫ 3bq

−∞

a2

b
f(a)da+

∫ ∞
3bq

{a− b (q+ q̂−i)} qf(a)da− cq, (EC.21)

Applying the Leibniz integral rule (Flanders 1973) to the expanded expected profit function, equa-

tion (EC.21), we obtain the first- and second-order derivatives as follows:

∂ΨC

∂q
=

1

9

9b2q2

b
f(3bq)3b+

∫ ∞
3bq

{a− b (2q+ q̂−i)}f(a)da−{3bq− b (q+ q̂−i)} qf(3bq)3b− c

= 3b2q (−q+ q̂−i)f(3bq) +

∫ ∞
3bq

{a− b (2q+ q̂−i)}f(a)da− c, (EC.22)

∂2ΨC

∂q2
= 3b2 (−q+ q̂−i)f(3bq)− 3b2qf(3bq) + 3b2q (−q+ q̂−i)f

′(3bq)3b

−
∫ ∞

3bq

2bf(a)da−{3bq− b (2q+ q̂−i)}f(3bq)3b (EC.23)

=−9b2qf(3bq) + 6b2q̂−if(3bq) + 3b2q (−q+ q̂−i)f
′(3bq)3b− 2b [1−F (3bq)] (EC.24)

< 0;

under the symmetric outcome of the retailers’ purchase quantity decisions, q̂i = q̂−i. Thus, the optimal order

quantity under competition, q̂C = q̂Ci = q̂C−i, is characterized by the first order condition ∂ΨC

∂q
= 0:∫ ∞

3bqC

{
a− 3qCb

}
f(a)da− c= 0,∫ ∞

3
2
bQC

{
a− 3

2
QCb

}
f(a)da− c= 0, (EC.25)

where QC = 2q̂C is the combined order quantity placed by the two retailers under the competitive scenario.

Optimal Order Quantity under Collusion. Proposition 2 implies that, to maximize their collusion benefit,

the manufacturers set payment terms such that the retailers’ combined order quantity QA equals that of a

centralized firm. By following the preceding proof steps for the competition scenario, we obtain the centralized

firm’s Stage 3 order quantity as q̃(q) = min(a/2b,Q). Substituting this inequality into the retailers’ Stage 2

problem, equation (6), gives

Q̂= arg max
Q

Ea[(a− bmin(a/2b,Q)) min(a/2b,Q)]− cQ

= arg max
Q

1

4

∫ 2bQ

−∞

a2

b
f(a)da+

∫ ∞
2bQ

{a− bQ}Qf(a)da− cQ. (EC.26)

Applying the Leibniz integral rule (Flanders 1973) to the expanded expected profit function ΨA, equa-

tion (EC.26), we obtain the first- and second-order derivatives as

∂ΨA

∂Q
=

1

4
4b2

Q2

b
f(2bQ)2b+

∫ ∞
2bQ

{a− 2bQ}f(a)da−{2bQ− bQ}Qf(2bQ)2b− c

=

∫ ∞
2bQ

{a− 2bQ}f(a)da− c, (EC.27)

∂2ΨA

∂Q2
=

∫ ∞
2bQ

−2bf(a)da=−2b [1−F (2bQ)]< 0. (EC.28)
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Solving ∂ΨA

∂Q
= 0 to characterize QA, we have∫ ∞

2bQA

{
a− 2bQA

}
f(a)da− c= 0. (EC.29)

(b) Comparing equations (EC.25) and (EC.29), we can see that using QA = 3/4QC in the latter reduces

it to the former.

(c) We use our results from part (a) to solve for the retailers’ expected price p=Ea [{a− b (q̃i(a) + q̃−i(a))}]

under the competition and collusion scenarios. Using the Stage 3 revenue maximization problem, we compute

the difference in expected price under the collusion and competition scenario as

pA− pC =Ea
[{
a− bmin(a/2b,QA)

}]
−Ea

[{
a− 2b

(
min(a/3b, qC)

)}]
,

=Ea
[
2b
(
min(a/3b, qC)

)
− bmin(a/2b,QA)

]
,

=Ea
[
bmin(2a/3b,QC)− bmin(a/2b,3/4QC)

]
since Qc = 2qC and QA = 3/4QC ,

=Ea
[
1/4bmin(2a/3b,QC)

]
. (EC.30)

�

Proof of Proposition 7. Following our steps in the proof of Proposition 2, we write the two manufac-

turers’ joint objective in a market with N retailers as

G(v, λ) =NF +
N(w− c)(a− c)

(N + 1)b
+λ

(
(a−w)2

b(N + 1)2
−F −πC(N)

)
, (EC.31)

where πC(N) denotes each retailer’s profit in this market under the competitive scenario. Irrespective of

the number of retailers, in the competitive case the manufacturers will set the WPFF contract’s payment

term vector as vC = {w = c, f = 0}. Solving the retailer’s quantity maximization problem for vC gives

qC(N) = a−c
(N+1)b

, from which it follows that the retailer earns the profit πC(N) = (a−c)2

b(N+1)2
. Substituting πC(N)

into equation (EC.31) and then solving for the first-order conditions, we obtain

∂G

∂w
=
N(N + 1)(a− 2w+ c)− 2λ(a−w)

(N + 1)b
, (EC.32)

∂G

∂F
=N −λ. (EC.33)

Together, equations (EC.33) and (EC.32) yield λ = N and w∗ = (N−1)a+(N+1)c

2N
. Given the wholesale

price w∗, each retailer orders the quantity qA(N) = a−((N−1)a+(N+1)c)/2N

(N+1)b
= a−c

2Nb
. Furthermore, the profit of

each manufacturer is Π = (N−1)(a−c)2

8Nb
+ N

2
f while each retailer’s profit is π = (a−c)2

4N2b
− f . The conditions C1

and C2 together determine the range of f ∈
(
− (N−1)(a−c)2

4N2b
,− (a−c)2(N−1)(3N+1)

4N2(N+1)2b

]
. �

Proof of Proposition 8. Following the steps used to prove Proposition 7, we can derive the each

manufacturer’s profit, based on the collective order of the N/M retailers, and the fixed-payment term as

ΠA
j = (N−1)(a−c)2

4MNb
+ N

M
f for j = 1,2 and f ∈

(
− (N−1)(a−c)2

4N2b
,− (a−c)2(N−1)(3N+1)

4N2(N+1)2b

]
. Substituting f , we get ΠA

j =

(N−1)(a−c)2

4MNb

(
1− 3N+1

(N+1)2

)
which is decreasing in M . �

Proposition EC.1. When the competing manufacturers offer differentiated products, the equilibrium pay-

ment terms are as follows:
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a. wholesale price, vC =
{
w= θ(1−γ)+c

2−γ

}
;

b. revenue sharing, vC =
{
w= γ2(θ(1−γ)2/(3−γ2)+c)

(2−γ)
, α= 3(1−γ2)

3−γ2

}
;

c. quantity discount, vC =
{
w= 3θ(1+2γ−3γ2)+c(1+7γ+10γ2)

4+13γ+γ2
, ξ = 2(1− γ)

}
;

d. wholesale price plus fixed fee, vC = {w= θ(1−γ)+3c

(4−γ)
, f = (θ−c)2(1−γ)

(4−γ)2(1+γ)
};

e. minimum order quantity, vC = {w= g(γ), qmin = θ−c
4(1+γ)

};

where γ ∈ [0,1) captures the degree of partial differentiation between the offered products, and g(γ) is an

implicit function of γ.

Proof of Proposition EC.1. When the competing manufacturers offer differentiated products, they

need to meet the retailers’ innate reservation value for carrying a product in their respective assortment.

As a result, following Cachon and Kök (2010), we modify the competing manufacturers’ problem, in the

deterministic demand scenario, to

vCj = arg max
vj

Πj(v) =
∑
i=1,2

(T (vj , q̂ij , r̃ij)− cq̂ij) , (EC.34)

s.t. π1j(v)≥ π◦j (T ), π2j(v)≥ π◦j (T );

where π◦j (T ) denotes the retailers’ reservation value for product j under the contract T . For a given payment

terms v under T , π◦j (T ) is defined as the profit a retailer can earn by carrying only the product -j in its

assortment (Cachon and Kök 2010). Henceforth, we use ◦ to denote reservation value related functions and

variables. Likewise, we define the retailers’ profit function as:

Ψ(qij , qi-j , q-ij , q-i-j ,v) =
∑
j=1,2

(θ− (qij + q-ij)− γ(qi-j + q-i-j))qij −T (vj , qij , rij), (EC.35)

where rij = (θ− (qij + q-ij)− γ(qi-j + q-i-j))qij . Below, we analyze each of the five contracts separately.

WP: The Hessian matrix H of function Ψ is negative definite (with ∂q11Ψ =−2, and ∂q11∂q22Ψ−∂q12∂q21Ψ =

4(1− γ2)> 0 since γ ∈ (0,1). Thus, using the first-order conditions (∂q11Ψ = 0, ∂q12Ψ = 0), we characterize

the optimal order quantities as

q̂ij =
θ(1− γ)−wj +w-jγ

3(1− γ2)
. (EC.36)

Substituting q̂ij in equation (EC.34), we get

Πj =
(wj − c)(θ(1− γ)−wj +w-jγ)

3(1− γ2)
. (EC.37)

Note that Π is concave in w (∂2
wΠ =−4/3(1− γ2)< 0). By solving ∂wΠ = 0, we get the interior solution w‡

as

w‡ =
θ(1− γ) + c

2− γ
. (EC.38)
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Next, we compute π◦j (T = WP) by deriving max Ψ(0, qi-j ,0, q-i-j ,v = [0,w‡]). Solving the first-order condition

to obtain the optimal quantity and substituting it back in Ψ gives

q̂◦-j =
θ− c

6− 3γ
, (EC.39)

π◦j (T = WP) =
(θ− c)2

9(2− γ)2
. (EC.40)

Finally, using (EC.35), (EC.36), and (EC.38) we get

πj(v = [w‡,w‡]) =
∑
j=1,2

(θ− (q̂ij + q̂-ij)− γ(q̂i-j + q̂-i-j)) q̂ij −wj q̂ij ,

=

(
θ− 2(θ− c)(1− γ)

6 + 3γ− 3γ2
− θ(1− γ) + c

2− γ

)
2(θ− c)

6 + 3γ− 3γ2
,

=
2(θ− c)2

9(2− γ)2(1 + γ)
. (EC.41)

Comparing (EC.41) and (EC.40), we get πij(v = [w‡,w‡])−π◦j (T = WP) = (θ−c)2(1−γ)

9(2−γ)2(1+γ)
> 0. Thus, wC =w‡.

RS: The Hessian matrix H of function Ψ under the RS contract is negative definite under symmetry (with

∂q11Ψ =−2(1− α) < 0 since α ∈ [0,1), and ∂q11∂q22Ψ− ∂q12∂q21Ψ =
∑

j=1,2 4(1− α)2(1− γ2) > 0 since γ ∈

(0,1). Thus, using the first-order conditions we characterize the optimal order quantities as

q̂ij =
3(1−α-j)(θ(1−αj)−wj)− (θ(1−α-j)−w-j)(3− 2αj −α-j)γ

9(1−α1)(1−α2)(1− γ2)− 2γ2(α1−α2)2
. (EC.42)

Next, we substitute q̂ij in the manufacturers’ profit functions to compute the internal solution for the payment

vector vj = {w‡, α‡} as

w‡ =
γ2(θ(1− γ)2/(3− γ2) + c)

(2− γ)
, (EC.43)

α‡ =
3(1− γ2)

3− γ2
. (EC.44)

The H for the manufacturers profit function at {w‡, α‡} is semi-negative definite with ∂2
wΠ|w‡,α‡ =− 2(3−γ2)

3γ4(1−γ2)

and ∂q11∂q22Π − ∂q12∂q21Π|w‡,α‡ = 0. Next, following the steps described in the WP contract analysis, we

compute

q̂◦-j =
(θ− c)2(3− γ2)

9(2− γ)2(1 + γ)
, (EC.45)

π◦j (T = RS) =
(θ− c)2γ2(3− γ2)

18(2− γ)2
, (EC.46)

πj(v = [{w‡, α‡},{w‡, α‡}]) =
(θ− c)2γ2(3− γ2)

9(2− γ)2(1 + γ)
. (EC.47)

Comparing (EC.47) and (EC.46), we get πj(v = [{w‡, α‡},{w‡, α‡}])− π◦j (T = RS) = (θ−c)2γ2(3−γ2)(1−γ)

9(2−γ)2(1+γ)
> 0.

Thus, {wC =w‡, αC = α‡}.

QD: Analogous to the ξ ∈ [0,2b) condition in the undifferentiated products setting, we obtain ξ ∈ [0,2(1−

γ)) condition for the differentiated products setting. These conditions ensure a positive order quantity,

determined by the FOC, in the equivalent centralized supply chain setting. Hence, for the subsequent analysis

in this proposition, we use ξ ∈ [0,2(1− γ)). The Hessian matrix H of Ψ under the QD contract is negative
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definite under symmetry (with ∂q11Ψ =−(2− ξ)< 0 and ∂q11∂q22Ψ− ∂q12∂q21Ψ =
∑

j=1,2(2(1− γ)− ξ)(2(1 +

γ)− ξ)> 0)∀ξ ∈ [0,2(1− γ) and γ ∈ (0,1). Solving for the first-order conditions, we get

q̂ij =
θ(3(1− γ)− ξ-j)−wj(3− ξ-j) + 3w-jγ

9(1− γ2)− 3(ξj + ξ-j) + ξjξ-j
. (EC.48)

Next, we substitute q̂ij in the manufacturers’ profit functions to compute the internal solution for the

parameter w

w‡ =
3θ(3− ξ+ 3γ2)− c(3− ξ)(ξ− 3(1 + γ))

ξ2− 3ξ(3 + γ) + 9(2 + γ− γ2)
. (EC.49)

By substituting w‡ in ∂ξΠ, we get

∂ξΠ|w‡ =
(θ− c)2(3− ξ)2

(ξ2− 3ξ(3 + γ) + 9(2 + γ− γ2))2
. (EC.50)

Equation (EC.50) implies ∂ξΠ|w‡ > 0 ∀ ξ ∈ [0,2(1− γ)). Thus, ξ‡ = 2(1− γ). Substituting ξ‡ = 2(1− γ) in

equation (EC.49) gives

w‡ =
3θ(1 + 2γ− 3γ2) + c(1 + 7γ+ 10γ2)

4 + 13γ+ γ2
. (EC.51)

Note that ∂2
wΠ|α‡ =− 4(1+2γ)(2+7γ)

(1−γ)(1+5γ)2
< 0. Next, following the steps described in the WP contract analysis, we

compute

q̂◦-j =
(θ− c)(1 + 5γ)

4 + 13γ+ γ2
, (EC.52)

π◦j (T = QD) =
(θ− c)2γ(1 + 5γ)2

(4 + 13γ+ γ2)2
, (EC.53)

πj(v = [w‡, ξ‡,w‡, ξ‡]}) =
4(θ− c)2γ(1 + 2γ)2

(4 + 13γ+ γ2)2
. (EC.54)

Comparing (EC.54) and (EC.53), we get πj(v = [{w‡, ξ‡},{w‡, ξ‡}])−π◦j (T = QD) = 27γ(1+2γ−3γ2)

(4+13γ+γ2)2
> 0. Thus,

{wC =w‡, ξC = α‡}.

MOQ: Given a MOQ contract v= {w,qmin}, the retailers’ are bound to select qmin if the w-induced optimal

purchase quantity, q̂(w), is lower than qmin. If q̂(w)≥ qmin the MOQ contract effectively reduces to the WP

contract and the above analysis for the WP contract will apply as it is. Following the literature, we set

qCmin = θ−c
4(1+γ)

to the channel coordinating quantity in the case of differentiated products. Below, we first show

that q̂(w)≥ qCmin if γ ∈ [2/3,1) (Case I). Thus, for these γ values, we have {wc = θ(1−γ)+c

2−γ , qmin = θ−c
4(1+γ)

}. We

conclude the proof by extending analysis to γ ∈ (0,2/3) case (Case II).

Case I (γ ∈ [2/3,1)): Under the WP contract, using (EC.36) and (EC.38) we get the retailers combined

quantity as

QC
j = q1j + q2j ,

=
2(θ− c)

6 + 3γ− 3γ2
. (EC.55)

Next, using the centralized supply chain profit function (Ω = (θ−qj−γq-j)qj +(θ−q-j−γqj)q-j−c(qj +q-j)),

we get the channel coordinating optimal Q∗ by solving for the first-order condition (∂2
qj

Ω =−2< 0)

Q∗j =
θ− c

2(1 + γ)
. (EC.56)
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Comparing (EC.55) and (EC.56), we get

QC
j −Q∗j =

2(θ− c)
6 + 3γ− 3γ2

− θ− c
2(1 + γ)

, (EC.57)

=
(θ− c)(3γ− 2)

6(2− γ)(1 + γ)
; (EC.58)

thus, QC
j ≥Q∗j (≡ q̂(w)≥ qCmin) for γ > 2/3.

Case II (γ ∈ (0,2/3)): In this case since q̂(w‡), where w‡ is defined in (EC.38), is lower than qCmin the retailers

set q̂ij = qCmin. Accordingly, the manufacturers set w to maximize their profits from the retailers subject to the

reservation constraint, and the w-induced quantity to be lower than qCmin as otherwise the retailers deviate

to the order quantity q̂(w). Using the Lagrange multiplier for the retailers’ reservation constraint, we define

the manufacturers’ new problem as

wCj = arg max
wj

∑
i=1,2

(
(wj − c)qmin (EC.59)

−λi(Ψ(0, q̂◦1-j(w-j),0, q̂
◦
2-j(w-j),v = [0,w-j ])−Ψ(qmin, qmin, qmin, qmin,v = [wj ,w-j ]))

)
,

s.t. q̂1j(wj)≤ qcmin , q̂2j(wj)≤ qcmin.

where q̂(w) denote the competing retailers optimal order quantity when offered the wholesale price w and

q̂◦(w) denotes the optimal order quantity when computing the reservation value. We denote the manufacturers

modified objective function by G(wj , λ). Using (EC.59), we get

∂wj
G=

(1−λ1)(a− c)
4(1 + γ)

. (EC.60)

Thus, we get λ1 = 1 from ∂wj
G= 0 which implies the manufacturers set w‡ such that it binds the reservation

constraint. We get

w‡ =
(3−

√
5− 4γ)(θ

√
5− 4γ+ 3c)

4(1 + γ)
. (EC.61)

Using (EC.61) and (EC.36), we get q̂(w‡)− qcmin =
(θ−c)(2−γ−

√
5−4γ)

4(1+γ)2
< 0 for γ ∈ (0,2/3).

Thus, based on the Case I and Case II, the MOQ payment vector equals {wc = g(γ), qmin = θ−c
4(1+γ)

} where

g(γ) = I[γ∈(0,2/3)]
(3−
√

5−4γ)(θ
√

5−4γ+3c)

4(1+γ)
+ I[γ∈[2/3,1)]

θ(1−γ)+c

2−γ .

WPFF Under the WPFF contract, the retailers’ order quantities as a function of w equals that under the

WP contract because ∂f∂qπ= 0. Using a Lagrangian multiplier for the retailers’ reservation constraint, and

expression for q̂ij (EC.36) we rewrite the manufacturer j’s objective function in (EC.34 for a WPFF contract

vj = {wj , fj} as

Gj(v) =
∑
i=1,2

fj + (wj − c)
(
θ(1− γ)−wj +w-jγ

3(1− γ2)

)
+λi(πij(v)−π◦j [T ]). (EC.62)

The first-order conditions are

∂Gj

∂wj
=

2(3(γw-j + c− 2wj) + (λj +λ-j)(wj −w-j) + a(1− γ)(3−λj −λ-j)

9(1− γ2)
, (EC.63)

∂Gj

∂fj
= 2−λj −λ-j . (EC.64)
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Solving for the first-order conditions, we get λ1 = λ2 = 1 and wC = θ(1−γ)+3c

(4−γ)
. As λ′s 6= 0, we obtain value of f

by binding the reservation constraint (πij(v) = π◦j [T ]). Solving for max Ψ(0, qi-j ,0, q-i-j ,v = [{0,0},{wC , f}])
gives

q̂◦-j =
θ− c
4− γ

, (EC.65)

π◦j [T = WPFF] =−f +
(θ− c)2

(4− γ)2
. (EC.66)

Using (EC.35), (EC.36), and (EC.66), we solve for πij(v) = π◦j [T ] and obtain fC = (θ−c)2(1−γ)

(4−γ)2(1+γ)
. �

Proof of Proposition 9. We structure the proof in two parts. First, we show that the manufacturers

cannot collude using the WP (Claim EC.10), RS (Claim EC.11), QD (Claim EC.12), and MOQ contract

structures (Claim EC.13). Next, in (Claim EC.14) we characterize the WPFF terms that can facilitate

collusion.

Claim EC.10. For the WP contract, there exists no v′ such that conditions C1 and C2 holds simultane-

ously.

Proof: Consider there exists a v′ such that Π(v′) + π(v′)>Π(vC) + π(vC) (necessary condition for C1 and

C2 to hold jointly). Using (EC.36), (EC.38), and (EC.56), we get

Q̂C |WP−Q∗ =
(θ− c)(3γ− 2)

3(2− γ)(1 + γ)
, (EC.67)

By (EC.67) we get Q̂C |WP ≥Q∗ for γ ∈ [2/3,1). For these values Π(v′) + π(v′)> Π(vC) + π(vC) holds only

if QA <QC since the supply chain profit function is concave in Q and attains maximum at Q∗. Using the

equilibrium payment terms specified in Proposition EC.1, we evaluate condition C2 as

2(θ−w)2

9(1 + γ)
≥ 2(θ− c)2

9(2− γ)2(1 + γ)
,(

θ−w
3 + 3γ

)2(
3(2− γ)(1 + γ)

6 + 3γ− 3γ2

)2

≥
(

θ− c
6 + 3γ− 3γ2

)2

,

=⇒ qA ≥ qC , (EC.68)

which contradicts QA <QC . Next, for γ ∈ (0, 2/3), Π(v′) + π(v′)>Π(vC) + π(vC) holds only if QA >QC ,

which evaluates to

(θ−w)

(3 + 3γ)
>

(θ− c)
6 + 3γ− 3γ2

,

θ−w
θ− c

>
3(1 + γ)

6 + 3γ− 3γ2
. (EC.69)

Next, using the equilibrium payment terms, we evaluate C1 as

2(θ−w)(w− c)
3(1 + γ)

>
2(θ− c)2(1− γ)

3(1 + γ)(2− γ)2
,(

θ−w
θ− c

)(
1−

(
θ−w
θ− c

))
− 1− γ

(2− γ)2
> 0,

m(x)> 0, (EC.70)

where m(x,γ) = x(1−x)− 1−γ
(2−γ)2

. Note, m(x,γ) is decreasing in x for x> 1/2 as ∂xm= 1−2x. Thus, (EC.70)

contradicts (EC.69) since (i) g(γ) = (3(1 + γ)/(6 + 3γ− 3γ2) is increasing in γ as ∂γg = 1/(2− x)2, (ii) g(0)

= 1/2, (iii) m(g(γ), γ) = 0. �
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Claim EC.11. For the RS contractual structure, there exists no v′ such that conditions C1 and C2 holds

simultaneously.

Proof: Consider there exists a v′ such that Π(v′) +π(v′)>Π(vC) +π(vC) (necessary condition for C1 and

C2 to hold jointly). Using (EC.42), (EC.43), and (EC.56), we get

Q̂C |RS−Q∗ =
((θ− c))γ(3− 2γ)

3(2− γ)(1 + γ)
. (EC.71)

By (EC.71) we get Q̂C |RS ≥Q∗ for γ ∈ (0,1). Thus, for these cases Π(v′) +π(v′)>Π(vC) +π(vC) holds only

if QA <QC . Using the equilibrium payment terms specified in Proposition EC.1 and where w′ =w/(1−α),

we evaluate (i) condition C2

2(θ−w′)2(1−α)

9(1 + γ)
≥ (θ− c)2γ2(3− γ2)

9(2− γ)2(1 + γ)
,

(θ−w′)2

(θ− c)2
≥ γ2(3− γ2)

2(1−α)(2− γ)2
, (EC.72)

(ii) qA < qc

(θ−w′)
3(1 + γ)

<
(θ− c)2(3− γ2)

6(2− γ)(1 + γ)
,

(θ−w′)
(θ− c)

<
(3− γ2)

2(2− γ)
, (EC.73)

and (iii) condition C1

2(θ−w′)(3(w′− c) +α(a−w′))
9(1 + γ)

>
(θ− c)2(3− γ2)(1− γ)

3(2− γ)2(1 + γ)
,

(θ−w′)
(θ− c)2

(3(w′− c) +α(θ−w′))> 2(1− γ)(3− γ2)

2(2− γ)2
,

3(θ−w′)
(θ− c)

− (3−α)
(θ−w′)2

(θ− c)2
>

3(1− γ)(3− γ2)

2(2− γ)2
,

(θ−w′)2

(θ− c)2
<− 3(3− γ2)

2(2− γ)2(3−α)
. (EC.74)

by (EC.73). Note that (EC.74), contradicts (EC.72) since γ ∈ (0,1) and α∈ (0,1). �

Claim EC.12. For the QD contract, there exists no v′ such that conditions C1 and C2 holds simultane-

ously.

Proof Consider there exists a v′ = {w,ξ} such that Π(v′) +π(v′)>Π(vC) +π(vC) (necessary condition for

C1 and C2 to hold jointly). Using (EC.48), (EC.51), and (EC.56), we get

Q̂C |QD−Q∗ =
(θ− c)γ(7γ− 1)

(1 + γ)(γ2 + 13γ+ 4
), (EC.75)

By (EC.75) we get Q̂C |QD ≥Q∗ for γ ∈ [1/7,1). For these values Π(v′) +π(v′)>Π(vC) +π(vC) holds only if

QA <QC . Using the equilibrium payment terms specified in Proposition EC.1, we evaluate (i) condition C2

(θ−w)2(2(1 + γ)− ξ)
(3(1 + γ)− ξ)2

≥ 4(θ− c)2γ(1 + 2γ)2

(γ2 + 13γ+ 4)2
,

(θ−w)2

(θ− c)2
≥ h(ξ, γ) =

4(3(1 + γ)− ξ)2γ(1 + 2γ)2

(2(1 + γ)− ξ)(γ2 + 13γ+ 4)2
, (EC.76)
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(ii) qA < qC

θ−w
3(1 + γ)− ξ

<
(θ− c)(1 + 2γ)

(γ2 + 13γ+ 4)2
,

θ−w
θ− c

<
(3(1 + γ)− ξ)(1 + 2γ)

(γ2 + 13γ+ 4)2
, (EC.77)

and (iii) C1

(θ−w)((6(1 + γ)− ξ)(w− c)− ξ(θ− c))
(ξ− 3(1 + γ))2

>
2(θ− c)2(2 + 9γ+ 3γ2− 14γ3)

(γ2 + 13γ+ 4)2
,

(θ−w)

(θ− c)2
((6(1 + γ)− ξ)(w− c)− ξ(θ− c))> (ξ− 3(1 + γ))22(2 + 9γ+ 3γ2− 14γ3)

(γ2 + 13γ+ 4)2
,

(θ−w)2

(θ− c)2
< g(ξ, γ) =

2(14γ3− 3γ2− 7γ+ 1)(ξ− 3(1 + γ))2

(γ2 + 13γ+ 4)2(6(1 + γ)− ξ)
, (EC.78)

by (EC.80). Comparing (EC.78) and (EC.76), we get

h(ξ, γ)− g(ξ, γ) =
2(1 + 2γ)(3(1 + γ)− ξ)2(2 + 24γ+ 32γ2 + 10γ3− ξ(1 + γ(7− 3γ))

(γ2 + 13γ+ 4)2(6(1 + γ)− ξ)(2(1 + γ)− ξ)
,

= k(ξ, γ)(2 + 24γ+ 32γ2 + 10γ3− ξ(1 + γ(7− 3γ))> 0, (EC.79)

since k(ξ, γ) > 0 for γ ∈ (1/7,1), ξ ∈ (0,2(1 − γ) and l(ξ, γ) = 2 + 24γ + 32γ2 + 10γ3 − ξ(1 + γ(7 − 3γ) >

0 as ∂ξh = −(1 + γ(7 − 3γ)) < 0 for γ ∈ (0,1) and h(2(1 − γ), γ) = 4γ(γ2 + 13γ + 3) > 0. Thus, (EC.76)

contradicts (EC.79).

Next, for γ ∈ (0,1/7) the necessary condition Π(v′) + π(v′) > Π(vC) + π(vC) will hold only if QA >QC

since QC <Q∗. Thus, we have (i) qA > qC

θ−w
3(1 + γ)− ξ

>
(θ− c)(1 + 2γ)

(γ2 + 13γ+ 4)2
,

θ−w
θ− c

>
(3(1 + γ)− ξ)(1 + 2γ)

(γ2 + 13γ+ 4)2
, (EC.80)

and (ii) C1

θ−w
(θ− c)2

((6(1 + γ)− ξ)(w− c)− ξ(θ− c))> (3(1 + γ)− ξ)22(2 + 9γ+ 3γ2− 14γ3)

(γ2 + 13γ+ 4)2
,(

θ−w
θ− c

)(
(6(1 + γ)− 2ξ)−

(
θ−w
θ− c

)
(6(1 + γ)− ξ)

)
>

(3(1 + γ)− ξ)22(2 + 9γ+ 3γ2− 14γ3)

(γ2 + 13γ+ 4)2
,

h(x, ξ, γ)− (3(1 + γ)− ξ)22(2 + 9γ+ 3γ2− 14γ3)

(γ2 + 13γ+ 4)2
> 0, (EC.81)

where h(x, ξ, γ) = x(6(1+γ−2ξ)−x(6(1+γ)−ξ)) is concave in x (as ∂2
xh=−2(6(1+γ)−ξ)< 0∀γ ∈ (0,1/7))

with maximum at x‡ = 3(1+γ)−ξ
6(1+γ)−ξ . This gives

h(x‡, ξ, γ)− (3(1 + γ)− ξ)22(2 + 9γ+ 3γ2− 14γ3)

(γ2 + 13γ+ 4)2

=− (3(1 + γ)− ξ)2

(γ2 + 13γ+ 4)4(6(1 + γ)− ξ)

(
8(29 + 37γ)− 169(1 + γ)4− (55− 518)(1 + γ)2

+ ξ(14γ(1 + γ)2− 31(1 + γ)2 + 39(1 + γ)− 10

)
,

= k(ξ, γ) ∗n(ξ, γ), (EC.82)
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where k(ξ, γ) =− (3(1+γ)−ξ)2

(γ2+13γ+4)4(6(1+γ)−ξ) < 0 for γ ∈ (0,1/7) and ξ ∈ (0,2(1−γ)). Also, n(ξ, γ)> 0∀ξ ∈ (0, 2(1−

γ)) as it is decreasing in ξ (with ∂ξn=−(1 +γ)2(62−28γ) + 78(1 +γ)−20< 0), and n(0, γ) = 8(29 + 37γ)−

169(1 + γ)4− (55− 518)(1 + γ)2 > 0∀γ ∈ (0,1/7). Thus, (EC.82) contradicts (EC.81).

�

Claim EC.13. For the MOQ contract, there exists no v′ such that conditions C1 and C2 holds simulta-

neously.

Proof In the proof of Proposition EC.1, we show that for γ ∈ [2/3,1) the MOQ contract is effectively reduced

to the WP contract. Thus, for these values, Claim EC.10 analysis apply as it is. Further, for γ ∈ (0,2/3)

each retailer orders q̂C = qmin = θ−1
4(1+γ)

so the retailers combined quantity under competition equals Q∗;

thus, we have Πc +πc = Ω∗. As a result, for any v′ 6= vC either condition C1 or C2 will be violated because

Π(v′) +π(v′)≤Ω∗ = Π(vC) +π(vC). �

Claim EC.14. For the WPFF contract, there exists a v′ such that conditions C1 and C2 holds simulta-

neously.

Proof Following the steps of Claim EC.8, one can show that the manufacturers under collusion sets wA

such that the QA =Q∗. Using EC.36 and EC.56, we get

θ−wA

3(1 + γ)
=

θ− c
4(1 + γ)

,

wA =
θ+ 3c

4
. (EC.83)

Next using the competition payment terms specified in the Proposition EC.1, (EC.35 and (EC.83, we obtain

lower-bound on fA by binding the condition C2

(θ− c)2− 16f
A

(1 + γ)

8(1 + γ)
=

2(θ− c)2γ

(4− γ)2(1 + γ)
,

=⇒ f
A

=
(θ− c)2(16− 24γ+ γ2)

16(4− γ)2(1 + γ)
. (EC.84)

Finally, the lower-bound on fA is obtained by binding the condition C1

(θ− c)2 + 16fA(1 + γ)

8(1 + γ)
=

4(θ− c)2(1− γ)

(4− γ)2(1 + γ)
,

=⇒ fA =
(θ− c)2(16− 24γ− γ2)

16(4− γ)2(1 + γ)
. (EC.85)

Thus, vA =
{
wA = θ+3c

4
, fA ∈

(
(θ−c)2(16−24γ−γ2)

16(4−γ)2(1+γ)
, (θ−c)2(16−24γ+γ2)

16(4−γ)2(1+γ)

]}
. It is easy to verify that under vA the

reservation constraint is also satisfied. Finally, note that Ω∗ − ΩC = 2(θ − c)2(2 − γ)/(4 − γ)2(1 + γ) is

increasing in γ with ∂γ(Ω∗−ΩC) = (θ− c)2γ(γ2 + 4γ+ 8)/(2(4− γ)3(1 + γ)2 > 0. �

Proof of Proposition 10. Consider that the manufacturer j offers an extended contract T (for definition

see the proof of Proposition 1) with terms vj = {wj , fj , αj , ξj}. Let T (v-j) capture the manufacturer -j’s

best response to T (vj). Note that v-j encapsulates -j’s response through the WP, RS, QD, and WPFF con-

tractual structures. Below, we show that the manufacturer -j can emulate the retailers’ order quantities, and
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associated profit outcomes, under its best response with the WP, RS, and QD contracts by using a WPFF

contract. Thus, Π-j(T = WPFF)≥Π-j(T ∈ {WP,WPRS,QD}). We conclude the proof by covering the MOQ con-

tract. Note that the retailers, when faced with [vj ,v-j ] payment terms, may either opt to accept the payment

term of the respective manufacturer (i.e., i= j) or accept the payment term of -jth manufacturer. The proof

steps below analyse the former case. Repeating the analysis with both the retailers accepting payment terms

v-j provides analysis for the latter case. Under v = [vj ,v-j ], by solving the first-order conditions (∂qiπi = 0

and ∂q-iπ-i = 0), we get

q̂i=j [vj ,v-j ] =
a(1− ξ′-j)− (2− ξ′-j)w′j +w′-j
b(3− 2ξ′j − 2ξ′-j + ξ′jξ

′
-j)

, (EC.86)

=−(2− ξ′-j)q̂-i=-j +
a−w′-j

b
, (EC.87)

where w′j =wj/(1−αj), and ξ′j = ξj/b(1−αj). For brevity, in the remaining part of the proof we use q̂j to

denote q̂i=j and q̂-j to denote q̂i= -j . Next, we characterize the optimal order quantities when the manufacturer

-j respond using a WPFF contract {w◦, f◦}:

q̂j [vj ,{w◦, f◦}] =
a+w◦− 2w′j
b(3− 2ξ′j)

, (EC.88)

q̂-j [vj ,{w◦, f◦}] =
a(1− ξ′j)− (2− ξ′j)w◦+w′j

b(3− 2ξ′j)
, (EC.89)

=−(2− ξ′j)q̂j +
a−w′j
b

. (EC.90)

Equation (EC.88) imply that, for a given Tj , the q̂j [vj ,{w◦, f◦}] is a one-to-one function of w◦. Further,

equations (EC.87) and (EC.90) imply that q̂-j [vj ,{w◦, f◦}] can be expressed as a function of the optimal

q̂j and contract parameters of the manufacturer j (vj = [{wj , αj , ξj}]). Taken together, the manufacturer

-j can emulate the retailers’ optimal order-quantities under [vj ,v-j ] by setting w◦ such that q̂j [vj ,v-j ] =

q̂j [vj ,{w◦, f◦}]. Furthermore, using the flexibility of parameter f◦ the manufacturer -j can replicate the

profit outcomes obtained under [vj ,v-j ]. Equating eqs (EC.86) and (EC.88), we get

w◦j =
aξ′j(ξ

′
-j − 1)− (2ξ′-j − 3)w′j − ξ′jw′-j

3− 2ξ′-j − ξ′j(2− ξ′-j)
. (EC.91)

In the case of MOQ, say the manufacturer -j responds to the manufacturer j’s T using the following MOQ

contract: {w†, q†min}. Note that if the q̂-j > q
†
min then the above analysis applies as it is since the MOQ contract

effectively reduces to the WP contract. When q̂-j = qmin, we have ∂q-iπ-i[vj ,{w†, q†min}]|{q̂j ,q̂-j=qmin} ≤ 0). In

this case, by setting w◦ such that ∂q-iπ-i[vi,{w◦, f◦}]|{q̂j ,q̂-j=qmin} = 0, the manufacturer -j’s optimal order-

quantity will be q†min. Setting such a w◦ is feasible since, for a given Tj , the q̂-j is a one-to-one function of

w◦ (see equation EC.89). Now, substituting q†min in equation (EC.90) and re-arranging the terms, we get

a−w′j − b(2− ξ′j)q̂j + bq†min = 0 which is equivalent to the first-order condition of the manufacturer j when

q̂-j = q†min. Finally, say the manufacturer -j responds to the manufacturer j’s MOQ contract that results in

q̂j = qjmin for j = 1,2. In this case, we have ∂qiπi = a−2bqjmin−wj−bq
-j
min ≤ 0. Note that for a given q-jmin, ∂iπi

is a one-to-one function of wj . Thus, the manufacturer -j can emulate the MOQ contracts induced minimum

order quantities by setting w◦ such that ∂q-iπ-i[vi,{w◦, f◦}]|{q̂j=qj
min

,q̂-j=q-j
min
} = 0. �
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Proof of Proposition 11. We present the proof in three parts. First, we show that if the manufacturers’

can collude for a φ (say, φ′) value then they can also collude for all φ< φ′ (Claim EC.15). Next, we characterize

the maximum φ (= φ) for which the manufacturers’ can collude using the WP, RS, QD, and MOQ. It

follows from Claim EC.6 that collusion is only sustainable if QA <QC . This, in turn, implies that the MOQ

contract effectively reduces to the WP contract under the collusive decision making scenario. Based on this

observation, we analyze the aforementioned contracts collectively using the extended contract structure T

(see the proof of Proposition 1). Finally, we conclude this proof by extending the analysis to cover the WPFF

contract.

Claim EC.15. The manufacturers can collude ∀φ< φ′ if they can collude for φ= φ′.

Proof. Note that ∂φΠ< 0 and ∂φΠC = 0. Thus, the optimal solution vA that enables the manufacturers’ to

collude for φ= φ′ is a feasible point for ∀φ< φ′. �

Under the contract T the manufacturers’ first-order conditions, after substituting the optimal order quan-

tity q̂= (a−w′)/3(b− ξ′) (see EC.5), for the modified collusion problem (8) are:

∂Π

∂w′
=

2(c(3− ξ′) + a(3−α(2− ξ′)(1−φ)− (2− ξ′)φ)−w′(6 + 2α(φ− 1)− 2φ+ ξ′((1−α)(φ− 1)))

b(3− ξ′)2
,

(EC.92)

∂Π

∂ξ′
=

(a−w′)(2c(3− ξ′) + a(3−α− ξ′(α(φ− 1)−φ− 1)−φ(1−α))−w′(9−α+ (1−α)(φ− ξ′(φ− 1))))

b(3− ξ′)3
,

(EC.93)

∂Π

∂α
=

(ξ′− 2)(a−w′)2(φ− 1)

b(3− ξ′)2
. (EC.94)

Using the equation (EC.92), we solve for the FOC under the WP contract (α = 0, ξ′ = 0) to get w‡ =

3(a+c)−2aφ

2(3−φ)
, and Π(w‡) = (a− c)2(3−2φ)2/18b(3−φ). Note that condition C1 is satisfied for φ< 3 as ΠC = 0.

Also, the individual retailer profit equals π(w‡) = (a− c)2/4b(3−φ)2 > 0 ∀φ≤ 3. Further, for these values of

φ, the second-order derivative is negative (with ∂2
w′Π = 4(φ− 3)/9b)). So, under the WP contract collusion

is feasible for all φ≤ φWP = 3, with wA =W ‡. Next, solving for the RS contract (ξ′ = 0), note that ∂αΠ< 0 for

φ> 1. This implies for φ> 1, the manufacturers’ set α= 0, thus the RS contract also mimics the WP contract

in this region and enables collusion for φ≤ 3. For the QD contract (α= 0), using eq (EC.92) the FOC w.r.t

ξ′ can be re-written, by substituting for the optimal w′ from eq (EC.93), as ∂ξ′Π = −(a−c)2(φ−1)

b(6+ξ′(φ−1)−2φ)2
. Again,

note that ∂ξ′Π< 0 for φ> 1 which implies over this region the manufacturers’ set ξ′ = 0; effectively reducing

the QD contract to WP. Finally, under the WPFF contract, the manufacturers can collude for all values of φ

(i.e., φWPFF =∞). This is a direct outcome of the Claim EC.8 which shows that using the slotting fee feature

the colluding manufacturers can ensure πA = πC . �
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