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Abstract

We present a simple, linear asset pricing model of the cross section of Mortgage-
Backed Security (MBS) returns. MBS earn risk premia as compensation for their
exposure to prepayment risk. We measure prepayment risk and estimate risk loadings
using prepayment forecasts vs. realizations. Estimated loadings on prepayment risk
decrease monotonically in securities’ coupons relative to the par coupon, consistent
with the predicted effect of prepayment on bond value. Prepayment risk appears to be
priced by specialized MBS investors. The price of prepayment risk changes sign over
time with the sign of a representative MBS investor’s exposure to prepayment shocks.
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The market for Mortgage-Backed Securities (MBS) represents over $7.3 Trillion in mar-

ket value.1 Accordingly, MBS are a very important part of fixed income portfolios. They

constitute about one quarter of the Bloomberg Barclays US Aggregate Bond Index, a key

benchmark for fixed income portfolio allocations. Despite the size and importance of the

MBS market, relatively little work has been done to systematically explain the cross section

variation in MBS returns. Our study is one of the first empirical studies of the returns

to Mortgage-Backed Securities over a long time series and broad cross section. And, to

our knowledge, our paper is the very first study of the cross section of MBS returns us-

ing average monthly returns to measure expected returns, as opposed to model-generated

option-adjusted spreads (OAS). We provide a simple, linear asset pricing model of the cross

section of treasury-hedged returns to Mortgage-Backed Securities, and find robust empirical

support for the model’s main implications. We use data on agency pass-through MBS, which

is by far the largest and most liquid category of the market for asset-backed securities.

MBS are a promising place to look for evidence of asset pricing by specialized investors in

segmented markets for several reasons. First, Mortgage-Backed Securities are complex assets

that attract sophisticated investors, and have low participation by non-experts.2 Duarte,

Longstaff, and Yu (2006) provide convincing evidence that the active management of MBS

requires significant intellectual capital, and find that MBS strategies have the highest returns

of the five fixed income arbitrage strategies they study. Second, the exposures of MBS to

prepayment shocks, one of the key drivers of MBS returns, not only varies in the cross

section, but it actually changes sign between securities with coupons below and above par.

As a result, as the composition of the market changes, the exposure of the aggregate MBS

market portfolio, and specialized MBS investors, to prepayment shocks changes from positive

to negative. Thus, using MBS, it is possible to provide evidence for intermediary asset pricing

that not only shows that the magnitude of risk premia varies over time, but that also the

sign changes.

We study the returns to agency MBS, for which prepayment risks are the primary risks

borne by active investors. Default risk is borne by the agencies rather than by MBS investors,

in exchange for a guarantee fee. In addition, changes in bond valuations and prepayments

due to interest rate movements of government securities can be hedged with US Treasury

1See www.sifma.org/research/statistics.aspx. We report the value of agency-backed pass-through
MBS from the Table describing US Mortgage-Related Issuance and Outstanding.

2Theories in which the marginal investor in risky assets holds a specialized portfolio are developed in
a growing literature, including important contributions by Shleifer and Vishny (1992, 1997), Gromb and
Vayanos (2002), Allen and Gale (2005), Gabaix, Krishnamurthy, and Vigneron (2007), Brunnemeier and
Pedersen (2009), and He and Krishnamurthy (2013).
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derivatives, up to model error. However, it is challenging, if not impossible, to hedge against

prepayment risk driven by shocks to systematic factors which do not have corresponding

traded derivatives, such as spreads between government and mortgage rates, changing credit

conditions, house price appreciation, and regulatory changes. As a result, we expect MBS

which load on the unhedgeable component of prepayment risk to earn prepayment risk premia

even if returns are effectively duration and prepayment hedged to US treasuries.

Agency MBS are created when mortgage lenders deliver pools of similar mortgage loans

to Fannie Mae, Freddie Mac, or Ginnie Mae, in exchange for an MBS with an agency

default guarantee. An investor in a pass-though agency MBS receives the interest and

principal payments from the mortgages in the pool, and is prepaid in the event of a default

or voluntary prepayment. For example, a mortgage originator might make a large number

of loans to borrowers at a mortgage rate of 4.5%. The mortgage servicer, who collects and

forwards interest and principal payments, must keep a 0.25% coupon strip as an incentive,

known as base servicing. The agencies then require a 0.25-0.50% guarantee fee to insure

the pool of loans and to forward payments to MBS investors in the event of delinquencies

or defaults. Thus, an MBS backed by mortgage loans with loan rates of about 4.5% will

typically have a coupon of 4%. As mortgage rates change, MBS with various coupons are

issued. MBS are issued in 0.5% increments. Our data consists of a cross section of about

seven coupon-level portfolios of MBS each month.

We explain the returns in the MBS cross section using a simple, easy to interpret, linear

asset pricing model which features cross section variation in prepayment risk exposures, and a

prepayment risk premium which varies with the composition of the MBS market. We start by

following the prior literature (Levin and Davidson (2005) and Chernov, Dunn, and Longstaff

(2015)), who propose two prepayment risk factors. The first risk factor is a level factor,

corresponding to a level shift of prepayments across all coupon levels. The second factor

is an incentive-sensitivity factor. In the cross section of borrowers, at any given time, low

mortgage rate borrowers have a prepayment option which is out-of-the-money, whereas high

mortgage rate borrowers’ prepayment options are in-the-money. The incentive-sensitivity

factor determines how sensitive borrowers with in-the-money options are to their particular

rate incentive. Although active MBS investors duration hedge, they cannot hedge shocks

to the level of prepayments, for example driven by house price appreciation, or shocks to

borrowers’ sensitivity to a given rate incentive, which can change with credit availability.

We construct time series for the two prepayment risk factors using the differences be-

tween forecast and realized prepayment data. We define MBS securities at the coupon level,

normalizing coupons relative to the current par coupon so that discount securities have a

negative relative coupon, and premium securities have a positive relative coupon. We then
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estimate MBS securities’ loadings on prepayment shocks using time series regressions of

coupon-level MBS returns on the prepayment risk factors. Exposure to prepayment risk

varies in the MBS cross section in a way that is highly intuitive from the perspective of a

simple partial equilibrium model. A positive prepayment shock essentially moves agency

MBS values closer to par (100). For securities with low coupons, which trade below par (say

at 98), prepayments at par are value increasing. On the other hand, for securities with high

coupons, which trade above par (say at 102), prepayments at par are value decreasing. Thus,

loadings on prepayment risk, which measure the change in valuation as prepayment shocks

realize, should be around zero for securities near par, positive for securities with coupons

below the par coupon (discount securities) and negative for securities with coupons above the

par coupon (premium securities). Moreover, the absolute value of the effect of prepayment

on MBS value should monotonically decrease with the absolute value of a security’s coupon

relative to the par coupon. We find strong evidence, robust to several different estimation

and data choices, for these predictions.

In support of theories of market segmentation or intermediary asset pricing, we show that

the sign of the price of prepayment risk depends on whether a positive prepayment shock is

wealth increasing or wealth decreasing for a specialized investor who is solely invested in the

aggregate MBS portfolio. As mortgage rates move, and the composition of the MBS market

between discount and premium securities changes, whether a high prepayment shock is good

news or bad news for the value of the aggregate MBS portfolio also changes. We show em-

pirically that the composition of the market between discount and premium securities drives

the sign of prepayment risk premia. This idea, first proposed by Gabaix, Krishnamurthy,

and Vigneron (2007), makes sense in the context of segmented markets for active investors

in complex assets, and specialized MBS investors.3

In particular, when the majority of the MBS market trades at a discount, a positive

prepayment shock is wealth increasing for a representative MBS investor who holds the

MBS universe. Accordingly, during these months, we find that the price of prepayment risk is

positive (higher prepayment states have low state prices), and the prepayment risk premium

is positive. Thus, in discount months, the pattern of average returns in the cross section is

downward sloping; discount securities have higher average returns, while premium securities

have lower average returns. On the other hand, when the majority of the MBS market

trades at a premium, early prepayment decreases the wealth of such an investor. During

3Gabaix et al. (2007), Adrian, Etula, and Muir (2014), He, Kelly, and Manela (2017), Kargar (2019)
and Haddad and Muir (2019) provide complementary empirical support for models in which the marginal
investor is a financial intermediary. Mitchell, Pedersen, and Pulvino (2007) and Mitchell and Pulvino (2012)
provide evidence of slow moving capital. Eisfeldt et al. (2019) provide a model of complex arbitrage and
apply it to the market for MBS.
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these months, the price of prepayment risk is negative (higher prepayment states have high

state prices) and the prepayment risk premium is negative. The pattern of average returns in

the cross section during premium market months is upward sloping, with premium securities

outperforming discount ones. One way of interpreting our results is that the market for MBS

is subject to limited prepayment-risk-bearing capacity. When the overall market is discount-

heavy, investors require additional compensation for buying more discount securities and

further exposing themselves to the risk that prepayments are lower than expected. When

the market is comprised by more premium securities, investors are conversely exposed to

the risk that prepayments realize higher than expected, and therefore demand additional

compensation for taking on additional premium securities. We find that a model which

accounts for the changing sign of prepayment risk premia cuts pricing errors by 64% relative

to an MBS market model with constant risk prices.

The size of the Mortgage-Backed Security market and its importance in fixed income

portfolios speak to the importance of understanding of MBS risk premia. Aside from this,

risk premia in secondary mortgage markets are important determinants of the mortgage rates

paid by homeowners and the pass-through rate of monetary policy. In addition, our study

makes several contributions relative to the existing literature.4 First, and most importantly,

our broad cross section and long time series describing the returns of the largest and most

liquid segment of the MBS market provides the most promising laboratory to document

the changing sign of prepayment risk premia. MBS average realized returns, as well as MBS

option adjusted spreads (OAS), exhibit a U-shaped pattern across relative coupons in pooled

time series cross section data. We argue, and provide substantial evidence, that the U-shaped

unconditional average return pattern is driven by conditional patterns of returns that are

downward sloping in relative coupon in discount markets, and upward sloping in premium

markets, leading to a U-shape in the pooled time series cross section. The unconditional

U-shaped pattern is emphasized by Boyarchenko, Fuster, and Lucca (2017), however our

explanation, that the OAS smile reflects prepayment risk premia which change sign over time,

stands in contrast to their proposed explanation based on constant risk premia. Accordingly,

we show that a “Prepayment Risk Premium” portfolio, which exploits the changing pattern

of returns in the cross section, has a Sharpe ratio which is 2.7 times that of a passive, value-

weighted MBS index, and 1.72 times higher than a passive portfolio that is long the highest

available coupon, and short the lowest available coupon. Moreover, failing to account for

the sign changes in prepayment risk premia leads to estimates for expected returns which

4For completeness, we note that our study follows a large literature which studies prepayment behavior
and is aimed at developing prepayment models with minimal pricing errors. Important examples include
Dunn and McConnell (1981a), Dunn and McConnell (1981b), Schwartz and Torous (1992), Stanton (1995),
Longstaff (2005), Downing, Stanton, and Wallace (2005), and Agarwal, Driscoll, and Laibson (2013).
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are misleading because positive expected returns are biased towards zero.

Second, most prior papers, including Gabaix, Krishnamurthy, and Vigneron (2007), Song

and Zhu (2016), and Boyarchenko, Fuster, and Lucca (2017) use Option Adjusted Spreads

(OAS) to proxy for expected returns. By contrast, and consistent with the vast literature

examining the cross section of equity returns, we use average realized monthly returns in our

study.5

Third, we are the first to measure prepayment risk loadings in the cross section of MBS

using data on prepayment surprises. In particular, our study employs actual realized vs. fore-

casted prepayment data to measure innovations to prepayment risk factors. That is, we use

real variables as factors, rather than model errors, or price or return data.6 Chernov, Dunn,

and Longstaff (2015) use a structural model to derive more accurate MBS prices. They

provide convincing evidence that there are systematic shocks to the level and incentive-

sensitivity of prepayments, and that these shocks are important determinants of the level of

MBS prices.7 Our focus is complementary to theirs, as our study’s explicit focus is on under-

standing the cross section of MBS returns, in the spirit of connecting to the large literature

on the cross section of equity returns.

Our study is most closely related to Gabaix, Krishnamurthy, and Vigneron (2007). Their

study provides convincing evidence that the returns to Collateralized Mortgage Obligations

are driven in large part by limits to arbitrage, as proposed by Shleifer and Vishny (1997).

The main differences between our study and theirs are that they use a shorter time period,

during which prepayment risk does not change sign, they use OAS rather than average

returns, and they study Collateralized Mortgage Obligations (CMO’s), rather than pass-

through securities. Pass-through securities constitute 90% of MBS outstanding, while CMO’s

comprise the remaining 10%. We greatly extend their results on the cross section and time

series of MBS returns by using a long time series and broad cross section of MBS pass-through

returns. Finally, Gabaix, Krishnamurthy, and Vigneron (2007) measure prepayment risk as

errors from a stylized prepayment model, rather than using actual data on prepayment

forecasts and realizations as our study does.

5The Internet Appendix Diep, Eisfeldt, and Richardson (2019) shows that OAS on agency MBS pass-
throughs displayed almost no cross sectional variation prior to 2007. Moreover, OAS are model-implied
yields. Due to differences across dealers’ prepayment models, the variation within a coupon across dealers
is large, most often larger than the variation across coupons for a single dealer.

6See Chen, Roll, and Ross (1986).
7See also Levin and Davidson (2005), who develop and calibrate a model of MBS option adjusted spreads

which includes turnover and refinancing risk factors. The notion of systematic, priced, non-interest rate
prepayment risk is also proposed by Boudoukh, Richardson, Stanton, and Whitelaw (1997).
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1 Data Description

The following is a brief introduction to our data sources and methodology. The Appendix

contains a detailed description of the data and its construction.

We utilize two sources for prepayment data. The first is Bloomberg’s monthly report

of the median dealer prepayment forecast by coupon. Bloomberg collects these data via

survey. We collect realized prepayment data for Fannie Mae 30-year fixed-rate securities by

coupon monthly from eMBS. To compute rate-based incentives to prepay, and the incentive-

sensitivity prepayment shocks, we also measure the moneyness of borrowers’ prepayment

options for each MBS coupon. To do this, we collect data on weighted average coupons

(WAC) for each MBS coupon. These WAC’s measure the underlying borrower loan rates.

Borrowers’ rate incentive is given by the WAC relative to the current mortgage rate as

reported weekly by Freddie Mac in their Primary Mortgage Market Survey (PMMS). We

use a monthly average of the weekly primary mortgage rates as the current mortgage rate.

Our primary returns data are excess returns obtained from the coupon-level sub-indices of

the Bloomberg Barclays MBS Index. Bloomberg Barclays’ fixed income indices are the most

commonly used fixed income benchmarks. Index returns are available at a monthly frequency

dating back to 1994. The index is constructed by grouping individual TBA deliverable

fixed-rate MBS pools into aggregates based on program, coupon, and vintage.8 Maturity

and liquidity criteria are then applied to determine which aggregates qualify for inclusion

in the index. Daily pricing for index pool aggregates is provided directly by the Barclays

MBS trading desk via two pricing components: (i) TBA prices are provided for each agency,

program and coupon combination within the index, and (ii) an additional payup spread for

each agency, program, coupon and origination year combination is provided and added to

the TBA price to adjust pricing for pools that are unlikely to be TBA delivered due to

their special characteristics. Each coupon-level index is thus essentially an index portfolio

of individual MBS with the same coupon.

We use the interest rate hedged returns of coupon-level aggregates of Fannie Mae 30-year

fixed-rate MBS pools to measure excess returns to MBS. Fannie Mae is the largest agency

MBS issuer. Hedged returns, denoted excess returns, are computed by Barclays using a

term structure-matched position in Treasuries based on a key-rate duration approach. In the

Online Appendix, we report results for prepayment risk loadings using Bloomberg Barclays

total index returns hedged with a simple empirical hedging model, and for alternative return

data sources including Bank of America Merrill Lynch indices and TBA returns.

8See Vickery and Wright (2013) for a detailed description of the TBA market. Gao et al. (2017) study
the relation between the TBA and cash MBS market. Song and Zhu (2016) studies MBS financing rates
implied by TBA market prices.
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A given coupon may trade at a premium or discount depending on current mortgage

rates. Thus, we define securities by their coupon relative to the current par coupon in order

to obtain securities with more stable exposures to prepayment risk. Specifically, we compute

the difference between each liquid MBS’s coupon at each date, and the par coupon on that

date. We compute the par coupon using the TBA prices of securities trading near par. We

then use data from eMBS to compute the remaining principal balance (RPB) for each MBS

relative coupon. Table 1 displays summary statistics for each coupon relative to par, from

-2% to 3.5%. Unconditionally, average MBS returns are highest for the coupons with the

largest absolute distances from par, on both sides. However, we will show that this is due to

an upward sloping pattern of average returns in premium markets, and a downward sloping

pattern in discount markets.

2 Theoretical Framework

We develop a linear pricing model in which risk premia and expected excess returns are

earned for loading (β) on priced prepayment risk with prepayment risk premia (λ). In par-

ticular, following Levin and Davidson (2005) and Chernov, Dunn, and Longstaff (2015), to

measure prepayment risk shocks and exposures, we posit a two-factor model, in which pre-

payment shocks arise from innovations to the level of prepayments, x, and innovations to the

sensitivity of prepayments to interest rate incentives, y. It is important to understand that

the incentive-sensitivity shock y does not capture sensitivity to interest rates. Instead, the

incentive-sensitivity shock captures how likely a borrower with an in-the-money prepayment

option is to refinance or prepay, conditional on a given rate incentive. Active MBS investors

use a dynamic interest rate hedge to earn the excess returns to MBS. They price and hedge

their portfolios using pricing models in which interest rates are the main (and often only)

stochastic state variable. However, other aggregate variables which drive borrowers prepay-

ment decisions, such as house price appreciation and credit conditions, do not have traded

derivatives, making hedging changes in these systematic state variables costly, imperfect, or

infeasible. Thus, although MBS investors duration hedge, the value of their portfolios are

still exposed to systematic variation in the level and incentive-sensitivity of prepayments,

conditional on interest rate realizations. Our model is aimed at pricing prepayment risk in

treasury-hedged MBS.9

9See Hanson (2014) for complementary evidence that duration risk premia in treasury markets vary with
the supply of MBS. When the supply of duration risk in MBS increases, active MBS investors increase
their demand for interest rate risk hedges (short treasury futures), and passive MBS investors reduce their
demand for treasuries. Vayanos and Vila (2009) provide a theory of preferred habitat which builds on theories
of segmented markets and specialized investors, to explain limited market capacity for duration risk. We
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Further, we assume a segmented market in which the stochastic discount factor (SDF)

arises from a representative MBS investor whose portfolio consists of the universe of agency

pass-through MBS, net of a dynamic treasury hedge. Such a stochastic discount factor can

be motivated by specialized investors as in Gabaix, Krishnamurthy, and Vigneron (2007)

and He and Krishnamurthy (2013).10 In particular, we assume the following SDF:

dπt
πt

= −rfdt− γx,M dZx
t − γy,M dZ

y
t (1)

where γx,M is the price of risk for the “level” prepayment risk factor, xt, and γy,M is the price

of risk for “incentive-sensitivity” risk, yt, and M ∈ {DM,PM} indicates that risk prices

are conditional on market type; either discount (DM) or premium (PM). We assume the

Wiener processes for the level and incentive-sensitivity of prepayments, dZx
t and dZy

t , are

independent, since, as we will show below, the empirical correlation between the two shocks

is 0.13 and statistically insignificant.11 Market type is determined by which security type is

predominant, either discount (price below par) or premium (price above par). The type of

security which is predominant in terms of remaining principal balance determines whether

prepayment is either value increasing or decreasing for the overall MBS market. State prices

are high in bad states of the world for the value of the aggregate MBS portfolio. When

the market is discount (premium), bad states are states with lower (higher) than expected

prepayment. For example, in a discount market, lower prepayment states (dZk
t < 0) are bad

states. In discount markets, γk,DM > 0, indicating that such states have a high state price

deflator according to Equation (1).

We then derive our linear asset pricing model by computing the difference in drifts in

expected MBS returns under the physical and risk-neutral measure as follows:

EM [Reidt] = γx,M σx︸ ︷︷ ︸
λx

βi
x︷ ︸︸ ︷

∂P i

∂x

1

P i
dt+ γy,M σy︸ ︷︷ ︸

λy

βi
y︷ ︸︸ ︷

∂P i

∂y

1

P i
dt, (2)

emphasize that our excess returns are in net of the interest rate risk premium studied in these papers.
10Supporting the importance of specialized active investors in MBS pricing, MBS dealer research regularly

reports the “net supply” of MBS, i.e. the supply that exceeds the stable demand from passive buy and
hold investors, and which must be absorbed by the marginal active investors such as hedge funds. See, for
example Jozoff, Maciunas, Ye, and Kraus (2017).

11If x and y were indeed correlated, one would expect the correlation between the level and incentive-
sensitivity of prepayments to be positive, since we show below that both appear to be driven in the same
direction by macroeconomic variables such as house price appreciation and bank lending standards. Our
theory is qualitatively unchanged in this case, since a positive covariance does not change the sign of the
risk premia.
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where we use the notation EM [Rei] to denote expected excess returns conditional on market

type M ∈ {DM,PM}, and where e denotes the excess return after treasury hedging, and

i denotes the security. Prepayment risk premia, λk,M ≡ γk,M σk, which compensate investors

for the covariation of payoffs with good and bad prepayment states, have the same sign

as prepayment risk prices, γk,M. Equations (1) and (2) imply that positive excess returns

are earned by securities whose payoffs have a negative instantaneous covariance with the

stochastic discount factor, i.e. those securities which have a high payoff in states with low

state prices.

We define securities by the coupon of the MBS security relative to the par coupon.

Simplifying notation, this leads to the following conditional linear model, familiar-looking

from linear equity pricing models, for the cross section of treasury-hedged MBS returns:12

EM [Rei] = λx,Mβ
i
x + λy,Mβ

i
y. (3)

Following, Gabaix, Krishnamurthy, and Vigneron (2007), we develop the intuition for our

model using a first order approximation of MBS prices around the no prepayment uncertainty

case. There is a constant par coupon rate, r, which represents the opportunity cost of capital

for the representative, specialized, MBS investor who can reinvest portfolio proceeds in par

MBS securities, as in Fabozzi (2006). There is a securitized mortgage pool (MBS) i with

prepayment rate φi and coupon ci. We normalize the initial mortgage pool balance bi0 to

one. The change in the remaining principal balance, bit, is:

dbit
dt

= −φibit. (4)

The first order linear approximation of the value of the MBS pass-through around the no-

prepayment-uncertainty case is then given by:

P i
0 ≈

∫ ∞
0

e−rt
(
bitc

i − dbit
)
dt = bi0 + (ci − r)

∫ ∞
0

e−(r+φi)t dt.

Simplifying, we get the following intuitive representation of the value of the MBS as its par

value plus the value of the coupon strip:

P i
0 ≈ 1 +

ci − r
r + φi

. (5)

12See Cochrane (2005) for a textbook description of the theory and econometrics of linear asset pricing
models, including models with conditioning information for risk prices. Jagannathan and Wang (1996) and
Nagel and Singleton (2011) document the importance of conditioning information in equity markets, and
provide econometric frameworks for evaluating competing conditional models. Although the continuous time
β’s are not exactly OLS, we preserve notation for expositional purposes.
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The value of the coupon strip increases in the difference between the coupon and current

rates, and it is negative for discount securities and positive for premium securities, since

discount securities have coupons lower than the par coupon, while premium securities have

coupons higher than the par coupon. Accordingly, the value of the coupon strip decreases

with the speed of prepayment if ci−r is positive, and increases with the speed of prepayment

if ci − r is negative.

3 Prepayment Risk Factors and Factor Loadings

This section first derives the main predictions from the theoretical framework outlined in

Section 2 for security risk loadings on the two prepayment risk factors. We derive the

implied theoretical loadings from Equation (5). The fundamental intuition for the theoretical

results describing security risk loadings is straightforward given the right hand side of this

equation. The prepayment rate φi acts like an additional discount rate for the cash flows in

the numerator. When ci < r (discount securities), the numerator is negative and an increase

in the prepayment rate essentially discounts that negative cash flow more, increasing the

value of the discount MBS. When ci > r (premium securities), the numerator is positive,

and an increase in discounting in the denominator reduces the value of the premium MBS.

Thus, Equation (5) has the following two key implications for prepayment risk loadings:

First, any shock that increases prepayments will raise the value of discount securities, and

decrease the value of premium securities. Second, the absolute value of the effect of any

prepayment shock on the value of the security should be monotonically decreasing in the

absolute value of the difference between that MBS’s coupon and the current par MBS coupon.

These basic predictions do not depend on what model is specified for prepayment, how-

ever, to estimate empirical loadings we need time series data on prepayment shocks. To

this end, we specify a simple, piece-wise linear prepayment model which is motivated by the

prior literature, and is also consistent with prepayment “S-curves” used by practicioners.

Our prepayment model features two shocks, a level shock and an incentive-sensitivity shock.

Using this simple prepayment model, we construct our empirical measures for surprises in

the level and incentive-sensitivity of prepayments. Finally, we test the main predictions of

the model using the time series of prepayment surprises and monthly returns on coupon-level

indices for duration hedged MBS.

Our theoretical and empirical results for security-level factor loadings on prepayment risk

suggest that a simple characteristic, negative relative coupon, or r − ci, effectively captures

the sensitivity of coupon-level MBS to prepayment shocks.
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3.1 Theoretical Predictions: Factor Loadings

Approximate expressions for the factor loadings on the level and incentive-sensitivity shocks,

βix and βiy in Equation (3), can be derived from the first-order approximation in Equation

(5) as follows:

βix =
∂P i

∂x

1

P i
=
∂P i

∂φi
∂φi

∂x

1

P i
=

r − ci

(r + φi) (φi + ci)

∂φi

∂x
, (6)

and,

βiy =
∂P i

∂y

1

P i
=
∂P i

∂φi
∂φi

∂y

1

P i
=

r − ci

(r + φi) (φi + ci)

∂φi

∂y
. (7)

Given that a positive shock to either x or y implies an increase in prepayment, these ex-

pressions give us the first testable hypothesis of our model, which we state in Proposition

1:

Proposition 1. If ci − r > 0, then βix < 0 and βiy < 0. If ci − r < 0, then βix > 0 and

βiy ≥ 0.

In other words, premium securities, for which ci − r > 0, will have negative loadings on

level and incentive-sensitivity risk. Intuitively, these securities have coupons that are above

current mortgage rates, and so their value deteriorates with faster prepayment. On the other

hand, discount securities, for which ci− r < 0, load positively on prepayment risk. Discount

securities have coupon rates that are below the opportunity cost of re-invested capital, and

hence their value increases if prepayment speeds increase.

We further specify the following stylized model for prepayment, where our notation now

allows prepayment to vary over time in order make the connection with our empirical work

clear:

φit = xt + yt max
(
0, li − lt

)
. (8)

We use li to denote the borrowers’ loan rates for the loans underlying the MBS with coupon i

(i.e. the coupon i MBS’s “Weighted Average Coupon” or WAC), and lt to denote the current

mortgage loan rate (measured by the Freddie Mac Primary Mortgage Market Survey rate,

for example). We assume that ci − r = li − lt, so that the moneyness of the borrowers’ long

prepayment options matches that of the MBS investors’ short options. This assumption

is not crucial but it helps facilitate exposition. Although we abstract from variation in the

spread between the MBS coupons, ci, and the underlying borrowers’ loan rates, li, we will use

separate data on each of these rates in our empirical work and so we use separate notation

for clarity. The moneyness of borrowers’ prepayment options (“borrower moneyness”) is

measured by li − lt. The moneyness from investors’ perspective (“investor monenyess”), or

relative coupon, ci − r captures how the security’s value changes with prepayment, which
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moves the security’s value closer to par value. We use borrower moneyness to estimate the

prepayment risk factors, since the borrowers themselves make the prepayment decisions.

Then, to define securities, and to study financial payoffs and returns to these securities, we

use relative coupon, or investor moneyness.

Figure 1 plots prepayment as a function of borrower moneyness and the realization of

the x and y prepayment factors. Using this model, we have for discount securities:

φi,disct = xt, (9)

and for premium securities

φi,premt = xt + yt max
(
0, li − lt

)
. (10)

Superscripts denote securities i by relative coupon, i = ci − cpar, and prem indicates that the

MBS is a premium security, i.e. ci − cpar > 0. Further, we have that for discount securities,

∂φi,disc

∂x
= 1 and

∂φi,disc

∂y
= 0. (11)

For premium securities, we have

∂φi,prem

∂x
= 1 and

∂φi,prem

∂y
=
(
li − lt

)
. (12)

Combining the expressions for how prepayment changes with shocks to x and y in Equa-

tions (11) and (12) with the expressions for βix and βiy in Equations (6) and (7), we have the

following additional testable implications for the two prepayment risk factor loadings:

Proposition 2. For discount securities, using i to denote the security defined by ci−r where
for discounts ci − r < 0, we have:

(i) βi,discx is monotonically decreasing in ci. That is, we expect securities which trade at
a larger discount to par to have larger positive loadings on the level prepayment risk
factor.

(ii) βi,discy = 0.

For premium securities, using i to denote the security defined by ci − r where for premiums
ci − r > 0 we have:

(iii) |βi,premx | is monotonically increasing in ci. That is, we expect securities which trade at a
larger premium relative to par to have more negative loadings on the level prepayment
risk factor.
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(iv) |βi,premy | is monotonically increasing in ci. That is, we expect securities which trade
at a larger premium relative to par to have more negative loadings on the incentive-
sensitivity prepayment risk factor.

Proposition 2 says that prepayment risk loadings increase in absolute value as one moves

away from the par coupon in either direction.

3.2 Empirical Results: Risk Factors and Factor Risk Loadings

We test these theoretical predictions from Propositions 1 and 2 using data on prepayment

risk factors and the excess returns to MBS securities defined by their coupon relative to the

par coupon. This requires us to construct time series for the prepayment risk factors, which

we acheive using data on realized vs. predicted prepayments along with the parsimonious

prepayment model in Equation (8).

3.2.1 Constructing Prepayment Risk Factors

In order to measure the prepayment risk factor loadings, βix and βiy, using time series regres-

sions, we need time series for shocks to xt and yt. To construct these series, we use differences

between forecasted and realized prepayments as reported on Bloomberg. Each month, deal-

ers provide Bloomberg with their forecasts for prepayments for each MBS coupon. We use

the Bloomberg-reported median of these coupon-level forecasts. We obtain realized prepay-

ments for each MBS coupon from eMBS. Realized prepayments are reported on the eMBS

website on the 4th business day of the month for the prior month. The Appendix contains

further details on the data and our methodology.

The difference between prepayment forecasts and realized prepayments measures inno-

vations in prepayments relative to market participants’ forecast models, or, “prepayment

surprises”. The basic idea behind the estimation of the level and incentive-sensitivity pre-

payment risk factors is to estimate the prepayment function in Equation (8) at each date

using the forecast and realized prepayment data by coupon. The difference between the

realized and forecasted “intercept” of prepayments represents a surprise in the level of pre-

payments, xt. Forecasters may underestimate the level of prepayments if they underestimate

house price appreciation, for example. The difference between the realized and forecasted

“slope” of prepayments as a function of borrowers’ interest rate incentives represents a sur-

prise in the incentive sensitivity of prepayments, yt. For example, some months prepayment

occurs at much higher rates for borrowers with a 2% rate incentive than for borrowers with

no rate incentive (a high slope), while in other months all borrowers prepay at similar rates

(a low slope). The difference between the realized and forecasted yt captures the median pre-
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payment modeler’s error in forecasting this slope. Forecasters may underestimate the slope

of prepayments if there is an unanticipated loosening of credit standards, for example. It is

crucial to note that for both factors, prepayment surprises do not measure rate surprises, but

rather surprises in how borrowers behave conditional on their loan rate relative to current

mortgage rates.

Specifically, we estimate innovations to the level and incentive-sensitivity prepayment risk

factors as follows. First, we estimate the following cross section regression across available

underlying borrower loan rates using the forecast data in each month:

ppmti,forecastt = xforecast

t + yforecast

t max
(
0, li − lPMMS

t

)
+ εit. (13)

We use the Weighted Average Coupon (WAC) of the loans underlying MBS with a particular

coupon i to measure borrower loan rates li. The prevailing mortgage rate lPMMS
t is obtained

from the Freddie Mac Primary Mortgage Market Survey (PMMS). The second term is pos-

itive for MBS with underlying borrower loan rates which are above prevailing rates, and

zero otherwise. In this regression, the estimated intercept, x̂forecast
t measures the forecasted

level of prepayments, while the forecasted slope on the rate incentive for borrowers’ with

in-the-money prepayment options is estimated by ŷforecast
t . Next, we run the same regression

in realized prepayment data for each month:

ppmti,realizedt = xrealized

t + yrealized

t max
(
0, li − lPMMS

t

)
+ εit. (14)

For parsimony, we use the notation xt and yt to denote these innovations. Innovations in

the realized relative to forecasted level of prepayments xt are measured as

xt = x̂realized

t − x̂forecast

t . (15)

Similarly, innovations in the realized relative to forecasted incentive-sensitivity of prepay-

ments yt are measured as:

yt = ŷrealized

t − ŷforecast

t . (16)

Figure 2 presents a graphical representation of the estimation of xt and yt. Figure 3 presents

four sample months of the forecast and realized prepayment curves that are used for estima-

tion.

Figure 4 plots the time series for the two prepayment risk factors. The correlation be-

tween the innovations in x and y is low, at 0.13. The series are, however, autocorrelated

(0.78 for x and 0.66 for y). We argue that despite this measured autocorrelation, these inno-

vations should be considered “surprises” in the context of MBS price setting behavior, and
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we use the raw surprise series in our baseline estimation. However, results using errors from

first-order autoregressions, reported in the Internet Appendix, are nearly identical. Given

industry practices, it is clear why prepayment forecast errors, or surprises, are persistent.

It is standard for dealers and investors to use statistical models to forecast prepayment.

When data which is inconsistent with the model arrives, they face a tradeoff in the deci-

sion to update their model. If they update the model too often, then it is not a model,

but instead just a statistical description of current data. On the other hand, if the data

consistently contradicts the model over a longer time period, parameters are updated. This

behavior leads to slow-to-update prepayment models, and persistent prepayment model er-

rors. Despite being persistent, then, prepayment errors are correlated with returns because

investors’ prepayment-model output feeds directly into MBS pricing on both the buy and

sell side. We show that the prepayment errors constructed using Equations (15) and (16)

have the theoretically predicted relationship to coupon-level excess returns using time series

regressions, supporting the interpretation of the xt and yt series as shocks, since expected pre-

payment should not drive returns. The largest innovations also confirm this interpretation.

The largest xt innovation occurs in January of 2009, when refinancing prepayments declined

due to tight credit. The largest yt innovation occurs in March of 2010, when prepayments

increased due to Fannie Mae’s buyouts of delinquent loans with higher coupons.

Our paper is the first to provide time series of prepayment surprises, measured using data

on forecasted vs. actual prepayments, and to show that these prepayment surprises have the

theoretically predicted relationship to coupon-level excess returns. This contribution is im-

portant, because, although prepayment risk is known to be the most important risk factor

driving excess returns to MBS, the empirical link between actual prepayment surprises and

realized returns has not been previously documented. We also link our measure of prepay-

ment surprises to the underlying systematic macroeconomic drivers. Although interest rates

are a key stochastic state variable governing borrowers’ prepayment decisions, prepayment

varies considerably over time, even conditional on rate realizations.

Practicioners sometimes refer to systematic prepayment waves net of interest rate in-

centives (i.e. from level or incentive-sensitivity shocks) as a “media effect”. However, we

show that the level and incentive-sensitivity of prepayments are statistically significantly

related to intuitively appealing underlying aggregate state variables. Table 2 presents the

correlation of the change in the national US house price index, real personal consumption

expenditure growth, the CRSP value weighted excess return on the stock market, the change

in bank mortgage lending standards, and the Baa-Aaa credit spread with the estimated level

and incentive-sensitivity prepayment risk factors. As expected, prepayment is positively

correlated with changes in the house price index, and the relationship between house price
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appreciation and both the level and incentive-sensitivity of prepayments is highly statistically

significant. The correlation between the level of prepayments and house price appreciation is

particularly high (0.57) and statistically significant (t-stat of 11.44), which is consistent with

the notion that cash-out refinancing drives borrowers to prepay regardless of their rate incen-

tive (or dis-incentive) when house prices rise substantially. Both the level and rate-sensitivity

of prepayments are also positively correlated with personal consumption expenditure growth,

an effect that may be either related to consumer sentiment, or to cash-out refinancing. On

the other hand, both the level and incentive-sensitivity of prepayments decline when credit

spreads widen, or when banks tighten lending standards, which makes sense since wider

spreads and tighter standards inhibit refinancing. We note that the relationship between all

of these macroeconomic drivers and prepayment appears to be stronger for the level factor,

both in terms of magnitude and statistical significance. This is consistent with the findings

in Chernov, Dunn, and Longstaff (2015), who report a higher risk premium for turnover, or

level, prepayment risk.

The fact that prepayment, which drives the value of premium securities down, tends

to be higher in states of the world that are “good” for the representative household (high

house price appreciation, positive consumption growth, and good credit conditions) was also

pointed out by Gabaix, Krishnamurthy, and Vigneron (2007), who showed a positive corre-

lation between consumption growth and prepayments. The fact that prepayments increase

in good times for consumers makes the high average observed excess returns of premium

securities particularly surprising. Because premium securities decline in value when prepay-

ments increase, they are a hedge against bad house price, consumption, or credit condition

states, and this would drive returns down in a representative consumer/investor asset-pricing

model.13 We show in the Internet Appendix that the price of risk in the cross section of MBS

estimated using a value-weighted equity market CAPM model is indeed negative, providing

further support for segmented markets, and specialized investors, for MBS.

3.2.2 Estimating Factor Loadings

With time series data on the prepayment level and incentive-sensitivity factors in hand, we

estimate prepayment risk factor loadings using the following time series regression for each

relative coupon i:

Rei
t = ai + βixxt + βiyyt + εit. (17)

13Table 1 shows that, unconditionally, the deep premiums display the highest excess returns in the cross
section.
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Our baseline estimation uses the Barclays MBS Index Excess Returns, available at the

coupon level. In the Internet Appendix, we show that estimations using Bank of America

Merrill Lynch (BAML) MBS Index Excess Returns, Barclays returns that are hedged using

empirical rate sensitivities, and TBA returns as reported by a major dealer bank, hedged

with US treasury futures using that dealer’s reported analytical key rate durations, yield very

similar results. We use Barclays excess returns as our baseline return data because Barclays

has the best time series and cross section coverage, and because using their analytical hedge

gives us fewer free parameters relative to an empirically constructed hedge.14 Barclays uses a

proprietary prepayment model to compute key-rate durations, and constructs hedged MBS

returns using these key-rate durations and US treasury returns. Details regarding the index

returns construction can be found in Phelps (2015). We also provide further detail in the

Appendix, including the precise timing of measurement for each variable. We define securities

by their coupon relative to the par coupon, rather than by their absolute coupon. This is

because the sensitivities of securities’ values with respect to prepayment (the risk factor

loadings) vary less over time for securities defined by their relative coupon than by their

absolute coupon, as can be seen in Proposition 2. For example, an MBS with a 5% coupon

has varied from being discount to being premium over our sample. When the 5% coupon

was discount, its value increased with prepayment speeds, and vice versa when it became

premium. In fact, we will show that the characteristic we use to define securities, relative

coupon, has the theoretically predicted declining relationship with prepayment risk factor

loadings. This supports our model as well as using relative coupon to define a “security”.

Table 3 presents our estimated loadings when we impose the restriction that βdisc
y = 0,

as in a strict interpretation of our model.15 First, we test Proposition 1, using a one-sided

test that prepayment risk factor loadings are positive for discount securities and negative

loadings for premium securities, and a two-sided test that loadings are not significantly

different from zero for securities near par. We find substantial support for Proposition 1. In

particular, the loadings on the level factor are statistically significantly positive at the 5%

level for the -1.0% and -0.5% discount securities. The loadings for the remaining two discount

securities are also positive, but the small number of observations for those coupons limits

statistical significance. Loadings are near zero, and not statistically significantly different

from zero, for the par coupon, and for the relative coupons just above par, from 0.5% to

14The Internet Appendix also reports results using short term prepayment forecasts from a single dealer,
and results for Barclays excess returns empirically hedged to rates and rate volatility.

15The intercepts in all regressions used to estimate factor loadings are less than 0.1%, and insignificant,
for all securities, and so we do not report them. Due to data limitations, we use full sample estimates for
the factor loadings. However, we provide evidence of fixed loadings for securities defined by relative coupons
in the Internet Appendix.
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1% premium. Fixed costs to refinancing imply that borrower rate incentives need to exceed

zero by a positive amount for their prepayment option to be in the money, so it makes sense

that loadings are statistically insignificant for par and only slightly premium coupons. The

results for more premium securities also support Proposition 1. Loadings on the level factor

are statistically significantly negative at the 10% level for securities more than 1% above par,

and at the 1% level for securities 3% or more above par. Loadings on the rate-sensitivity

factor are statistically significantly negative at the 1% level for securities 2% or more above

par.

Proposition 1 uses only the pricing model, without a specific model for how x and y affect

prepayments across the coupon stack. Turning to the predictions of Proposition 2, which

uses the prepayment model in Equation (10), we see that the results also closely match each

of the more detailed predictions of the model stated in Proposition 2. Not only do the signs

match the model’s predictions, but also most all of the estimated loadings for both x and

y are indeed decreasing in the absolute value of the relative coupon. Figure 5 plots the

coefficients, along with their standard errors, for a visual description of the fit between the

model’s predictions and our empirical findings. In results from an unrestricted regression,

shown in the Internet Appendix, none of the discount securities’ loadings on the incentive-

sensitivity factor, y are statistically significantly different from zero, confirming Part (ii) of

Proposition 2. We provide two statistical tests for the remaining predictions of Proposition 2,

namely Parts (i), (iii), and (iv). First, we run cross section regressions of estimated loadings

on relative coupon. The slope of the level factor loadings on relative coupon is -1.19% and

is highly significant at the 0.01% level. Similarly, the slope of the incentive-sensitivity factor

loadings on relative coupon is -1.96% and is also highly significant at the 0.01% level.

Second, we run a much stricter test for the monotonicity of the factor loadings by testing

whether the factor loadings for each relative coupon are statistically significantly different

from the loadings on each of the other coupons, in the expected direction. Specifically,

we use dummy regressions to test for the significance and signs of the differences between

coefficients on the level and incentive-sensitivity factors across the relative-coupon stack.

The test consists of twelve panel regressions, one for each “base” coupon from 2% discount

to 3.5% premium. In each panel regression, we designate one coupon as the base coupon,

and drop all the terms associated with that coupon from each summation. Each regression
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can be stated as:

Rei
t = a+

3.5%∑
i=−2.5%

1iδi + βxxt +
3.5%∑

i=−2.5%

1iφixt + (18)

1base∈{0.0%:3.5%}βyyt +
3.5%∑
i=0.0%

1iθiyt + εit,

where the notation 1i is used to denote dummies equal to one for each included coupon

i. The coefficients δi measure the intercept for each included coupon, relative to the base

(dropped) coupon. The coefficients φi measure the differences in loadings on the level factor

x, for each included coupon relative to the base coupon. Then, βx measures the loading on

the level factor for the base coupon, which has no associated dummy interaction with xt.

The coefficients θi measure the difference in loadings on the incentive-sensitivity factor y,

for each included coupon relative to the base coupon. We restrict loadings on the incentive-

sensitivity factor to be zero for discount securities. For premium coupons, βy measures

the loading on the incentive-sensitivity factor for the base coupon, which has no associated

dummy interaction with yt.

We verify that the coefficients βx and βy on xt and yt indeed match the loadings for the

base coupon from Table 3 for each of the 11 regressions. We use one-sided tests of whether

the coefficients φi and θi, which measure the difference in the level and incentive-sensitivity

factors relative to the base coupon, are significant and have the expected sign. Our test is

based on standard errors clustered by time. Tables 4 and 5 present the t-statistics on the

φ and θ coefficients, respectively, and show that the estimated loadings show statistically

significant differences, with the expected sign for all coupons with sufficient data and/or

sufficient distance from the base coupon.16

This test is very stringent, since it relies on relative coupon being the only cross sec-

tion differences in prepayment exposures. In practice, vintage and other effects also play a

role, and, in addition to introducing noise, this can diminish the spread in betas. This is

particularly true for close coupons which may have similar unmeasured characteristics. Fur-

thermore, we note that the theoretical loadings in Equations (6) and (7) are approximations

that rely on the stylized, piecewise-linear prepayment model.17 Still, we find statistically

significant differences, with the expected sign, for the majority of the estimated loadings.

Next, we discuss robustness checks. In the Internet Appendix, we also show that the

16The associated coefficients are reported in the Internet Appendix.
17In addition, the implied values depend on expectations of prepayment and interest rates, which are

difficult to measure, and, in practice should differ by relative coupon depending on the months that any
particular relative coupon appears in our sample.
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predicted pattern of loadings holds using different hedging methods, different return sources,

a different prepayment forecast source, in an unrestricted regression, and controlling for

within-month interest rate changes which may affect realized returns. Here, we present

results showing that the same pattern of loadings holds when controlling for standard asset

pricing factors. Table 6 presents the results. The loadings are very similar to those in Table

3, and continue to follow the pattern from Proposition 1 and Proposition 2 even with the

additional controls.

Perhaps the most interesting results in Table 6 are those for the tradable intermediary

asset pricing factor. The loadings are significant, but fairly flat. The loadings are, however,

slightly higher for the coupons around par, which earn the lowest returns in the cross section.

We show in the Internet Appendix that, when not controlling for prepayment shocks, the

price of risk for the intermediary factor is indeed significantly negative in the cross section of

MBS returns.18 We use the tradable intermediary return series provided by He et al. (2017)

(HKM), which is available monthly. These intermediary returns are at the bank holding

company level, and while banks are exposed to prepayment risk, they also make fees on the

mortgage origination side that can offset prepayment effects. Ideally, one would want to use

the returns of the trading desk, or the broker-dealer segment of the bank, as in Adrian, Etula,

and Muir (2014), as well as allowing loadings to change sign as the predominance of discount

or premium securities in the overall market (and thus the trading desk’s portfolio) changes.

However, data limitations using the quarterly data of Adrian et al. (2014) make such analysis

challenging.19 Another important consideration is that banks’ trading desks are exposed to

equity and credit risks. Prepayment, which affects premium securities negatively, tends to

occur when equity markets and credit markets are healthy (see Table 2).

In general, there are two main channels through which intermediary wealth or returns

may affect asset returns, namely through active trading or through intermediation. We argue

that prepayment risk in the cross section of MBS is priced by active traders which may only

be a small part of overall bank holding company returns. Teasing out the intermediation

vs. trading role of intermediaries in asset pricing presents an interesting challenge for future

research. Haddad and Muir (2019) is a promising step in this direction.

In summary, in support of Proposition 1, we present the following results in the main

text: (1) One-sided tests that factor loadings in our baseline estimation are positive for

discount coupons, and negative for premium coupons (Table 3)20 and (2) Similar loading

18Below, we show that the price of risk is negative, but insignificant, when controlling for prepayment
shocks.

19We found no evidence of intermediary factor loadings changing signs with market type using either the
He et al. (2017) or the Adrian et al. (2014) measure.

20Analogous results with unrestricted loadings on y appear in the Internet Appendix.
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estimates when controlling for standard asset pricing factors (Table 6). The following addi-

tional evidence in support of Proposition 1 appears in the Internet Appendix: (3) Similar

loading estimates using an empirical rate hedge and an empirical rate and volatility hedge (4)

Similar loading estimates from TBA returns and BAML index returns (5) Similar loadings

using short-term forecasts from a single dealer (6) Similar loading estimates using AR(1)

errors in the x and y series, and (7) Similar loading estimates controlling for within-month

interest rate changes. In support of Proposition 2, we have presented the following results:

(1) Regression tests that the slope of the factor loadings are negative across the relative

coupon stack, (2) Tests for the sign and statistical significance for the differences in load-

ings between each relative coupon and all other coupons (Tables 4 and 5). Taken together,

we argue the results of these tests strongly support the theoretically predicted patterns of

prepayment risk loadings across relative coupons.

4 Factor Risk Premia

The goal of this section is to document the fact that the risk premium on prepayment risk

changes sign with the market composition of MBS. Figure 6 plots the market composition

over time, and shows that the contribution of discount and premium securities to the over-

all MBS market portfolio varies considerably. When the market is primarily composed of

discount securities, the value of the overall MBS market increases, ceteris paribus, when

prepayment increases. By contrast, when the market is primarily premium, an increase in

prepayment causes a deterioration in the value of the overall MBS market. We argue that ac-

tive, specialized MBS investors, who hold a treasury-hedged MBS portfolio, are the marginal

investors in MBS, and that the sign of their exposure to prepayment risk drives the sign of

prepayment risk premia.

Simple evidence for this is given in Table 7, which presents summary statistics by relative

coupons and for the subsamples defined by whether the predominant security in terms of

remaining principal balance (RPB) is premium or discount. As can be seen in the top

panel, when the market is primarily discount, MBS investors are concerned that prepayment

will realize too low, and require higher returns to hold discount securities, which increase

their exposure to low prepayment states. By contrast, premium securities provide a hedge

against low prepayment states, and earn negative returns on average in discount markets.

In premium markets, the opposite is true, as shown in the bottom panel. During premium

markets, investors are concerned about high prepayment states, and require higher returns for

premium securities whose value declines when prepayment is higher than expected. Discount

securities provide a hedge and earn slightly negative returns on average in premium markets.
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Figure 7 shows this pattern visually, by plotting average returns by relative coupon for all

months (green solid line), and then by averaging within discount (red dashed line), and within

premium months (blue short-dashed line) only. The downward sloping pattern of average

returns as a function of relative coupon in discount markets, and the upward sloping pattern

in premium markets, is readily apparent. We also note that averaging returns unconditionally

leads to biased expected return estimates. In particular, unconditional averaging leads to

a U-shaped pattern for expected returns, as can be seen in the green solid line in Figure

7 and in Table 1. This U-shape underestimates the positive returns that can be earned by

holding a portfolio of MBS which places higher weights on the predominant coupon-type,

while underweighting or shorting the less-representative coupon type. We document the

returns to such a strategy in Section 4.4.

4.1 Theoretical Results: Factor Risk Premia

We proceed by estimating factor risk premia using a baseline single-factor model motivated

by our theory, namely a model in which prepayment exposures are summarized by negative

relative coupon, r − ci. The main results of Section 3.1, presented in Propositions 1 and

2, show that loadings on both the level and incentive-sensitivity prepayment factors depend

monotonically on r−ci. This can be readily seen in Equations (6) and (7). Any independent

variation in factor loadings comes from the specification of how prepayment varies with each

shock, namely the terms ∂φi

∂x
and ∂φi

∂y
. Our simple, piecewise-linear prepayment model yields

Equations (11) and (12) for these terms. It is clear from these equations that, in cross-

section or panel regressions, the loadings on the level and incentive-sensitivity factors should

be highly correlated. This makes it challenging to estimate separate risk premia for each

factor. We confirm this high correlation empirically. We present the distribution of the cross

section correlation between the two factor loadings by month in the Internet Appendix.

Only 6% of months have a cross section correlation between factor loadings of less than

50%, and one third of the correlations are above 70%. Given the highly correlated level

and incentive-sensitivity loadings, we focus our estimation of time varying prepayment risk

premia on a characteristic-based model, using r−ci, or negative relative coupon, as the single

characteristic. Still, an important contribution of our paper is to show that this characteristic

indeed captures exposure to prepayment risk, measured using data on prepayment surprises,

as documented in Section 3.2. An additional benefit of the characteristic model is that

it avoids estimated regressors. We provide results, consistent with the theory, using the

estimated empirical loadings on the level and incentive-sensitivity shocks in the Internet

Appendix.
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Using the characteristic model, expected returns are given by:

EM [Rei] = λM (r − ci), (19)

where M denotes the market type, either premium or discount.21 Whether a high prepayment

state is a “good” or “bad” state of the world (i.e. whether the price of prepayment risk γ

in Equation (1) is either positive or negative) depends on whether the overall MBS portfolio

is discount or premium, i.e. the prices of prepayment risk are determined by the sign of the

change in wealth for a representative, specialized MBS investor who invests in the universe

of MBS securities. To fix ideas, consider that, in a strictly segmented market and under the

standard assumptions necessary to guarantee the existence of a representative agent, we can

write the wealth of the representative MBS investor that holds the MBS portfolio as:

W =
∑
i

P i RPBi

where P i is given in equation (5), and RPBi denotes the remaining principal balance of

security i. It is clear that ∂W
∂φ

, or the change in the value of the MBS portfolio with a change

in prepayment, inherits the sign of the partial derivative of the price of the majority RPB

security type with respect to the shock. As long as the representative investor dislikes states

of the world in which their wealth declines, we have that investors will put a high value on

states of the world in which wealth declines. That is, if ∂W
∂φ

< 0, as is true in a premium-

heavy market, then the state price for a positive prepayment shock γM will be negative,

and the risk premium λM will be negative, implying a higher expected return for securities

which load negatively on prepayment shocks (decline in value given a positive prepayment

shock). In other words, investors will require compensating positive risk premia for holding

securities whose returns are positively correlated with changes in their wealth, and which

security type this is changes with the overall MBS market composition.22 MBS investors will

require positive risk premia for the predominant security type, either discount or premium.

21While the sign of prepayment risk depends only on the predominant security type, our baseline estimation
allows for the magnitude to vary with how heavily discount or premium the market composition is. However,
here, we drop the subscript t for parsimony, and condition only on the predominant security type.

22Note that we do not need strict market segmentation. High state prices when investor wealth declines can
be motivated by value at risk constraints, or compensation concerns. See Shleifer and Vishny (1997), Gromb
and Vayanos (2002), Allen and Gale (2005), Brunnemeier and Pedersen (2009) or He and Krishnamurthy
(2013) for models in which the wealth of specialized investors drives the returns to complex assets. Adrian,
Etula, and Muir (2014) and He, Kelly, and Manela (2017) provide empirical support for these theories.
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Thus, in a premium heavy market, we expect that

EPM[Rei,prem] = λPM(r − ci)i,prem > 0, (20)

where we use PM to denote the expectation conditional on “premium market” dates, namely

dates at which more than 50% of total MBS remaining principal balance trades at a premium.

Again, superscripts denote securities by relative coupon, i = ci−r and prem indicates that the

MBS is a premium security, i.e. ci − r > 0. Since (r − ci) is negative for premium securities

(and βi,premx and βi,premy are both negative,) we expect that λPM is negative.

By contrast, in a discount market, we expect that:

EDM[Rei,disc] = λDM(r − ci)i,discx > 0 (21)

where we use DM to denote the expectation conditional on “discount market” dates, namely

dates at which 50% or more of total MBS remaining principal balance trades at a discount.

Superscripts denote securities by relative coupon, i = ci − r and disc indicates that the MBS

is a discount security, i.e. ci − r < 0. Since (r − ci) is positive for discount securities (and

βi,discx is positive while βi,discx is zero), this implies that λDM is positive. Then, we have the

following hypothesis regarding the signs of the prices of prepayment risk:

Hypothesis 1. High prepayment states are wealth increasing for the aggregate MBS portfolio
in discount markets, and wealth decreasing in premium markets. As a result, we expect the
following signs for prepayment risk prices and prepayment risk premia, depending on market
type:

(i) Premium Market: When the market is comprised mainly of premium securities,
high prepayment states are bad states, and thus the risk price γPM for prepayment
shocks is negative and the risk premium on prepayment risk exposure λPM is negative.
The representative investor requires compensation for bearing the risk that prepayment
is higher than expected. Since λPM < 0, the signs for r − ci by relative coupon, and
the predictions for the signs of the risk loadings (β’s) from Proposition 1, imply that
EPM[Rei,prem] > 0 and EPM[Rei,disc] < 0.

(ii) Discount Market: When the market is comprised mainly of discount securities, high
prepayment states are good states, and thus the risk price γDM for prepayment shocks
is positive and the risk premium on prepayment risk exposure λDM is positive. The
representative investor requires compensation for bearing the risk that prepayment is
lower than expected. Since λDM > 0, the signs for r − ci by relative coupon, and
the predictions for the signs of the risk loadings (β’s) from Proposition 1 imply that
EDM[Rei,prem] < 0 and EDM[Rei,disc] > 0.23

23Technically, since discount securities do not load on the y factor, it is possible that premium securities
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4.2 Empirical Results: Factor Risk Premia

Our baseline estimation of the sign of prepayment risk premia (or, the sign of the price of

prepayment risk) as a function of market type is given by the following pooled time series,

cross section, regression over all relative coupons and across all months:

Rei
t = a+ κ(r − ci) + δ(r − ci)

(
%RPBdisc

t,BoM − 50%
)

+ εit. (22)

The interaction term captures the effect of market type on prepayment risk premia. We use

BoM to denote observation at the beginning of the month, emphasizing that this is a predictive

regression. When the market is perfectly balanced between discount and premium securities,

%RPBdisc − 50% = 0, and κ should thus be zero. The risk to MBS investors’ premium

securities from prepayment being too high is offset by the risk to MBS investors’ discount

securities from prepayment being too low. With little or no prepayment risk exposure,

investors do not require significant prepayment risk premia. On the other hand, we expect

that δ should be positive, indicating a positive prepayment risk premium in discount markets,

and a negative prepayment risk premium in premium markets. The coefficient δ on the

interaction term effectively captures the market-type dependent sign of the prepayment risk

premium (and hence the market-type dependent sign of the prepayment risk price), since it

changes sign with market composition. In discount heavy months, %RPBdisc − 50% > 0,

and since discount securities have positive prepayment risk loadings, as captured by the

characteristic of negative relative coupon, r− ci > 0, a positive δ leads to the model-implied

higher expected returns for discount securities in discount months. Similarly, in premium

heavy months, %RPBdisc − 50% < 0, and since premium securities have negative loadings,

as captured by r − ci < 0, positive δ leads to the model-implied higher expected returns for

premium securities in premium months. Table 8 presents our baseline results. We present

results both with and without time fixed effects in order to highlight the fact that our model

can predict monthly returns with an R2 of 1.2% without time fixed effects. However, in

addition to the risk factors which change the shape of expected returns in the cross section,

there are likely to be shocks or risk factors that move the entire coupon stack of returns.

Thus, although the results are similar between the two specifications, we emphasize the

results with time fixed effects. We also note that the coefficient of interest, δ, increases in

magnitude and significance when time fixed effects are included in order to focus on the

cross sectional variation. We present standard errors clustered by time.24 As predicted,

determine the price of incentive-sensitivity shocks, and that, as a result, premium securities may have positive
expected returns even in discount markets. However, our empirical results indicate that this is not the case.

24In an asset pricing context, we expect it to be most important to cluster errors in the time dimension,
see Petersen (2011). Standard errors are smaller using coupon and time clusters, however the size of the
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the κ is zero, and δ is positive, and significant at the 1% level using a one-sided test that

the coefficient is positive as predicted by Hypothesis 1. Finally, we also present results with

security fixed effects, and confirm our results for time-varying risk premia remain very similar

in magnitude and significance.

We present several robustness checks, and confirm that δ remains positive, and statis-

tically significant. First, we show that our results remain essentially unchanged excluding

the crisis period. Table 9 presents the results. Next, we report results controlling for other

standard asset pricing factors in Table 10. Again, the magnitude and significance of the

prepayment risk premium estimate is very similar to the baseline estimate in each case. This

is not surprising, since the factor loadings on standard asset pricing factors reported in Table

6 display so little cross section variation. As a result, these factor loadings add little or no

explanatory power to the cross section. Although, as reported in Table 6, the returns to the

overall MBS market are correlated with these other systematic factors, the effect is common

across the coupon stack.

One over-arching concern with using average returns to measure expected returns is that

realized returns each month are the sum of expected returns, plus a shock. This concern is

partially alleviated by studying portfolios of individual securities, as is common in the vast

literature studying the cross section of equity returns. Our data consists of coupon-level

portfolios of returns, i.e. coupon-level index returns. In addition, we directly address the

concern that our results on time-varying risk premia are driven by coincidental prepayment

or rate shocks, rather than expected returns from risk premia. In particular, we show that

including shocks to interest rates and the level and incentive-sensitivity prepayment risk

factors (1) captures the effect of such shocks on realized returns, but (2) does not change

our estimates of risk prices. Table 11 adds controls to our baseline model in Table 8 for the

main shocks affecting realized returns, namely prepayment shocks x and y, and interest rate

shocks.25 As expected, the level and incentive-sensitivity prepayment shocks affect realized

returns with the expected signs, and significantly for the level factor. However, risk prices

are unchanged with the inclusion of these contemporaneous prepayment surprises. If the

interest rate hedge were perfect, the effect of interest rate shocks would be zero. The table

shows that the Barclays excess return series, hedged using their proprietary OAS model, still

display a significant exposure to contemporaneous rate shocks. However, the effect of these

shocks on the estimated risk price is basically zero.26

We also note that prior work provides a sort of out-of-sample test for our theory. Duarte,

clusters becomes small.
25We use the change in the Primary Mortgage Market Survey borrowing rate, normalized by its full-sample

standard deviation to measure the rate shock driving realized prepayments.
26The Internet Appendix contains similar results using empirically hedged returns.
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Longstaff, and Yu (2006) compute interest rate hedged returns to discount, par and premium

portfolios using data from 1996 to 2004. They find that the discount strategy has the

highest average returns, followed by the par strategy, with the premium strategy having the

lowest average returns. Using our sample from 1994 to the present, we find the opposite

ranking, consistent with the findings in Gabaix, Krishnamurthy, and Vigneron (2007), who

find positive premia for interest only coupon strips (IO’s). The difference is due to variation

in the composition of the MBS market over time. Discount securities were more prevalent

in the period studied by Duarte, Longstaff, and Yu (2006), in contrast to the more premium

heavy sample later studied here and in Gabaix, Krishnamurthy, and Vigneron (2007). Our

analysis explains why, and is consistent with, the fact that studies using different time

samples find different rankings amongst MBS strategies which are long either discount, par,

or premium securities.

4.3 Relative Pricing Errors vs. Constant Risk Price Models

Another way to assess how important time varying prepayment risk premia are for pricing

the cross section of MBS is to compare the pricing errors of models which are consistent

with our theory to benchmark models with constant risk prices. The first benchmark model

uses the return on the RPB weighted MBS market return as the single factor. The second

constant risk premium benchmark model uses the return on a spread asset constructed by

going long the maximum coupon in each month, and short the minimum coupon in each

month. We scale this spread asset so that its return has equal leg volatility and constant

volatility over time. The intuition for this benchmark model is that it makes use of the

predicted monotonicity of the prepayment risk factor loadings, but not the time varying

prepayment risk prices. We compare these models to theory-implied models with risk pre-

mia that vary conditionally with whether the market is comprised primarily of discount or

premium securities. The first theory-implied model utilizes both prepayment risk factors,

the level factor x, and the incentive-sensitivity factor y. The second theory-implied model

uses the characteristic of negative relative coupon (i.e. (r− ci)) to measure prepayment risk.

To provide graphical results in addition to root mean squared errors, we estimate each

model using Fama and MacBeth (1973). First, we estimate factor loadings via time series

regressions for each relative coupon. Then, we estimate risk premia by taking the time series

average of the monthly risk premia estimates from cross section regressions of returns on

factor loadings at each date. For the models with time varying risk premia, we estimate a

separate risk premium for discount and premium markets by averaging using only data from

either discount markets (DM), or premium markets (PM). We measure market composition
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using the percent of remaining principal balance (RPB) that is discount at the beginning of

the month. We classify a month as discount if greater than 50% of the outstanding MBS

balance trades at a discount, and premium otherwise. Since the panel of relative coupons is

unbalanced, time series averages are computed by weighting monthly cross sections by the

number of coupons that month, relative to the total number of coupon-month observations.27

Figure 8 presents scatter plots of the results for the two benchmark models with constant

risk prices for the value weighted MBS market risk factor (left panel) and the passive max-min

risk factor (right panel) conditional on market type, and over the full sample. Each column

is one model, and rows plot different market types, discount or premium. The left column

of Figure 8 plots the benchmark model using the return on the RPB weighted market-level

return to MBS as the single factor. The right column of Figure 8 plots the benchmark model

using the return on a spread asset constructed by going long the maximum coupon in each

month, and short the minimum coupon in each month. As is clear in the figure, both of the

constant risk price models perform very poorly in discount months. Since risk prices over

the entire sample are more heavily influenced by the (more prevalent) premium months,

both constant prepayment risk premium models get the slope of expected returns in the

cross section wrong in discount months. Moreover, the max-min model, which has slightly

lower pricing errors, performs well in premium months, as expected, because the loadings on

the max-min portfolio are monotonically increasing in relative coupon, negative for discount

securities and positive for premium securities. The estimated unconditional prepayment risk

premium is negative. Then, in premium markets this model correctly predicts that premium

securities should have higher expected returns. In discount markets, predicted returns are

the same, however realized returns have the opposite pattern and this model gets the wrong

sign for the slope of returns across relative coupons. As a result, the overall performance is

poor, as can be seen in the plot for the full sample, in the bottom row of the figure.

Figure 9 plots the results for the two theory-implied models with time varying risk prices

described in Equation (3) (left panel) and Equation (19) (right panel) conditional on market

type, and over the full sample. The superior performance of the theory-implied models with

time varying risk premia can clearly be seen by the improvement in fit seen in Figure 9

relative to Figure 8. The left column of Figure 9 plots the results for the model described

in Equation (3), with level and incentive-sensitivity risk factors.28 Two things improve the

fit of this model. First, this model produces a larger spread in β’s than either benchmark

model. Second, allowing the price of risk to vary by market type allows the model to match

27This weighing effectively weights each observation more equally, vs. weighting months equally. It also
has the advantage of weighting months with larger cross section variation in prepayment risk exposures more
heavily.

28See the Internet Appendix for the factor loadings for this model.
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the slope of average returns in the cross section of relative coupons in both market types,

and hence in the full sample. The right column of Figure 9 plots the results for the model

described in Equation (19), with relative coupon as the single factor/characteristic. This

model is also implied by our theory, and has a good fit. Thus, the two models which are

consistent with our theory offer a substantial improvement in fit over the benchmark models

with passive indices and constant risk premia.

The better performance of the two models we propose can be measured by the improve-

ment in the average root mean squared pricing errors for each model for the full sample,

corresponding to the figures plotted in the bottom row of Figures 8 and 9. Both models

with constant risk prices have pricing errors that are more than double our single-factor

model with time-varying risk premia. Root mean squared errors are 0.88% for the value

weighted market model, 0.84% for the Max-Min model. By contrast, pricing errors allowing

risk premia to vary with market type, discount vs. premium, are 0.53% for the two-factor

model, and 0.32% for the single-factor model.29

4.4 Time Series Results:

Prepayment Risk Premium Portfolio

The results of our estimated model

EM [Rei] = λM (r − ci)

suggest implementing an active strategy consisting of a long-short spread asset which changes

direction with market type. Since loadings are monotonic in coupon, and given our estimated

time varying risk prices, the results suggest going long the deepest discount security and short

the most premium security in discount heavy markets, and vice versa in premium markets.

Intuitively, this spread asset is designed to harvest the prepayment risk premium earned

for bearing prepayment risk that is hard to hedge with US treasuries. Hence, we label this

portfolio the “Prepayment Risk Premium” or “PRP” portfolio. To construct the Prepayment

Risk Premium portfolio, we restrict the spread asset to have a constant volatility over time,

and to have equal volatility in the long and short legs, which is standard. Table 12 presents

results for the Sharpe ratios of the PRP portfolio, passive long-short comparison spread

assets, and passive indices over the full sample, and within discount and premium months.

29To account for the unbalanced panel, and for the fact that pricing errors are conditional on market type,
RMSE’s are computed for each security by taking the weighted average of squared deviations in discount
and premium months, weighted by the number of months of each type, for each security. This security-level
weighted average is then averaged across securities before taking the square root.
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The Sharpe (1966) ratio of the PRP portfolio is 0.76. This is 2.62 times the Sharpe ratio

of a passive value weighted MBS index. The final row of Table 12, using the full sample,

shows the superior performance of the Prepayment Risk Premium portfolio over all other

strategies. The conditional Sharpe ratios are also informative, since the Sharpe ratio for

any strategy that is always long discount securities has a Sharpe ratio that is positive in

discount months, and negative in discount months. The converse is true for any strategy

that is always long premium securities.

We also present information ratios, a version of the active Sharpe ratio which controls

for the correlation between the actively managed PRP portfolio and a passive benchmark

since it is the excess return relative to the standard deviation of the PRP return less the

benchmark return:
E [RPRP −RBenchmark]

σ (RPRP −RBenchmark)

where RBenchmark is the benchmark return. Table 13 displays the excess return, tracking error,

and information ratio for the PRP portfolio relative to three passive benchmarks, namely,

a passive long maximum premium coupon short minimum discount coupon portfolio with

constant volatility and equal-leg volatility, a passive long maximum premium coupon short

par portfolio with constant volatility and equal-leg volatility, and the remaining principal

balance weighted MBS index. In all cases, the information ratio is about 0.3, indicating that

the simple PRP strategy generates an information ratio of a similar magnitude as traditional

market risk premia such as the equity risk premium, term premium or credit risk premium.

To study the magnitude of risk loadings and α’s with respect to passive benchmarks, we

regress the PRP portfolio returns on four passive benchmarks. That is, we estimate:

RPRP

t = α + βBenchmarkRBenchmark

t + εt (23)

where RBenchmark
t is one of four benchmark returns, namely, the remaining principal balance

weighted MBS index, VWall , the remaining principal balance weighted MBS index amongst

premium securities only, VWprem, an untimed long maximum premium coupon short mini-

mum discount coupon portfolio with constant volatility and equal-leg volatility, Max - Min,

and an untimed long maximum premium coupon short par coupon portfolio with constant

volatility and equal leg volatility, Max - Par. Table 14 presents the results. The monthly α’s

are all highly statistically significant. We note that, importantly, the returns to the Prepay-

ment Risk Premium portfolio are largely independent of the passive benchmark returns. In

particular, the loading on the remaining principal balance weighted MBS market portfolio

is -0.08 and the R2 of this regression is only 1%. The highest loading of the PRP strategy,

0.45, is on the Max-Par benchmark, and this regression has an R2 of 22%. All of these
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results are consistent with our finding that neglecting to control for the time varying prices

of prepayment risks biases estimates of positive average returns towards zero.

Finally, we compute the cumulative returns from investing in the model-implied Prepay-

ment Risk Premium portfolio, vs. the alternative cumulative returns from the three passive

benchmark strategies with the next highest Sharpe ratios, namely, a passive long maxi-

mum premium coupon short minimum discount coupon portfolio with constant volatility

and equal-leg volatility, a passive long maximum premium coupon short par portfolio with

constant volatility and equal-leg volatility, and the remaining principal balance weighted

MBS index. Figure 10 plots the results, and shows that the cumulative PRP portfolio re-

turns over the last twenty years have been almost double that of the next best strategy. Note

that the difference in cumulative returns between the Max-Min strategy (blue line), and the

optimal strategy (black line) is entirely driven by optimally switching the long and short

legs, conditional on market type. The market has been dominated by premium securities

since 2009, so the difference in cumulative returns over this time between these two strategies

is constant. The market type will change to discount if rates increase in the future, and at

that point the cumulative returns will again diverge. One lesson from Figure 10 is that the

performance of the PRP portfolio depends on the avaliable spread in relative coupons, which

has been more limited in recent years. Recall also that these cumulative returns are net of

treasury returns, and so are compensation for prepayment risk only.

5 Conclusion

Our study provides new evidence of segmented markets for mortgage-backed securities, pop-

ulated by specialized investors who price market-specific risks. In particular, we show that

the price of prepayment risk appears to be determined by whether prepayment is wealth in-

creasing or wealth decreasing for a representative MBS investor who holds the MBS market.

Our evidence provides support for theories of limits to arbitrage and intermediary asset

pricing in general, however we do not find evidence that traditional intermediary asset pricing

factors price the cross section of MBS returns. We argue that this is because prepayment

risk is priced by specialized traders of MBS. Banks have exposure to mortgage prepayment

both through trading, but also through origination. Moreover, whether intermediary wealth

prices assets because of trading or intermediation remains an open, and interesting, question.

We proceed by presenting the first simple, linear asset pricing model for the cross section

of MBS returns, and by estimating the model’s parameters using average monthly realized

returns to proxy for expected returns. We measure level and incentive-sensitivity prepay-

ment risk factors using surprises in prepayment realizations relative to prepayment forecasts.
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A simple pricing model implies that, quite generally, the values of discount securities, which

trade below par, increase with positive prepayment shocks. Similarly, the values of premium

securities, which trade above par, decrease with positive prepayment shocks. We find ro-

bust support for these predicted prepayment risk exposures using our measured level and

incentive-sensitivity prepayment risk factors.

As a result of the variation in the exposure of discount and premium securities to pre-

payment shocks in the cross section, and the fact that the composition of the MBS market

varies substantially over time between being discount vs. premium heavy, the exposure of

the overall value of the MBS market to prepayment shocks varies over time. When the mar-

ket is primarily discount, a positive prepayment shock increases the value of the aggregate

MBS portfolio. However, when the market is primarily comprised of premium securities, a

positive prepayment shock decreases the value of the aggregate MBS portfolio. Therefore,

an investor whose wealth is highly exposed to changes in the value of the MBS market prices

prepayment shocks with opposite signs depending on the predominant type of security. A

high prepayment shock is wealth increasing in discount markets, but wealth decreasing when

the market is more premium.

We estimate prepayment risk prices conditional on the composition of the market be-

tween discount and premium securities at the beginning of the month. The conditional

risk price estimates support the hypothesis of pricing by specialized investors in MBS. The

price of prepayment risk is positive in discount markets, and negative in premium markets.

This leads to a downward sloping pattern of expected returns in the cross section of MBS

coupons relative to the par coupon in discount markets, and an upward sloping pattern in

premium markets. Overall, in the pooled time series cross section, the resulting pattern for

the cross section of returns is U-shaped in relative coupon. As a result, failing to account

for the market composition, and the associated prices of prepayment risk, leads to estimates

of average returns, and risk premia, which are biased. In particular, estimates are biased

downwards when they are positive conditional on market type; discount securities’ average

returns are underestimated in discount markets and premium securities’ average returns

are underestimated in premium markets. The model also implies a “Prepayment Risk Pre-

mium” portfolio which is long the deepest discount security and short the most premium

security in discount heavy markets, and vice versa in premium markets. This portfolio offers

substantially improved Sharpe and information ratios over passive benchmarks.
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A. Appendix: Data Description

Constructing Prepayment Risk Factors

This section provides a detailed description of the construction of the level and incentive-
sensitivity prepayment risk factors, as well as results using an alternative source of prepay-
ment forecasts.

Prepayment Forecasts For our study, we use historical prepayment forecasts obtained
from Bloomberg. Specifically, we use a Bloomberg-computed median of prepayment projec-
tions submitted by contributing dealers. Projections are available for generic TBA securities
defined by agency/program/coupon. In this paper, we focus on prepayment projections for
Fannie Mae 30-year TBA securities.

Dealers have the option of updating their prepayment projections on Bloomberg on a daily
basis and do so at their own discretion. Bloomberg computes a daily median prepayment
forecast based on whatever dealer projections are available at the time. On average, there are
about 8-10 contributing dealers. Bloomberg median prepayment forecasts can be downloaded
historically with a monthly frequency (i.e. a monthly snapshot on the 15th).

Dealer prepayment forecasts are available for a range of interest rate scenarios. In addition
to the base case that assumes rates realize at forward rates, forecasts are also made assuming
parallel shifts in the yield curve of +/− 50, 100, 200, 300 basis points. We utilize the base
case projection for our main analysis. Using realized rates requires conditioning on future
rate realizations. However, because rates rarely move over 50bps within the month, results
using the forecast for the realized rate scenario, available upon request, are very similar.

The dealer prepayment forecasts on Bloomberg are quoted according to the PSA conven-
tion. We convert that to an annualized constant prepayment rate (CPR) using the standard
conversion formula:

CPR = PSA ∗min(6%, 0.2% ∗ weighted-average loan age).

For reference, we provide a more detailed description of PSA and CPR:30

• Constant Prepayment Rate (CPR) and the Securities Industry and Financial Markets
Association’s Standard Prepayment Model (PSA curve) are the most popular models
used to measure prepayments.

• CPR represents the annualized constant rate of principal repayment in excess of sched-
uled principal amortization.

• The PSA curve is a schedule of prepayments that assumes that prepayments will occur
at a rate of 0.2 percent CPR in the first month and will increase an additional 0.2
percent CPR each month until the 30th month and will prepay at a rate of 6 percent
CPR thereafter (“100 percent PSA”).

30See http://www.fanniemae.com/resources/file/mbs/pdf/basics-sf-mbs.pdf.
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• PSA prepayment speeds are expressed as a multiple of this base scenario. For example,
200 percent PSA assumes annual prepayment rates will be twice as fast in each of these
periods; 0.4 percent in the first month, 0.8 percent in the second month, reaching 12
percent in month 30 and remaining at 12 percent after that.

Realized Prepayments Historical realized prepayment rates are obtained via eMBS. The
realized prepayment rate is computed based on the pool factors that are reported by the
agencies on the fourth business day of each month. The pool factor is the ratio of the amount
of remaining principal balance relative to the original principal balance of the pool. Using
the pool factors and the scheduled balance of principal for a pool, one can calculate the
fraction of the pool balance that was prepaid, that is the unscheduled fraction of the balance
that was paid off by borrowers. The prepayment rates reported on eMBS are a 1-month
CPR measure. In other words, prepayments are measured as the fraction of the pool at
the beginning of the month that was prepaid during that month, yielding a single monthly
mortality (SMM) rate. The SMM is then annualized to get the constant prepayment rate
(CPR).

Borrower Moneyness We define borrower moneyness or rate-based prepayment incentive
to be the rolling 3-month average of the difference between the weighted-average coupon
(WAC) of a Fannie Mae 30-year coupon aggregate and the Freddie Mac Primary Mortgage
Market Survey (PMMS) rate for 30-year fixed-rate mortgages.

The Fannie Mae 30-year coupon aggregate is formed by grouping Fannie Mae 30-year
MBS pools that have the same specified coupon. The WAC of a MBS pool is defined to
be the weighted-average of the gross interest rates of the underlying mortgages in the pool,
weighted by the remaining principal balance of each mortgage. Similarly, the WAC of the
coupon aggregate is defined to be the weighted-average of the WAC of the underlying MBS
pools, weighted by the remaining principal balance of each MBS pool. We obtain historical
WAC data for Fannie Mae 30-year coupon aggregates from eMBS. The data is available with
monthly frequency and represents an end-of-month snapshot.

The Freddie Mac Primary Mortgage Market Survey (PMMS) is used as an indicator
of current mortgage rates. Since April 1971, Freddie Mac has surveyed lenders across the
nation weekly to determine the average rates for conventional mortgage products. The survey
obtains indicative lender quotes on first-lien prime conventional conforming home purchase
mortgages with a loan-to-value of 80 percent. The survey is collected from Monday through
Wednesday and the national average rates for each product are published on Thursday
morning. Currently, about 125 lenders are surveyed each week; lender types consist of thrifts,
credit unions, commercial banks and mortgage lending companies. The mix of lender types
surveyed is approximately proportional to the volume of mortgage loans that each lender
type originates nationwide. In our study, we use the historical monthly average PMMS rate
for 30-year fixed-rate mortgages, available from Freddie Mac’s website.31

We use a 3-month average to measure the borrower incentive because we recognize that
there is a lag between a refinance application and the resulting closing and actual mortgage

31See http://www.freddiemac.com/pmms/pmms30.htm.
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prepayment. Refinancing a mortgage can take a considerable amount of time due to the var-
ious steps involved, such as credit checks, income verification, and title search.32 Borrowers
can choose to lock in their rate during this time by requesting a rate lock from their lender.
The rate locks usually range from 30 to 90 days. In our regression in Equations (13) and
(14), the borrower moneyness of a security is determined at the beginning at the month and
we only include securities with at least USD 1bn outstanding in RPB as a liquidity filter.

Correlations of Prepayment Factors with Macroeconomic Variables
Macroeconomic data were collected from the following sources: The change in the national
US house price index is constructed as the change the in the levels data from FRED at:
https://fred.stlouisfed.org/series/CSUSHPINSA. Real consumption growth is com-
puted using the change in real personal consumption expenditures from FRED at: https:

//fred.stlouisfed.org/series/PCEC96. The change in bank mortgage lending standards
is the concatenation of the following three series from the Senior Loan Officer Opinion
Survey on Bank Lending Practices from the BLS: (1) Net Percentage of Banks Tight-
ening Standards for Mortgage Loans (2) Net Percentage of Domestic Banks Tightening
Standards for Prime Mortgage Loans (3) Net Percentage of Domestic Banks Tightening
Standards for GSE-Eligible Mortgage Loans. These are available from FRED at https://

fred.stlouisfed.org/series/H0SUBLPDHMSNQ, https://fred.stlouisfed.org/series/
DRTSPM and https://fred.stlouisfed.org/series/SUBLPDHMSENQ. Results are similar
for the main SLOOS series for Commercial and Industrial loans available as a continu-
ous series at https://fred.stlouisfed.org/series/DRTSCILM. The Baa-Aaa corporate
credit spread is constructed by forming the difference in these two yield series available from
FRED at https://fred.stlouisfed.org/series/BAA and https://fred.stlouisfed.

org/series/AAA. Finally, the excess return on the market is obtained from Kenneth French’s
website (Fama and French (2017)) at:http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/ftp/F-F_Research_Data_Factors_CSV.zip.

MBS Return Data and Estimation of Factor Loadings

Bloomberg Barclays Coupon-Level Hedged Return Indices
We obtain monthly MBS returns from the coupon-level sub-indices of the Bloomberg Bar-
clays MBS Index. Index returns are available at a monthly frequency dating back to 1994.
The index is constructed by grouping individual TBA deliverable fixed-rate MBS pools into
aggregates based on program, coupon, and vintage. Maturity and liquidity criteria are then
applied to determine which aggregates qualify for inclusion in the index. The Barclays MBS
trading desk provides daily index pricing for pool aggregates based on their underlying non-
specified pools. The trading desk provides two pricing components: (i) TBA prices are
provided for each agency, program and coupon combination within the index, and (ii) an
additional payup spread for each agency, program, coupon and origination year combination
is provided and added to the TBA level.

As a liquidity filter, we also exclude monthly returns from coupons that have less than
$1BN outstanding in RPB at the beginning of the month. The following is a brief description

32See Hayre and Young (2004).
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of the restriction that securities in the index are TBA-deliverable. More than 90 percent of
agency MBS trading occurs in the to-be-announced (TBA) forward market. In a TBA trade,
the buyer and seller agree upon a price for delivering a given volume of agency MBS at a
specified future date. The characteristic feature of a TBA trade is that the actual identity
of the securities to be delivered at settlement is not specified on the trade date. Instead,
participants agree upon only six general parameters of the securities to be delivered: issuer,
maturity, coupon, price, par amount, and settlement date. The exact pools to be delivered
are “announced” to the buyer two days before settlement. The pools delivered are at the
discretion of the seller, but must satisfy SIFMA good delivery guidelines, which specify the
allowable variance in the current face amount of the pools from the nominal agreed-upon
amount, the maximum number of pools per $1 million of face value, and so on. Because of
these eligibility requirements, “TBA-deliverable” pools can be considered fungible because
a significant degree of actual homogeneity is enforced among the securities deliverable into
any particular TBA contract.33

Absolute coupon return series are converted into a relative coupon return series. We
define relative coupon to be the difference between the TBA coupon and the par coupon
at the beginning of the month. The implied par coupon is determined from TBA prices
by finding the TBA coupon that corresponds to a price of 100, linearly interpolating when
needed. For example, if the 4.0 coupon has a price of 95 and the 4.5 coupon has a price of
105, the implied par coupon would be equal to 4.25. After computing the relative coupon
(z) for each absolute coupon, we map it to a relative coupon in increments of 0.5 centered
around zero. For example:

• −0.75 <= z < −0.25 maps to relative coupon -0.5 %

• −0.25 <= z < 0.25 maps to relative coupon 0.0% (par is centered around zero)

• 0.25 <= z < 0.75 maps to relative coupon 0.5%

It is important to note that in Step 1 of our Fama-MacBeth regression, we regress returns
against 1-month lagged prepayment risk factors. For example, if the LHS is the 1-month
return for the month of January, we regress that against the prepayment shocks measured for
the month of December. The reason for the lag is to account for the fact that the Bloomberg
Barclays MBS Index convention uses same day settlement prices with paydowns estimated
throughout the month, as opposed to the market’s convention of PSA settlement. Because
prepayment data for a given month is reported after index results have been calculated,
paydown returns in the MBS Index are reported with a one-month delay. As an example,
the paydown return for January will reflect December prepayment data (which were made
available by the agencies during January) since complete factor (or prepayment) data for
January will be not available until the middle of February (due to PSA settlement). The
MBS Index reflects an estimate of paydowns in the universe on the first business day of the
month and the actual paydowns after the 16th business day of a month. See Phelps (2015)
for a detailed discussion of the index construction and timing conventions.

33See Vickery and Wright (2013), Hayre et al. (2010), or http://www.sifma.org/uploadedfiles/

services/standard_forms_and_documentation/ch08.pdf?n=42389.
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Estimating Risk Prices

Defining Market Type We define market type based on the market composition between
discount and premium Fannie Mae 30-year MBS securities. At the beginning of each month,
we measure the remaining principal balance (RPB) for each these two types of securities.
For computing root mean squared errors in models with conditional risk premia, we use the
following dichotomous classification: If the total RPB for discount securities is greater than
the total RPB for premium securities, we classify that month as a discount market; otherwise
the month is deemed to be a premium market. By this measure of market type, the market
has been in a premium market state about 70% of the time during our sample period (Jan
1994 to June 2016).

Spread Assets

We scale all long short portfolios to have, in expectation, constant volatility and equal leg
volatility. We predict monthly volatility for each leg, for each month using an exponentially
weighted moving average (six month center of mass) of past realized monthly volatility. We
predict correlations using an exponentially weighted moving average (twelve month center
of mass) of past realized correlations. Correlations tend to be more stable than volatilities,
hence we use the longer window for correlations. If any volatility or correlation is missing
for a leg/month observation, we use the estimate of the closest coupon or coupon pair in
that month to replace the missing value. Each leg in the spread assets is scaled to target 1%
volatility, and each spread asset is scaled to target 1% volatility in each month.
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Figure 1: This figure plots prepayment as a function of borrower moneyness and a re-
alization of the level (x), and incentive-sensitivity (y) prepayment factors, φit = xt +
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)
.
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Figure 2: This figure plots forecast and realized prepayment as a function of borrower
moneyness and a realization of the level (x), and incentive-sensitivity (y) prepayment factors.
Prepayment shocks are measured as the difference between realized and forecasted factors,
xt = x̂realized

t − x̂forecast
t , and yt = ŷrealized

t − ŷforecast
t .
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Figure 3: This figure plots four examples of the monthly forecast and realized conditional
prepayment rate data used to estimate the innovations to the level and incentive-sensitivity
prepayment risk. From top left to bottom right the data are from January 1994, May 1998,
January 2010, and January 2015. The y-axis is prepayment rates in percent, and the x-axis
is mi −mPMMS
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Figure 4: This figure plots the estimated time series for the two prepayment risk factors, level
(x), and incentive-sensitivity (y). Each series is the difference between realized and forecasted
conditional prepayment rates in percentage terms, or prepayment surprises.
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Figure 5: This figure plots the results for the loadings on the two prepayment risk factors,
level (x), and incentive-sensitivity (y), by relative coupon. Colored bars depict estimated
loading values. Thin bars represent standard errors for estimated loadings.
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Figure 6: This figure plots the Fannie Mae 30 year MBS market composition between discount
and premium securities. We define market type by classifying any month in which more than
50% of total remaining principal balance is discount at the beginning of the month as a discount
market (DM). The remaining months are classified as premium markets (PM).
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Figure 8: This figure plots annualized realized returns vs. predicted returns for two passive
benchmark models, by market type, and for the full sample.

45
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Figure 9: This figure plots annualized realized returns vs. predicted returns for the two and
one factor models implied by our theory, by market type, and for the full sample.
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Figure 10: This figure plots cumulative returns for our model-implied PRP portfolio (black)
relative to three passive benchmarks. Max - Min (blue) is a passive long maximum premium
coupon short minimum discount coupon portfolio, Max - Par (green) is a passive long maxi-
mum premium coupon short par portfolio, VWall (red) is the RPB weighted MBS index.
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Tables

Table 1: Annualized returns, volatility, and Sharpe ratios, as well as number of observations
for MBS by relative coupon, defined as own coupon relative to par coupon.

-2.0% -1.5% -1.0% -0.5% 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

ann. ret 0.56% 0.97% 0.34% -0.02% -0.38% 0.17% 0.21% 0.50% 0.86% 1.43% 1.55% 1.82%
ann. vol 1.70% 1.82% 1.87% 1.67% 1.78% 1.71% 1.63% 1.59% 1.97% 2.45% 2.10% 2.21%
SR 0.33 0.53 0.18 -0.01 -0.21 0.10 0.13 0.32 0.44 0.58 0.74 0.82
n 41 87 153 217 248 238 217 199 172 139 112 92

Table 2: Correlation of the change in the national US house price index, real personal
consumption expenditure growth, the CRSP value weighted excess return on the stock market,
the change in bank mortgage lending standards, and the Baa-Aaa credit spread with the
estimated level (x) and incentive-sensitivity (y) risk factors.

Correlation Correlation
Macroeconomic Variable with x t-statx with y tstaty

∆ US house price index 0.57 11.44 0.24 4.05
∆ Real PCE 0.19 2.78 0.13 1.87
Baa-Aaa Credit Spread -0.43 -7.80 -0.08 -1.38
CRSP VW Mkt - Rf 0.11 1.83 -0.03 -0.47
% of Banks Tightening Mortgage Lending Standards -0.58 -6.66 -0.12 -1.10
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Table 3: Factor loadings by relative coupon. βdisc
y is restricted to equal zero. The following

time series regression is estimated for each security, i:

Rei
t = ai + βixxt + βiyyt + εit with βdisc

y ≡ 0.

Relative Coupon βx t-statx βy t-staty n R2

-2.0% 4.90% 1.10 0 0 41 3.0%
-1.5% 1.54% 0.94 0 0 87 1.0%
-1.0% 2.60% 3.20 0 0 153 6.3%
-0.5% 2.07% 3.83 0 0 216 6.4%
0.0% 0.86% 1.52 -0.57% -0.54 247 1.0%
0.5% -0.04% -0.07 -0.84% -0.8 237 0.3%
1.0% -0.32% -0.67 -1.05% -0.98 216 0.7%
1.5% -0.74% -1.57 -0.07% -0.07 198 1.3%
2.0% -0.83% -1.41 -4.07% -2.65 172 5.2%
2.5% -0.96% -1.29 -7.07% -3.69 139 10.1%
3.0% -1.99% -2.76 -7.07% -4.27 112 18.0%
3.5% -3.60% -4.23 -4.72% -2.63 92 19.6%
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Table 5: Results for test of Proposition 2’s prediction for incentive-sensitivity factor loadings.
T-statistics are reported for one-sided tests that loadings on the incentive-sensitivity factor
y, for the comparison coupons are different than the base coupon, in the expected direction.
Proposition 2 states that these differences should be negative if the base coupon has a higher
relative coupon ci−r (above the diagonal), and positive if the base coupon has a lower relative
coupon ci−r (below the diagonal), relative to the comparison coupon. Significance at the 1%,
5%, and 10% level are denoted by ∗∗∗, ∗∗, and ∗, respectively. The test consists of twelve panel
regressions, one for each “base” coupon from 2% discount to 3.5% premium. In each panel
regression, we designate one coupon as the base coupon, and drop all the terms associated
with that coupon from each summation. Loadings on the incentive-sensitivity factor y are
restricted to equal zero for discount securities. See the main text for further details. Each
panel regression is of the following form, and statistics are reported for θ:

Rei
t = a+

∑3.5%
i=−2.5% 1iδi + βxxt +

∑3.5%
i=−2.5% 1iφixt + 1base∈{0.0%:3.5%}βyyt +

∑3.5%
i=0.0% 1iθiyt + εit

Comparison Coupon
Base Coupon 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

0.0% -0.53 -0.59 0.48 -1.41* -1.77** -2.54*** -2.35***

0.5% 0.53 -0.39 0.95 -1.34* -1.72** -2.52*** -2.39***

1.0% 0.59 0.39 1.57* -1.46* -1.82** -2.78*** -2.41***

1.5% -0.48 -0.95 -1.57 * -1.73** -1.96** -2.93*** -3.42 ***

2.0% 1.41* 1.34* 1.46* 1.73** -2.16** -3.33*** -0.26
2.5% 1.77** 1.72** 1.82** 1.96** 2.16** -0.01 0.67
3.0% 2.54*** 2.52*** 2.78*** 2.93*** 3.33*** 0.01 1.06
3.5% 2.35*** 2.39*** 2.41*** 3.42*** 0.26 -0.67 -1.06
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Table 6: Factor loadings by relative coupon. βdisc
y is restricted to equal zero. All regressions include an (unreported, insigificant)

intercept. S&P500 is returns to the S&P500 index, 2YTSY is the return to two year treasury futures, 10TSY is the return to ten
year treasury futures, short vol is short interest rate volatility returns constructed using returns from shorting three month maturity
swaption straddles, delta hedged, on ten year USD LIBOR, Baa-Aaa is the credit spread between the seasoned Baa and Aaa Moody’s
corporate bond yields as reported by FRED at the Federal Reserve Bank of St. Louis, HKM is the tradable intermediary asset
pricing factor from He et al. (2017), PS Liq is the liquidity factor from Pastor and Stambaugh (2003), SMB, HML, and MOM are
the FF4 factors from Fama and French (2017) as in Fama and French (1992), Asness (1994), and Carhart (1997). Due to space
constraints, the coefficients on the market, very similar to those the S&P 500 model, have been suppressed in the FF4 results. The
number of observations for each coupon is the same as in the baseline estimation in Table 3.

S&P 500
Relative
Coupon βx t-statx βy t-staty βS&P500 t-statS&P500 R2

-2.0% 5.69% 1.25 1.81% 0.86 4.9%
-1.5% 1.55% 0.94 -0.66% -0.42 1.2%
-1.0% 2.50% 3.21 3.95% 3.98 15.3%
-0.5% 1.73% 3.32 3.53% 4.84 15.7%
0.0% 0.53% 0.96 0.09% 0.09 3.61% 4.95 10.0%
0.5% -0.43% -0.89 -0.20% -0.20 3.42% 4.81 9.3%
1.0% -0.68% -1.45 -0.51% -0.49 3.11% 4.35 8.9%
1.5% -1.14% -2.51 0.50% 0.47 3.33% 4.74 11.5%
2.0% -1.25% -2.14 -3.56% -2.37 3.30% 3.32 11.0%
2.5% -1.40% -1.88 -6.50% -3.45 3.59% 2.72 14.8%
3.0% -2.31% -3.17 -6.57% -3.97 2.73% 2.00 20.9%
3.5% -3.98% -4.67 -4.00% -2.23 3.27% 2.18 23.7%
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TSY
Relative
Coupon βx t-statx βy t-staty β2yTSY t-stat2yTSY β10yTSY t-stat10yTSY βshortvol t-statshortvol R2

-2.0% 4.60% 0.92 21.71% 1.06 -15.02% -0.86 2.66% 0.09 6.0%
-1.5% 2.76% 1.70 0.05% 0.00 1.64% 0.15 -37.66% -2.95 13.8%
-1.0% 2.38% 2.90 -18.25% -1.93 14.12% 1.78 2.16% 0.23 9.1%
-0.5% 1.49% 2.97 -14.99% -2.36 9.25% 1.75 34.79% 5.33 23.6%
0.0% 0.04% 0.09 -0.41% -0.43 -5.18% -0.82 2.12% 0.42 47.59% 7.39 22.0%
0.5% -0.47% -1.04 -0.74% -0.81 0.13% 0.02 -0.78% -0.16 48.82% 8.17 24.5%
1.0% -0.70% -1.63 -0.98% -1.04 3.28% 0.55 -5.87% -1.24 44.93% 7.67 24.8%
1.5% -1.02% -2.54 -0.13% -0.14 6.90% 1.21 -15.15% -3.31 41.43% 7.41 31.1%
2.0% -0.89% -1.65 -3.92% -2.83 12.83% 1.58 -22.47% -3.57 34.24% 4.47 24.3%
2.5% -0.83% -1.15 -6.77% -3.73 13.28% 1.10 -26.09% -2.94 27.68% 2.34 21.1%
3.0% -1.99% -3.13 -6.87% -4.94 19.57% 1.63 -38.19% -5.13 12.90% 1.40 43.9%
3.5% -3.47% -5.66 -4.42% -3.47 1.26% 0.09 -41.18% -5.53 4.37% 0.51 61.2%

Credit
Relative
Coupon βx t-statx βy t-staty βBaa−Aaa t-statBaa−Aaa R2

-2.0% 4.92% 1.13 26.5% 1.79 10.5%
-1.5% 1.53% 0.93 4.8% 0.65 1.5%
-1.0% 2.01% 2.83 23.3% 7.12 30.0%
-0.5% 1.97% 3.97 17.0% 6.46 21.7%
0.0% 0.84% 1.60 -0.14% -0.14 17.0% 6.54 15.8%
0.5% 0.30% 0.62 -0.77% -0.79 14.2% 6.02 13.7%
1.0% -0.04% -0.10 -0.95% -0.94 12.1% 5.30 12.3%
1.5% -0.46% -1.05 0.06% 0.06 12.2% 5.54 14.7%
2.0% -0.50% -0.92 -3.90% -2.74 14.5% 5.39 19.2%
2.5% -0.51% -0.73 -6.83% -3.84 17.3% 4.80 23.2%
3.0% -0.81% -1.14 -6.21% -4.07 20.0% 4.70 31.9%
3.5% -2.03% -2.25 -3.43% -2.01 18.8% 3.76 30.7%
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Intermediary
Relative
Coupon βx t-statx βy t-staty βHKM t-statHKM R2

-2.0% 5.60% 1.22 1.04% 0.75 4.4%
-1.5% 1.48% 0.91 -1.22% -1.21 2.7%
-1.0% 2.39% 3.01 2.32% 3.25 12.5%
-0.5% 1.62% 3.16 2.75% 5.64 18.6%
0.0% 0.43% 0.81 0.50% 0.49 2.80% 6.03 13.9%
0.5% -0.54% -1.12 0.13% 0.13 2.44% 5.38 11.3%
1.0% -0.79% -1.70 -0.26% -0.26 2.21% 4.84 10.6%
1.5% -1.25% -2.75 0.71% 0.67 2.29% 5.13 13.1%
2.0% -1.39% -2.39 -3.37% -2.27 2.39% 3.90 13.1%
2.5% -1.53% -2.04 -6.28% -3.33 2.39% 2.93 15.4%
3.0% -2.46% -3.43 -6.22% -3.81 2.18% 2.88 23.8%
3.5% -4.04% -4.87 -3.58% -2.03 2.42% 2.97 26.9%

PS liq
Relative
Coupon βx t-statx βy t-staty βS&P500 t-statS&P500 βPSliq t-statPSliq R2

-2.0% 6.27% 1.36 2.36% 1.08 -2.32% -0.98 7.2%
-1.5% 1.76% 1.07 0.03% 0.02 -2.14% -1.31 3.2%
-1.0% 2.50% 3.20 3.97% 3.90 -0.12% -0.11 15.3%
-0.5% 1.72% 3.30 3.45% 4.64 0.49% 0.60 15.8%
0.0% 0.53% 0.97 0.10% 0.10 3.65% 4.90 -0.27% -0.31 10.1%
0.5% -0.44% -0.88 -0.20% -0.20 3.42% 4.70 -0.01% -0.01 9.3%
1.0% -0.68% -1.44 -0.51% -0.49 3.09% 4.24 0.11% 0.13 8.9%
1.5% -1.11% -2.44 0.44% 0.42 3.20% 4.49 0.87% 1.01 12.0%
2.0% -1.21% -2.07 -3.61% -2.40 3.11% 3.06 1.01% 0.87 11.4%
2.5% -1.33% -1.77 -6.49% -3.44 3.43% 2.58 1.57% 0.97 15.4%
3.0% -2.15% -2.96 -6.44% -3.94 2.82% 2.09 3.18% 1.91 23.5%
3.5% -3.70% -4.24 -3.80% -2.13 3.38% 2.27 2.75% 1.39 25.4%
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FF4
Relative
Coupon βx t-statx βy t-staty βSMB t-statSMB βHML t-statHML βMOM t-statMOM R2

-2.0% 7.02% 1.50 3.56% 1.20 3.93% 1.31 1.98% 0.76 19.4%
-1.5% 1.57% 0.94 0.21% 0.12 -2.87% -1.34 -0.03% -0.02 5.6%
-1.0% 2.48% 3.19 2.04% 1.67 0.14% 0.10 -0.81% -0.89 17.3%
-0.5% 1.72% 3.28 1.77% 1.95 0.67% 0.64 -1.03% -1.45 17.8%
0.0% 0.44% 0.79 0.23% 0.22 1.33% 1.39 1.81% 1.61 -0.54% -0.83 11.8%
0.5% -0.59% -1.15 -0.04% -0.04 0.80% 0.70 1.64% 1.47 -0.18% -0.27 10.4%
1.0% -0.92% -1.89 -0.37% -0.35 0.79% 0.66 2.26% 1.88 0.13% 0.20 10.6%
1.5% -1.43% -3.02 0.61% 0.57 0.83% 0.66 2.51% 2.09 0.52% 0.75 13.8%
2.0% -1.36% -2.20 -3.67% -2.41 1.07% 0.60 0.94% 0.51 0.46% 0.47 11.4%
2.5% -1.30% -1.62 -6.71% -3.50 1.98% 0.76 -0.93% -0.35 0.03% 0.03 15.2%
3.0% -1.87% -2.34 -6.70% -3.97 3.08% 1.29 -2.86% -1.10 -1.26% -1.06 23.4%
3.5% -3.85% -3.96 -4.37% -2.40 5.50% 2.06 0.61% 0.21 -0.63% -0.45 27.7%55



Table 7: Annualized returns, volatility, and Sharpe ratios, as well as number of observations
for MBS by relative coupon, defined as own coupon relative to par coupon, conditional on the
market type. The market is defined as a Discount Market if > 50% of RPB is discount, and
a Premium Market otherwise.

Discount -2.0% -1.5% -1.0% -0.5% 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5%
Market

ann. ret 0.56% 1.05% 0.66% 0.13% -0.11% -0.35% -1.61% -1.54% -1.67% 1.14%
ann. vol 1.70% 1.87% 1.56% 1.29% 1.25% 1.36% 1.57% 1.85% 1.99% 0.47%
SR 0.33 0.56 0.42 0.10 -0.09 -0.25 -1.03 -0.83 -0.84 2 0.42
n 41 82 85 83 78 56 37 31 28 3

Premium -2.0% -1.5% -1.0% -0.5% 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5%
Market

ann. ret -0.26% -0.07% -0.12% -0.50% 0.33% 0.58% 0.88% 1.35% 1.44% 1.55% 1.82%
ann. vol 0.84% 2.20% 1.87% 1.98% 1.80% 1.63% 1.52% 1.94% 2.48% 2.10% 2.21%
SR -0.31 -0.03 -0.06 -0.25 0.18 0.36 0.58 0.70 0.58 0.74 0.82
n 5 68 134 170 182 180 168 144 136 112 92

Table 8: Prices of Risk, Pooled Time Series Cross Section Regression, Negative Relative
Coupon Characteristic. For the results with time fixed effects, the intercept a is excluded, and
for the results with security fixed effects, the κ term is excluded as well.

Rei
t = a+ κ(r − ci) + δ(r − ci)

(
%RPBdisc

t,BoM − 50%
)

+ εit.

t-stat & t-stat & t-stat &
clustering clustering clustering

Coefficient none time Coefficient none time Coefficient none time

a 0.00% -0.10 -0.06
κ 0.00% 0.33 0.20 0.01% 0.71 0.30
δ 0.11% 3.89 2.18 0.14% 5.82 2.42 0.16% 4.72 2.30
time f.e. no yes yes
security f.e. no no yes
n 1915 1915 1915
R2 1.2% 60.4% 60.5%
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Table 9: Prices of Risk, Pooled Time Series Cross Section Regression, Negative Relative
Coupon Characteristic, Excluding Crisis Period. Crisis period is defined as the one year
window centered around November 2008. Time fixed effects are included, and standard errors
are clustered by time.

Rei
t = a+ κ(r − ci) + δ(r − ci)

(
%RPBdisc

t,BoM − 50%
)

+ εit.

Excluding Crisis Full Sample Crisis Period

κ 0.00% 0.01% 0.03%
t-stat κ 0.02 0.30 0.22
δ 0.10% 0.14% 0.62%
t-stat δ 2.08 2.42 1.67
n 1810 1915 105
R2 59.8% 60.4% 68.0%
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Table 11: Prices of Risk, Pooled Time Series Cross Section Regression, Negative Relative
Coupon Characteristic. Subscripts on coefficients denote variable interacted with negative
relative coupon. Including effect of rate shock on realized returns does not change estimated
risk premia in expected returns. Standard deviations for each variable appear in the last
column. OAD stands for Option Adjusted Duration.

Rei
t = a+ κ(r − ci) + δ(%RPBdisc

BoM−50%)(r − ci)
(
%RPBdisc

t,BoM − 50%
)

+δx(r − ci)xt + δy(r − ci) yt + δ∆r(r − ci) ∆rt + εit.

Barclays OAD Hedged Empirically Hedged Interaction
t-statistic clustering t-statistic clustering Variable

Coefficient none time Coefficient none time StdDev
κ 0.03% 2.85 1.18 0.00% 0.05 0.02
δ(%RPBdisc

BoM−50%) 0.15% 6.64 2.84 0.13% 5.46 2.19 0.35

δx 0.79% 7.47 3.14 0.50% 4.22 2.07 0.06
δy 1.46% 6.56 1.89 1.55% 5.97 2.68 0.03
δ∆r -0.44% -11.04 -4.32 -0.11% -2.46 -0.75 0.19
time f.e. yes yes
n 1910 1652
R2 64.7% 71.0%

Table 12: Sharpe Ratios for the Prepayment Risk Portfolio (PRP), Passive Spread Assets,
and Indices. Max - Min is a passive long maximum premium coupon short minimum discount
coupon portfolio, Max - Par is a passive long maximum premium coupon short par portfolio,
Min - Par is a passive long minimum premium coupon short par portfolio, PRP is an active
portfolio which is long maximum premium coupon short minimum discount coupon when
> 50% of outstanding RPB is premium at the beginning of the month and long minimum
discount coupon short maximum premium coupon otherwise. VWall is the RPB weighted
MBS index, VWex−par is the RPB weighted MBS index excluding par coupon, VWdisc is the
RPB weighted MBS index of discount securities only, VWprem is the RPB weighted MBS index
of premium securities only. All long short portfolios are scaled to have constant volatility and
equal leg volatility.

Max - Min Max - Par Min - Par PRP VWall VWex−par VWdisc VWprem

Discount -0.47 -0.28 0.49 0.47 0.12 0.18 0.27 -0.50
(M=DM)
Premium 0.91 0.73 -0.42 0.91 0.36 0.41 -0.08 0.47
(M=PM)
Full Sample 0.44 0.48 -0.02 0.76 0.29 0.35 0.03 0.26
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Table 13: Excess returns, tracking errors, and information ratios for the Prepayment Risk
Portfolio (PRP) relative to three passive benchmarks. Max - Min is a passive long maxi-
mum premium coupon short minimum discount coupon portfolio, Max - Par is a passive long
maximum premium coupon short par portfolio, VWall is the RPB weighted MBS index.

Benchmark
PRP Max - Min Max - Par VWall

Active excess return 0.36% 0.41% 0.48%
Tracking Error 1.35% 1.22% 1.82%
Information Ratio 0.27 0.33 0.26

Table 14: Loadings of the Prepayment Risk Portfolio (PRP) returns on, and α’s with re-
spect to, four passive benchmarks, namely, the remaining principal balance weighted MBS
index (VWall), the remaining principal balance weighted MBS index amongst premium secu-
rities only (VWprem), an untimed long maximum premium coupon short minimum discount
premium portfolio with constant volatility and equal-leg volatility (Max - Min), and an un-
timed long maximum premium coupon short par portfolio with constant volatility and equal
leg volatility (Max - Par).

Benchmark α t-statα βBenchmark t-statβ n R2

Max - Min 0.06% 3.11 0.30 5.16 270 9%
Max - Par 0.06% 3.12 0.45 8.14 238 22%
VWall 0.07% 3.75 -0.08 -1.48 270 1%
VWprem 0.08% 3.90 -0.15 -2.59 241 3%
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B Internet Appendix to “The Cross Section of MBS

Returns”

This Internet Appendix contains additional results and robustness checks.34

B.1 Factor Loadings: Additional details and robustness checks

Robustness: Unrestricted βiy We present estimated factor loadings for the case in which
βiy is unrestricted in Table B1. As can be seen, the results are very similar to the case in
which βiy is restricted to be zero for coupons at or below par, and the R2 do not change much
between the unconstrained and constrained specifications.

Table B1: Factor loadings by relative coupon. βdisc
y is unrestricted. The following time series

regression is estimated for each security, i:

Rei
t = ai + βixxt + βiyyt + εit.

Relative Coupon βx t-statx βy t-staty n R2

-2.0% 2.73% 0.49 2.52% 0.66 41 4.10%
-1.5% 1.53% 0.86 0.04% 0.02 87 1.00%
-1.0% 2.42% 2.89 1.22% 0.95 153 6.90%
-0.5% 2.08% 3.79 -0.01% -0.01 216 6.40%
0.0% 0.86% 1.52 -0.57% -0.54 247 1.00%
0.5% -0.04% -0.07 -0.84% -0.8 237 0.30%
1.0% -0.32% -0.67 -1.05% -0.98 216 0.70%
1.5% -0.74% -1.57 -0.07% -0.07 198 1.30%
2.0% -0.83% -1.41 -4.07% -2.65 172 5.20%
2.5% -0.96% -1.29 -7.07% -3.69 139 10.10%
3.0% -1.99% -2.76 -7.07% -4.27 112 18.00%
3.5% -3.60% -4.23 -4.72% -2.63 92 19.60%

34Citation format: Diep, Peter, Eisfeldt, Andrea L. and Richardson, Scott, Internet Appendix to “The
Cross Section of MBS Returns,” Journal of Finance [DOI STRING]. Please note: Wiley is not responsible
for the content or functionality of any supporting information supplied by the authors. Any queries (other
than missing material) should be directed to the authors of the article.
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Robustness: Empirical Interest Rate Hedge For our study, we use Treasury-hedged
returns of coupon-level aggregates of Fannie Mae 30-year fixed-rate MBS pools. Hedged
returns are computed by Barclays using a term structure-matched position in Treasuries
based on a key-rate duration approach. Results are similar using returns hedged using
empirical durations. We construct the empirical-duration hedged series by starting with
the Barclays MBS total index returns by absolute coupon. We compute empirical hedge
ratios by estimating three year rolling betas for these index returns on 2 and 10 year US
Treasury Futures returns. To extend the sample back to the start of the Barclays index
return sample, we use 2 year Treasury Index returns from CRSP prior to 5/1996. Table B2
displays the results for security loadings on empirically hedged returns, and shows that these
results are very similar to those using the hedged series provided by Barclays. We note that
the negative loadings for the -1.5% coupon are due to the shortened sample induced by the
rolling window.

Table B2: Factor loadings by relative coupon for empirically hedged returns. βdisc
y is restricted

to equal zero. The following time series regression is estimated for each security, i:

Rei
t = ai + βixxt + βiyyt + εit with βdisc

y ≡ 0.

Relative Coupon βx t-statx βy t-staty n R2

-2.0% 1.98% 0.35 0 0 32 0.40%
-1.5% -4.03% -1.49 0 0 71 3.13%
-1.0% 2.11% 1.42 0 0 110 1.84%
-0.5% 2.91% 2.56 0 0 130 4.88%
0.0% 0.67% 1.15 0.24% 0.22 181 0.82%
0.5% -1.03% -1.97 -0.86% -0.77 209 2.31%
1.0% -1.14% -2.22 -1.85% -1.60 207 3.94%
1.5% -1.49% -3.21 -1.14% -1.02 197 5.76%
2.0% -1.39% -2.70 -4.67% -3.47 172 10.57%
2.5% -1.35% -2.08 -7.44% -4.44 139 15.03%
3.0% -2.21% -4.39 -7.20% -6.23 112 32.92%
3.5% -3.14% -6.49 -4.11% -4.03 92 36.47%

Robustness: Empirical Interest Rate and Volatility Hedge Our results are also
robust to including an empirical hedge for interest rate volatility. Table B3 reports factor
loadings for Barclays excess returns hedged with respect to short volatility returns con-
structed using the returns from shorting three month maturity straddles constructed using
ten year maturity US treasury swaptions. As with the results for the empirical rate hedge,
the pattern of risk factor loadings is very similar to our baseline results. Again, we note that
the negative loadings for the -1.5% coupon are due to the shortened sample induced by the
rolling window. Note that, in unreported results, we also find that security return loadings
on short volatility returns are highest around par, and decrease in the tail coupons. This
is intuitive since vega is likely to be highest near par. We think that exposure to volatility
risk is unlikely to be driving our results, since, in addition to par securities having the lowest
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average returns in both market types, the correlation between short volatility returns and
our x and y factors is approximately zero (0.02 and 0.09 respectively over the period January
1994 to June 2016). Likewise, if we add short volatility returns as an additional factor in our
step one regressions, the loadings on x and y display the same robust declining pattern as
in our baseline specification. Again, the loadings on the short volatility returns are largest
and most significant around par.

Table B3: Factor loadings by relative coupon for Barclays excess returns, hedged to short
volatility returns. βdisc

y is restricted to equal zero. The following time series regression is
estimated for each security, i:

Rei
t = ai + βixxt + βiyyt + εit with βdisc

y ≡ 0.

Relative Coupon βx t-statx βy t-staty n R2

-2.0% 8.23% 1.03 0 0 24 4.57%
-1.5% -5.01% -1.66 0 0 56 4.85%
-1.0% 2.36% 1.52 0 0 91 2.54%
-0.5% 2.37% 2.29 0 0 113 4.51%
0.0% 0.70% 1.49 -0.63% -0.64 166 1.48%
0.5% -0.57% -1.62 -0.15% -0.18 198 1.39%
1.0% -0.78% -1.81 -0.90% -0.90 203 2.17%
1.5% -1.13% -2.64 -0.21% -0.20 197 3.53%
2.0% -1.06% -1.83 -3.95% -2.61 172 5.84%
2.5% -0.98% -1.29 -7.05% -3.60 139 9.71%
3.0% -1.89% -2.41 -6.91% -3.83 112 14.78%
3.5% -3.33% -3.46 -4.66% -2.30 92 14.46%
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Robustness: Alternative Return Data Sources We report factor loadings estimated
using alternative sources for relative-coupon level MBS excess returns. Results are similar
to the baseline results using Barclays Coupon-Level MBS Index Excess Returns, which have
the greatest time series and cross section coverage. Table B4 reports results using Bank of
America Merrill Lynch Coupon-Level MBS Index Excess Returns. Table B5 reports results
using TBA returns as reported by a major dealer bank, hedged with US treasury futures
using that dealer’s reported analytical key rate durations. All data starts in 1998, due to
data availability. To ensure comparability and data quality, we require coupons to pass
the Barclays data filters, i.e. we include coupon-months where available for which Barclays
reports data and for which there is greater than 1BN in RPB outstanding. For comparison,
we report the results using Barclays Excess returns starting in 1998 in Table B6.

Table B4: Factor loadings by relative coupon for BAML Excess Returns. βdisc
y is restricted

to equal zero. The following time series regression is estimated for each security, i:

Rei
t = ai + βixxt + βiyyt + εit with βdisc

y ≡ 0.

Relative Coupon βx t-statx βy t-staty n R2

-2.0% 14.51 % 1.49 0 N/A 20 10.9 %
-1.5% 1.83 % 0.87 0 N/A 51 1.5 %
-1.0% 2.85 % 3.06 0 N/A 99 8.8 %
-0.5% 2.96 % 4.34 0 N/A 166 10.3 %
0.0% 1.20 % 2.14 -0.61 % -0.51 199 2.3 %
0.5% -0.04 % -0.07 -0.43 % -0.33 209 0.1 %
1.0% -0.26 % -0.46 -0.62 % -0.47 205 0.2 %
1.5% -0.76 % -1.51 0.56 % 0.46 194 1.2 %
2.0% -1.05 % -1.89 -3.05 % -2.13 148 5.4 %
2.5% -1.66 % -2.28 -3.55 % -1.97 125 6.8 %
3.0% -3.13 % -3.45 -4.54 % -1.73 105 12.9 %
3.5% -3.22 % -2.20 -6.02 % -1.47 59 12.1 %
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Table B5: Factor loadings by relative coupon for TBA returns as reported by a major
dealer bank, hedged with US treasury futures using that dealer’s reported analytical key rate
durations. βdisc

y is restricted to equal zero. The following time series regression is estimated
for each security, i:

Rei
t = ai + βixxt + βiyyt + εit with βdisc

y ≡ 0.

Relative Coupon βx t-statx βy t-staty n R2

-2.0% 10.48 % 1.10 0 N/A 20 6.3 %
-1.5% 4.25 % 1.99 0 N/A 51 7.5 %
-1.0% 3.74 % 3.50 0 N/A 107 10.5 %
-0.5% 2.96 % 3.99 0 N/A 171 8.6 %
0.0% 1.66 % 2.26 0.04 % 0.02 207 2.5 %
0.5% 0.54 % 0.83 -0.02 % -0.01 211 0.3 %
1.0% 0.40 % 0.65 -0.39 % -0.27 205 0.2 %
1.5% -0.26 % -0.42 -0.33 % -0.22 197 0.1 %
2.0% -0.57 % -0.87 -1.26 % -0.73 170 0.8 %
2.5% -0.86 % -1.21 -3.06 % -1.68 139 3.1 %
3.0% -0.94 % -1.09 -4.91 % -2.47 112 5.9 %
3.5% -2.77 % -1.98 -8.91 % -2.06 78 9.1 %

Table B6: Factor loadings by relative coupon for Barclays Excess Return data starting in
1998. βdisc

y is restricted to equal zero. The following time series regression is estimated for
each security, i:

Rei
t = ai + βixxt + βiyyt + εit with βdisc

y ≡ 0.

Relative Coupon βx t-statx βy t-staty n R2

-2.0% 12.94 % 1.43 0 N/A 20 10.2 %
-1.5% 1.48 % 0.71 0 N/A 51 1.0 %
-1.0% 2.70 % 2.91 0 N/A 107 7.4 %
-0.5% 2.12 % 3.60 0 N/A 171 7.1 %
0.0% 0.91 % 1.52 -0.98 % -0.76 207 1.3 %
0.5% 0.00 % -0.01 -0.96 % -0.81 211 0.3 %
1.0% -0.30 % -0.62 -1.17 % -1.06 205 0.8 %
1.5% -0.73 % -1.56 -0.29 % -0.26 197 1.3 %
2.0% -0.83 % -1.41 -4.07 % -2.65 172 5.2 %
2.5% -0.96 % -1.29 -7.07 % -3.69 139 10.1 %
3.0% -1.99 % -2.76 -7.07 % -4.27 112 18.0 %
3.5% -3.60 % -4.23 -4.72 % -2.63 92 19.6 %
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Robustness: Results using Single Dealer Prepayment Forecasts Projections re-
ported to Bloomberg, while heavily weighting the first month forward and with approxi-
mately exponential decay thereafter, cover the life of the security. We use these forecasts for
the main analysis because we can remove dealer-specific noise by using the median forecast,
and, even more importantly, because these forecasts are available for a broad cross section
and for the entire time period covered by the Barclays MBS Index Returns. Correctly es-
timating prepayment shocks requires that we include data for a wide sample of coupons in
both premium and discount markets. Short term forecasts can sometimes be obtained at
the dealer level, but the quality, sample length, and coupon coverage, varies widely. The
longest real-time time series of short term forecasts we are able to obtain come from a major
dealer and cover the period from January 2001 to June 2016.35 For that time period, these
data cover almost the same broad cross section as the Bloomberg forecast data. This dealer
provided us daily data containing the short term forecasts for their models in real time under
the assumption that interest rates follow the forward rate at the time of the forecast. Table
B7 presents the prepayment risk factor loadings using the single-dealer one month forward
forecast from the 15th of each month January 2001 to June 2016, and shows very similar re-
sults to our main analysis. Some significance is lost for discount securities due to the shorter
sample which excludes the earlier years in which discount securities were more prevalent.

Table B7: Factor loadings by relative coupon using single-dealer prepayment forecasts. βdisc
y

is restricted to equal zero. The following time series regression is estimated for each security,
i:

Rei
t = ai + βixxt + βiyyt + εit with βdisc

y ≡ 0.

Relative Coupon βx t-statx βy t-staty n R2

-1.5% 0.06% 0.03 0 0 32 0.0%
-1.0% 0.56% 0.63 0 0 81 0.5%
-0.5% 1.21% 2.09 0 0 136 3.2%
0.0% 1.79% 2.15 1.5% 1.28 171 2.7%
0.5% 0.91% 1.21 1.2% 1.11 183 0.9%
1.0% -0.07% -0.10 0.5% 0.47 186 0.3%
1.5% -0.98% -1.40 -0.5% -0.46 182 1.4%
2.0% -2.07% -2.39 -1.4% -0.98 171 3.4%
2.5% -2.16% -1.84 -1.7% -0.76 139 2.4%
3.0% -2.65% -2.03 -5.1% -1.89 112 4.2%
3.5% -3.20% -1.93 -3.7% -1.16 92 4.1%

Robustness: AR(1) Errors for x and y Prepayment Factors Table B8 presents
estimated prepayment factor loadings using the errors from full-sample autoregressions on

35We also explored historical forecast data from other peer dealers. Electronically available data from
one peer dealer’s API uses their current prepayment model rather than the model which was used on the
historical date. A shorter sample of real-time forecasts from this dealer can be obtained from pdf files back
to December 2008, however the cross section coverage is very limited.
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the x and y time series as prepayment risk factors. The pattern in loadings closely matches
the pattern from the baseline estimation, with the exception of the lowest discount coupon,
for which there are relatively few observations.

Table B8: Factor loadings by relative coupon using AR(1) innovations in the x and y pre-
payment factors, denoted υxt and υyt , respectively. βdisc

y is restricted to be zero. The following
time series regression is estimated for each security, i:

Rei
t = ai + βixυ

x
t + βiyυ

y
t + εit.

Relative Coupon βx t-statx βy t-staty n R2

-2.0% -11.72 % -1.59 0 N/A 41 6.1 %
-1.5% 3.98 % 1.36 0 N/A 87 2.1 %
-1.0% 2.63 % 1.81 0 N/A 153 2.1 %
-0.5% 2.23 % 2.36 0 N/A 215 2.6 %
0.0% 1.21 % 1.25 0.89 % 0.61 246 0.7 %
0.5% -0.46 % -0.55 -0.45 % -0.32 236 0.1 %
1.0% -1.10 % -1.38 -1.96 % -1.39 215 1.3 %
1.5% -1.71 % -2.14 -0.50 % -0.35 197 2.4 %
2.0% -2.86 % -2.84 -8.32 % -4.60 172 11.7 %
2.5% -3.05 % -2.40 -12.13 % -5.48 139 18.1 %
3.0% -4.35 % -3.67 -11.41 % -5.93 112 24.9 %
3.5% -5.02 % -3.51 -7.57 % -3.39 92 15.1 %

67



Robustness: Time Varying Exposures We present a conditional asset pricing model
of MBS returns, and emphasize the role of time-varying risk prices, given fixed risk loadings.
The fact that our full-sample estimates of prepayment risk exposures are strongly consistent
with the predictions of Propositions 1 and 2, and the fact that the fixed characteristic,
negative relative coupon, appears to measure exposures as well or better than the estimated
loadings, supports using fixed prepayment exposures for securities defined by relative coupon.
However, it is theoretically possible that even within a single month, changes in interest
rates may change the relative coupon of all MBS, hence changing each security’s exposure to
prepayment risk. Therefore, for robustness, we directly address the concern that exposures
may vary with interest rate changes, and that resulting changes in exposures can explain
our results. First, we show that allowing for within-month variation in exposures leaves
our estimates of fixed prepayment exposures essentially unchanged. Second, we show that
controlling for prepayment and interest rate shocks that effect realized returns, our results
for expected returns from exposures multiplied by risk premia remain unchanged.

First, we measure the effect of changes in interest rates on exposures. That is, we
decompose the prepayment risk exposures by relative coupon into a fixed component, and
a component that varies with interest rates in a way consistent with the predictions of
Equations (6) and (7). We find that including the effect of time varying exposures leaves the
estimates presented in Table 3 and Table B1 essentially unchanged, and that the theoretically
possible effects of interest rate changes on measured prepayment exposures within the month
are statistically insignificant. Specifically, we run a pooled time series cross section regression
of monthly hedged returns by coupon on fixed prepayment exposures, and the change in
exposure within the month. Table B9 presents the results from a pooled time series cross
section regression that uses relative coupon dummy interactions with the prepayment risk
factors to estimate the fixed exposures, and double interactions between coupon dummies,
rate changes, and the prepayment risk factors to measure the change in exposures within
months. The interest rate changes are measured by changes in the PMMS 30 year fixed-
rate primary mortgage rate. These rate changes measure any change in the moneyness of
borrowers’ prepayment options, and hence prepayment risk exposure, within the month. The
interaction with negative relative coupon allows for the theoretically predicted opposite sign
of rate changes on discount and premium securities. This specification also allows for a larger
effect the further the security is from par, consistent with the estimated pattern of exposures.
As expected, given that interest rate changes rarely exceed 50bps within any given month,
the pattern of estimated prepayment risk factor loadings is essentially unchanged relative
to our main analysis. Moreover, the double interactions between interest rate changes and
relative coupon dummies with the prepayment risk factors are insignificant.
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Table B9: Fixed and time varying prepayment risk exposures, Pooled Time Series Cross
Section Regression. Coefficients on relative coupon dummies capture fixed prepayment risk
exposures, which are similar to the baseline results in Tables 3 and B1. Coefficients repre-
senting the effects on returns from changes in exposures due to interest rate changes are not
significant.

Rei
t = a+ φi

(ci−r)∗x
1(ci−r) xt + φi

(ci−r)∗y
1(ci−r) yt+

φ∆r∗(r−ci)∗x ∆rt (r − ci)xt + φ∆r∗(r−ci)∗y ∆rt (r − ci) yt + εit.

φ time-clustered
Variable coefficient t-stat t-stat

intercept 0.02% 1.44 0.69
1−2.0% ∗ x 2.25% 0.41 0.47
1−1.5% ∗ x 1.23% 0.70 0.41
1−1.0% ∗ x 2.43% 2.91 2.03
1−0.5% ∗ x 2.08% 3.42 3.13
10.0% ∗ x 0.85% 1.49 1.29
10.5% ∗ x -0.04% -0.08 -0.08
11.0% ∗ x -0.34% -0.64 -0.69
11.5% ∗ x -0.76% -1.42 -1.70
12.0% ∗ x -0.86% -1.57 -1.26
12.5% ∗ x -1.02% -1.78 -1.00
13.0% ∗ x -2.08% -3.10 -1.90
13.5% ∗ x -3.66% -5.00 -4.86
1−2.0% ∗ y 2.87% 0.75 0.75
1−1.5% ∗ y -0.67% -0.33 -0.32
1−1.0% ∗ y 0.98% 0.79 0.94
1−0.5% ∗ y 0.08% 0.08 0.09
10.0% ∗ y -0.09% -0.09 -0.10
10.5% ∗ y -0.69% -0.66 -0.90
11.0% ∗ y -0.91% -0.80 -1.12
11.5% ∗ y -0.21% -0.18 -0.24
12.0% ∗ y -3.96% -2.97 -2.05
12.5% ∗ y -7.08% -5.06 -2.47
13.0% ∗ y -6.95% -4.68 -3.56
13.5% ∗ y -4.40% -2.85 -2.91
∆r ∗ (r − ci) ∗ x 0.36% 0.67 0.29
∆r ∗ (r − ci) ∗ y 1.54% 1.25 0.56
n 1910
R2 6.8%
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Additional evidence against the importance of time varying exposures is that the correla-
tion between rate changes and the state variable determining the sign of the price of prepay-
ment risk, %RPBdisc is basically zero. Jagannathan and Wang (1996) provide a theoretical
econometric framework to consider the effect of time varying exposures on the estimation
of asset pricing models in the context of equity markets. They show precisely how uncondi-
tional estimates of expected returns will be biased by the covariance between time varying
exposures and risk prices if this covariance is non-zero. The correlation between %RPBdisc

and interest rate changes, measured as the change in the primary mortgage rate from the
Freddie Mac Primary Mortgage Market Survey is very low, at 0.10, and is statistically in-
significant. Although exposures may be most different from their average following a large
interest rate shock, such a shock does not necessarily move the %RPBdisc, which determines
risk prices, far from its average. Thus, a back of the envelope calculation based on the theory
in Jagannathan and Wang (1996), suggests that it is unlikely that the change in risk prices
is correlated with changes in prepayment exposures arising from changes in interest rates.

Coefficients for the test of Proposition 2. T-statistics appear in the main text.
The test consists of twelve panel regressions, one for each “base” coupon from 2% discount
to 3.5% premium. In each panel regression, we designate one coupon as the base coupon,
and drop all the terms associated with that coupon from each summation. See the main
text for further details.

Table B10: Level factor loading differences: Each panel regression is of the following form,
and coefficients are reported for φ. Coefficients match those in Table 3 for own coupon
(diagonal):

Rei
t = a+

∑3.5%
i=−2.5% 1iδi + βxxt +

∑3.5%
i=−2.5% 1iφixt + 1base∈{0.0%:3.5%}βyyt +

∑3.5%
i=0.0% 1iθiyt + εit

Rei
t = a+

∑3.5%
i=−2.5% 1iδi + βxxt +

∑3.5%
i=−2.5% 1iφixt + 1base∈{0.0%:3.5%}βyyt +

∑3.5%
i=0.0% 1iθiyt + εit

Comparison Coupon
Base

Coupon -2.0% -1.5% -1.0% -0.5% 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

-2.0% 4.90% -3.36% -2.30% -2.82% -4.04% -4.93% -5.22% -5.64% -5.73% -5.86% -6.89% -8.50%
-1.5% 3.36% 1.54% 1.06% 0.54% -0.68% -1.57% -1.86% -2.28% -2.37% -2.50% -3.53% -5.14%
-1.0% 2.30% -1.06% 2.60% -0.53% -1.74% -2.64% -2.92% -3.34% -3.43% -3.56% -4.59% -6.21%
-0.5% 2.82% -0.54% 0.53% 2.07% -1.22% -2.11% -2.40% -2.82% -2.90% -3.03% -4.07% -5.68%
0.0% 4.04% 0.68% 1.74% 1.22% 0.86% -0.89% -1.18% -1.60% -1.69% -1.82% -2.85% -4.46%
0.5% 4.93% 1.57% 2.64% 2.11% 0.89% -0.04% -0.29% -0.71% -0.79% -0.92% -1.96% -3.57%
1.0% 5.22% 1.86% 2.92% 2.40% 1.18% 0.29% -0.32% -0.42% -0.51% -0.64% -1.67% -3.28%
1.5% 5.64% 2.28% 3.34% 2.82% 1.60% 0.71% 0.42% -0.74% -0.09% -0.22% -1.25% -2.86%
2.0% 5.73% 2.37% 3.43% 2.90% 1.69% 0.79% 0.51% 0.09% -0.83% -0.13% -1.16% -2.78%
2.5% 5.86% 2.50% 3.56% 3.03% 1.82% 0.92% 0.64% 0.22% 0.13% -0.96% -1.03% -2.64%
3.0% 6.89% 3.53% 4.59% 4.07% 2.85% 1.96% 1.67% 1.25% 1.16% 1.03% -1.99% -1.61%
3.5% 8.50% 5.14% 6.21% 5.68% 4.46% 3.57% 3.28% 2.86% 2.78% 2.64% 1.61% -3.60%
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Table B11: Incentive-sensitivity factor loading differences: Each panel regression is of the
following form, and coefficients are reported for θ. Coefficients match those in Table 3 for own
coupon (diagonal). Loadings on the incentive-sensitivity factor y are restricted to equal zero
for discount securities:

Rei
t = a+

∑3.5%
i=−2.5% 1iδi + βxxt +

∑3.5%
i=−2.5% 1iφixt + 1base∈{0.0%:3.5%}βyyt +

∑3.5%
i=0.0% 1iθiyt + εit

Comparison Coupon
Base Coupon 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

0.0% -0.57%% -0.27% -0.48% 0.50% -3.50% -6.50% -6.51% -4.15%
0.5% 0.27% -0.84% -0.21% 0.77% -3.23% -6.22% -6.23% -3.88%
1.0% 0.48% 0.21% -1.05% 0.98% -3.02% -6.02% -6.02% -3.67%
1.5% -0.50% -0.77% -0.98% -0.07% -4.00% -6.99% -7.00% -4.65%
2.0% 3.50% 3.23% 3.02% 4.00% -4.07% -3.00% -3.00% -0.65%
2.5% 6.50% 6.22% 6.02% 6.99% 3.00% -7.07% -0.01% 2.35%
3.0% 6.51% 6.23% 6.02% 7.00% 3.00% 0.01% -7.07% 2.35%
3.5% 4.15% 3.88% 3.67% 4.65% 0.65% -2.35% -2.35% -4.72%
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B.2 Risk Premia: Additional details and robustness checks

Robustness: Defining Market Type Although there are several ways one could classify
market type, they are all highly correlated. Since we use the percent of the market that is
discount to define market type, we define the alternative measures to be positive when
the market is more discount heavy. We analyzed the following alternative measures of
market type: (1) Current mortgage rates less RPB weighted WAC, or “negative borrower
moneyness”, (2) negative RPB weighted relative coupon, or “negative investor moneyness”,
and (3) ten year treasury yield minus RPB weighted relative coupon, which is the negative
of the measure used in Gabaix et al. (2007). The correlation of these measures with the
percentage of RPB that trades at a discount are 0.84, 0.89, and 0.77 respectively. Since
the correlation of market type defined by percentage of RPB that trades at a discount with
all other measures is very high, our risk premia estimation results are, unsurprisingly, fairly
similar across these specifications, as shown in Table B12.36

Table B12: Prices of Risk, Pooled Time Series Cross Section Regression, Negative Relative
Coupon Characteristic for different market type definitions.

Rei
t = κ(r − ci) + δ(r − ci) (Market Type) + εit.

Negative Borrower Moneyness Negative Investor Moneyness Negative Gabaix et al. (2007)
t-stat & t-stat & t-stat &

clustering clustering clustering
Coefficient none time Coefficient none time Coefficient none time

κ 0.02% 1.81 0.82 0.01% 1.40 0.61 0.12% 4.18 1.79
δ 0.09% 6.40 2.45 0.06% 5.79 2.31 0.07% 5.39 2.13
time f.e. yes yes yes
n 1915 1915 1910
R2 60.6% 60.4% 60.3%

36The Gabaix et al. (2007) measure uses the remaining principal balance and WAC for all three agencies,
Fannie, Freddie, and Ginnie, while the other measures use Fannie only. Using all agencies eliminates one
month of data, resulting in 1910 vs. 1915 observations.
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Multicollinearity of x and y Factor Loadings Table B13 presents the distribution
of the monthly cross section correlation between the loadings on the level and incentive-
sensitivity factors. There is little independent information in the two separate loadings, as
can be seen by the high frequency of correlations over 50%. In seven months, only discount
securities trade, so there is no variation in the loadings on the incentive-sensitivity factor.

Table B13: Cross Section Correlation of x and y Factor Loadings by Month. This table
presents the frequency of cross section correlations between level and incentive-sensitivity
loadings by month.

bin count pdf

0% to 10% 0 0%
10% to 20% 0 0%
20% to 30% 0 0%
30% to 40% 0 0%
40% to 50% 15 6%
50% to 60% 109 40%
60% to 70% 58 21%
70% to 80% 48 18%
80% to 90% 0 0%
90% to 100% 33 12%
N/A 7 3%
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Robustness: Realized vs. Expected Returns As discussed in the main text, one
concern with using average monthly returns to proxy for expected returns is that average
realized returns can be a noisy proxy of expected returns. Realized returns are the sum of the
expected return, or drift, plus the effect of current shocks. Thus, we also consider whether
the realization of interest rate shocks can explain our results. We show that our estimates
of risk prices are unchanged by controlling for the effect of interest rate and prepayment
shocks on realized returns. To elaborate on the possible effect of a change in exposures
within the month on realized returns, consider an MBS with a 6% coupon that has a relative
coupon (ci − r) of 2%. Assume that the market is premium, so that premium securities
have positive expected excess returns. Consider the effect of an increase in interest rates.
As interest rates increase, high coupon premium securities move closer to par, i.e. (ci − r)
decreases. Their prepayment risk exposure declines, reducing the required discount rate and
leading to a positive contemporaneous return. The concern is, then, that changes in interest
rates drive changes in exposures, and also drive realized returns. Although such effects
would be consistent with the theory, we find that our results are essentially unchanged
when controlling for the effect of within-month changes in interest rates on realized returns.
We use the characterisic negative relative coupon to measure each relative coupon’s fixed
prepayment exposure.

Table 8 presents our baseline results with fixed prepayment exposures measured by nega-
tive relative coupon. Table B14 adds controls for the main shocks affecting realized returns,
namely prepayment shocks x and y, and interest rate shocks, and adds columns with results
using an empirical hedge to the table in the main text. We present the results using the
empirically hedged series in the last three columns of Table B14. Using the empirically
hedged series, the effect of interest rate shocks is indeed zero. We note that the risk prices
are essentially unchanged, the effect of interest rate shocks on realized returns is insignificant
in the cross section (when standard errors are clustered by time, as advocated by Petersen
(2011)), and that the effect of the prepayment shocks remain, or gain, significance relative
to the results using the analytically hedged returns. The superior performance of empirical
hedges in neutralizing interest rate shocks has been pointed out by Breeden (1994). We
utilize the Barclays hedged series for our baseline analysis because it allows us fewer degrees
of freedom in measurement, and because analytical duration hedging is more common in
practice.
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Table B14: Prices of Risk, Pooled Time Series Cross Section Regression, Negative Relative
Coupon Characteristic, controlling for contemporaneous prepayment and rate shocks. Sub-
scripts on coefficients denote variable interacted with negative relative coupon. Including
effect of rate shock on realized returns does not change estimated risk premia in expected
returns. Standard deviations for each variable appear in the last column. OAD stands for
Option Adjusted Duration.

Rei
t = a+ κ(r − ci) + δ(%RPBdisc

BoM−50%)(r − ci)
(
%RPBdisc

t,BoM − 50%
)

+δx(r − ci)xt + δy(r − ci) yt + δ∆r(r − ci) ∆rt + εit.

Barclays OAD Hedged Empirically Hedged Interaction
t-statistic clustering t-statistic clustering Variable

Coefficient none time Coefficient none time StdDev
κ 0.03% 2.85 1.18 0.00% 0.05 0.02
δ(%RPBdisc

BoM−50%) 0.15% 6.64 2.84 0.13% 5.46 2.19 0.35

δx 0.79% 7.47 3.14 0.50% 4.22 2.07 0.06
δy 1.46% 6.56 1.89 1.55% 5.97 2.68 0.03
δ∆r -0.44% -11.04 -4.32 -0.11% -2.46 -0.75 0.19
time f.e. yes yes
n 1910 1652
R2 64.7% 71.0%
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Robustness: Fama MacBeth Results for Characteristic Model Table B15 presents
the results for the second stage Fama MacBeth estimation of the risk premia used to com-
pute root mean squared errors. Consistent with our theory, the price of prepayment risk
for discount securities is positive in discount months and negative in premium months, and
vice versa for premium securities. All intercepts (unreported) are very close to zero and
statistically insignificant. Using a one-sided test that the price of prepayment risk is statis-
tically significantly negative in premium markets, we confirm the prediction of Hypothesis
1 at the 1% significance level. We also confirm that the price of prepayment risk is positive
in discount markets, but here the significance is lower (6%) due to the smaller number of
discount months.

Table B15: Prices of Risk, Negative Relative Coupon Characteristic. Risk prices are
time series averages of cross section regression coefficients conditional on market type M ∈
(DM,PM). We use c to denote the price of the negative relative coupon (c)haracteristic. The
following regression is estimated at each date t, and average risk prices are computed within
each market type, with months weighted by the number of available securities:

Rei
t,M = at,M + λt,c,, M (r − ci) + εit.

Market Type λc t-stat n

Discount 3.98% 1.61 85
Premium -4.90% -2.77 185

Robustness: Fama MacBeth Results for x and y Factor Model Table B16 presents
the Fama MacBeth results for the two-factor model. As expected, we find that the price
of x, the shock to the level of prepayments is positive in discount markets and negative in
premium markets, with significance at the 5% and 1% levels respectively. We also find that
the price of the incentive-sensitivity shock, y is negative, but insignificant, in both market
types. The negative sign is expected, since only premium securities load on this shock. The
standard errors for all coeficients are biased upward due to the high positive correlation
between the factor loadings in each cross section, as documented in Table B13.

Table B16: Prices of Risk, Fama MacBeth Estimation, two-factor model. Risk prices are
time series averages of cross section regression coefficients conditional on market type M ∈
(DM,PM). Monthly observations are weighed by the number of coupons available in that
month. The following regression is estimated at each date t:

Rei
t,M = at,M + λt,x,Mβ̂

i
x + λt,y,Mβ̂

i
y + εit.

Market Type λx t-statx λy t-staty n

Discount (M=DM) 3.07% 1.65 -.66% -0.26 85
Premium (M=PM) -3.31% -2.60 -.26% -0.18 185
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Robustness: Pooled Time Series Cross Section Results for x and y Factor Model
With the caveat that the x and y loadings exhibit strong multicollinearity, biasing significance
downward, we present the pooled time series cross section results for time-varying level and
incentive-sensitivity risk premia here. We focus on the results with time fixed effects and
using t-statistics from time-clustered standard errors (right-most column). We find that the
risk premia estimates are of the expected sign and are significant using a one-sided test at
the 5% and 10% level, respectively. The two risk premia coefficients are jointly significant
at the 5% level.

Table B17: Prices of Risk, Pooled Time Series Cross Section Regression. F-statistics for
joint statistical significance of δx and δy are computed using the Wald statistic.

Rei
t = a+ κxβ

i
x + κyβ

i
y + δxβ

i
x (%RPBdisc

BoM − 50%) + δyβ
i
y (%RPBdisc

BoM − 50%) + εit.

t-statistic clustering t-statistic clustering
Coefficient none time Coefficient none time

κx -0.30% -0.31 -0.27 -0.15% -0.18 -0.13
κy 0.30% 0.27 0.20 0.73% 0.79 0.60
δx 4.87% 2.11 1.49 6.88% 3.18 2.22
δy 3.28% 1.45 0.92 3.81% 1.79 1.34
a 0.01% 0.68 0.45
time f.e. no yes
n 1915 1915
R2 1.08% 60.29%
F-stat δx and δy 84% 95%

B.3 Additional Evidence: Segmented Markets for MBS

We provide additional support for segmented markets for MBS by demonstrating that se-
curities that load more positively on systematic equity market risk earn lower returns on
average. The price of equity market risk is negative (and significant) in the MBS cross sec-
tion. Our findings are consistent with Gabaix et al. (2007), who show that prepayment risk is
negatively correlated with consumption growth. Given these findings, it is unlikely that the
marginal investor in MBS shares the same marginal rate of substitution as a representative
consumer or equity investor. Tables B18 and B19 present the step one and two results of
the Fama and MacBeth (1973) estimation.37

37Data for the value-weighted CRSP excess market return are from Fama and French (2017).
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Table B18: Factor loadings by relative coupon from a CRSP value weighted excess equity
return CAPM model. The following time series regression is estimated for each security, i:

Rei
t = ai + βieCRSPVWR

eCRSPVW
t + εit.

Relative Coupon βieCRSPVW t-stateCRSPVW n R2

-2.0% 2.56% 1.35 41 4.46%
-1.5% 0.11% 0.07 87 0.01%
-1.0% 4.15% 4.17 153 10.32%
-0.5% 3.91% 5.45 217 12.14%
0.0% 3.66% 5.24 248 10.03%
0.5% 3.31% 4.90 238 9.23%
1.0% 3.02% 4.41 217 8.29%
1.5% 3.01% 4.44 199 9.08%
2.0% 3.15% 3.21 172 5.73%
2.5% 3.66% 2.75 139 5.25%
3.0% 2.80% 2.00 112 3.50%
3.5% 2.70% 1.73 92 3.22%

Table B19: Prices of Risk, CRSP value weighted excess equity return CAPM model. Risk
prices are time series averages of cross section regression coefficients. We use eCRSPVW to
denote the price of the CRSP value weighted excess equity return. The following regression is
estimated at each date t, and risk prices are computed as the time series average of λt,eCRSPVW:

Rei
t = at + λt,eCRSPVWβ

i
eCRSPVW + εit.

λeCRSPVW t-stat n

-7.35% -2.81 270
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B.4 Additional Evidence: Price of Intermediary Returns Negative
in MBS Cross Section

The following Tables B20 and B21 show that the price of intermediary capital is negative
in the cross section of MBS returns. We use the tradable intermediary asset pricing factor
from He, Kelly, and Manela (2017).38 Similar to the results for the equity market model,
the loadings on the intermediary factor are fairly flat in the cross section, positive, and
significant for relative coupons -1.0% and higher. However, although the loadings are fairly
flat, they are highest for the coupons near par. Since these coupons also earn the lowest
returns on average, the price of the intermediary factor is negative in the cross section of
MBS returns. This might seems surprising given the fact that banks are major holders of
mortgages. However, the role of banks in mortgage markets (as opposed to the mortgage
trading desks of banks, prior to the Volcker Rule), is mainly to originate and hold mortgage
loans, rather than to dynamically trade them. It is notable that mortgage origination tends
to occur at coupons at or near the par coupon, consistent with the idea that banks are mainly
long par mortgages. Haddad and Muir (2019) show that, in the time series, a substantial
amount of variation in the risk premium of a hedged MBS index is due to variation in the
intermediary asset pricing factor. Our coupon-level results show that although intermediary
wealth measured by banking data appears to matter for time series variation in the overall
MBS market return, it cannot explain the cross section in MBS returns.

Table B20: Factor loadings by relative coupon from a single factor Intermediary Asset Pricing
model of the cross section of MBS returns. The following time series regression is estimated
for each security, i:

Rei
t = ai + βiHKMR

HKM
t + εit.

Relative Coupon βiHKM t-statHKM n R2

-2.0% 0.69% 0.50 41 0.65%
-1.5% -1.24 % -1.23 87 1.76%
-1.0% 2.50% 3.43 153 7.22%
-0.5% 3.00% 6.12 217 14.85%
0.0% 2.80% 6.20 248 13.52%
0.5% 2.34% 5.36 238 10.84%
1.0% 2.06% 4.67 217 9.21%
1.5% 2.00 4.56 199 9.56%
2.0% 2.19% 3.60 172 7.09%
2.5% 2.33% 2.84 139 5.55%
3.0% 2.13% 2.68 112 6.13%
3.5% 2.00% 2.29 92 5.51%

38The authors note in their data description that this tradable intermediary asset pricing factor is “The
value-weighted investment return to a portfolio of NY Fed primary dealers’ publicly-traded holding com-
panies. Unlike the intermediary capital risk factor, this portfolio is tradable, and performed similarly as a
pricing factor.”

79



Table B21: Prices of Risk, single factor Intermediary Asset Pricing model. Risk prices are
time series averages of cross section regression coefficients. We use HKM to denote the price of
the HKM tradable intermediary factor. The following regression is estimated at each date t,
and risk prices are computed as the time series average of λt,HKM:

Rei
t = at + λt,HKMβ

i
HKM + εit.

λHKM t-stat n

-9.06% -2.54 270
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B.5 OAS vs. Average Realized Returns as Expected Return Prox-
ies

In most of the empirical asset pricing literature, it is standard to measure expected returns
using average monthly returns, rather than yields, however our paper appears to be the
first in this tradition in the literature on the cross section of returns to Mortgage Backed
Securities. Several prior papers, including Gabaix, Krishnamurthy, and Vigneron (2007),
Song and Zhu (2016), and Boyarchenko, Fuster, and Lucca (2017) use Option Adjusted
Spreads (OAS) to proxy for expected returns. This may have been due to limited data
availability in the past. Option-adjusted spread (OAS) is a yield spread which MBS industry
participants back out from market prices using their proprietary pricing models. Specifically,
it is the constant spread which must be added to a benchmark yield curve to generate a
discount rate which justifies the market price of an MBS security given forecasted security
cash flows. Security cash flow forecasts are specified by each dealer to account for variation
in interest rates and borrower prepayment using the dealer’s proprietary prepayment model,
term structure and rate volatility model. Prepayment models, in particular, vary across
dealers, and within dealers over time. As a result, the OAS for a given MBS coupon varies
considerably across dealers.

We argue that this using OAS to proxy for expected returns is problematic for examining
the cross section of MBS pass-throughs, especially prior to the financial crisis. To show this,
we collected OAS data from six major dealers from January 1994 to June 2016. To alleviate
the effect of outliers, we use the median of OAS quotes across dealers for each coupon in
each month, however results using means are essentially unchanged.

For our analysis, we aggregate the OAS data across dealers’ models to form a single OAS
time-series per coupon. We collect end-of-month OAS data for Fannie Mae 30-year TBA
securities from six different dealers. We use OAS computed with respect to the Treasury
curve to be consistent with our analysis of treasury-hedged returns. To alleviate the effect
of outlying dealer-level OAS quotes, we compute the median OAS in the cross-section of
available dealers at each point in time for each coupon. The six dealers’ data become
available sequentially in 1994, 1996, 1997, 1998 2001 and 2005. As a liquidity filter, we also
exclude coupons that have less than one billion outstanding in RPB at the beginning of the
month.

Figure B1 plots the median OAS by coupon from January 1994 to June 2016. Clearly,
there is very little cross-coupon variation in OAS in the first half of the sample, prior to
the financial crisis. Accordingly, Table B22 presents results from a pooled time series cross
section regression of monthly hedged MBS returns on OAS at the end of the prior month,
including time fixed effects, and shows that OAS has no explanatory power for the cross
section returns prior to 2007. Finally, we note that the variation across dealers’ individual
OAS quotes for a single coupon is typically larger than the variation in OAS across coupons.
The observed large variation in dealers’ OAS quotes for a single coupon is due to the fact
that dealers’ prepayment models vary widely. To show this, Figure B2 plots the standard
deviation of OAS across coupons vs. the within-coupon, across-dealer standard deviation for
each coupon from January 1996 to June 2016.39 To illustrate the magnitude of the variation

39Due to variation in coverage, prior to 1996, the data contain only one dealer’s quotes.
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across dealer OAS quotes relative to the level of each coupon’s OAS, Table B23 displays the
median standard deviation across dealers’ OAS quotes by coupon, the time series median
of the median OAS across dealers by coupon, , and the ratio of the two. Note that the
amount of variation across dealers is nearly as large as the median OAS for deep premium
coupons; the disagreement is as large as the level. Moreover, disagreement across dealers in
the prepayment forecasts underlying dealers’ OAS models has been shown to predict returns
by Carlin, Longstaff, and Matoba (2014).
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Figure B1: This figure plots the median across dealers of their model’s Option Adjusted
Spread (OAS) by relative coupon. There is very little variation across coupons in the first
half of the sample. We plot OAS for all coupon-months with greater than $1BN in remaining
principal balance outstanding.

Table B22: OAS does not predict the cross section of hedged MBS returns in a regression of
excess MBS returns on OAS prior to 2007. Time fixed effects are included, and standard errors
are clustered by time to illustrate the lack of predictability in the cross section pre-financial
crisis.

Rei
t = at + bOASOAS

i
t−1 + eit

Sample Period bOAS t-statOAS n R2

January 1994-December 2006 0.11% 0.6 949 69.90%
January 2007-June 2016 0.18% 2.69 966 56.10%
January 1994-June 2016 0.17% 2.73 1915 60.20%
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Figure B2: This figure plots the standard deviation across dealers of their model’s Option
Adjusted Spread (OAS) by relative coupon (colored lines), along with the standard deviation
across coupons at each date (black line). The within-coupon standard deviation across dealers
often exceeds the across coupon standard deviation. We plot OAS for all coupon-months with
greater than $1BN in remaining principal balance outstanding for all dealers reporting for that
coupon-month. Within coupon disagreement across dealers exceeds cross-coupon variation for
the majority of coupon-months.
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Table B23: Time series median of monthly median OAS across dealers by relative coupon
and time series median of monthly cross section standard deviation of OAS across dealers by
relative coupon. The third column reports the ratio of the time series median of the standard
deviation of OAS across dealers (numerator) to the time series median of the cross section
median of OAS across dealers (denominator) to show that the across dealer standard deviation
is large relative to the median coupon level OAS, in particular for premium coupons. We use
medians instead of averages to reduce the influence of outlying dealer quotes.

Relative Time Series Median of Time Series Median of Standard Standard Deviation/
Coupon Median OAS Across Dealers Deviation of OAS Across Dealers Median

-2.0% 68 37 55%
-1.5% 55 21 38%
-1.0% 49 19 39%
-0.5% 47 16 33%
0.0% 44 13 29%
0.5% 41 12 29%
1.0% 40 13 32%
1.5% 43 17 40%
2.0% 42 26 61%
2.5% 39 34 86%
3.0% 45 47 105%
3.5% 70 62 89%
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