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Abstract

We propose target date funds modified to exploit stock return predictability driven by

the variance risk premium. The portfolio rule of these tactical target date funds (TTDFs) is

extremely simplified relative to the optimal one, making it easy to implement and to com-

municate to investors. We show that saving for retirement in TTDFs generates economically

large welfare gains, even after we introduce turnover restrictions and transaction costs, and

after taking into account parameter uncertainty. This predictability also appears to be un-

correlated with individual household risk, suggesting that households are in a prime position

to exploit it.
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1 Introduction

Conventional financial advice prompts households to invest a larger proportion of their fi-

nancial wealth in the stock market when young and gradually reduce this exposure as they

grow older. This advice is given by several financial planning consultants (for instance, Van-

guard1) who recommend target-date funds (TDFs) that reduce equity exposure as retirement

approaches. The long term investment horizon of these funds, and the slow decumulation of

risky assets from the portfolio as retirement approaches, can be thought of as strategic asset

allocation (see Campbell and Viceira, 2002), where a long term objective (financing retire-

ment) is optimally satisfied through the TDF. This investment approach arises naturally in

the context of life-cycle models with undiversifiable labor income risk (for example, Cocco,

Gomes, and Maenhout (2005), Gomes and Michaelides (2005), Polkovnichenko (2007), and

Dahlquist, Setty and Vestman (2018)).2 Moreover, the most recent empirical evidence shows

that, even outside of these pension funds, households follow this life-cycle investment pattern

(Fagereng, Gottlieb and Guiso (2017)).

In this paper we investigate whether simple portfolio rules designed to capture time

variation in expected returns can improve welfare for an investor saving for retirement.3,4

We explore three different popular return predictors: the dividend-price (DP) ratio, the

CAY variable introduced by Lettau and Ludvigson (2001), and the variance risk premium

(VRP) introduced by Bollerslev, Tauchen and Zhou (2009) and Bollerslev, Marrone, Xu, and

Zhou (2014)). We first document that the VRP has the highest predictive power for future

returns and, consistent with this, it generates economically large welfare gains in the context

1See Donaldson, Kinniry, Aliaga-Diaz, Patterson and DiJoseph (2013).
2Benzoni, Collin-Duffresne, and Goldstein (2007), Lynch and Tan (2011) and Pastor and Stambaugh

(2012) show that this conclusion can be reversed under certain conditions.
3In models without labor income Kim and Omberg (1996), Brennan, Schwartz and Lagnado (1997),

Brandt (1999), Campbell and Viceira (1999), Balduzzi and Lynch (1999), Barberis (2000), Campbell et.
al. (2001 and 2003), Wachter (2002), Liu (2007), Lettau, and Van Nieuwerburgh (2008), and Johannes,
Korteweg and Polson (2014) among others, show that optimal stock market exposure varies substantially as
a response to time variation in the equity risk premium.

4The portfolio choice literature is not limited to the papers studying time variation in the equity risk
premium. For example, Munk and Sorensen (2010) and Koijen, Nijman, and Werker (2010) focus on time
variation in interest rates and bond risk premia, while Brennan and Xia (2002) study the role of inflation.
Chacko and Viceira (2005), Fleming, Kerby and Ostdiek (2001 and 2003) and Moreira and Muir (2017 and
2019) consider time variation in volatility, while Buraschi, Porchia and Trojani (2010) incorporate time-
varying correlations.
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of an optimal life-cycle portfolio choice model.5 Relative to an investor who assumes i.i.d.

expected returns, an investor exploiting VRP predictability optimally earns a significantly

higher expected return. This result holds even in the presence of short-selling constraints

which limit the ability of the VRP investor to exploit the time variation in the risk premium.

Her expected return in such a model is still between 2.5 to 4 percentage points higher at

each age (annually).

Crucially, we move beyond the optimal strategies implied by the model, and explore sim-

pler strategies based on those optimal solutions that can be easily implemented by improved

target date funds and can be easily explained to investors. This is an important consid-

eration since individual investors are increasingly expected to be the ones to decide where

to allocate their retirement savings, and several of them have limited financial literacy and

might be sceptical about complex financial products.6 It also follows the approach taken by

the current TDFs, which do not use the exact policy functions of individual households, and

instead offer an approximation that can be easily explained and implemented at low cost.

For example, the exact policy functions imply different portfolio allocations for investors

with different levels of wealth (relative to future labor income).7 Furthermore, the optimal

life-cycle asset allocation is actually a convex function of age as the investor approaches

retirement, not a linear one. However, the approximate rule is easier to understand for in-

vestors that might have limited financial literacy, and they are the ones who decide where

to allocate their retirement savings.

Therefore, in the same spirit as current TDFs, we approximate the optimal asset alloca-

tions with simple linear rules that can be followed by a Tactical Target Date Fund (TTDF).

We estimate the best linear rule from regressions on our simulated data, where we include

as explanatory factors not only age, but also the predictive factor (i.e. the variance risk

5The welfare gains would potentially be even higher if we considered more recent predictors that have
been shown to outperform the variance risk premium, such as the implied correlation or the correlation risk
premium (see Buss, Schonleber and Vilkov (2018)).

6There is a growing literature documenting the low levels of financial literacy in the population at large.
Lusardi and Mitchell (2014) provide an excellent survey. Guiso, Sapienza and Zingales (2008) show that
trust is an important determinant of stock market participation decisions.

7In a similar spirit, Dahlquist, Setty and Vestman (2018) study simple adjustments to the portfolio rules
of TDFs to take this into account.
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premium).8 We further truncate the fitted linear rule by imposing short-sale constraints.

We do this because it might be hard for funds taking short positions to be allowed in some

pension plans, and even if that is not a concern, they might be a tough sell among investors

saving for retirement that have (on average) limited financial education. Building on our

initial discussion, we refer to those modified funds as Tactical Target Date Funds (hereafter

TTDFs). Furthermore, we restrict the portfolio strategy of the TTDF by imposing a limit

on its quarterly turnover.

When comparing the TTDF without turnover constraints with the TDF, we obtain a

certainty equivalent gain of 5.72% for an investor with risk aversion of 5, and 10.1% for an

investor with risk aversion of 10. As we impose turnover constraints, the certainty equivalent

for the investor with risk aversion of 5 is still 2.37% and 1.35%, for a maximum rebalancing

of 25 and 15 percentage points (pp) in the risky share, respectively. These values are eco-

nomically large since they are comparable to the certainty equivalent gain from stock market

participation, which is about 2.0%. In other words, even with a rebalancing limit of 25pp,

the welfare gain obtained by switching from the TDF to the TTDF is comparable to the

welfare gain obtained by becoming a stock market participant in the first place.

One concern with the previous calculations is that the welfare gains were computed in-

sample. We address this concern in two ways. First, we estimate the predictive model in an

initial sample (1990-1999) and use only that information to design the TTDF (more precisely,

the TTDF with a tight turnover restriction). We then compare the real-time performance of

this fund relative to the standard TDF over the subsequent period (2000-2016). This period

was chosen even though the coefficients of the predictive regression are less stable exactly in

the years immediately following our estimation window, before “recovering” in the final part

of the sample. Nevertheless, we find that the TTDF would have outperformed the TDF,

and that this improved performance is largely obtained by decreasing the magnitude of the

losses in bad years (e.g. 2001, 2002 and 2008). These results highlight that the improved

performance of the TTDF is not driven by excessive risk taking, on the contrary, it is often

8We also explore more sophisticated rules which naturally deliver higher wealth accumulation and utility
gains but, for reasons just discussed relating to clarity and simplicity in communication, our baseline case
remains the simple TTDF.
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the result of a reduction in risk-taking in anticipation of lower expected returns.

Second, we explicitly model parameter uncertainty using a Bayesian approach. We find

that the welfare gains from the new TTDF are almost unchanged relative to the original

model. In the presence of parameter uncertainty the optimal portfolio rule is more conser-

vative with the investor being more careful about exploiting potential predictability. Never-

theless, quantitatively, with quarterly rebalancing and short selling constraints, the optimal

policy functions with parameter uncertainty are not substantially different from the behav-

ior implied without parameter uncertainty. Moreover, the tight turnover restrictions further

restrict portfolio changes. As a result, the impact of parameter uncertainty in designing

the TTDF is small, and consequently our conclusions when comparing TTDF welfare gains

relative to the TDF remain unchanged.

We further show that different natural extensions to the proposed TTDF can lead to even

larger welfare gains. Those extensions include relaxing the short-sale constraints, considering

a portfolio rule where we allow the age effects to interact with the predictive factor, and

extending the TTDF beyond age 65 by adding a linear portfolio rule for the retirement

period as well. Despite the improved results, we believe that all of the above face non-trivial

implementation problems relative to the simpler TTDF, and therefore we only present them

as extensions to our baseline case. An additional extension considers an heteroskedastic

model for returns where time-varying volatility is driven by the predictive factor, and the

results are not significantly affected.

Naturally these tactical target date funds could be replicated by a combination of a

standard target date fund and a predictability fund that uses the VRP strategy. But this

would require an investor who not only has access to that second fund, but is also able to

solve for the optimal weights across the two for each state-of-the world. In fact, the same

argument can be made even more cleanly for the simple target date fund itself: it can be

replicated by combining a pure index fund and cash. Moreover, in this simpler case the

weights are only age dependent and therefore the strategy requires very limited financial

knowledge to implement. To the extent that limited financial literacy and/or transaction

costs (both financial and opportunity cost of time) have created such a large market for the

simple TDF, the same forces should be even stronger for introducing the TTDF.
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Our focus on the predictability driven by the VRP is also motivated by the high-frequency

nature of this time variation in expected returns. The more traditional predictive variable,

the dividend-yield, captures lower frequency movements (and is more persistent than the

VRP) tending to be associated more closely with bad economic conditions and/or discount

rate shocks, both of which affect households directly.9 We confirm this by documenting

that excess return predictability from the dividend-yield is indeed associated with higher

household consumption risk. This empirical result is also a direct implication of several

equilibrium asset pricing models that endogenously generate these predictability patterns

(e.g. Campbell and Cochrane (1999)). The existing portfolio choice literature is well aware

of this and therefore carefully mentions that the results should not be interpreted as applying

to a representative investor, but rather to an investor not exposed (or less exposed than the

average) to such risks.10

In this paper we propose funds to be used by all investors so it is important that the

average household is not exposed to these risks. Our underlying hypothesis is that VRP

predictability is likely driven by constraints on banks, pension funds and mutual funds (e.g.

capital constraints or tracking error constraints), unlikely to be significantly correlated with

household-level risks. We provide supportive evidence for this argument using the Consumer

Expenditure Survey (CEX). Specifically, we document that states of the world with high re-

alizations of the VRP do not predict future decreases in household consumption growth,

future increases in cross-sectional consumption risk, or decreases in household labor income

growth. This evidence supports the hypothesis that households appear to be in a prime posi-

tion to “take the other side” and exploit this premium. Furthermore, in general equilibrium,

the fact that households own the financial intermediaries adds a further motivation to take

the other side of this trade. If those institutional investors are forced to scale down their

risky positions when VRP is high because of exogenous constraints, then households should

be keen to offset this by increasing the risk exposure in their individual portfolios.

The paper is organized as follows. Section II discusses the return predictors. In Sec-

9Bad economic conditions will tend to be associated with negative labor income shocks, while discount
rate shocks might reflect increased household risk aversion.

10Michaelides and Zhang (2017) incorporate stock market predictability through the dividend-yield in the
context of a life-cycle model of consumption and portfolio choice.
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tion III we study the potential correlation between return predictability and household risk.

Section IV outlines the life-cycle model and discusses the optimal policy functions and cor-

responding welfare gains. Section V discusses the design of the proposed TTDFs and their

associated welfare gains, while Section VI incorporates parameter uncertainty and reports

the corresponding out-of-sample performance. Section VII explores different extensions and

robustness tests, and Section VIII provides concluding remarks.

2 Return Predictors and Stock Returns

2.1 VAR model for stock returns

Time variation in expected returns is captured by a predictive factor (ft); following Campbell

and Viceira (1999) and Pastor and Stambaugh (2012) we construct the VAR,

rt+1 − rf = α + βfft + zt+1, (1)

ft+1 = µ+ φ(ft − µ) + εt+1, (2)

where rf and rt denote the net risk free rate and the net stock market return, respectively.

The two innovations {zt+1, εt+1} are bivariate normal variables with mean equal to zero and

variances σ2
z and σ2

ε, respectively.

In our estimation we explore three different popular return predictors (ft), the dividend-

price (DP) ratio, the CAY variable introduced by Lettau and Ludvigson (2001), and the vari-

ance risk premium (VRP) introduced by Bollerslev, Tauchen and Zhou (2009) and Bollerslev,

Marrone, Xu, and Zhou (2014)). The formulation allows for contemporaneous correlations

between zt+1 and εt+1.
11

Our baseline comparison we will be a model with i.i.d. excess returns, in which case

rt+1 − rf = µr + zt+1. (3)

11In the numerical solution of the model we approximate this VAR using Flodén (2008)’s variation of the
Tauchen and Hussey (1991) procedure, designed to better handle the case of a very persistent AR(1) process.
As discussed below, the CAY and the dividend-price ratio are very persistent variables.
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In order for the i.i.d. model to be comparable to the factor model, the first two unconditional

moments of returns are set to be equal in both cases.

2.2 Return predictors

We use the CAY constructed by Lettau and Ludvigson (2001)12 and we construct the DP

from the value weighted returns of the S&P 500 index from the CRSP database. As in

Bollerslev, Tauchen and Zhou (2009), we define the variance risk premium (V RPt) as the

difference between the option-implied variance of the stock market (IVt) and its realized

variance (RVt),

V RPt ≡ IVt −RVt. (4)

The data for the quarterly implied variance index (IVt) are taken from the Federal Reserve

Bank of St. Louis (FRED), while the data for the monthly realized variance (RVt) from

Zhou (2018).13 We convert the monthly realized variance to quarterly by simply adding the

monthly terms. Figure 1 shows the time series variation in implied variance (IVt), realized

variance (RVt) and the variance risk premium (V RPt), replicating and extending essentially

the original Bollerslev, Tauchen and Zhou (2009) measure.

Table 1 contains the descriptive statistics from the data set. The stock market return has

a quarterly mean of 1.98% with a standard deviation equal to 7.8%. Relative to the other

two predictors the variance risk premium has a very high kurtosis and negative skewness.

In terms of volatility, the CAY variable has the highest standard deviation. Of course, these

results do not necessarily translate into the implied forecasts of expected returns, since those

will also depend on the coefficients of the corresponding VAR. Finally, while the CAY and

DP are highly persistent, with a first-order autocorrelation of 0.93 and 0.82 respectively, the

VRP is even slightly negatively correlated (-0.18 first-order autocorrelation).

12This can be found at Martin Lettau’s website: https://sites.google.com/view/martinlettau/data.
13Available at https://sites.google.com/site/haozhouspersonalhomepage/.
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2.3 VAR Estimation

Table 2 reports the estimation results for the VAR model (equations (1) and (2)) when using

the three different predictive factors. To facilitate the discussion we use the terminology

VRP model, CAY model and DP model, when referring to the VAR models that use VRP,

CAY, and DP, respectively, as the predictive factor.

The CAY and DP models have an R2 of 5.4% and 6.2%, respectively, compared to 15%

for the VRP model. In addition, the statistical significance of βf is also higher in the VRP

model, with a t-statistic of 4.48, versus 1.40 and 2.83 for CAY and DP, respectively. These

results suggest that the variance risk premium will be the most effective predictor to consider

in the portfolio choice model. Our quantitative estimates for the VRP model are also largely

consistent with the ones in Bollerslev et al. (2009). The factor innovation is very smooth with

a standard deviation (σε) of 0.007. Given these estimates, we can infer the unconditional

variance of unexpected stock market returns from

σ2
z = V ar(rt)− β2

fσ
2
f . (5)

The correlation between the factor and the return innovation (ρz,ε) is a potentially im-

portant parameter in determining hedging demands. For most common predictors in the

literature (e.g. dividend yield) this is a large negative number (see, for example, Campbell

and Viceira (1999) and Pastor and Stambaugh (2012)). Here, this correlation is estimated as

slightly negative over the whole sample for the VRP. Nevertheless, in Table 8 we show that

the correlation is strongly negative for the subsamples that exclude the financial crisis.14

Following the life-cycle portfolio choice literature, we adjust our return process in all spec-

ifications to deliver an unconditional equity premium below the historical average, namely 4%

at an annual frequency. The net constant real interest rate, rf , is set at 0.37% corresponding

to 1.5% at an annual frequency.

14As discussed in Section 6.3, the performance of the TTDF remains high even during these periods.
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2.4 Return predictors and return volatility

The model presented in section 2.1 assumes homoskedastic returns. This is a common as-

sumption in the life-cycle portfolio choice literature to avoid having to introduce lagged

return volatility as an additional state variable in the model.15 Since return heteroskedas-

ticity would affect both the model without first-moment predictability and the models with

the predictive factors, we follow the previous literature and consider a model with constant

variance. In our context this assumption could be problematic if time-variation in return

volatility is associated with a specific predictive factor. More precisely, if t + 1-volatility is

expected to be high when a given factor predicts high expected returns at t + 1, then we

will be over-stating the welfare gains by ignoring this link.16 We address this concern by

estimating the following equation

V art+1 = a+ bft + vt+1 (6)

where ft is any of the three predictive factors. The results are shown in Table 2, Panel B.

We find that the variance risk premium is not a statistically significant predictor of future

volatility at a quarterly frequency. This result validates our assumption that time-variation

in expected returns, as predicted by the VRP, is not associated with changes in the second

moment of returns. It is interesting to note, however, that this result arises because we

are using a quarterly frequency. As also shown in Table 2, Panel B, when we use monthly

data in our estimation we find a statistically significant correlation between current VRP

and future stock return volatility. Despite having estimated a non-significant coefficient, as

a robustness exercise we later consider a version of the model with equation (6), and we use

our estimate of b as the calibrated coefficient.

Considering the other two predictors, CAY is also statistically uncorrelated with the

future volatility of stock returns, while for the dividend-price ratio there is a statistically

significant negative coefficient.

15In addition these models are usually solved at an annual frequency, and heteroskedasticity in returns is
much weaker in that frequency.

16By the same logic, if t+1-volatility is actually expected to be lower, then we will actually be under-stating
the welfare gains.
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3 Return Predictors and Household Risk

3.1 Discussion

The optimality of increasing the allocation to stocks when expected returns are high will be

over-stated if this is accompanied by an increase in risk for households. We have already

documented a high value of the VRP does not predict a higher variance of stock returns, but

it could be associated with other economic risks that impact households directly. Therefore,

it becomes important for our analysis that this is not the case, and in this section we provide

supporting evidence for this argument.

It is important to clarify that we are not arguing that the changes in expected returns,

as forecasted by the VRP, do not reflect risk. Such a discussion is beyond the scope of our

paper. We are merely stating that, if it is indeed risk, this risk appears to be faced primarily

by other agents in the economy and not by individual households directly. For example,

institutional investors such as mutual funds or banks face constraints that might lead them

to reduce their risk bearing capacity in these periods.17 If households are not directly exposed

to this risk, it is therefore natural for them to increase their allocation to stocks in these

periods and thus earn the additional premium by effectively taking the other side of this

trade.18 Furthermore, from a general equilibrium perspective, and to the extent that it is

the same households that own the banks and therefore their own wealth that is invested in

pension/mutual funds, a further motivation arises for taking the other side of the VRP. As

institutional investors are forced to scale down their risky positions, then households should

be keen to offset this by increasing the risk in their individual portfolios.

3.2 Data and Variable Construction

We use non-durable consumption and services from the Consumer Expenditure Survey

(CEX).19 We exclude durables, implicitly assuming that utility is separable between durables

17For example, tracking error constraints for mutual funds or VAR constraints for banks.
18Naturally, if we take the view that a high value of the VRP does not represent an increase in risk at all,

then the same conclusion applies: households should exploit this predictable variation in the risk premium.
19Our internet appendix provides further details on data construction.
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and non-durables and services. This also allows comparison with earlier literature, partic-

ularly Malloy et. al. (2009). The service categories relating to durables are also excluded

(housing expenses but not costs of household operations), medical care costs, and education

costs as they have substantial durable components.

Our data construction follows the one in Malloy et. al. (2009). We first drop non-urban

households, households residing in student housing, and households with incomplete income

responses. We also exclude household-quarters in which a household reports nonzero con-

sumption for more than 3 or less than 3 months in any one interview, or where consumption

is negative. Likewise, we remove observations with extreme values, namely those with con-

sumption growth above percentile 97.5, and below percentile 2.5. To determine stockholders

we use the financial information provided in interview five, and we also drop any households

for which any of the interviews in the second to fifth quarter are missing. To determine

stockholder status we use the response to the category “stock, bonds, mutual funds and

other such securities”. In our data the stock market participation rate is around 19%, which

is similar to the rate reported by Malloy et. al. (2009) for the earlier version of this sample.

We construct quarterly consumption growth rates for stockholders and non-stockholders

from January 1996 to December 2015. The CEX is a repeated cross section with households

interviewed monthly over five quarters, enabling us to compute quarterly growth rates at a

monthly frequency. Nevertheless, we cannot follow the same household for more than five

quarters, and therefore membership in a group is used to create a pseudo-panel to track

household risk over longer time periods. Following the literature, we regress the change in

log consumption on drivers not in the model (log family size and seasonal dummies) and use

the residual as our quarterly consumption growth measure.

Our model applies primarily to stockholders; since stockholders face different risks from

non-stockholders, we estimate separate regressions for the two groups. We compute the aver-

age consumption growth rate for a particular group (for instance, stockholders) for different

horizons s=1, 2, 4, and 8 by averaging the log consumption growth rates as

1

N

N∑
i=1

[ci,t+s − ci,t], (7)
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where ci,t is the quarterly log consumption of household i at time t.

As discussed below, we also investigate whether our measure of expected returns is as-

sociated with an increase in cross-sectional consumption risk. For this purpose we compute

the higher-order moments of the cross-sectional distribution of consumption, namely the

standard deviation, skewness and kurtosis. Since higher order moments are not additive,

unlike the mean consumption growth rate, we can only compute them for s = 1 and s = 2,

since they can be constructed directly for the same group of households.

3.3 Consumption risk

We start by considering whether higher expected returns are associated with lower expected

future consumption growth, by estimating the following regressions:

1

N

N∑
i=1

[ci,t+s − ci,t] = αsc + βsc · f
j
t + εct , s = 1, 2, 4, 8, j = V RP,CAY,DP, (8)

where f jt denotes the realization of the predictive factor j at time t.

The estimates of βsc are shown in Panel A of Table 3 for the sub-sample of stockholders.20

The standard errors are computed using a Newey-West estimator that allows for autocorrela-

tion of up to s−1 lags when s > 1. The third and fourth rows in Table 3, Panel A, show that

β1
c is non-significant for all values of s, when the predictor variable is the VRP. In fact, most

point estimates are even positive. This confirms that a high expected return, as predicted by

the variance risk premium, is not associated with lower expected future consumption growth

rate, either in the next quarter (s = 1), or even as far as 2 years ahead (s = 8). It is still

possible, however, that the higher expected returns predicted by the variance risk premium

are associated with an increased dispersion of future consumption growth. In Panel B we

further exploit the cross-sectional dimension of the CEX to repeat the previous regressions

for higher-order moments of the cross sectional distribution of consumption growth, namely

the standard deviation, skewness and kurtosis.21 The results in the third and fourth rows of

20The results for non-stockholders are presented in the internet appendix. They deliver the same qualitative
conclusions, although we find less statistically significant coefficients.

21As previously discussed these moments can only be constructed for s = 1 and s = 2, so we can only
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Panel B show that the VRP is not associated with an increase in any of these three measures

of cross-sectional consumption risk, both for s = 1 and for s = 2.

When the predictor variable is the dividend-yield, the point estimates in Table 3, Panel A,

are negative and statistically significant for all horizons greater than s = 1. Therefore, unlike

the VRP, high values of the dividend-yield also predict lower future expected consumption

growth. In other words, if an investor increases her risky share when the dividend-yield is

high, she will be exposed to more return risk exactly when her consumption is expected to

fall. This result is in fact implied by a large asset pricing literature that rationalizes the

dividend-yield predictability in equilibrium (e.g. Campbell and Cochrane (1999)).

Interestingly, for the CAY we find the same results as for the VRP. None of the coefficients

in Panel A of Table 3 is statistically different from zero, so there is no statistically significant

correlation between higher expected returns, as predicted by the CAY, and future expected

consumption growth. Turning to Panel B of Table 3 we find that high values of CAY are

however associated with an increased volatility of future consumption growth. Comparing

with the VRP, the overall results are not substantially different though, suggesting that the

CAY could be another interesting predictor to consider in designing TTDFs.

3.4 Labor income risk

Our previous results imply that, even if the return predictability from the VRP is associated

with increased economic risk, households are either not directly affected by those risks, or

able to smooth them, and therefore not reflected in their consumption. However, given the

important role of labor income in our portfolio choice model we also explore whether return

predictability is associated with higher labor income risk.

More precisely, we follow the same methodology used for estimating the impact on con-

sumption risk, by estimating the following series of regressions22

1

N

N∑
i=1

[yi,t+s − yi,t] = αsy + βsy · f
j
t + εyt , s = 1, 2, 4, 8, j = V RP,CAY,DP, (9)

report regression results for these two horizons.
22We again use CEX data because it has a quarterly frequency, which is not the case with PSID data, for

example.
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where f jt again denotes the realization of the predictive factor j at time t.

The results are shown in Table 3, Panel C, and we again find no statistically significant

coefficients for the VRP or CAY. Most of the coefficients for the VRP are even positive,

although not statistically significant. For the dividend-price ratio there is again evidence of

increased future risk, with a negative statistically significant coefficient at eight quarters.

4 Life-Cycle Asset Allocation Model

Time is discrete, but contrary to most of the life-cycle asset allocation literature we solve

the model at a quarterly rather than an annual frequency. This is crucial to capture the

higher-frequency predictability in expected returns documented by Bollerslev et al. (2009).

Households start working life at age 20, retire at age 65, and live (potentially) up to age 100,

for a total of 324 quarters. We use t to denote calendar time and a to denote age.

4.1 Preferences and Budget Constraint

In the model there are two financial assets available to the investor. The first one is a

riskless asset representing a savings account. The second is a risky asset which corresponds

to a diversified stock market index. The riskless asset yields a constant gross after tax

real return, Rf , while the gross real return on the risky asset is potentially time varying as

captured by the VAR model described in Section 2 (equations (1) and (2)).

The household has recursive preferences defined over consumption of a single non-durable

good (Ca), as in Epstein and Zin (1989) and Weil (1990),

Va = max

{
(1− β)C1−1/ψ

a + β
(
paEa(V

1−γ
a+1 )

) 1−1/ψ
1−γ

} 1
1−1/ψ

, (10)

where β is the time discount factor, ψ is the elasticity of intertemporal substitution (EIS)

and γ is the coefficient of relative risk aversion. The probability of surviving from age a to

age a+ 1, conditional on having survived until age a is given by pa+1.

At age a, the agent enters the period with invested wealth Wa and receives labor income,

Ya. Following Gomes and Michaelides (2005) we assume that an exogenous (age-dependent)
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fraction ha of labor income is spent on (un-modelled) housing expenditures. Letting αa

denote the fraction of wealth invested in stock at age a, the dynamic budget constraint is

Wa+1 = [αaRt+1 + (1− αa)Rf ](Wa − Ca) + (1− ha+1)Ya+1 (11)

where Rt is the return realized that period (so when t = a). In the baseline specification we

assume binding short sales constraints on both assets, more precisely

αa ∈ [0, 1]. (12)

In practice it is expensive for households to short financial assets and relaxing these assump-

tions would require introducing a bankruptcy procedure in the model. In the context of

the life cycle fund shorting will be cheaper, but still not costless, and this will still require

making assumptions about the liquidation process in case of default. For these reasons the

baseline model assumes fully binding short-selling constraints but we will also discuss results

where we relax these.

4.2 Labor Income Process

The labor income follows the standard specification in the literature (e.g. Cocco et al.

(2005)), such that the labor income process before retirement is given by23

Ya = exp(g(a))Y p
a Ua, (13)

Y p
a = Y p

a−1Na (14)

where g(a) is a deterministic function of age and exogenous household characteristics (educa-

tion and family size), Y p
a is a permanent component with innovation Na, and Ua a transitory

component of labor income. The two shocks, lnUa and lnNa, are independent and identi-

cally distributed with mean {−0.5× σ2
u,−0.5× σ2

n}, and variances σ2
u and σ2

n, respectively.

We allow for correlation between the permanent earnings innovation (lnNa) and the shocks

23We are assuming that the quarterly data generating process for labor income is the same as the one at
the annual frequency. The calibration section discusses this in more detail.
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to the expected and unexpected stock returns.

The unit root process for labor income is convenient because it allows the normalization

of the problem by the permanent component of labor income (Y p
a ). Letting lower case letters

denote the normalized variables the dynamic budget constraint becomes

wa+1 =
1

Na+1

[Rt+1αa +Rf (1− αa)](wa − ca) + (1− ha+1) exp(g(a+ 1))Ua+1. (15)

As common in the literature the retirement date (K = 65) is exogenous, and retirement

income is a deterministic function of working-life permanent income

Ya = λY p
K for a > K, (16)

where λ is the replacement ratio.

4.3 Estimation and Calibration

We take the deterministic component of labor income (g(a)) from the estimates in Cocco

et al. (2005) and linearly interpolate in between years to derive the quarterly counterpart.

Likewise we use their replacement ratio for retirement income (λ = 0.68). Cocco et al.

(2005) estimate the variances of the idiosyncratic shocks around 0.1 for both σu and σn at

an annual frequency. Since we assume that the quarterly frequency model is identical to the

annual frequency model, it can then be shown that the transitory variance (σ2
u) remains the

same as in the annual model, while the permanent variance (σ2
n) should be divided by four.

Angerer and Lam (2009) note that the transitory correlation between stock returns and

labor income shocks does not empirically affect portfolios and this is consistent with sim-

ulation results in life cycle models (Cocco, Gomes, and Maenhout (2005)). We therefore

set the correlation between transitory labor income shocks and stock returns equal to zero.

The baseline correlation between permanent labor income shocks and unexpected stock re-

turns (ρn,z) is set equal to 0.15, consistent with the mean estimates in most empirical work

(Campbell et. al. (2001), Davis, Kubler, and Willen (2006), Angerer and Lam (2009) and

Bonaparte, Korniotis, and Kumar (2014)). We set the correlation between the innovation
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in the factor predicting stock returns and the permanent idiosyncratic earnings shocks (ρn,ε)

to zero as there is no available empirical guidance on this parameter.

Finally, we take the fraction of yearly labor income allocated to housing from Gomes and

Michaelides (2005). This process is estimated from Panel Study Income Dynamics (PSID)

and includes both rental and mortgage expenditures. As before, to obtain an equivalent

quarterly process we linearly interpolate across years.

We consider different values for the preference parameters, to explore how the welfare

gains might change across investors. More precisely we consider risk aversion coefficients of

2, 5 and 10, discount factors of 0.9875 and 0.995 (annual equivalents of around five percent

and two percent, respectively), and elasticities of intertemporal substitution of 0.5 and 1.5.

4.4 Optimal portfolio allocation

We first document the optimal life-cycle portfolio allocations in the model with time-varying

expected returns (henceforth VRP model) for a baseline value of preference parameters for

the investor (henceforth VRP investor). These results will form the basis for the next section,

where we propose the tactical target date funds (TTDFs). In the VRP model the optimal

asset allocation is determined by age, wealth and the realization of the predictive factor.

In Figure 2.1, we plot the average share invested in stocks for the VRP investor when the

factor is at its unconditional mean (αa[E(f)]), the mean share across all realizations of the

factor (E[αa(f)]), and the one obtained under the i.i.d. model (E[αiida ]). In all cases wealth

accumulation is computed using the corresponding policy functions.

The portfolio share from the i.i.d. model follows the classical hump-shape pattern (e.g.

Cocco, Gomes and Maenhout (2005)).24 The optimal allocation of the VRP investor, for

the average realization of the predictive factor (αa[E(f)]), shares a very similar pattern and,

except for the period in which both are constrained at one, we have

αa[E(f)] < E[αiida ]. (17)

24The increasing pattern early in life is barely noticeable because under our calibration the average optimal
share at young ages is (already) close to one.
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Even though under the two scenarios the expected return on stocks is the same, Figure

2.1 shows that αa[E(f)] is below one already before age 35 and from then onwards it is

always below E[αiida ]. The main driving force behind this result is the difference in wealth

accumulation of the two investors. As we show below, the VRP investor is richer and

therefore allocates a smaller fraction of her portfolio to risky assets.25

We next compare the optimal risky share for the average realization of the factor (αa[E(f)])

with the optimal average risky share across all factor realizations (E[αa(f)]). If the portfolio

rule were a linear function of the factor the two curves should overlap exactly. However,

Figure 2.1 shows that there is a substantial difference between the two, particularly early in

life. At this early stage of the life-cycle (age below 45) we have

E[αa(f)] < αa[E(f)] for a < 45 (18)

This result arises from a combination of the short-selling constraints and the fact that

αa[E(f)] is (much) closer to one than to zero. Given the high average allocation to stocks

early in life, for realizations of the factor above its unconditional mean the portfolio rules are

almost always constrained at one. On the other hand, for lower realizations of the predictive

factor the optimal allocation is “free” to decrease, hence it is lower than αa[E(f)]. In some

cases, depending on the volatility of the predictive factor, the expected next period stock

return becomes negative, and the optimal share of wealth in stocks jumps to zero. As a

result, the optimal average allocation of the VRP investor is sometimes far below αa[E(f)].

Building on the previous intuition, it is not surprising to find that the inequality sign flips

once the portfolio allocation at the mean factor realization (αa[E(f)]) falls below 50%, which

takes place around age 45. Now the more binding constraint is the short-selling constraint

on stocks so we have:

E[αa(f)] > αa[E(f)] for a > 45 (19)

This comparison suggests that the welfare gains from the VRP model are likely to be much

higher if we relax the short-selling constraints, which motivates our discussion of this par-

25The two policy allocations also differ because the policy rules from the VRP model take into account
the hedging demands, but that effect is quantitatively much less important.
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ticular extension in Section 7.

Combining inequalities (17) and (18) it is easy to see that, until age 45, we have:

E[αa(f)] < E[αiida ], (20)

namely that the average portfolio allocation in the VRP model (E[αa(f)]) will be much

lower than the one in the i.i.d. model (E[αiida ]), and the intuition follows from the previous

discussions. In fact, even after age 45, when (18) is replaced by (19), although the difference

between the optimal allocation of the VRP and i.i.d. investors decreases, equation (20) still

holds: the i.i.d. investor has a higher average allocation than the VRP investor.

In Figure 2.2 we plot three different moments of the risky share under the VRP model:

the mean (already in Figure 2.1), and plus one and minus one standard deviation based

on simulated portfolios. Figure 2.2 illustrates that the optimal portfolio share from the

VRP model implies a very high level of turnover. For this reason, when we later design

the portfolio rules for the tactical target date funds, we will explicitly impose constraints on

maximum portfolio rebalancing.

4.5 Portfolio returns

We now study the differences in expected returns between the VRP and i.i.d. investors,

assuming they start with zero initial financial wealth and they face the same labor income

realizations. In Figure 3.1 we plot the (annualized) average expected portfolio returns

E(RP
t+1) = αaEt[Rt+1] + (1− αa)Rf , a = 1, ..., T, (21)

computed by averaging (at each age) across all simulations. Since we are averaging across

all possible realizations of the factor, for a constant portfolio allocation (α), this would be

a flat line. For example, if α = 1, this would be equal to the average equity portfolio

return, regardless of age. In the i.i.d. model this line essentially inherits the properties of

the optimal {αa}Ta=1. The (annualized) expected portfolio return is around 5% early in life,

increases slightly in the first years and then decays gradually as the investor approaches

19



retirement and thus shifts towards a more conservative portfolio. In the VRP model the

same average life-cycle pattern is present but now, since the household increases (decreases)

αa when the expected risk premium is high (low), the line is shifted upwards. As a result,

even though as shown in Figure 2.1 the VRP investor has on average a lower exposure to

stocks than the i.i.d. investor, her expected return is actually higher.

The vertical difference between the two lines gives us a graphical representation of the

additional expected excess return that is actually earned by the VRP investor, and to facili-

tate the exposition we also plot it as a separate line in the figure. From age 37 onwards this

difference increases monotonically, as the lower average equity share makes the short-selling

constraint less binding and thus the VRP investor is more able to exploit time-variation in

the risk premium. As the two agents reach retirement, the difference in expected returns is

almost 4 percentage points. This difference is therefore at its maximum exactly when these

investors have the highest wealth accumulation.

Figure 3.2 shows the range of possible outcomes we might expect by plotting the expected

return for the VRP and i.i.d. investor over the life-cycle, but also with a plus one, and minus

one, standard deviation band. At plus one standard deviation, the two models deliver

similar returns, particularly early in life. This is expected since, at these ages, the optimal

allocation to stocks at the mean expected return is 100%, or very close to it. As a result, if

the VRP model predicts higher expected returns, the investor cannot increase her allocation

further and is therefore unable to exploit this predictability. However, this constraint does

not prevent the investor from decreasing her allocation when expected returns are below

average. For that reason the VRP model significantly outperforms the i.i.d. model when in

bad states of the world, as shown by the minus one standard deviation lines. Overall, the

results in Figure 3.2 show that the improved performance of the VRP is primarily obtained

by minimizing the impact of low returns.
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4.6 Welfare metrics and welfare gains

4.6.1 Welfare metrics

Our welfare metrics are consumption certainty equivalent gains (CEG), defined as the per-

centage increase in life-time certainty equivalent consumption

CEGi
20 =

CEQi
20

CEQiid
20

− 1, i = V RP,CAY,DP, (22)

where CEQi
20 is the life-time (from age 20) certainty equivalent consumption obtained from

the value function with the optimal policy rules implied by model i, and CEQiid
20 is the

lifetime certainty equivalent consumption obtained with the policy rules implied by the i.i.d.

model. By construction, the consumption certainty equivalent gains take into account both

differences in expected returns/wealth accumulation and differences in risk.26

Consistent with the focus of our paper to design improved target date funds for retirement

savings, we also report welfare gains at age 65, i.e. consumption certainty equivalent gains

measured using the age-65 value functions,

CEGi
65(W

i
65) =

CEQi
65(W

i
65)

CEQiid
65 (W iid

65 )
− 1, i = V RP,CAY,DP, (23)

where CEQi
65 and CEQiid

65 are the consumption certainty equivalents when considering the

retirement period only (from age 65), and evaluated at the average age-65 wealth level

implied by the model.27 To facilitate comparisons across models, we also compute this

certainty equivalent using the same wealth level for all, namely the average age-65 wealth

accumulation of the VRP model:

CEGi
65(W

V RP
65 ) =

CEQi
65(W

V RP
65 )

CEQiid
65 (W iid

65 )
− 1, i = V RP,CAY,DP. (24)

Finally, we also report age-65 certainty equivalent gains obtained by imposing an identical

26Furthermore, risk is evaluated beyond just considering the second moment of returns. Since we use an
Epstein-Zin utility function, the investor cares not only about first and second moments, but about the full
distribution of returns.

27For simplicity we omitted wealth levels in equation (22) since we assume that all agents start with zero
wealth at age-20.
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pre-retirement consumption behavior,28

CEGi
65(W

i
65(C

iid
20−65)) =

CEQi
65(W

i
65(C

iid
20−65))

CEQiid
65 (W iid

65 )
− 1, i = V RP,CAY,DP (25)

where W i
65(C

iid
20−65) is the age-65 wealth obtained when using, from age 20 to age 65, the port-

folio rules from model i and the consumption rules from the i.i.d model.29 This calculation

equalizes pre-retirement consumption behavior, and therefore takes the view of two otherwise

identically-behaving investors who simply invest in different portfolios, and therefore any dif-

ferences in consumption are exclusively determined by the differences in the realized returns

on those portfolios. By comparing (23) and (25) we can isolate the role of the differences in

pre-retirement consumption behavior for determining the age-65 welfare gain.

4.6.2 Results

The results for the 3 different models are shown in Table 4. Panel A reports results for

different values of the coefficient of relative risk aversion, 2, 5 and 10, for fixed values of

the EIS (0.5) and the discount factor (0.9875 quarterly). In Panel B we report results for

alternative values of the EIS (1.5) and the discount factor (0.995 quarterly), while keeping

the coefficient of relative risk aversion constant at 5.

In all specifications the welfare gains increase with risk aversion. Wealthier individuals

have more to gain by increasing the expected return on their wealth, and in life-cycle mod-

els with undiversifiable income risk a higher risk aversion typically leads to higher wealth

accumulation. For the same reason, the welfare gains are higher when measured at age-65,

since agents are wealthier around retirement age.

Crucially, for all three values of risk aversion, and regardless of the welfare metric, there

is a clear ranking of the models: the VRP model yields the highest welfare gain, followed

by the CAY model, and then the DP model. The ranking remains unchanged even when

we compare the models at the same level of wealth at age-65 (CEGi
65(W

V RP
65 )) or at age-20

28More specifically, we assume that before retirement the agent uses the consumption functions of the i.i.d.
model in all cases.

29By construction, W iid
65 = W iid

65 (Ciid
20−65).
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(CEGi
20).

30 Based on these results, we take the VRP model as the basis for the tactical

target-date funds that we will study in the remainder of the paper.

The age-20 welfare gains are smaller because all future gains are discounted, but they are

economically very large, especially for the VRP model. For comparison, the corresponding

certainty equivalent gains from stock market participation obtained in life-cycle models are

in the order of 1% to 3% depending on the calibration (e.g. Cocco, Gomes and Maenhout

(2005)).31 In other words, the benefit from moving from the i.i.d. model to VRP model is

larger than the benefit obtained from becoming a stockholder in the first place.

In Panel B, we report results for alternative values of the EIS (1.5) and the discount

factor (0.995 quarterly), while keeping the coefficient of relative risk aversion constant at 5.

As we increase the EIS, or the discount factor, the welfare gains are even larger than under

our baseline calibration and the intuition is the same as when comparing risk aversion in

Panel A. These two cases lead to higher wealth accumulation, and wealthier investors benefit

more from improving the return on their wealth. As in Panel A, we again conclude that the

VRP model delivers the highest welfare gains for all combinations of parameter values.

5 Tactical Target-Date Funds

Having concluded that the VRP is the best expected return predictor, we now proceed to

incorporate this factor in an improved target-date fund. In the previous section we derived

the optimal life-cycle policy functions from the model. However, these are not feasible

options for a mutual fund. For example, current target date funds do not use the exact

policy functions of individual households. They instead offer an approximation that can be

implemented at low cost, using a roughly linear or piece-wise linear function of age. This

is an approximation to the typical optimal solution for the i.i.d. model which follows a

hump shape pattern early in life (even though not very pronounced for low levels of risk

aversion), and has a convex shape later on as the investor approaches retirement. However,

30Since agents start at age-20 with zero wealth, the age-20 certainty equivalent gain is by definition
evaluated at the same value of cash-on-hand in all cases.

31For the baseline calibration with a risk aversion coefficient of 5, the certainty equivalent gain from
participating in the stock market (under the i.i.d. model) is 1.98%.
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as the exact patterns of optimal policy will vary across individuals based on their preferences

and other important factors (e.g. labor income profile and wealth accumulation), the linear

function has the dual advantage of being simple to explain and a reasonable approximation

to an heterogeneous set of optimal life-cycle profiles. This approach benefits from the further

advantage that such a simpler strategy can be more easily communicated to investors with

possibly limited financial literacy, and have to make the final decision on where to allocate

their retirement savings.

In the same spirit, in our baseline specification we derive a straightforward portfolio rule

that can be implemented by a tactical target date fund (TTDF) and which will aim to capture

a large fraction of the welfare gains previously described. More precisely, we derive optimal

policy rules that consist of linear functions of age and of the predictive factor. If we design

more complicated rules we could potentially increase the certainty equivalent gains, and in

fact we explore some alternative portfolio rules along these lines. On the other hand, the

more complicated rules are more likely to suffer from over-fitting or model mis-specification.

Finally, in this section, we impose short-selling constraints on both the TDF and the TTDF.

Later on we discuss the results obtained when we relax these constraints.

5.1 Designing Tactical Target-Date Funds

The simplest extension of the traditional TDF portfolio that incorporates the predictability

channel is obtained by adding the predictive factor as an additional explanatory variable in

a linear regression. More precisely, we use the simulated output from the model to estimate

αiat = θ0 + θ1 · a+ θ2 · ft + εiat. (26)

Relative to the optimal simulated profiles this regression is quite restrictive as, in addition

to linearity, it implies that both the regression coefficient on age (θ1) and the intercept

(θ0) are the same regardless of the realization of the factor state (that affects portfolios

linearly through (θ2)). However, as previously argued, this is simple to implement and

easier to explain to investors. Since these linear rules do not satisfy the original short-selling
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constraints, we impose those again ex-post, so

αTTDFiat = Max(Min(θ0 + θ1 · a+ θ2 · ft, 1.0), 0.0) (27)

Table 5 reports the regression results from these rules for our baseline cases of relative

risk aversion equal to 5 and 10, EIS equal to 0.5 and discount factor equal to 0.9875.32 For

comparison, we also report the results for the i.i.d. model.As we increase risk aversion the

average equity exposure decreases, reflected in a lower value of θ0. Interestingly, the more

risk averse investor also exploits time-variation in expected returns less (lower θ2).

These results are also shown graphically in Figure 4 for the average share of wealth in

stocks over the life cycle for the baseline cases. As previously explained, in the VRP world

the investor moves more aggressively from positive to sometimes zero investment positions

and this explains the lower average share of wealth in stocks relative to the i.i.d. model.

This behavior is reflected in the design of the mutual fund associated with each model. The

TTDF (TDF) associated with the VRP (i.i.d.) model is drawn based on a linear regression

of all simulated portfolios on the factor and age. For simplicity, and for comparison purposes,

we show the linear rule by averaging over all factors for the TTDF: this predicted share of

wealth in stocks is a straight line across the average share of wealth in stocks generated by

the VRP model. On the other hand, the effect of the factor is irrelevant for the TDF because

the TDF is based on the i.i.d. model. Figure 4 therefore shows in a parsimonious way the

average differences between the TTDF and TDF design.

5.2 Turnover Restrictions

One potential concern with the TTDFs is that their implementation might imply a very high

portfolio turnover. Indeed, in our simulations the average (annualized) portfolio turnover

implied by the TTDF is 209% indicating that tactical asset allocation implies a very volatile

asset allocation behavior over the life cycle. By comparison, the average turnover of the

32As shown in the previous section, the welfare gains would be larger (smaller) if we considered a higher
(lower) risk aversion, EIS or discount factor.
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typical mutual fund is 78% (see Sialms, Starks and Zhang (2013)).33 Therefore, we further

restrict the portfolio strategy of the TTDF by imposing an explicit turnover restriction. The

restriction limits the optimal rebalancing of the portfolio share to a maximum threshold (k).

More precisely, the portfolio rule is subject to the additional constraint

αa =


αa−1 + k if α∗

a > αa−1 + k

α∗
a if |α∗

a − αa−1| < k

αa−1 − k if α∗
a < αa−1 − k

(28)

where α∗
a is the optimal allocation in the absence of the constraint. In our analysis, we

consider two thresholds (k = 0.25 and 0.15), in addition to the unconstrained case (k = 1).

We impose equation (28) in two steps. First, we impose it in an extended version of

the dynamic programming problem where we add the lagged portfolio choice (αa−1) as an

additional state variable. More precisely, we re-formulate the optimization problem with the

added constraint (28) and the additional state variable. This guarantees that the constraint

holds under the optimal policies. However, since the TTDF rules are derived from linear

regressions (26), they are an appoximation to the optimal rules and therefore might not

satisfy the original constraint, in the same way that they might not satistfy the short-selling

constraint and we have to impose that ex-post as well.34 Therefore, in the second step, we

impose constraint (28) directly on the estimated TTDF rules.35

Figure 5 illustrates the impact of these turnover restrictions. It shows the life-cycle port-

folio allocation of both the unconstrained TTDF and the TTDF with the k = 0.15 turnover

restriction. The figure plots the allocation for different realizations of the predictive factor

(f), namely its mean (0.494%) and 1.14 standard deviations above and below the mean, re-

spectively.36 As we can see, in the absence of any restrictions the TTDF allocation changes

33For the standard TDF (i.e. the one that replicates the optimal allocation of the i.i.d. investor) the
average turnover is 23%.

34Naturally, we estimate the regressions again as we change k, but still there is no guarantee that the
fitted rules will satisfy the original constraint.

35From an implementation perspective this is still a transparent rule that is easy to follow and explain to
an investor. The asset allocation of the fund is given by the previous regression specification, which yields
α∗
a, subject to this intuitive constraint.
36Those apparently arbitrary values correspond to actual points on the grid for the state space, while plus

and minus 1 standard deviations do not.
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by almost 40% for an approximate one standard deviation movement in the predictive fac-

tor. Even in the presence of short-selling constraints this creates the very large turnover

numbers that we have reported. In contrast, when we impose the k = 0.15 constraint the

share invested in equities is much less volatile. For a 1 standard deviation movement in the

VRP, the average change in the risky share is now about 10 pp.

5.3 Utility gains from Tactical Target Date Funds

5.3.1 Welfare Metrics

Having identified a feasible portfolio rule for the TTDF we now proceed to compute the

corresponding certainty-equivalent utility gains. We report age-20 certainty equivalent gains

(CEGi
20, equation (22)), and the age-65 certainty equivalent gains computed for an identi-

cal pre-retirement consumption rule (CEGi
65(W

i
65(C

iid
20−65)), equation (25)).37 In comparing

different rules we assume the same asset allocation rules after retirement, that is, we assume

that the investor ignores predictability from age 65 onwards. In other words, we are mea-

suring the gains from changing the portfolio rule in the TDF only (that is, during working

life). The gains would naturally be larger if we either used the optimal consumption rules,

or allowed the investor to exploit time-variation in the risk premium during retirement as

well; we present results for this case in one of our extensions below. Finally, we assume that

each investor is able to identify the fund that matches her level of risk aversion, both for the

TTDFs and the standard TDF.

5.3.2 Results

Table 6 reports the welfare gains for the TTDF rule (equations (26) and (28)) for different

values of risk aversion, 5 and 10, and different turnover limits, 15%, 25% and 100%). With

a maximum rebalancing limit of 0.25, the average annual turnover of the fund falls from

209% and 181% to around 103% and 97.4%, respectively for risk aversion of 5 and 10. When

the limit is even stricter (0.15), the mean turnover for the two funds is now only 66.2% and

62.8%, which is even below that of the typical mutual fund (78% as mentioned above). In

37Results for the other 3 welfare metrics yield similar conclusions and are available upon request.
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addition we also consider different values of the additional fund fee (Extra Fee) charged by

the TTDF relative to the fee of a standard TDF: 0, 40 and 100 basis points, in annualized

values. This extra fee might capture higher expenses as a result of implementing the market

strategy, or simply higher profits for the mutual fund provider.

When the TTDF charges the same fee as the TDF (Extra Fee= 0), the expected increase

in age-65 wealth accumulation for an investor with risk aversion of 5 is 183%, 40% and

8.99%, for k = 1, k = 0.25 and k = 0.15, respectively. For the unconstrained fund (k = 1)

the cross-sectional standard deviation of (age-65) wealth is also much higher (247%), but

nevertheless the investor is substantially better off, even in risk-adjusted terms, with an age-

20 certainty equivalent gain of 5.72%. For comparison, the welfare gains from following the

optimal portfolio rule without any turnover restrictions was 8.18% (Table 4). The TTDF’s

ability to capture almost 70% of the optimal gain is impressive since it is based on a simple

linear approximation (equation (27)) and, furthermore, it only applies to investments before

retirement age, so that the investor does not exploit predictability after age 65, unlike in the

previous results (Table 4).38

As we consider the cases with the tight turnover constraint the increase in wealth ac-

cumulation is less striking (40% and 8.99%), but there is also much smaller increase in the

volatility of wealth.39 As a result, the certainty equivalent gains are still economically large:

2.37% and 1.35%, respectively for k = 0.25 and k = 0.15. These values increase to 4.84% and

2.84% respectively, for the investor with risk aversion equal to 10. Even if we assume a higher

fee for the TTDF, the age-20 certainty equivalent gains remain economically significant in

almost all cases. For example, for an investor with risk aversion of 10, the unconstrained

fund still yields a certainty equivalent gain of 7.95% when charging an extra fee of 100 basis

points per year. With the strict turnover limits the corresponding age-20 welfare gain are

still 2.85% and 0.92%, which are of comparable magnitude to the value of investing in the

stock market under the i.i.d. scenario (2%).

Overall, the results in Table 6 confirm that it is possible to design a relatively simple

38Below we consider an extension where the TTDF also includes the retirement period and welfare gains
are naturally even larger.

39For the case with k = 15% there is even a smaller reduction in the volatility of age-65 wealth.
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target date fund rule that exploits the risk premium predictability obtained from the VRP,

while only requiring standard levels of turnover, and being able to generate economically

large welfare gains.

Finally, we also compute the maximum annual fee that the TTDF could charge to its

investors, i.e. the fee that would set their age-20 certainty equivalent to zero. For an investor

with risk aversion of 5, that fee is 470, 213 and 141 basis points, respectively for the three

turnover limit cases (100%, 25% and 15%). These numbers increase to 522, 226, and 163

basis points when considering the fund for the investor with risk aversion of 10.

6 Parameter Uncertainty

One concern with the previous calculations might arise from the welfare gains being com-

puted ignoring parameter uncertainty. In this section we address this concern in two ways.

First, we incorporate parameter uncertainty in a Bayesian framework (e.g. Barberis (2000)).

Second, we estimate the predictive model in an initial sample (1990-1999) and evaluate the

performance of the TTDF over a subsequent period (2000-2016).

6.1 Bayesian approach

In this section we take into account parameter uncertainty using a standard Bayesian ap-

proach. For computational reasons we only consider parameter uncertainty over the two

more important parameters: βf , the predictive coefficient in the expected return equation,

and φ, the persistence of the factor. We assume that the posteriors over the two parameters

are independent and, under the assumption of diffuse priors, are given by

βf ∼ N(β̂f , σ̂βf ) and φ ∼ N(φ̂, σ̂φ),

where β̂f and φ̂ are the corresponding point estimates (3.50 and −0.18, respectively), and

σ̂βf and σ̂φ are the standard errors from the estimation (0.78 and 0.09, respectively). We

approximate both posterior distributions using standard Gaussian quadrature methods, just

as for the other random variables in the model. Using the optimal solution from the model

29



with parameter uncertainty we repeat the previous process. We first fit a new TTDF rule

and then evaluate the corresponding welfare gains relative to the TDF rule.

The results are reported in Table 7 for the baseline risk aversion coefficient of 5. The

numbers are very similar to their counterparts in Table 6, when we did not consider parameter

uncertainty. Our conclusions are therefore robust to parameter uncertainty concerns.

One explanation for this result is the inclusion of constraints in our baseline TTDF

rule, namely the short-selling constraints and the turnover restrictions. In the absence of

any constraints, parameter uncertainty will make the investor follow a more conservative

portfolio rule, i.e. a portfolio rule closer to the one implied by the i.i.d. model. However,

the presence of constraints, and in particular the tight turnover restrictions, have exactly

the same effect. Therefore, if the investor is already more constrained by the turnover limit

than what parameter uncertainty would imply, then adding parameter uncertainty will not

meaningfully change the results, and this is indeed what we find.40

Even if the policy functions are largely unaffected, parameter uncertainty introduces

a second potential source of welfare loss by increasing the ex-ante standard deviation of

expected future outcomes. When the coefficient on the predictive regression is not very

precisely estimated, this effect can be significant (Pastor and Stambaugh (2012)). However,

as shown in Table 2, the predictive coefficient on the VRP is very precisely estimated (with

a t-statistic of 4.48), therefore this effect is small in our case.

6.2 Predictive model in different sub-samples

In Table 8 we report the VAR estimates for three different sub-samples: 1990-1999, 2000-2009

and 2010-2016. We see that the 3 different periods yield estimates that are broadly similar

but also with some non-trivial differences. For example, even though the coefficient on the

predictive regression is always positive, it falls to 2.01 in the middle period, compared with

5.85 and 5.23 in the other two periods. In the full sample estimation (Table 2), the correlation

between realized returns and expected returns was only marginally negative. Here, we can see

40Consider a hypothetical simplified example where, given the current realization of the factor, the uncon-
strained investor would like to increase her allocation to 80% in the absence of parameter uncertainty and
to 75% in the presence of parameter uncertainty. If the maximum turnover constraint already implies that
she cannot increase her allocation above 70%, then both portfolio rules would give the same allocation.
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that this is the result of combining a positive correlation in the middle period with negative

correlations in the other two. The results in Table 8 suggest that the TTDF’s performance is

particularly at risk right after our estimation window, and this further motivates our choice

of this window for the out-of-sample exercise in the next sub-section.

6.3 Out-of-sample returns and wealth accumulation

We now repeat the design of the TTDF but based on the VAR estimated for the period 1990

to 1999. More precisely, we solve and simulate the model again using the data generating

process from this VAR, and then use the simulated policy functions to estimate equation (26)

again. For computational reasons we keep the TTDF rule constant throughout the exercise

and do not update the model every quarter. This lowers the out-of-sample performance of

the TTDF. Moreover, we restrict the turnover of the fund with the tightest value of this

constraint, i.e. k = 0.15.

Figures 6.1 and 6.2 show the results for the 20-year-old investor. We report annual

returns to facilitate the exposition but, as before, they are based on an underlying quarterly

model and quarterly simulation. Figure 6.1 reports the cumulative returns over the period

2000-2016 for both the TTDF and the TDF. We can see that the TTDF out-performs

from early on, and the gap between the two funds increases over time. By the end of the

period the investor choosing the TTDF has accumulated 24% more wealth than the other

investor. Figure 6.2 shows the (annualized) period-by-period returns and provides a better

understanding of this superior performance. In good periods, the TTDF actually tends to

under-perform (e.g. 2005 and 2012-2014). It is in bad times that the TTDF does consistently

better, namely in the years 2001, 2002 and 2008. In these years the market timing investor

is able to mitigate her losses relative to the TDF investor. Returning to figure 6.1 we can

indeed confirm that the performance of two funds starts to diverge around 2001 and this

difference increases again around 2008.

We can understand the superior performance of the TTDF in bad times from Figure 4,

where we see that the average allocations of these funds are very high for young investors.

As a result, in the presence of short-selling constraints, these investors can benefit more

31



from decreasing their equity exposure in bad times than from increasing it in good times. It

is easier for them to hit the 100% constraint when trying to exploit high expected returns

than to hit the 0% constraint when facing low expected returns. To further illustrate this

intuition, Figures 7.1 and 7.2 show the results for a 50-year-old investor. As we saw in Figure

4, while the average risky share of the 20-year old investor is close to 70%, for the 50-year

old investor this number is almost exactly 50%. As a result, the benefits from the TTDF

are now more evenly distributed across booms and busts.

Overall, these results are particularly encouraging given the previous discussion high-

lighting the period right after our chosen estimation window as the one during which the

implied predictive VAR might be very mis-specified. Given that even under this scenario we

find that the TTDF outperforms the TDF, this suggests that the gains would be even larger

for other potential out-of-sample experiments. Furthermore, they confirm that the higher

performance of the TTDF does not arise because of excessive risk taking; on the contrary it

often results from lower risk-taking in anticipation of bad states of the world.

7 Extensions and Robustness

The full set of results associated with this Section are available in an Online Appendix.

7.1 Heteroskedastic Model for Returns

As discussed in Section 2.4 the assumption of homoskedastic returns could impact our con-

clusions if t+ 1-volatility is expected to be high (low) when the VRP predicts high expected

returns at t + 1, as we would be over-stating (under-stating) the welfare gains by ignoring

this link. We estimated a more general model (equation (6)) and found that the coefficient

on the VRP in the variance equation was not statistically significant. Nevertheless, as a

robustness exercise, we now explore how the results change if we augment our model for

returns with equation (6) and our point estimates of a and b.41 For the baseline coefficient

41In our implementation we exclude the error term for computational reasons. The error term would
naturally be present in both the VRP and the i.i.d. versions of the model, so it is unlikely to have a
meaningful impact on the results.
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of risk aversion of 5 we find that the welfare gains are lower, as expected, but the differences

are very small. For example, for the case with no additional fee (Extra fee= 0) the age-20

welfare gains are now 5.64%, 2.34%, and 1.32%, respectively, for the three different values of

the turnover constraint. These compare with 5.72%, 2.37%, and 1.35% in the baseline case.

7.2 Extended Tactical TDF

The portfolio rule based on equation (26) is straightforward but quite restrictive relative

to the optimal model. In this section we consider an alternative formulation where we fit

the simulated shares of wealth in stocks on age using separate regressions conditional on

the different realizations of the predictive factor. That is, we run the following series of

regressions for each fj in our discretization grid

αiat = Ift=fj · θ
j
0 + Ift=fj · θ

j
1 · a+ εjiat, for each fj (29)

where Ift=fj equals to 1 if ft = fj, and equals to 0 otherwise.

We obtain corresponding certainty equivalent gains ranging from 5.58% (γ = 5 and

fee=100 basis points) to 12.1% (γ = 10 and fee=0). By comparison, the corresponding gains

for the TTDF were 4.25% and 10.1%. For the reasons that we previously discussed we do

not view this rule as a very practical proposition for most TDFs, but these results suggest

that individuals with high financial literacy who would potentially be willing to invest in

these hypotehtical funds could obtain significantly larger CE gains.

7.3 Relaxing the short-selling constraints

We imposed fully binding short-selling constraintson the TTDF because a mutual fund that

takes leveraged positions might not be regarded as an acceptable choice by some pension plan

providers. We now explore the potential increase in utility gains from the VRP strategy by

relaxing those constraints. More precisely therefore investigate the case in which the TTDF

can increase its allocation to stocks as far as 200% through borrowing at the same riskless

rate. We could potentially also relax the short-selling constraint on the risky asset and the
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welfare gains would be even higher, but that particular constraint is less binding given that

the average allocation to stocks is above 50%.

For a relative risk aversion of 5 and no turnover constraints (k = 1), the age-20 welfare

gains are now 10.4%, 9.45% and 8.1%, respectively for the different levels of fees. These are

substantially larger than the ones reported in Table 6, where short-selling was completely

ruled out: 5.72%, 5.12% and 4.25%, respectively. However, if we impose turnover restrictions,

such that the level of trading is essentially identical to the one from the baseline TDF, the

welfare gains are similar to the ones in Table 6. We conclude that relaxing the short-selling

constraint on the riskless asset can increase the welfare gains from the TTDF, but only if

we are willing to accept a higher level of turnover.

7.4 Adding VRP strategies during retirement

In our final extension we consider the additional benefits of combining the TTDF with a

fund for the retirement period designed in the same manner. More precisely, we run a second

regression given by equation (26) for ages greater than 65. From this, we obtain a linear

portfolio rule for the retirement period which complements the TTDF, that is, a TTDF in

retirement. The welfare gains (both at age 20 and at age 65) are noticeably higher. For

example, the age-20 certainty equivalent increases from 5.72% to 6.86% for the unrestricted

turnover case with no additional fee and risk aversion of 5.

8 Conclusion

We analyze how target date funds can combine the long term strategic asset allocation per-

spective of a life cycle investor with the short term market information that gives rise to

tactical asset allocation. We rely on the variance risk premium (VRP) as the main factor

producing variation in the expected risk premium in quarterly frequency and embed this

in a life cycle model to derive optimal saving and asset allocation. We then show how en-

hanced funds, which we call Tactical Target Date Funds (TTDFs), can be designed in a

parsimonious way and can deliver substantial welfare gains. These gains are substantial can
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be economically large even after restricting the turnover of the TTDF. These gains could be

potentially increased by considering different extensions to the simplified rule or by consider-

ing predictive variables with even higher forecasting power, such as the implied correlation or

the correlation risk premium. In unreported experiments we extend the analysis to a wider

set of preference parameter configurations and different models of investor behavior during

retirement. Further research into the design and commercialization of the proposed TTDFs,

and the potential complications that may arise in such implementations, is an interesting

topic for future research.
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Table 1: Descriptive Statistics for Returns and Variance Risk Premium

Table 1 presents descriptive statistics of quarterly data from 1990Q1 to 2016Q3: r denotes
the real return on the S&P 500 index (deflating using the consumer price index (CPI)), IV
denotes the quarterly “model free” implied variance or VIX index, and RV is the quarterly
“model free” realized variance. CAY is the consumption-asset-labor income variable from
Lettau and Ludvigson (2001) for this sample period, and DP is the dividend yield. Inflation
(π) is derived from CPI. Inflation, the dividend yield and the S&P 500 index are from the
Center for Research in Security Prices (CRSP).

Panel A: Summary Statistics
1990Q1 –2016Q3 r IV RV IV −RV CAY DP π

Mean (%) 1.98 1.11 0.62 0.49 0.04 0.55 0.60
SD (%) 7.80 0.94 0.98 0.94 2.00 0.16 0.80
Kurtosis 3.24 8.16 54.2 31.8 2.67 3.13 9.64
Skewness -0.40 2.25 6.45 -3.24 -0.44 0.50 -1.39

AR(1) 0.00 0.41 0.47 -0.17 0.88 0.82 -0.10
Panel B: Correlation Matrix

1990Q1 –2016Q3 r IV RV IV −RV CAY DP π
r 1.00 -0.52 -0.42 -0.10 -0.09 0.23 -0.11
IV – 1.00 0.70 0.34 0.26 -0.20 -0.18
RV – – 1.00 -0.43 0.09 -0.11 -0.46

IV −RV – – – 1.00 0.20 -0.11 0.38
CAY – – – – 1.00 0.20 0.06
DP – – – – – 1.00 -0.01
π – – – – – – 1.00

40



Table 2: Predictive Regressions

Table 2, Panel A, presents predictive regressions based on quarterly data from the first
quarter of 1990 to the third quarter of 2016. The parameters related to the predictive
regression using VRP as a predictor are estimated from the following restricted VAR that
sets some coefficients equal to zero. The unrestricted equation in the online appendix
shows the restricted coefficients are statistically insignificant from zero and we therefore
use the restricted VAR below in comparing different models. We follow the same approach
when estimating the model with CAY and DP as the predictor variables. Newey-West
t-statistics are reported in parentheses.[

ft+1

rt+1 − rf

]
=

[
Const
α

]
+

[
φ 0
βf 0

] [
ft

rt − rf

]
+

[
εt+1

zt+1

]
Table 2, Panel B presents the estimated relationship between the different factors and the
variance of returns from the following restricted VAR that sets some (statistically
insignificant) coefficients equal to zero. We also report the results from a monthly
frequency VRP for comparison purposes.

V art+1 = a+ bft + vt+1

Panel A. Comparing VRP, CAY and DP.

1990Q1 –2016Q3 V RP CAY DP
βf 3.60 (4.48) 0.55 (1.40) 3.70 (2.83)
φ -0.18 (-1.84) 0.93 (22.7) 0.82 (15.4)
ρz,ε -0.04 -0.51 0.22
σε 0.007 0.008 0.001
σz 0.075 0.078 0.079
σr 0.079 0.079 0.079

Adj. R2 (%) 15.0 5.40 6.20

Panel B. Effect of VRP, CAY and DP on variance on next period returns.

1990Q1 –2016Q3 V RP V RP (Monthly)
a 0.0058 (5.03) 0.24 (9.23)
b 0.0840 (0.66) -0.23 (-2.34)
σz 0.0098 0.37

Adj. R2 (%) -0.0055 0.01
1990Q1 –2016Q3 CAY DP

a 0.0062 (6.45) 0.01 (3.80)
b 0.0270 (0.55) -1.21 (-2.06)
σz 0.0098 0.01

Adj. R2 (%) -0.0067 2.90
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Table 3: Household Consumption/Income Growth Sensitivity to Predictors Across Horizons

Table 3 presents the sensitivity of different moments of stockholder quarterly consump-
tion/income growth to the variance risk premium (VRP), dividend yield (DP) and CAY
over horizons of S = 1, 2, 4 and 8 quarters. Panel A (C) reports the sensitivity of mean
consumption (labor income) growth, while Panel B reports the results for the Standard
Deviation, Skewness and Kurtosis for consumption growth (not possible to do the same
for income using CEX). The consumption growth rate is computed for the households
within the 95th percentile of the consumption distribution (details in online appendix). The
sensitivity is computed as the regression coefficient from regressing a group’s consumption
growth over horizon S on the current VRP, DP and CAY. Below each entry we include
t-stats. Standard errors are computed using a Newey-West estimator that allows for
autocorrelation of up to S − 1 lags when S > 1.

Panel A: Mean Consumption Growth and Different Predictors
Mean Consumption Growth (1996–2015)
S 1 2 4 8

VRP
(t-stat)

1.14
(1.60)

0.63
(1.14)

-0.71
(1.57)

0.79
(1.41)

DP
(t-stat)

-11.3
(-1.72)

-23.6
(-3.66*)

-18.6
(-2.76*)

-32.4
(-3.43*)

CAY
(t-stat)

0.34
(0.68)

0.25
(0.31)

0.28
(0.31)

1.66
(0.86)

Panel B: Higher Moments of Consumption Growth and Different Predictors
1996–2015 Std. Dev. Skewness Kurtosis

S 1 2 1 2 1 2

VRP
(t-stat)

0.43
(0.99)

-0.92
(-1.62)

0.24
(0.07)

2.14
(0.64)

-8.30
(-1.09)

13.1
(0.93)

DP
(t-stat)

-1.79
(-0.44)

0.73
(0.16)

-33.1
(-1.06)

-28.4
(-0.89)

-24.0
(-0.34)

-12.7
(-0.19)

CAY
(t-stat)

0.54
(1.80*)

0.39
(1.18)

0.09
(0.04)

-1.23
(-0.62)

-9.27
(-1.77)

3.99
(0.76)

Panel C: Mean Income Growth and Different Predictors
Mean Income Growth Rate (1996–2015)
S 1 2 4 8

VRP
(t-stat)

1.50
(1.10)

2.40
(1.70)

0.42
(0.35)

-0.27
(-0.15)

DP
(t-stat)

2.90
(0.24)

-8.5
(-0.79)

-12.0
(-1.20)

-31.0
(-3.20*)

CAY
(t-stat)

-0.026
(-0.03)

0.09
(0.13)

0.53
(0.71)

1.29
(0.99)
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Table 4: Welfare for different values of risk aversion and EIS

Table 4 compares welfare gains and wealth changes when the predictor is either the variance
risk premium (VRP), or dividend yield (DP) or CAY relative to the i.i.d. stock returns
model. Panel A reports the results for different risk aversion coefficients (2, 5, 10). W65(%)
is the % increase in wealth relative to the i.i.d. model, CEGi

65(W
i
65) is the % increase in

welfare relative to the i.i.d. model evaluated at VRP/CAY/DP mean wealth at age 65 vs the
age 65 i.i.d. model for the same wealth, CEGi

65(W
V RP
65 ) is the % increase in welfare relative

to the i.i.d. model evaluated at VRP mean wealth at age 65 for both models (numerator
and denominator), CEGi

65(W
i
65(C

iid
20−65)) is the % increase in Age-65 consumption equivalent

(CE) gain (explained in the text), CEGi
20 is the % increase in lifetime certainty equivalent

consumption when comparing each model with the i.i.d. model. Panel B reports the same
comparative statics for EIS equal to 1.5 and discount factor equal to 0.995.

Panel A presents model comparisons and consumption certainty equivalent gains when the
EIS = 0.5

EIS 0.5
Discount Factor 0.9875
Risk Aversion 2 5 10

Model (i) VRP CAY DP VRP CAY DP VRP CAY DP
W65(%) 161 34.8 19.8 134 50.9 21.1 110 44.1 12.0

CEGi
65(W

i
65)(%) 8.83 1.09 0.61 15.9 4.35 0.12 13.7 4.71 0.00

CEGi
65(W

V RP
65 )(%) 8.83 2.39 1.25 15.9 6.01 0.26 13.7 5.52 0.10

CEGi
65(W

i
65(C

iid
20−65))(%) 52.3 9.12 0.46 96.9 24.4 6.27 134 45.4 6.33

CEGi
20(%) 2.58 0.59 0.29 8.18 3.22 1.01 12.9 5.40 0.85

Panel B presents the ratio of value function at different incomes when the EIS = 1.5

EIS 1.5 0.5
Discount Factor 0.9875 0.9875 0.995
Risk Aversion 5

Model (i) VRP CAY DP VRP CAY DP VRP CAY DP
W65(%) 502 140 25.1 134 50.9 21.1 112 46.4 18.6

CEGi
65(W

i
65)(%) 22.5 4.56 0.50 15.9 4.35 0.12 28.1 9.80 2.36

CEGi
65(W

V RP
65 )(%) 22.5 8.00 1.23 15.9 6.01 0.26 28.1 11.2 2.51

CEGi
65(W

i
65(C

iid
20−65))(%) 70.7 12.9 0.00 96.9 24.4 6.27 153 50.5 14.6

CEGi
20(%) 10.4 2.93 0.60 8.18 3.22 1.01 21.8 9.11 2.77
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Table 5: Regression for different values of risk aversion and EIS

Table 5 presents the regression of simulated portfolios on age and factor realizations across
different relative risk aversion coefficients (5 and 10) for ψ = 0.5. More precisely, we use the
simulated output from the model to estimate: αiat = θ0 + θ1 ∗ a+ θ2 ∗ ft + εiat.

ψ = 0.5
γ = 5 γ = 10

VRP IID VRP IID

θ0
0.51

(0.00024)
1.06

(0.0002)
0.26

(0.00022)
0.45

(0.00016)

θ1
-0.0019

(0.000002)
-0.0031

(0.000002)
-0.0013

(0.000002)
-0.0024

(0.0000016)

θ2
45.6

(0.015)
43.0

(0.014)
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Table 6: Welfare gains from the TTDF

Table 6 presents results from comparing the TTDF with the standard TDF for different
rebalancing restrictions and transaction costs. In the standard TDF the portfolio allocation
rule is a linear function of age only. In the TTDF the portfolio allocation also depends
on the variance risk premium (VRP), which enters as an additional variable in the linear
regression. Results are shown for different values of risk aversion (γ), different magnitudes
of the additional transaction costs (Extra Fee) faced by the TTDF relative to the TDF,
expressed in annualized basis points (0, 40, and 100), and different maximum rebalancing
constraints (0.15, 0.25 and 1.0 (no constraints)). W65(%) is the % increase in mean wealth
at age 65, Sd(W65)(%) is the % increase in the cross-sectional standard deviation of wealth
at age 65, CEG65(W65(C

iid
20−65)) is the % increase in Age-65 consumption equivalent (CE)

gain (using the i.i.d. consumption rule, more details in the text), and CEG20 is the %
increase in lifetime certainty equivalent consumption.

Risk Aversion 5
Max Rebalancing 1.0 1.0 1.0 0.25 0.25 0.25 0.15 0.15 0.15

Extra Fee 0 40 100 0 40 100 0 40 100
Mean Turnover 209 209 209 103 103 103 66.2 66.2 66.2

W65(%) 183 161 131 40.0 27.7 10.8 8.99 −1.14 −15.0
Sd(W65)(%) 247 222 187 40.2 26.9 9.49 −0.93 −10.5 −22.6

CEG65(W65(C
iid
20−65))(%) 40.2 34.1 26.0 9.80 6.06 1.04 2.41 −0.16 −5.03

CEG20(%) 5.72 5.12 4.25 2.37 1.85 1.20 1.35 0.89 0.25

Risk Aversion 10
Max Rebalancing 1.0 1.0 1.0 0.25 0.25 0.25 0.15 0.15 0.15

Extra Fee 0 40 100 0 40 100 0 40 100
Mean Turnover 181 181 181 97.4 97.4 97.4 62.8 62.8 62.8

W65(%) 309 291 263 137 120 103 85.0 74.9 60.5
Sd(W65)(%) 497 482 458 255 236 209 169 153 130

CEG65(W65(C
iid
20−65))(%) 78.3 71.7 62.5 35.8 31.4 25.4 23.5 19.9 14.8

CEG20(%) 10.1 9.23 7.95 4.84 4.03 2.85 2.84 2.06 0.92
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Table 7: Welfare gains from the TTDF with Parameter Uncertainty

Table 7 presents results from comparing the TTDF with the standard TDF, when the
TTDF rules incorporate parameter uncertainty as described in the main text. In both
models the i.i.d. consumption rule is used. The results are for the investor with risk aversion
equal to 5, with different rebalancing restrictions (0.15, 0.25 and 1.0 (no constraints)), and
for different magnitudes of the additional transaction costs faced by the TTDF relative
to the TDF (Extra Fee), expressed in annualized basis points. W65(%) is the % increase
in mean wealth at age 65, Sd(W65)(%) is the % increase in the cross-sectional standard
deviation of wealth at age 65, CEG65(W65(C

iid
20−65)) is the Age-65 consumption equivalent

(CE) Gain (using the i.i.d. consumption rule, more details in the text), and CEG20 is the
% increase in lifetime certainty equivalent consumption.

Maximum Rebalancing 1.0 0.25 0.15
Extra Fee 0 40 100 0 40 100 0 40 100

Mean Turnover 207 207 207 103 103 103 66.2 66.2 66.2
W65(%) 181 159 129 40.0 27.7 10.8 9.07 −1.07 −14.9

Sd(W65)(%) 246 221 184 40.4 27.1 9.55 −0.75 −10.2 −22.5
CEG65(W65(C

iid
20−65))(%) 40.2 34.1 24.2 9.79 6.05 −0.08 2.40 −0.75 −6.06

CEG20(%) 5.64 5.08 4.09 2.36 1.85 1.01 1.31 0.81 0.02

Table 8: Predictive Regressions for Different Sub-Periods

Table 8 presents a restricted VAR based on quarterly data for different sub-periods of the
sample: 1990:1 to 1999:4, 2000:1 to 2009:4 and 2010:1 to 2016:3. The restricted VAR is
given by:[
V RPt+1

rt+1 − rf

]
=

[
Const

0

]
+

[
φ 0
βf 0

] [
V RPt
rt − rf

]
+

[
εt+1

zt+1

]
Newey-West t-statistics are reported in parentheses.

1990Q1–1999Q4 2000Q1–2009Q4 2010Q1–2016Q3
βf 5.85 (4.88) 2.01 (1.62) 5.23 (2.85)
φ 0.18 (1.15) -0.30 (-2.01) -0.12 (-0.60)
ρz,ε -0.41 0.12 -0.61
σε 0.005 0.010 0.006
σz 0.064 0.089 0.065
σr 0.070 0.092 0.071

Adj. R2 (%) 34.6 3.60 21.4
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Figure 1 shows the time series of implied volatility (IV), realized volatility (RV) and variance risk 
premium (VRP). The series for realized volatility is taken from Zhou (2017) and based on daily US 
stock market returns from CRSP, while the series for implied volatility is taken from the Federal 
Reserve Bank of St. Louis. The variance risk premium is the difference between the other two. 
All data are quarterly from 1990 to 2016. 

 

 

 

 

 

 



48 

 

Figure 2.1 shows the optimal pre-retirement portfolio allocations both for the investor using the 
i.i.d. model for returns (“i.i.d. investor”) and for the investor using the VAR model for returns 
with the VRP predictor (“VRP investor”). For the VRP investor we report both the average 
allocation and the allocation for the average realization of the predictive factor.  

 

 

Figure 2.2 shows the mean optimal allocation for the VRP investor and the allocation at 
plus/minus one standard deviation from the mean. 
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Figure 3.1 shows the expected portfolio return both for the investor using the i.i.d. model for 
returns (“i.i.d. investor”) and for the investor using the VAR model with the VRP predictor (“VRP 
investor”). To facilitate a comparison, we also plot the difference between the two.  

 

Figure 3.2 shows the expected portfolio returns both for the investor using the i.i.d. model for 
returns (“i.i.d. investor”) and for the investor using the VAR model with the VRP predictor (“VRP 
investor”), and the portfolio returns at plus/minus one standard deviation from the mean. 
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Figure 3.2 - Expected Returns for VRP/I.I.D. investors plus/minus 1 
Standard Deviation
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Figure 4 shows the mean life-cycle portfolio allocation of both the Target-Date Fund (TDF) and 
the Tactical Target-Date Fund (TTDF). For comparison we also report the average optimal asset 
allocation of the investor using the i.i.d. model for returns (“i.i.d. investor”) and for the investor 
using the VAR model for returns with the VRP predictor (“VRP investor”).  

 

Figure 5 shows the life-cycle portfolio allocation of the Tactical Target-Date Fund (TTDF), both 
with and without turnover restrictions for different realizations of the predictive factor (f). The 
value of f=0.494% corresponds to its unconditional mean. The values of 1.35% and -0.36% 
correspond to 1.14 standard deviations above and below the mean, respectively. The case with 
turnover restrictions considers a maximum turnover limit (k) of 0.15 per quarter.  
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Figure 6.1 shows the results of an out-of-sample comparison between the TTDF (with a 15% 
turnover restriction) and the TDF. The figure reports the cumulative return to the TTDF and TDF 
funds for the 20-year investor from 2000 onwards, when the portfolio allocation of TTDF fund is 
based on an estimation of the predictive model that only uses data until 1999.  

 

Figure 6.2 shows the results of an out-of-sample comparison between the TTDF (with a 15% 
turnover restriction) and the TDF. The figure reports the annualized period-by-period return to 
the TTDF and TDF funds for the 20-year investor from 2000 onwards, when the portfolio 
allocation of TTDF fund is based on an estimation of the predictive model that only uses data 
until 1999.  
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Figure 7.1 shows the results of an out-of-sample comparison between the TTDF (with a 15% 
turnover restriction) and the TDF. The figure reports the cumulative return to the TTDF and TDF 
funds for the 50-year investor from 2000 onwards, when the portfolio allocation of TTDF fund is 
based on an estimation of the predictive model that only uses data until 1999.  

 

Figure 7.2 shows the results of an out-of-sample comparison between the TTDF (with a 15% 
turnover restriction) and the TDF. The figure reports the annualized period-by-period return to 
the TTDF and TDF funds for the 20-year investor from 2000 onwards, when the portfolio 
allocation of TTDF fund is based on an estimation of the predictive model that only uses data 
until 1999.  
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