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Bottleneck Resources, Market Relatedness, and the Dynamics of Organizational Growth 
 
Abstract 
Entering a new product market requires assembling a bundle of resources. Because missing a single 
resource can foil the entire entry effort, we argue that bottleneck resources – those most difficult to obtain 
or sell externally – anchor the direction of firm growth. We characterize market resources as bottlenecks 
to product-market entry because they are (on average) more challenging to obtain and sell than 
technological resources, and we articulate why the importance of market resources varies with the 
strength of external markets for technology. Using cross-industry data linking firms’ product portfolios 
with patents, we find resource dynamics whereby market resources drive the strategic decision to enter, 
and firms fill technological gaps using both internal R&D and external acquisitions (joint ventures and 
alliances). Our study underscores the importance of resources for firm growth dynamics and specifically 
highlights market resources as the bottleneck that constrains and directs the direction of product market 
entry. 
 
Keywords: product market entry; diversification; resource-based view; demand-side strategy, markets for 
technology 
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There are many ways to center a business. You can be competitor focused, you can be product 
focused, you can be technology focused, you can be business model focused, and there are more. But 
in my view, obsessive customer focus is by far the most protective of Day 1 vitality. 
 

– Jeff Bezos in his 2016 letter to Amazon shareholders 
  

1. Introduction 

What determines the direction of a firm’s new product market entry and growth? In examining this 

question, the resource-based view (RBV) describes a firm as a bundle of resources (Wernerfelt, 1984). 

Prior research suggests that firms leverage resources from current markets to facilitate entry into new 

product markets (Penrose, 1959; Helfat and Lieberman, 2002; Sakhartov and Folta, 2014). This focuses 

entry behavior on adjacent or “related” businesses where the value of extant resources can be profitably 

redeployed, creating path-dependence and coherence to a firm’s growth trajectory. However, we often 

observe product-market entries that seemingly do not build on existing resources and demand significant 

new investments that diverge from a firm’s existing strengths. As firms can hardly be expected to pursue 

every potential redeployment use for the resources they already possess, there should be important latent 

heterogeneity in which resources do and do not lead to product market entry. This speaks to the need for a 

more general theory providing coherence to entry behavior and the role of resources. 

To develop a theory about the resources that do and do not lead to entry, we focus on the process 

of completing the resource bundle necessary to introduce a new product (Wu, Wan, and Levinthal, 2014; 

Speckbacher et al., 2015). This process entails combining resources that the firm already controls with 

newly developed or acquired resources that fill necessary gaps. Because lacking a single resource in the 

bundle can prevent entry, we argue that it is not necessarily the most valuable resource in the firm’s 

current resource bundle but the hardest-to-acquire (and by extension, hardest-to-sell) resource that 

determines the direction of product market entry. We define these difficult-to-acquire resources as 

bottleneck resources, borrowing from Teece’s discussion of complementary assets as a potential “choke 

point” in a firm’s value chain to profiting from technological invention (2006:1138) and Keum’s analysis 
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of the bottleneck activities to implementing a successful strategic change (2020).1 Firms that lack a 

bottleneck resource are constrained from entering a market because of the difficulties in acquiring the 

bottleneck resource. Conversely, firms that already possess a bottleneck resource have the incentive to 

enter the product market to capture value from the resource given the challenges in otherwise monetizing 

the bottleneck resource’s potential. In translating the broad theory of bottleneck resources to market entry, 

we propose that market resources (e.g., customer relationships, distribution channels, brand names) are 

likely to serve as bottlenecks based on the significant challenges to obtaining or trading them externally 

(Day, 1994; Lord and Ranft, 2000). Meanwhile, the growth of markets for technology through licensing, 

patent transfer, and alliances (Pavitt, 1984; Arora et al., 2001) has increased the transferability of 

technological resources and reduced their potential to be bottleneck resources.  

This focus on bottleneck resources yields novel predictions on the dynamics of resource and firm 

growth. First, in contrast to the dominant characterization of market resources as playing only a secondary 

role, we propose that market relatedness, or the extent to which the firm’s existing market resources are 

similar and fungible across product-market boundaries, is an independent and critical predictor of product 

market entry decisions. Market knowledge, including the understanding of the preferences and needs of 

key customers in the product market, has long been recognized as a critical complementary resource 

(Teece, 1988; Helfat and Lieberman, 2002), but there has been a surprising lack of theoretical and 

empirical research that explicitly links market relatedness to firm entry behavior. This is not to suggest 

that market resources are always bottlenecks and that other resources are always easy to obtain, but on 

average and across industries, we expect market resources to be more likely to function as bottlenecks. 

Second, we expect significant heterogeneity in the importance of market resources as a bottleneck. The 

difficulty of completing the rest of the bundle should vary across firms and markets, especially with 

respect to building technological resources that are at least on par with competitors. The importance of 

market relatedness should increase as firms have easier access to requisite technology (Pavitt, 1984; 

 
1 For analogous discusions of bottleneck firms in an ecosystem, refer to Von Hippel (1994), Jacobides and Tae (2015), and 
Hannah and Eisenhardt (2018).  
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Arora et al., 2001) but decrease as technological resources become more central to product-market 

success (Arora and Nandkumar, 2011). This suggests the strengths of markets for technology as an 

important contingency that changes the bottleneck resource within and across firms. Third, firms entering 

a product market by redeploying market resources will need to access and strengthen relevant 

technological resources. This suggests intriguing and novel temporal dynamics in organizational growth 

where extant market resources drive entry into a related product market, while the decision to enter (and 

the need to complete the resource bundle) triggers the internal and external acquisition of new 

technological resources relevant to the entering market.  

Evaluating our theory requires identifying relatedness in market resources that do not neatly fall 

into the existing industry structure. Notably, SIC codes group together businesses using similar input 

resources even if they result in dissimilar products or outputs.2 Hence, we build a novel dataset linking 

the product portfolios of US high-tech firms from the CorpTech Directory of Technology Companies 

with NBER’s patent database. The resulting dataset allows us to track changes in product and patent 

portfolios for more than 5,000 high-tech firms across over 300 product markets from 1997 to 2005. Our 

main empirical finding is summarized in Figure 1: there are robust and consistently positive effects of 

market relatedness on entry across various levels of technological relatedness. In contrast, while 

technological relatedness does affect the likelihood of technological entry (Breschi, Lissoni, and Malerba, 

2003), we find no evidence of an effect on product market entry. We also find that market relatedness 

matters more for firms and industries that can readily access relevant technological resources internally or 

externally. Finally, we find that while technological resources do not drive entry, the strategic decision to 

enter drives firms to acquire technological resources relevant to the entered market through both internal 

R&D and external collaborative arrangements, such as joint ventures and alliances.  

---------------------------------------------- Insert Figure 1 here ---------------------------------------------- 

Our study offers and empirically explores a more nuanced understanding of Penrose (1959) and 

 
2 https://www.census.gov/eos/www/naics/reference_files_tools/NAICS_Update_Process_Fact_Sheet.pdf 

https://www.census.gov/eos/www/naics/reference_files_tools/NAICS_Update_Process_Fact_Sheet.pdf
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the RBV (Wernerfelt, 1984). Market resources serve as an independent driver of product market entry for 

high-tech firms because they are difficult to both obtain and sell. On average, firms enter product markets 

to capture the value from their market resources, acquiring relevant technological resources through 

internal development as well as markets for technology (Arora et al., 2001). We expect the increasing 

sophistication of markets for technology to accelerate this trend by further shifting the bottleneck and the 

basis of a firm’s competitive advantage toward downstream market resources. More broadly, this study 

emphasizes the importance of taking a more balanced perspective that incorporates consumers and 

product-market contexts into resource-based research that has singularly focused on technology and other 

supply-side considerations (Priem and Butler, 2001). The notion of bottleneck resources provides a 

theoretical foundation for the long-standing emphasis on customers as the basis of firm growth, the 

diversification and alliance patterns of technological firms, and the strategic importance of debates 

regarding the control over customer data with regulatory agencies.  

2. Bottleneck Resources and the Direction of Product Market Entry 

The RBV describes firm growth and expansion as a process of exploiting the firm’s existing resources 

with imperfect factor markets (Penrose, 1959). The specialized nature of firm resources, while impeding 

competitive imitation and protecting their value in the existing market, increases the cost of adjusting 

them to fit the requirements of the new market (Miller and Shamsie, 1996). Such costs are substantial 

even across products with seemingly similar resource requirements, for example, reducing the potential 

profits of diversifying from the taxi to the limousine market by sixteen percent (Rawley, 2010). As a 

result, firms direct new product market entry to “adjacent” markets where extant resources can be 

redeployed with minimal modification, leading to theories of related diversification (Sakhartov and Folta, 

2014). 

We build upon the central tenet of the RBV that resources and their relatedness to the 

requirements of a new opportunity underpin entry but suggest that the relatedness (or redeployability) of 

the firm’s resources will not all matter equally. In particular, our theory emphasizes the bundled nature of 
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resources to identify which resources drive entry into a new product market. Introducing a new product 

requires assembling multiple extant resources that are scattered across multiple parts of a firm’s value 

chain (Porter, 1985; Helfat and Raubitschek, 2000; Karim, 2012) as well as accessing new resources. 

Lacking even a single resource in the requisite bundle can thwart a firm’s ability to enter a new product 

market, which suggests that the “acquirability” of resources may play a key role in understanding firm 

behavior. Varied streams of research document that the control over bottlenecks delivers a 

disproportionate share of overall value and becomes the focal point of competition and value capture in 

existing product markets (e.g., Von Hippel, 1994; Teece, 2006; Jacobides and Tae, 2015; Hannah and 

Eisenhardt, 2018; Aggarwal, 2020).3 We borrow from this ecosystem and intra-organizational perspective 

on bottlenecks to characterize bottleneck resources in the context of new product market entry.  

Consider a firm possessing two resources (a) and (b). Either resource provides a potential basis 

for creating a new product, but must be paired with another resource that the firm currently does not 

possess: (a) with (A) and (b) with (B). Determining whether the firm will create a product P(a, A) or P(b, 

B) depends on its ability to obtain (A) or (B). If resource (B) can be readily developed or obtained on the 

open market while (A) cannot, for example, due to market frictions or the tacit nature of the information, 

then the firm is constrained to creating P(b, B). This simple model suggests that resources that cannot be 

bought or sold determine the direction of a new product market entry (Dierickx and Cool, 1989), similar 

to Von Hippel’s (1994) claim that innovation revolves around “sticky” information that is most difficult 

to move. As Penrose (1959) notes, diversification relies on resources that can be productively redeployed 

yet lack a well-functioning factor market. In contrast to the requirement for redeployability, the impact of 

well-functioning (or poorly functioning) factor markets on entry decisions remains scarcely considered. 

We define a bottleneck resource as a resource that is vital to the introduction of a new product, but that 

cannot be readily acquired or sold in the factor market. As noted earlier, this does not mean that the 

bottleneck resource is more valuable, or that the non-bottleneck resource can be acquired at little cost to 

 
3 Despite representing a minuscule requirement in terms of their quantity and nominal cost, much of US-China trade tension has 
revolved around rare earth minerals that constitute an essential and difficult-to-acquire input to manufacturing processes.  
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the acquiring firm. Instead, the term “bottleneck” builds directly on Penrose’s (1959) second resource-

based criteria for diversification – bottleneck resources do not have well-functioning factor markets.  

The concept of a bottleneck resource raises several novel implications for the dynamics of 

resource development and market entry. First, the resources most valuable in existing markets and those 

that drive firm growth need not be the same. In the model above, even if resource (a) is more valuable in 

existing markets, the ready access to (B) makes resource (b) more relevant to new market entry. This 

holds true even if the market potential for P(a, A) is greater than P(b, B). Firms try to maximize the value 

of their overall resource bundle, not a single resource (Levinthal and Wu, 2010). Our hypothetical firm 

can capture the most value by licensing or selling (a) to a firm that already possesses (A) while focusing 

its own product market efforts on offering P(b, B).  

Second, our discussion extends the RBV’s focus on extant resources to include missing resources 

when discussing diversification. Because entry cannot happen without (A) or (B), the direction of product 

market entry depends jointly on extant resources and the firm’s ability to access new resources. This 

creates the potential for substantial heterogeneity in the direction of growth even among firms that 

currently possess a similar set of resources based on their ability to acquire missing resources. 

Third, our focus on bottleneck resources provides a more nuanced consideration of resource 

fungibility and its effects on market entry. On the surface, there is a conflict because much of the recent 

work on resource redeployment emphasizes the importance of flexibility, while we focus on stickiness (or 

the lack of flexibility) as driving entry. However, redeployment research focuses on the ability to transfer 

resources toward a new task within firm boundaries (e.g., Helfat and Lieberman, 2002; Sakhartov and 

Folta, 2014; Uzunka, 2018; Stagni, Santalo, and Giarranta, 2020). In contrast, we focus on the difficulties 

in transferring resources across firm boundaries, which captures the ability to both sell an extant resource 

externally and acquire a missing resource. This distinction becomes more salient as the discussion moves 

from the level of individual resources to the level of “product-as-resource-bundle,” where the concept of 

the external factor market takes primacy in the discussion of entry dynamics. 
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Lastly, our focus on bottleneck resources qualifies the assertion that “resources and products are 

two sides of the same coin” (Wernerfelt, 1984:171), as firms can monetize resources both through product 

market entry and through factor markets. Firms face resource constraints that prevent them from 

introducing an unlimited number of new products, which provide an incentive to sell (license) some 

resources in factor markets. This provides a viable business model for so-called patent trolls, who collect 

and license patents. Firms also develop technologies for the purpose of coordinating and monitoring 

networks of specialized external suppliers and “know” more than they make (Brusoni et al., 2001; Kapoor 

and Adner, 2012). This further weakens the link between firm resources and product market entry and 

reinforces the idea that some types of resources can create value and be monetized without market entry. 

The overall theory of bottleneck resources is summarized by the following two propositions on 

the positive and negative direction of firm growth: 

Proposition 1: The bottleneck resource, which is the most difficult to obtain or sell externally, 
rather than the most valuable resource, anchors the direction of product market entry. 

Proposition 2: In the absence of a bottleneck resource, entry does not occur even when a firm 
possesses other relevant resources. 

Below, we apply these two propositions to the distinction between market and technological resources 

and examine the dynamics of firm growth.  

2.1. Market Resources as Bottleneck Resources 

As firms are bundles of resources, many of which could potentially be the basis for growth, an extensive 

body of research tries to identify key characteristics of individual resources that drive new product market 

entry. In particular, in line with Teece’s (1988) definition of a firm’s competence as a set of differentiated 

technological resources and complementary assets, prior RBV research has placed technological 

resources at the center of entry and firm growth. Technological relatedness – the ability to transfer and 

reuse existing technological resources – affects all facets of organizational growth, including the 

introduction of new products within existing markets (Katila and Ahuja, 2002), entry into new markets 

(Silverman, 1999), the mode of product market entry (Helfat and Lieberman, 2002), and post-entry firm 
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performance (Nerkar and Roberts, 2004; Sosa, 2009). Breschi, Lissoni, and Malerba (2003) also show 

that firms typically move into technological spaces that are proximate to the technological spaces in 

which they are already active, creating path dependency in the evolution of technological resources.  

We expand the analytical focus to market resources. To the extent that “benefits from economies 

of scope can also be formulated in terms of demand-side benefits related to outputs” (Helfat and 

Eisenhardt, 2004: 1219) as opposed to only costs and supply-side benefits, we expect diversification to be 

built around the reuse and fungibility of market resources, in particular existing customer relationships 

and the understanding of customer preferences (Helfat and Lieberman, 2002). Indeed, many of the 

foundational studies have theorized on market knowledge as an independent resource that increases 

product market entry (e.g., Teece et al., 1994; Helfat and Lieberman, 2002). However, most empirical 

research has focused on the complementary aspect of market-related resources that enables a firm to 

“derive maximum benefit from its technological achievements” (Nerkar and Roberts, 2004: 780) or 

sustains the incumbent’s position despite disadvantages in technological resources (Klepper, 1996). We 

argue that market resources serve as a bottleneck based on the (relative) difficulty in trading and obtaining 

those resources. 

In comparison with technological resources, market resources and knowledge about demand are 

typically tacit and difficult to codify (Fabrizio and Thomas, 2012) and suffer from imperfect factor 

markets. Studies in marketing (de Luca and Atuahene-Gima, 2007) and management (Lord and Ranft, 

2000) argue that market-related knowledge is often the most difficult to transfer even within an 

organization. This is partly because market-related resources and knowledge are embedded across 

multiple functions, such as sales, marketing, and internal and external distribution (Day, 1994), and more 

systemic in nature compared to technological resources that are often contained more narrowly within 

specific functions, such as R&D. Some market resources are also embedded externally in relationships 

between the firm and its customers. In particular, customer relationships and brand value are built on “a 

complex collection of multi-point and multi-level contacts” (Zander and Zander, 2005: 1527). Their 
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complex and distributed nature makes market resources much more challenging to disembody and 

monetize in the external market through alliances, joint ventures, licensing, and other collaborative 

arrangements (Ranft and Lord, 2002). In particular, the licensing of a valuable brand across 

organizational boundaries is often fraught with the risk of negative spillovers to the rest of the brand and 

product portfolio, especially compared to technological resources.4 As a result, while brand licensing was 

once prevalent, the risks to brands and the difficulty in contracting for the protection of the brand name 

have sharply curtailed the practice over time (Laforet and Saunders, 2005; Colucci et al., 2008). Given the 

challenges to their external transfer and acquisition, firms in possession of valuable market resources may 

be forced to enter new product markets directly to capture their value. Conversely, the challenges in 

acquiring market resources discourage entry into product markets where the firm lacks market resources 

despite advantages in other (e.g., technological) resources.  

In contrast, while earlier research emphasizes the inseparability of R&D and technological 

resources from the broader value chain (Teece, 1988), a burgeoning body of research documents the 

importance of markets for technology, ranging from patent transactions, R&D joint ventures, alliances, 

and licensing to contract R&D (Arora, Fosfuri, and Gambardella, 2001). In particular, Serrano (2010) 

finds that a significant portion of firm patents is traded during their lifetime, especially those that belong 

to failed startups (Serrano and Ziedonis, 2018). Few studies directly compare the strength of factor 

markets for technological and market resources, but Uzunka (2018) finds in the semiconductor industry 

that market-related resources are slower to converge relative to technological resources, consistent with 

our contention that market-related resources are stickier. Moreover, convergence in market resources has 

a much larger effect on increasing the risk of incumbent exit and decreasing a new entrant’s exit, 

suggesting that market resources play a more critical role in entry dynamics. Similarly, Gambardella and 

Torrisi (1998) find that technological entry did not lead to business diversification among the thirty-two 

 
4 For example, Sony’s OLED TVs and Apple’s iPhones use display panels from affiliates of their key competitors, namely LG 
Display and Samsung Display, with limited customer awareness. In contrast, the sharing of customer data by Facebook to its 
developers has provoked severe reactions.  



 
 
 

11 

largest American and European electronics firms, noting the lack of product-specific downstream assets 

as the cause. Our propositions above theorize that firm growth centers on difficult-to-trade or -obtain 

bottleneck resources. Here, we argue that market resources are more likely to be the bottleneck resource 

than technological resources. We therefore predict that – on average – firms are more likely to develop 

new products around market-based resources than technological resources. 

Hypothesis 1 (H1): Market relatedness has a larger positive effect on product market entry than 
technological relatedness. 

While the initial discussions by Penrose (1959) and Wernerfelt (1984) focused on the role of 

extant resources, a growing stream of research emphasizes firms’ capability to acquire new resources that 

may diverge from their current resource portfolio (Helfat and Raubitschek, 2000; Karim and Mitchell, 

2000; Moeen, 2017). This dynamic view is critical to examining firm growth and to our prediction that 

bottleneck resources that are difficult to acquire or sell determine the direction of product market entry. 

Returning to our model of product expansion, the predictive power of the bottleneck resource (b) for 

product market entry hinges on the relative accessibility of resource (B). In cases where obtaining or 

developing resource (B) is exceptionally easy, (b) becomes more central to firm expansion. Alternatively, 

when the firm’s access to (B) in the open market is limited, we expect the relative dominance of (b) over 

(a) to decline. This suggests that the ability to assemble the rest of the bundle, in particular by accessing 

new technological resources that are competitive or at least on par with competitors, serves as an 

important contingency to the applicability of H1. As accessing technological resources externally 

becomes easier, this should increase the salience of market resources in driving product market entry. We 

explore four contingencies that are expected to affect a firm’s ability to access and integrate new 

technological resources, and in turn, the relative severity of market resources as the bottleneck: firm size, 

public and private status, technological competence, and density of the product market.  

Firm Size Pavitt (1998) posits that large firms will have little difficulty in mastering new 

technology, suggesting firm size as an important proxy that reduces the challenges to market entry based 

on technological barriers. This is consistent with the survey results from Arora, Cohen, and Walsh (2016) 



 
 
 

12 

that with an increase in size, firms more actively acquire new technological resources in markets for 

technology. Moreover, organizational inertia and coordination costs tend to increase with firm size 

(Cohen and Klepper, 1996), further increasing the dominance of sticky market resources.  

Public versus Private Firms Bernstein (2015) suggests that going public increases the external 

orientation of a firm’s R&D activities by stimulating M&A and the hiring of external inventors. Public 

firms are also subject to scrutiny by various external stakeholders, including customers demanding that 

firms create new products that serve their needs as well as analysts and capital providers (Benner, 2010) 

that increase the salience of market-based resources.  

Technological Competence Somewhat paradoxically, we expect market-relatedness to take on 

increased importance for technologically competent firms with a larger and more general stock of 

technological resources. Their ability to acquire new technological resources helps to lower the 

technological barriers to entry, increasing the relative severity of market resources as a bottleneck. In 

particular, some technological resources take on the form of general-purpose technology that can be 

applied to a wide range of product markets (Bresnahan and Trajtenberg, 1995). High technological 

competence also supports a model of relatively crude initial market-based entry followed by rapid 

technological refinement through subsequent investments. 

Density of the Product Market Product markets with more firms will typically have fewer 

unmet consumer needs than those with fewer firms (Carroll, 1985). In this case, an industry or market 

segment with more firms will present fewer opportunities for firms to discover and exploit novel market-

based niches in which to be competitive, thus devaluing the market-related resources that potential 

entrants may possess. This suggests that market relatedness is a weaker predictor of entry into crowded 

market segments as opposed to sparsely populated segments.  

Hypothesis 2 (H2): The positive effect of market relatedness on product market entry increases as 
access to external technological resources increases. 

2.2. Temporal Dynamics of Resource Assembly and New Market Entry 

Finally, by distinguishing product market entry from technological diversification, our theory suggests 
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temporal dynamics that relate the two perspectives; market relatedness provides the foundation for the 

strategic decision to enter new product markets, and this entry decision necessitates that the firm fills 

technological gaps in their resource portfolio to facilitate entry. 

We expect that new technological resources may be gained through external sources, consistent 

with our argument about the importance of markets for technology. Incumbents often use various 

collaborative arrangements to access new technologies, spanning acquisitions, alliances, licensing, and 

contract R&D (Arora et al., 2001; Serrano, 2010; Bernstein, 2015; Keum, 2020). In particular, 

comparisons across entry modes suggest that alliances are typically the fastest way to gain access to new 

resources (Capron and Mitchell, 2012), and Rothaermel (2001) discusses how incumbents facing radical 

technological change leverage their complementary assets to negotiate alliance deals with new, 

technologically sophisticated entrants. We also observe increasing occurrences of external acquisitions 

aimed at obtaining technological resources to support an initial entry based on proximity to existing 

customers: Walmart’s partnership with Accel Partners and the acquisition of Jet.com, Amazon’s 

acquisition of Whole Foods, Google’s acquisition of YouTube, Microsoft’s purchase of Nokia, and the 

series of acquisitions by Facebook. We expect the increasing sophistication and maturity of markets for 

technology to further accelerate this trend. 

Hypothesis 3a (H3a): Market-driven entry will result in a significant increase in accessing 
technological resources through the external market. 

Firms will also engage in learning-by-doing (Brown and Eisenhardt, 1995) and build up relevant 

technological resources internally over time. For example, Moeen (2016) documents that firms actively 

develop related biotechnology prior to entering the transgenic crop market. In their case study, Adner and 

Levinthal (2001: 617) observe, “finding consumers who are willing to pay a high price for a relatively 

crude product may be critical to firms’ ability to engage in the development effort,” and it was “only after 

extensive further development that Xerox machines were able to satisfy the much higher functionality 

demands of the mainstream office market.” 

Hypothesis 3b (H3b): Market-driven entry will result in a significant increase in internal R&D 
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activities relevant to the entering market. 

Firms likely differ systematically in their preferred mode of strengthening relevant technological 

resources (Speckbacher et al., 2015) based on contingencies discussed in H2. Large and public firms 

make more active use of external collaborative arrangements because they can better manage litigation 

costs and other hazards of accessing external markets for technology (Arora, Cohen, and Walsh, 2016). 

We also expect a firm’s general technological competence to increase the reliance on external modes of 

sourcing over internal R&D. Technological competency allows firms to better manage external partners, 

absorb their knowledge, and integrate outside knowledge in an accelerated timeline (Cohen and 

Levinthal, 1990; Brusoni et al., 2003).  

Taken together, H3 establishes a convergence between market resources and technological 

resources over time and accounts for why studies based on less granular measures of product market entry 

and its timing may find that organizational expansions are centered on technological resources; there is an 

active build-up of a firm’s technological resources around the timing of entry. It is important to note that 

we are agnostic to whether firms develop relevant technological resources prior, during, or after a product 

market entry as long as the strategic decision to enter, anchored around market relatedness, motivates 

their development. 

3. Data and Empirical Approach 

To evaluate our theory on the importance of market relatedness in driving product market entry, we link 

two data sources – CorpTech and NBER’s patent database. The CorpTech Directory of Technology 

Companies provides a listing of products for 77,100 high-tech firms in the United States across a wide 

variety of industries between 1997 and 2005.5 The first three years are used to construct lagged measures 

used in the analysis (as described below). Additional information in CorpTech includes geographical 

location, sales, founding year, ownership structure, and the names of key executives, as well as the 

 
5 Unless otherwise noted, we exclude subsidiaries of non-US firms that constitute around 10% of the CorpTech data from our 
sample. These firms often do not file for patents in the US which can create downward bias in our measure of technological 
relatedness (described in detail below). Their inclusion has a negligible effect on all of the findings.  
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primary SIC code associated with the company and specific CorpTech product categories for each 

product. More than half the companies covered are not publicly traded. Due to the availability of detailed 

data and the coverage of small, private firms, CorpTech has been used in several previous studies related 

to new product introduction, such as R&D investment in complex new products (Ethiraj, 2007), 

entrepreneur boundary crossing (Wu and Dokko, 2007), external markets for technology (Arora and 

Nandkumar, 2012), optimal timing of organizational consolidation (Puranam et al., 2006), and IPOs 

(Stuart et al., 1999). 

 We organize our data in a firm-category-year panel, with one observation for each firm-year in 

product categories in which they had not previously been active. Thus, the empirical structure considers 

all possible new product markets the firm could enter into in any given year, and assesses which market(s) 

the firm chooses to enter. The two most significant empirical challenges are (1) identifying the resource 

requirements of a given product market and (2) assessing its relatedness to a firm’s existing portfolio of 

resources. We first discuss our main construct of market relatedness in Section 3.1, and the corresponding 

measure of technological relatedness in Section 3.2. The broad, cross-industry coverage, while lacking in 

some fine-grained controls that can be found in detailed within-industry studies (e.g., Nerkar and Roberts, 

2004; Sosa, 2009), allow us to look for patterns in firm entry behavior across a wider and more complete 

range of market relatedness.6  

3.1. Market Relatedness 

Analogous to previous research using the SIC system, we use proximity within the CorpTech product 

classification as a proxy for market relatedness. This measure of relatedness is uniquely applicable to 

market resources for two reasons. First, the CorpTech data was designed to be used in sales and 

marketing efforts. The goal was to facilitate the sales to customers by the sellers as well as the purchasing 

of a product by customers, and its classification reflects output characteristics rather than input 

characteristics. Products grouped in the same industry are often sold to the same customers or consumers, 

 
6 For example, King and Tucci (2002) and Sosa (2009) look within a single industry and at generational shifts within an existing 
product market. 
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even if the inputs or underlying technologies are different. This focus on sales and marketing makes 

CorpTech uniquely suited for measuring market relatedness, particularly in terms of commonalities in 

consumers. Second, by directly controlling for technological relatedness, we eliminate the technological 

component that may be present in our measure of market relatedness.  

 CorpTech classifies products into three levels of hierarchy – 18 sectors, 256 industries, and 2,681 

product segments. Sectors include software, medical devices, manufacturing equipment, and computer 

products. As an example of the most granular level, the product segments in the marketing software 

industry include different codes for sales reporting software, direct marketing software, sales force 

automation software, and market planning software among others. The product segments are much more 

fine-grained than “industries” based on SIC classifications and provide a valuable opportunity to observe 

the role of market relatedness in entry decisions. 

 We construct our specific measures of market relatedness in two different ways. First, 

corresponding to the three-level hierarchy that consists of sector, industry, and product, market 

relatedness is set to 1 for potential product market entries where the firm has experience (i.e., already 

offers at least one product) within the same industry (though not within the product category); to 0.5 if the 

firm has experience within the sector (though not within the same industry); and to zero if the firm has no 

experience within the sector at all. Second and as a robustness check, we use dummy variables capturing 

each level of market relatedness separately, which is insensitive to specific functional forms of how 

market relatedness affects entry. 

3.2. Technological Relatedness 

In order to demonstrate the importance of market resources as the independent and significant driver of 

product market entry (H1) and the development of relevant technological resources (H3), it is critical to 

accurately control for the relatedness between a firm’s existing technological resources and those required 

for a given product category. We construct a firm’s technological relatedness to a given product market in 

a two-step process. We first (i) identify the technological resources relevant for a given product category 
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(i.e., “technological profile” of a product market), and (ii) assess the relatedness between the firm’s stock 

of technological resources and the profile before and after the entry. To address the first step, we start 

with all firms active in each product category and their patent portfolio based on the 421 USPTO patent 

classes (Hall et al., 2001). We consider a patent in a USPTO’s patent class i as providing a technological 

advantage for product j if two or more firms offer product j and have patented in class i in the previous 

three years. In identifying the technological profile of a product, we rely on “small, focused” firms – those 

active in 3 or fewer product categories – to eliminate noise from diversified firms such as Intel and 

Microsoft (Berger and Ofek, 1995; Chang, Kogut, Yang, 2016). There are important tradeoffs to 

imposing more or less stringent criteria for qualifying as a relevant patent class. Overly lenient criteria 

risk admitting too much noise and bias upwards (downwards) the support for H3 (H1). Overly stringent 

criteria risk overestimating the relevance of technological resources and bias upwards (downwards) the 

support for H1 (H3). We verify that our results are robust to varying the number of firms with a common 

patent class (e.g., shared by 1, 3, or 5 firms) and the definition of focused firms (e.g., having 1, 2, or 5 

products). Our approach permits more than one patent class to be relevant, and indeed we find an average 

of 3.77 relevant patent classes per product category across a total of 2,681 product categories. Random 

spot-checking of relevant patent classes by product category shows strong face validity. For example, 

those relevant for immune system R&D include bio-affecting compounds (424), molecular biology (435), 

and synthetic materials (525). 

 We next measure the relatedness between the firm’s patent portfolio and the technological profile 

of a product. Specifically, we assume that patent classes A and B are more closely related if classes A and 

B cite each other more frequently (Jaffe, 1986; Breschi et al., 2003). Finally, we calculate the 

technological relatedness (TRij) between firm i and product category j. If firm i has a patent in any of the 

relevant patent classes of product j, TRij is set to 1 (maximal relatedness between the firm’s technological 

resources and those required in the product category). In case TRij is not 1, we find the best alternative 

technology class of firm i with the highest relatedness (Sij) among the possible pairs of the patent portfolio 
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of firm i (Pi) and technology profile of product category j (Rj).7 While somewhat complex, our 

measurement approach closely follows Silverman (1999) and Breschi et al. (2003).  

We find our measure to be well-behaved (discussed further in Table 2). Figure 2 shows the 

distribution of technological relatedness between a firm and product category (TRij). TRij is equal to 1 

when a firm owns a patent in one or more technology classes relevant for the product category, and 

declines as the firm’s most proximate technological resource becomes more distant. A TRij value of 1 

shows a higher frequency than any other TRij values, indicating that there are quite a few firms with the 

potential to enter into product segments based on the proximity of technological relatedness. Except for 

when TRij equals one, the frequency of TRij decreases as TRij increases. To mitigate the concern that our 

findings may be driven by idiosyncratic measurement choices, we explore a series of alternative 

operationalization of technological relatedness. In particular, we find that our findings are robust to the 

alternative measure of technological relatedness proposed by Bryce and Winter (2009). Appendix A 

provides a more detailed description of the construction and the battery of robustness checks to potential 

pitfalls for this measure of technological relatedness. 

------------------------------------------- Insert Figure 2 about here ------------------------------------------- 

3.3. Control Variables  

As proxies for available resources that may affect the likelihood of new market entry and the adoption of 

new technology, we include the logged value of sales (Agarwal and Audretsch, 2001) and the lagged 

number of product categories in which the firm was active in the previous year, both from CorpTech. We 

also control for the generality of a firm’s technological resources (Hall et al., 2001), measured as the 

average generality of patents applied in the past three years, in order to address the concern that some 

patents contain general-purpose technologies and may facilitate entry into product markets with limited 

 
7 We focus on the maximum level of relatedness, as opposed to the mean or the median, to avoid penalizing diversified firms that 
are active in many patent classes. If, for example, Intel wanted to enter a new product category, it would not draw on its entire 
technological resources to enter, but would presumably focus on the most relevant technological knowledge that it had to 
facilitate entry. 
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direct technological relatedness.8 In addition, we include a control for the competitive intensity of the 

market by including the number of firms in the product category and its square term. All specifications 

include firm fixed effects to address time-invariant characteristics, year fixed effects to control for the 

overall rate of entry based on macroeconomic conditions, and dummies at the level of the 18 sectors in 

the CorpTech data.  

3.4. Dependent Variable and Empirical Methodology 

Our dataset is structured at the firm-category-year level. We measure a new product entry based on the 

finest degree of characterization in the CorpTech data – 2,681 product categories – which is set to 1 if 

there is a listing in a new product category for the firm in a given year, and 0 otherwise. Thus, we have 

multiple observations per firm-year across 2,681 product categories. Since product entry is a binary 

outcome, we employ a logistic regression model. All standard errors are clustered at the firm level and 

adjusted for heteroskedasticity. We discuss the empirical approach for H3 in further detail below. 

3.5. Overall Sample and Descriptive Statistics 

CorpTech and the NBER patent database cover many more firms than we use in our sample, and our 

exclusion process is based solely on measurement. On the firm side, we exclude any firms that have not 

filed for any patents in the previous three years, as we cannot ascertain their technological resources, 

leaving us with 5,755 unique firms.9 On the product side, we exclude any product categories with no 

entry during our sample period of 1997-2005. We also exclude product categories for which we are 

unable to identify any relevant patent classes. This arises when firms in the product category do not file 

any patents or when there are no focused firms active in the product category. We identify 341 unique 

categories for which we can measure technological profiles. The firm fixed effects also drop all firms that 

do not make any entries across the sample period, and our final sample consists of 1,851 entries across 

 
8 We add a missing dummy in cases where patents do not receive any citations and generality cannot be computed. 
9 We verify that in-sample firms do not systemically differ from out-of-sample firms in terms of observable characteristics, such 
as the number of products offered by the firm, the size of the firm based on the number of employees and sales, firm age, and the 
number of executives. 
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558,692 firm-category-year observations.10  

Descriptive statistics are summarized in Table 1. While the overall entry rate is low due to a large 

number of potential product markets, there is a sufficient number of entries to test our hypotheses.11 In 

Table 1, we find that the correlation between technological relatedness and market relatedness is only 

0.002, suggesting that the two measures are capturing different aspects of relatedness in firm resources. 

The median firm is active in 12 product markets with approximately $250 million in annual sales, and the 

median product market has 10 active firms.  

---------------------------------------------- Insert Table 1 here ---------------------------------------------- 

 Figure 1, introduced earlier, visualizes the probability of product market entry across market and 

technological relatedness in a 3-by-3 heat map. The three levels of the y-axis capture each level of product 

relatedness (sectors, industries, and product segment), and the three levels of the x-axis capture each 

tercile of technological relatedness. A darker blue indicates a higher probability of entry. Three notable 

patterns emerge from the heat map. First, product market entry is a rare event across all cells. Second, 

there is a six to thirteen-fold increase in entry probability when moving from low to high market 

relatedness across the y-axis. Third, when moving from low to high technological relatedness across the 

x-axis, there is no increase in the high market relatedness row and only a twofold increase in entry 

probability in low and medium market relatedness rows. Possessing technological resources has little to 

no effect in the absence of market resources, providing preliminary support that market resources serve as 

the bottleneck to the entry process. We next use panel regression analysis to test our hypotheses.  

4. RESULTS 

4.1. Results of the Primary Models Testing (H1) 

Table 2 reports the results of panel logit models with firm, year, and sector fixed effects. In Model 1, we 

 
10 Refer to Appendix B for the year-by-year and aggregated sample statistics. 
11 The maximum likelihood estimation suffers from a well-known small sample bias. However, the bias is dependent on the 
smaller of the numerator or the denominator, and the entry count of 1,851 provides sufficient variations. Our results are also 
robust to rare events logistics regressions (King and Zeng, 2001).  
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first start by replicating prior research showing that technological relatedness indeed leads to 

technological entry (Breschi et al., 2001). This model includes 421 technology-class fixed effects (Hall et 

al., 2001) as well as other control variables used in Breschi et al. (2001), including the patent share 

concentration index, the US specialization index, the number of firms in each technological class, and the 

number of patents and patent applications in each technological class i. The results confirm that 

technological relatedness increases the probability of technological entry; an increase in technological 

relatedness from the mean (0.004) to one standard deviation above the mean (0.024) increases the 

probability of technological entry by 1.77 times. The successful replication of Breschi et al. (2001) 

increases confidence in our measure of technological relatedness. 

--------------------------------------------- Insert Table 2 here ---------------------------------------------- 

Models 2 to 5 test H1 with product-market entry as the dependent variable. In Model 2 which 

only includes control variables, technological relatedness is negatively related to entry but statistically 

insignificant (p = 0.570).12 In Model 3, market relatedness is positively related to product-market entry. 

This also holds true in Model 4 where we use indicator variables to split market relatedness into three 

categories. Entry is 7.3 times more likely when market relatedness is 1 (i.e., same industry), and 3.1 times 

more likely when market relatedness is 0.5 (i.e., same sector). The inclusion of market relatedness also 

improves McFadden’s (or pseudo) R2 value by 2.7 percentage points. In Model 5, we add an interaction 

term between technological and market relatedness and find the coefficient to be negative in both nominal 

and marginal effects and lack statistical significance.13 The null interaction was unexpected but consistent 

with our theory. Entering a new product market is a rare event, so when a firm discovers a productive 

market opportunity, it is willing to enter with or without pre-possessing technological resources 

(Danneels, 2011). 

 
12 Some studies document a significant negative effect of technological relatedness on entry due to the risk of cannibalization (de 
Figueiredo and Silverman, 2007) and disruptions to existing organizational routines (Henderson, 1993; Eggers, 2012). Sakhartov 
(2017) uses a computational model to show that inter-temporal economies of scope can generate a curvilinear relationship where 
firms maintain a portfolio of moderately related products rather than most closely related products. 
13 Interpreting the interaction term in a non-linear model requires much caution as the coefficient does not represent the marginal 
effect (Ai and Norton, 2003). We obtain a consistent null result in a linear probability model. 
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These results provide uniform support that market resources act as a bottleneck and in turn, 

constrain entry decisions to center on market relatedness (H1). Contrary to prior characterizations of 

market resources as playing a secondary role to technological resources, the importance of market 

relatedness is independent of technological relatedness. While we hypothesize on the greater importance 

of market relatedness, the finding of a null effect on technological relatedness is unexpected. We explore 

this “non-effect” more carefully in Section 4.3.   

4.2. Contingencies around the Significance of Market Relatedness (H2) 

Next, we conduct a series of cross-sectional analyses and explore potential contingencies that affect the 

relative severity of market resources as the bottleneck to the entry process. The statistical differences in 

the coefficients for market relatedness are based on z-statistics and noted in parentheses. In Table 3, 

Models 1 and 2 divide the sample into the top and bottom half by firm sales and confirm that the 

relevance of market relatedness increases for larger firms (2.163 vs. 1.836; p<0.10). Models 3 and 4 

examine whether a firm’s public or private status influences the importance of market relatedness. Market 

relatedness is indeed more important for public firms than for private firms (2.359 vs. 1.532, p<0.01). As 

public firms tend to be larger, we verify that the results are robust when we restrict the sample to firms 

with sales above the sample median. We next examine a firm’s technological competency. We divide the 

sample into high and low competency firms based on the total number of patents in Models 5 and 6 and 

the maximum value of a firm’s patent generality in Models 7 and 8. We expect high generality firms to 

possess a higher capacity to learn and absorb new technological resources, increasing the relative severity 

of market resources as the bottleneck.14 We find that market relatedness is more important for firms with 

a large number of patents (2.431 vs. 1.750; p<0.01) and more general patents (2.252 vs. 1.841; p<0.10 ). 

As a notable exception to the general null effect of technological relatedness, we find that it has a positive 

and significant effect on low generality firms and a negative and significant effect on high generality 

firms. While we did not expect the negative effect for high generality firms, the contrast provides nuanced 

 
14 Using the maximum value helps to reduce potential biases arising from large differences in the number of patents. We obtain 
similar but slightly less sharp results using the mean value.  
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support for the role of bottleneck resources; firms with a narrow technological focus are constrained in 

their ability to access missing technological resources and experience technological resources to be 

another bottleneck, leading to the positive and significant effect on entry.  

--------------------------------------------- Insert Table 3 here ---------------------------------------------- 

Looking at the industry-level characteristics, Models 9 and 10 split the sample by the median 

number of active firms and find the importance of market relatedness to decrease in magnitude by 22 

percent in crowded markets (2.408 vs. 1.870; p<0.01). This is consistent with the argument that a larger 

number of active firms in a given market segment decrease the potential to create a competitive advantage 

based solely on market-based resources (Carroll, 1985). To further explore the industry-level dynamic, 

Table 4 repeats our main analysis for each sector.15 We would expect the effect of market resources on 

product market entry to be greater in sectors with more developed markets for technology. We only report 

the technological and market relatedness coefficients, but all controls are included in the models.  

While lacking strong priors, the ranking is largely consistent with the commonly perceived 

strength of the external markets for technology and the Carnegie Mellon Survey (Cohen, Nelson and 

Walsh, 2000). The survey distinguishes between discrete and complex sectors based on the intuition that 

accessing and integrating external technological resources are easier in discrete categories (e.g., drugs, 

chemicals, and metals) relative to complex categories (machinery, computers, electrical equipment, 

instruments, and transportation equipment). While we do not have concordance between CorpTech 

categorization system and SIC codes used in Cohen et al. (2000), there is a notable overlap – with the 

single exception of Transportation. The high coefficient for market relatedness for pharmaceutical, 

chemical, and medical sectors is consistent with the outsourcing of R&D to small, specialized firms 

documented in these sectors as well as active markets for licensing and patent transfers (Higgins and 

Rodriguez, 2006; Serrano, 2008). Meanwhile, industries where technological know-how may be 

exceptionally difficult to transfer – including computer software, the Internet, and manufacturing – show 

 
15 We use random-effects specification instead of fixed-effects because the industry subsampling substantially reduces variation 
in market-relatedness and makes fixed effects specifications problematic (Greene, 2003). 
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the lowest coefficients. It is also assuring to see that the coefficient for market relatedness is the highest in 

the pharmaceutical sector where we know with strong confidence that there are well-functioning markets 

for technology. 

---------------------------------------------- Insert Table 4 here ---------------------------------------------- 

In addition to providing more nuanced support for our theory of bottleneck resources centered on 

access to factor markets, these inter-firm and inter-industry differences address the concern that market 

resources may drive entry not because they act as a bottleneck but because they are simply more valuable. 

Even within a given industry where technological resources should carry similar value, the relative 

importance of market relatedness varies based on a firm’s ability to access markets for technology. In 

addition, our sample consists of high-tech firms from the directory of technology firms, of which a 

significant share operates in pharmaceutical, biotechnology, and chemical industries. There is robust 

empirical evidence that technological resources are highly valuable in these settings, especially patents 

(Cohen, Nelson, and Walsh, 2000). 

4.3. The Temporal Dynamics of Resource Development (H3) 

Finally, we test H3 that proposes temporal dynamics in resource development. We first examine whether 

the strategic decision to enter a new product market indeed triggers firms to access external technological 

resources (H3a). In Table 5, we match CorpTech to the SDC platinum database and examine the number 

of alliances and JV formed around the new product market entry in a linear probability model. We restrict 

the sample to firms that make at least one entry but find consistent results based on the full sample. Firms 

on average form 0.12 additional joint ventures and alliances at the year of new market entry (t+0). We do 

not detect any significant increase prior to the entry. Table 6 examines whether the increase differs by the 

conditions examined in H2. The increase is significant only for large, public, and technologically 

competent firms at year t and t+1, consistent with their ability to better manage the hazards of accessing 

intangible, technological resources in the open market. While providing support for our theory, the 

analysis is at the firm-year level (versus firm-category-year), and there is some risk that the increase 
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relates to firm activities unrelated to product market entry. However, the temporal pattern whereby the 

increase peaks at the year t and t+1 is unlikely to be driven by random noise. 

---------------------------------------------- Insert Table 5 & 6 here ----------------------------------------------- 

In Table 7, we next look at a firm’s internal R&D activities (H3b) and compare changes in 

technological relatedness to the entering product category with changes to non-entering product 

categories within a firm. Unlike the previous analyses on joint ventures and alliances at the firm-year 

level, we can link patents to the technological requirements for each product market and conduct a much 

more granular analysis at the firm-category-year level. The increasingly positive and significant 

coefficients of entry at t+1 and t+2 and insignificant coefficients for preceding years indicate that the 

decision to enter drives firms to build technological resources associated with the product category and do 

so in a relatively short time frame. In Appendix C, we repeat the analysis in a logit specification with 

technological relatedness of 1 as the binary dependent variable. The results show that the post-entry 

increase in technological relatedness is driven by firms directly filing for patents in the relevant 

technology classes following an entry. 

In Table 8, we again explore whether the intensity and pace of the internal development of 

technological resources differ by the conditions examined in H2. The magnitude of response is in fact 

four times larger for small firms compared to large firms and two times larger for private firms than 

public firms. The increase in internal patenting is also larger for firms with a low and less general stock of 

technological resources, consistent with the earlier discussion that they are more limited in their ability to 

access and utilize markets for technology and hence constrained to internal development. We also find the 

increase is larger for sparsely populated markets. We suspect this is because product markets with few 

firms do not have active markets for technology. The overall pattern of building technological resources 

through internal R&D activities around entry provides a clear mirror image to that observed for external 

acquisitions of technological resources in Table 6 and supports the idea that firms systematically differ in 

their preference for internal or external development of technological resources. The significant increase 
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in technological relatedness also helps to validate our measure and addresses the concern that the null 

result on technological relatedness arises from measurement issues, especially as the noise around 

technological relatedness is likely to be greater for testing H3b than H1. 

---------------------------------------------- Insert Tables 7 & 8 here ---------------------------------------------- 

Taken together, the results in Table 5 through 8 provide robust and nuanced support for the 

hypothesized temporal dynamics that link market resources, product market entry, and the acquisition of 

relevant technological resources.16 The post-entry buildup of relevant technological resources also 

reinforces the proposed distinction between the most valuable resource and the bottleneck resource and 

their effects on entry: while technological resources do not drive entry, they are still valuable and critical 

to post-entry performance, requiring firms to actively acquire them through multiple channels.  

5. Discussion and Conclusion 

In this study, we argue that bottleneck resources determine the direction of new product market entry. We 

develop our theory based on a core tenet of the RBV; firms and products are a bundle of resources and 

activities (Teece, 1986; Henderson and Clark, 1990; Helfat and Raubitschek, 2000; Keum, 2020; Chang 

2020). Because missing a single resource can foil the entire entry effort, the process of assembling the 

resource bundle necessary to enter a new product market centers on bottleneck market resources that are 

difficult to obtain and sell, as opposed to technological resources which may be easier to obtain through 

markets for technology.  

Our theory and findings have important implications across four research streams. First, this 

study contributes to the strategy literature on the nature of “corporate coherence” in multiproduct firms 

(Teece et al., 1994). Firms organize new product entries around market resources. While consistent with 

the theoretical idea of coherence, our findings represent a significant departure from the typical view that 

 
16 The results are also consistent with the qualitative analysis discussed in Appendix D, noting that firms pursuing market-driven 
entry employ both internal and external development opportunities to facilitate entry. While we find the buildup of technological 
resources to occur during or after product market entry, we do not claim the dynamics to be sequential, as this would require data 
on all possible ways to leverage the markets for technology, including licensing, hiring, and patent-level transactions, in addition 
to establishing precise timelines of when firms make use of them. 
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coherence emerges around the reuse of proprietary technological resources. This provides a theoretical 

foundation for technological convergence among firms that share important market assets and the blurring 

of traditional industry boundaries. The convergence of online and off-line channels provides a case in 

point, where, in efforts to capture a larger share of customers’ wallets, traditional retailers are going 

online (e.g., Walmart) while online retailers are acquiring physical stores (e.g., Amazon) even though 

such expansion requires building a vastly different set of technological capabilities.  

Second, Arora et al. (2001) discuss the organizational and strategic implications of burgeoning 

markets for technology, such as the increased viability of a focused business model. Our theory and 

findings suggest that markets for technology also shift the direction of firm growth by increasing the 

“acquirability” of technological resources and, in turn, increasing the relative importance of bottleneck 

market resources. Our results do not reject the significance of technological resources in enhancing post-

entry performance. The post-entry buildup of relevant technological resources in fact indicates the 

opposite. Our findings, however, point to more nuanced resource dynamics that differentiate 

technological entry from product entry, and product entry from the post-entry performance. Given the 

increasing sophistication of markets for technology where firms can both buy and sell (or license) 

technological resources, it is unclear whether technological resources always pass Barney’s (1991) 

criteria for strategic resources to be rare. Our discussions of resource fungibility (the flexibility of moving 

resources within firm boundaries) and resource bottlenecks (the flexibility of moving resources across 

firm boundaries) join existing conversations around resource value (Barney, 1991) and the existence of 

excess capacity (Penrose, 1959) to further explicate the nuanced relationship between resources and 

organizational evolution. Given the centrality of resources to discussions of organizational scope and 

diversification, our articulation of the importance of bottleneck resources provides novel insights into the 

complex way in which resources affect firm growth and entry dynamics. 

Third, our perspective that firms acquire and strengthen relevant technological resources to 

support entry through markets for technology highlights temporal dynamics in firm resource development 
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that have received little attention (Helfat and Raubitschek, 2000). Notably, we expect a decoupling 

between a firm’s technological and product portfolio at the timing of the entry but also their convergence 

within a relatively short amount of time. This raises an important methodological caution. Without careful 

attention to the precise timing of product market entry and development of technological resources, it 

becomes unclear whether (technological) relatedness causes entry or entry causes relatedness. The 

possibility of market resources serving as a locus of this process and an antecedent of technological 

resources represents an important area for future research (Wu et al., 2014).  

Lastly, the null effect of technological relatedness on product market entry emphasizes the 

importance of taking a more balanced approach that incorporates both consumers and product-market 

contexts into resource-based research (Adner and Levinthal, 2001; Ethiraj et al., 2005; Priem, 2007). 

Product market entry is “often initiated by signals received in the course of production or from customers 

and markets, and are based on fairly tedious and (from a scientific viewpoint) mundane activities” (Arora 

and Gambardella, 1994: 524).17 The role of customers in the discovery of market opportunities relates to a 

growing body of research that emphasizes the role of demand factors in shaping the direction of firm 

growth (Priem and Butler, 2001; Manral and Harrigan, 2017) and likely further reinforces the proposed 

importance of market resources.  

While we find our results to be robust to a battery of robustness tests (discussed more in detail in 

Appendix A), there are fundamental limitations to measuring the presence and depth of a firm’s 

technological resources based on patents. Patents contain the most codifiable and transferrable component 

of firms’ technological resources, and a clear separation from the broader organizational know-how may 

not be possible. An ideal dataset would also include a full range of access to external resources, including 

patent transactions, licensing, contract R&D, and the hiring of inventors. There are also important 

boundary conditions to the null finding on technological relatedness, including limitations to high tech 

sectors with relatively well-developed markets for technology as well as the inability to capture “new-to-

 
17 In their survey of American manufacturing firms, Arora, Cohen, and Walsh (2016) report that 49% of the most important 
product innovations originated externally with customers as the most frequent source, followed by suppliers. 
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the-world” product categories. It is entirely possible that truly radical entries or entries into more nascent 

industries are determined more by technological resources than market resources. 

We conclude with the flipside of the research question at hand, namely why firms fail to enter 

certain markets (Christensen, 1997; Tripsas, 2009). Previous research on why incumbent firms have 

difficulty adapting to disruptive change has focused primarily on technological aspects, such as the 

architectural nature of the change or managerial and organizational rigidity with regards to the adoption 

of radical technology. Our findings suggest that the market-based component of the disruption may be an 

even more important consideration than its technological component in understanding firm response or 

the lack thereof.
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Figure 1. Entry Probability Across Market and Technological Relatedness  

 

Note. The number in each cell indicates the percentage likelihood of entry, calculated as the number of 
realized entries divided by the total number of product segments.  

 

Figure 2. Histogram of Technological Relatedness between Firms and Product Categories

 

Note. A bin size is 0.05. There are 2,084 observations which have 0 technological relatedness.  
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Table 1. Correlations and Summary Statistics 
                

  1 2 3 4 5 6 7 
1. (DV) Product Entry -             
2. Technology Relatedness 0.004 -           
3. Market Relatedness 0.019 0.002 -         
4. (Firm) log (Sales)  -0.003 0.022 0.017 -       
5. Technology Generality 0.002 0.003 0.009 -0.039 -     
5. (Firm) No. of Products 0.019 0.003 0.094 0.113 0.008 -   
6. (Product) No. of Firms in Category 0.022 0.333 0.010 -0.002 0.0003 0.024 - 

Average 0.001 0.187 0.072 17.505 0.587 14.612 13.414 
SD 0.024 0.286 0.203 5.977 0.208 16.757 11.946 
Min 0 0 0 0 0 1 2 
Max 1.0 1.0 1.0 28.6 1.0 288.0 121.0 

 
Note. The correlation between technology relatedness and product relatedness is only 0.002, suggesting 
that the two measures are clearly capturing different aspects of relatedness.
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Table 2.  Market Relatedness and Product Market Entry  
              

  
Tech. 
Entry   Product Market Entry 

  (1)   (2) (3) (4) (5) 

Market relatedness                  
       

2.017***              
       

2.107*** 
                        (0.109)                   (0.120) 

Market relatedness = 0.5 (dummy)                               
       

1.120***              
                                     (0.091)              

Market relatedness = 1.0 (dummy)                               
       

1.968***              
                                     (0.113)              
Market relatedness × Tech. rel.                                                  -0.370 
                                                  (0.249) 
Tech. relatedness 0.640***         -0.057       -0.056       -0.055        0.033 
  (0.139)        (0.101)      (0.102)      (0.102)      (0.113) 
log (Sales) -0.163           0.055        0.052        0.054        0.052 
  (0.175)        (0.081)      (0.087)      (0.088)      (0.087) 
Tech. generality            0.244        0.289        0.289        0.287 
           (0.412)      (0.443)      (0.444)      (0.442) 

No. of products     
       

0.014** 
       

0.014** 
       

0.014** 
       

0.014** 
           (0.004)      (0.005)      (0.005)      (0.005) 

No. of firms in category     
       

0.062*** 
       

0.061*** 
       

0.062*** 
       

0.061*** 
           (0.004)      (0.004)      (0.004)      (0.004) 
No. of firms in category (sq)     -0.0003*** -0.0003*** -0.0003*** -0.0003*** 
           (0.000)      (0.000)      (0.000)      (0.000) 
Tech. entry controls yes   n/a n/a n/a n/a 
Tech generality missing dummy yes   yes yes yes yes 
Sector fixed effect n/a   yes yes yes yes 
Year fixed effect n/a   yes yes yes yes 
Firm fixed effect n/a   yes yes yes yes 
Pseudo R2  0.063    0.077 0.104 0.104 0.104 
Log Likelihood -63,811   -8,536 -8,289 -8,287 -8,287 
Chi-square 6,395   1,162 2,021 1,995 2,056 
N 1,734,047   558,692 558,692 558,692 558,692 
Note.  +p<0.1; *p<0.05; **p<0.01; ***p<0.001. 
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Table 3.  Main Regression Results by Subsample 
  

                    
  DV: Product Market Entry 

  

Small 
firms 

Big 
firms Private Public 

Low 
tech. 

capability 

High 
tech. 

capability 

Low 
 

generality 

High  
generality 

Crowded 
market 

Sparse 
market 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Market relatedness 1.836*** 2.163*** 1.532*** 2.359*** 1.750*** 2.431*** 1.841*** 2.253*** 1.870*** 2.408*** 
  (0.167) (0.147) (0.161) (0.144) (0.166) (0.143) (0.161) (0.154) (0.123) (0.183) 
Subsample 
differences z: 1.469, p=0.071 z: 3.82, p<0.01 z: 3.10, p<0.01 z: 1.85, p=0.03 z: 2.43, p<0.01 

                 

Tech. relatedness -0.038 -0.031 0.047 -0.122 -0.010 -0.073 0.312* -0.343* 0.044 -0.334 
  (0.154) (0.136) (0.143) (0.146) (0.145) (0.152) (0.138) (0.155) (0.106) (0.285) 
Controls yes yes yes yes yes yes yes yes yes yes 
Tech generality missing 
dummy yes yes yes yes yes yes yes yes yes yes 

Sector fixed effect yes yes yes yes yes yes yes yes yes yes 
Year fixed effect yes yes yes yes yes yes yes yes yes yes 
Firm fixed effect yes yes yes yes yes yes yes yes yes yes 
Pseudo R2  0.115 0.112 0.127 0.127 0.127 0.105 0.119 0.103 0.100 0.072 
Log Likelihood -3,489 -4,628 -3,991 -4,164 -4,051 -3,905 -3,799 -4,179 -5,900 -1,728 
Chi-square 1,064 55,318 1,053 47,561 46,331 1,040 48,752 960 1,387 343 
N 233,464 295,716 261,451 286,503 212,286 275,741 209,752 284,696 258,216 85,620 
Note.  +p<0.1; *p<0.05; **p<0.01; ***p<0.001; subsample differences are based on z-statistics. 
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Table 4.  Results by Sector  

            

Sector Market  
relatedness 

Tech.  
Relatedness N 

Pharmaceuticals 4.716*** (0.916) -2.425 (1.751) 68,990 
Transportation 4.176*** (1.085) 0.327 (1.832) 20,456 
Biotechnology 2.807*** (0.362) 0.037 (0.364) 165,627 
Chemicals 2.212** (0.705) -0.848 (0.991) 94,260 
Photonics and Optics 2.202* (0.895) -0.562 (1.207) 48,278 
Energy 2.197** (0.736) -0.358 (0.675) 88,587 
Medical Equipment 2.033*** (0.457) -0.759* (0.432) 311,377 
Subassemblies and Components 1.585*** (0.456) -0.159 (0.299) 472,161 
Computer Hardware 1.085* (0.471) 0.496 (0.370) 167,964 
Factory Automation 1.017+ (0.596) 0.375 (0.346) 264,718 
Telecommunications and Internet 1.008** (0.331) -0.458** (0.228) 262,127 
Test and Measurement 1.002 (0.649) -0.465 (0.438) 167,866 
Computer Software 0.783** (0.288) -0.233 (0.183) 291,941 
Environmental 0.729 (1.594) -5.023*** (1.890) 122,266 
Manufacturing -2.114 (1.349) 0.192 (0.348) 116,413 
Advanced Materials -2.476 (2.774) 0.740 (0.641) 120,596 
Note.  +p<0.1; *p<0.05; **p<0.01; ***p<0.001. 
Refer to Appendix B for detailed descriptions of each industry sector.  
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Table 5.  Joint Venture and Alliance Activities Pre- and Post-Entry  

            
  DV: JV & Alliances 
  Year: -2 Year: -1 Year: 0  Year: 1  Year: 2  
Entry -0.003 0.052 0.122* 0.064 0.014 
  (0.042) (0.069) (0.062) (0.040) (0.025) 
log (Sales) -0.014 -0.045* -0.030* -0.012 -0.018* 
  (0.017) (0.019) (0.012) (0.009) (0.009) 
Tech. generality 0.042 0.002 0.039 -0.008 -0.001 
  (0.036) (0.054) (0.033) (0.025) (0.022) 
No. of products -0.011** -0.012+ -0.011+ -0.012* -0.012** 
  (0.004) (0.006) (0.006) (0.005) (0.004) 
No. of firms in category 0.001 -0.001 -0.002 -0.001 -0.001 
  (0.001) (0.001) (0.001) (0.001) (0.001) 
No. of firms in category (sq) 0.000 0.000 0.000 0.000 0.000 
  (0.000) (0.000) (0.000) (0.000) (0.000) 
Tech generality missing dummy yes yes yes yes yes 
Year fixed effect yes yes yes yes yes 
Firm fixed effect yes yes yes yes yes 
R2 / Log Likelihood 0.034 0.034 0.046 0.066 0.088 
N 17,261 17,261 17,261 17,261 17,261 
Note.  +p<0.1; *p<0.05; **p<0.01; ***p<0.001. 
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Table 6.  Joint Venture and Alliance Activities by Subsample Pre- and Post-Entry 

            
  DV: JV & Alliances 
  Year: -2 Year: -1 Year: 0  Year: 1  Year: 2  
Small firms 0.002 -0.014 0.000 -0.019* 0.010 
  (0.017) (0.015) (0.017) (0.009) (0.009) 
Big firms -0.001 0.127 0.201+ 0.128+ 0.025 
  (0.074) (0.127) (0.111) (0.072) (0.045) 
Private 0.001 0.007 -0.004 -0.013+ 0.008 
  (0.010) (0.009) (0.013) (0.007) (0.007) 
Public 0.004 0.102 0.221+ 0.132+ 0.036 
  (0.080) (0.133) (0.115) (0.075) (0.048) 
Low tech. competency -0.035 0.050 -0.012 -0.002 -0.012 
  (0.048) (0.063) (0.027) (0.026) (0.017) 
High tech. competency 0.043 0.135 0.270* 0.104 0.002 
  (0.067) (0.093) (0.111) (0.070) (0.039) 
Low generality -0.013 -0.036 0.014 -0.020 -0.014 
  (0.033) (0.027) (0.026) (0.023) (0.016) 
High generality 0.025 0.071 0.216+ 0.104 0.026 
  (0.073) (0.124) (0.116) (0.070) (0.044) 
Crowded 0.012 0.026 0.103+ 0.053 0.024 
  (0.048) (0.052) (0.058) (0.054) (0.040) 
Sparse 0.034 0.189+ 0.213* 0.057 -0.005 
  (0.101) (0.112) (0.103) (0.068) (0.055) 
Note.  +p<0.1; *p<0.05; **p<0.01; ***p<0.001. 
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Table 7.  Changes in Technological Relatedness Pre- and Post-Entry  

            
  Tech. Relatedness 
  Year: -2 Year: -1 Year: 0  Year: 1  Year: 2  
Entry -0.008 0.013 0.003 0.057*** 0.092*** 
  (0.016) (0.014) (0.007) (0.012) (0.017) 
log (Sales) 0.005 -0.004 -0.006 0.004 0.006 
  (0.012) (0.008) (0.005) (0.007) (0.007) 
Tech. generality 0.018 0.008 -0.017 -0.017 -0.048 
  (0.069) (0.043) (0.028) (0.046) (0.057) 
No. of products -0.001 0.000** 0.000 0.000 0.000 
  (0.001) (0.000) (0.000) (0.000) (0.000) 
No. of firms in category 0.002*** -0.001* 0.010*** 0.007*** 0.005*** 
  (0.000) (0.000) (0.000) (0.000) (0.001) 
No. of firms in category (sq) -0.000*** 0.000 -0.000*** -0.000*** -0.000*** 
  (0.000) (0.000) (0.000) (0.000) (0.000) 
Tech generality missing 
dummy yes yes yes yes yes 
Sector fixed effect yes yes yes yes yes 
Year fixed effect yes yes yes yes yes 
Firm fixed effect yes yes yes yes yes 
R2 / Log Likelihood 0.211 0.206 0.171 0.183 0.218 
N 163,801 274,401 586,050 271,727 161,942 
Note.  +p<0.1; *p<0.05; **p<0.01; ***p<0.001. 
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Table 8.  Changes in Technological Relatedness by Subsample Pre- and Post-Entry 

 

            
  Tech. Relatedness 

  Year: -2 Year: -1 Year: 0  Year: 1  Year: 2  
Small firms -0.026 -0.011 -0.001 0.090*** 0.137*** 
  (0.026) (0.019) (0.009) (0.018) (0.024) 
Big firms 0.007 0.027 0.010 0.021 0.044* 
  (0.019) (0.019) (0.011) (0.016) (0.022) 
Private -0.037 -0.006 0.008 0.101*** 0.126*** 
  (0.029) (0.021) (0.010) (0.018) (0.025) 
Public 0.002 0.021 -0.001 0.013 0.060** 
  (0.019) (0.018) (0.011) (0.015) (0.022) 
Low tech. 
competency -0.005 0.011 0.010 0.093*** 0.138*** 
  (0.031) (0.019) (0.009) (0.018) (0.025) 
High tech. 
competency -0.005 0.018 -0.001 0.024 0.049* 
  (0.018) (0.019) (0.011) (0.016) (0.021) 
Low generality -0.019 -0.014 0.029** 0.088*** 0.145*** 
  (0.028) (0.020) (0.010) (0.019) (0.025) 
High generality 0.000 0.028 -0.018+ 0.038* 0.048* 
  (0.018) (0.018) (0.010) (0.016) (0.022) 
Crowded market -0.007 0.018 0.011 0.051*** 0.083*** 
  (0.017) (0.015) (0.009) (0.013) (0.018) 
Sparse market -0.014 -0.015 -0.011 0.114*** 0.167*** 
  (0.040) (0.025) (0.010) (0.034) (0.046) 
Note.  +p<0.1; *p<0.05; **p<0.01; ***p<0.001. 
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Appendix A: Capturing Technological Relatedness 

Appendix A describes the measurement of technological relatedness. In its operationalization, we follow 
as closely as possible prior studies that find significant effects of technological relatedness on 
technological entry (e.g., Breschi et al., 2001). The key difference is that testing our theory requires us to 
measure the distance to a product (rather than another technological class) that embeds multiple 
technologies and patents.  
 
 

 
 
 
For example, smartphones embed hundreds of patents, and identifying the breadth and depth of related 
technological resources presents a significant challenge. Other studies have addressed the issue in part by 
focusing on sectors whose technological profiles are narrowly defined and relatively straightforward to 
identify (e.g., pharmaceutical, disk-drive, or crop market), but our theory requires examination across a 
wide spectrum of products.  
 
There are three key issues: 

1. Identification of technological profile for each product 
2. Measurement of distance (or technological relatedness) between a firm’s patent portfolio  

and technological profile for the product 
3. Identification of a firm’s patent portfolio based on matching CorpTech and NBER patent  

DB 
 

A.1. Identification of technological profile 
 

We start with all firms active in each product category and their patent portfolio. We identify the relevant 
technologies for a given product category by looking for commonalities in the recent patenting behavior 
of focused firms that are active in relatively few product categories. To reduce noise from holding 
companies or large firms that maintain a broad patent and product portfolio (as suggested by our theory 
and Brusoni et al. 2001), we base our identification of a technological profile using “focused” firms which 
are active in 3 or fewer product categories. We also check robustness by applying more stringent and 
lenient thresholds for focused firms (firms active in only 1 product category and up to 5 product 
categories). All results remain qualitatively consistent, and we report results based on the threshold of 
three.  
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Table A1.1: Average number of relevant patent classes for sectors over time 

(Sector ID) Sector 2000 2001 2002 2003 2004 2005 
Average 

over 
time 

(AUT) Factory Automation 6.65 11.69 9.07 12.14 8.00 6.50 9.01 
(BIO) Biotechnology 4.70 3.38 9.13 6.82 4.18 7.13 5.89 
(CHE) Chemicals 1.25 1.60 3.86 2.11 2.29 8.50 3.27 
(COM) Computer Hardware 1.64 2.25 1.42 1.63 1.56 1.70 1.70 
(DEF) Defense - a - - - - - - 
(ENR) Energy 5.50 7.00 4.00 3.67 2.75 2.33 4.21 
(ENV) Environmental 2.00 2.13 1.25 3.57 1.30 2.33 2.10 
(MAN) Manufacturing 6.71 6.78 8.86 5.44 9.20 7.17 7.36 
(MAT) Advanced Materials 2.00 1.71 4.43 1.83 2.25 1.89 2.35 
(MED) Medical Equipment 3.75 4.95 3.44 3.04 4.57 2.74 3.75 
(PHA) Pharmaceuticals 2.50 1.00 2.38 1.33 1.75 1.50 1.74 
(PHO) Photonics and Optics 1.00 1.80 1.00 1.29 1.00 1.00 1.18 
(SOF) Computer Software 1.54 2.47 1.71 3.33 3.33 2.55 2.49 
(SUB) Subassemblies and Components 2.45 2.55 6.52 2.92 3.46 3.59 3.58 
(TAM) Test and Measurement 1.57 2.58 1.92 2.00 5.00 2.00 2.51 
(TEL) Telecommunications and 
Internet 1.00 2.31 2.30 2.09 5.23 4.05 2.83 

(TRN) Transportation - - 1.00 2.00 1.00 1.00 1.25 
(ZZZ)a Holding Companies - - - - - - - 

Average over sector 3.27 3.73 4.37 3.79 3.97 3.51 3.77 
 
Note: a There is no product category with a requisite technological class. 
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Table A1.2: Examples of Relevant Patent Classes by Product Category 
 
In verifying our measure, we also have checked whether the concordance between identified patent classes and product categories is reasonable. 
We provide five illustrative cases below. While these are sampled categories, the concordance built through our approach produces links between 
patent classes and product categories that have high face validity. 
 

 

  
 
 
 
 

 

Sector Industry Product
Sample product 

description
Identified USPTO 

patent class Class description

BIO IM M 424 Drug, bio-affecting and body treating compositions
(Biotech.) 435 Chemistry: molecular biology and microbiology

525 Synthetic resins or natural rubbers - part of the class 520 series
OA GD 74 Machine element or mechanism

370 Multiplex communications
UT C Error checking software 706 Data processing: artificial intelligence
DG TI 29 Metal working

174 Electricity: conductors and insulators
248 Supports
362 Illumination
524 Synthetic resins or natural rubbers - part of the class 520 series
606 Surgery

FR F 424 Drug, bio-affecting and body treating compositions
427 Coating processes
536 Organic compounds - part of the class 532-570 series

SS A 705 Data processing: financial, business practice, management, or cost/price determinatio
710 Electrical computers and digital data processing systems: input/output
714 Error detection/correction and fault detection/recovery
715 Data processing: presentation processing of document

Data acquisition/alarm and 
control systems 

SOF 
(Computer 
Software)

MAT 
(Advanced 
Materials)

TAM        
(Test and 

Measurement)

Immune system treatment 
research and development 

Interactive entertainment 
software 

MED 
(Medial 

Equipment)

Microbiological diagnostic 
products

Industrial fillers / nano 
powders
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A.2. Calculating Technological Relatedness 
 

In our baseline specification, if firm i has a patent in any of the relevant technology classes of product j, 
TRij is set to 1 (maximal relatedness between the firm’s technological resources and those required in the 
product category). In case TRij is not 1, we find the best alternative technology class of firm i with the 
highest relatedness (Sij) among the possible pairs of the patent portfolio of firm i (Pi) and the technology 
profiles of product category j (Rj):18 
  
 

{ | 1}, { | 1}
max ( )

ik jt
ij prp k P r t R

TR S
∈ = ∈ =

=   

A potential concern is that we ignore the potential for resource “intensity” by transforming a continuous 
measure into a dichotomous measure (e.g., by treating having one vs. one hundred patents in a particular 
technological class to be the same). This potentially overstates technological relatedness and the role of 
technological resources. To alleviate this concern, we test the robustness of our main results to employing 
three alternative approaches. We find that these new measures produce qualitatively consistent results to 
our main measure. 

 

(I) Instead of using the maximal relatedness between a firm’s technological resources and 
that required in the product category (which could lead to artificially high levels of 
relatedness if firms need to master all relevant patent classes to enter), we take the 
average technological relatedness to each of the required technology classes of product j 
as follows: 

( ){ | 1}{ | 1} { | 1}

1 11 max
it

jt jt

ij ijr prp k Pr t R r t Rj j

TRA TR S
n n ∈ =

∈ = ∈ =

= ⋅ = ⋅∑ ∑                    

where nj is the number of required technology classes of product j; thus, nj is the number 
of elements in the set, { | 1}jtt R =   (i.e., n = { | 1}jtt R = ). If firm i has a patent in 

required technology class r of product j, TRijr is set to 1. If TRijr is not 1, we find the best 
alternative technology class of firm i with the highest relatedness (Sij) among the possible 
pairs of firm i and the required technology class r of the product category j. 

 

(II) We use the average number of required technology classes in which firm i has a patent as 
follows:  

( ){ | 1}{ | 1} { | 1}

1 12 max
it

jt jt

ij ijr prp k Pr t R r t Rj j

TRA TR S
n n ∈ =

∈ = ∈ =

 = ⋅ = ⋅  ∑ ∑                                  

where prS    is the greatest integer which is smaller than or equal to prS . Given that 

prS  has a value between 0 and 1, prS  is either 0 or 1. prS   is 1 if prS  is 1, and 

 
18 In our baseline specification, we focus on the maximum level of relatedness, as opposed to the mean or the median, to avoid 
penalizing diversified firms that are active in many patent classes. If, for example, Intel wanted to enter a new product category it 
would not draw on its entire technological knowledge portfolio to enter, but would presumably focus on the most relevant 
technological knowledge that it had to facilitate entry. 
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prS    is 0 otherwise. If firm i has a patent in required technology class r of product j, 

TRijr is set to 1. Unlike the original measure in the manuscript and the first alternative 
measure, in cases where TRijr is not 1, we do not find the best alternative technology class 
of firm i, and simply set TRijr to 0.  

 
(III) We were concerned that our original measure may overstate technological relatedness 

because we did not incorporate resource depth in one or more technological classes. To 
incorporate knowledge depth, we add a weight term wip (= number of patents of firm i in 
technology class p / total number of patents of firm i) to the second alternative measure as 
follows: 
 

( ){ | 1}{ | 1}
3 max

it
jt

ij ip prp k Pr t R
TRA w S

∈ =
∈ =

= ⋅∑  

  
We illustrate how to calculate these measures by comparing the original measure and the above three 
alternative measures with an example. The main measure we used in the manuscript, TRij, is calculated as 
follows. 

 

  
max( , , , , , )
max(1,0.1,0.2,0.3,0.4,0.5) 1

ij AA BA CA AD BD CDTR S S S S S S=

= =
  

The first alternative measure TRA1ij is calculated as follows: 
 

1 0.5 ( )
0.5 (max( , , ) max( , , ))
0.5 (max(1,0.1,0.2) max(0.3,0.4,0.5))
0.5 (1 0.5) 0.75

ij ijA ijD

AA BA CA AD BD CD

TRA TR TR
S S S S S S

= ⋅ +

= ⋅ +
= ⋅ +
= ⋅ + =

 

The second alternative measure TRA2ij is calculated as follows: 
 

2 0.5 ( )

0.5 (max( , , ) max( , , ))
0.5 (max(1,0,0) max(0,0,0))
0.5 (1 0) 0.5

ij ijA ijD

AA BA CA AD BD CD

TRA TR TR

S S S S S S

= ⋅ +

= ⋅ +                      
= ⋅ +
= ⋅ + =

 

The third alternative measure TRA3ij is calculated as follows: 
 

3 ( max( , )) ( max( , )) ( max( , ))
0.2 max(1,0.3) 0.5 max(0.1,0.4) 0.3 max(0.2,0.5)
0.2 1 0.5 0.4 0.3 0.5 0.37
0.5 (1 0) 0.5

ij iA AA AD iB BA BD iC CA CDTRA w S S w S S w S S= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅
= ⋅ + ⋅ + ⋅ =
= ⋅ + =
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When we compare the size of these measures, TRij is the largest among all these measures with the 
following relationships: (1) TRij > TRA1ij > TRA2ij and (2) TRij > TRA3ij. TRA3ij can be larger than TRA1ij 
or TRA2ij depending on the value of wip. Thus, our alternative measures are less likely to overstate the 
technological relatedness.  

Across all three new measures, we find that technological relatedness does not drive a product 
market entry. As a variation of our third new technological measure (TRA3ij), we have also applied 
different weighting schemes (wf), for example applying logs to the number of patents in calculating 
intensity and find consistent results (untabulated). 

 
Table A2.1: Alternative Measures of Technological Relatedness 

 
 
 
 
 
 
 

Baseline 
Tech. 

measure

Alternative
Tech. 

measure 1

Alternative
Tech. 

measure 2

Alternative
Tech. 

measure 3
(1) (2) (3) (4)

Tech. relatedness       -0.056        0.154        0.284        0.173
     (0.102)      (0.163)      (0.177)      (0.239)

Market relatedness        2.017***       2.017***       2.017***       2.016***
     (0.109)      (0.109)      (0.109)      (0.109)

log (Sales)        0.052        0.053        0.052        0.054
     (0.087)      (0.087)      (0.087)      (0.087)

Tech. generality        0.289        0.291        0.289        0.294
     (0.443)      (0.444)      (0.445)      (0.444)

No. of Products        0.014**        0.014**        0.014**        0.014**
     (0.005)      (0.005)      (0.005)      (0.005)

No. of firms in Category        0.061***       0.060***       0.060***       0.060***
     (0.004)      (0.004)      (0.004)      (0.004)

No. of firms in Category (sq)       -0.000       -0.000       -0.000       -0.000
     (0.000)      (0.000)      (0.000)      (0.000)

Tech generality missing dummy yes yes yes yes
Sector fixed effect yes yes yes yes
Year fixed effect yes yes yes yes
Firm fixed effect yes yes yes yes
(Pseudo) R2 0.104 0.104 0.104 0.104
Log Likelihood -8,289 -8,288 -8,288 -8,289
Chi-square 2,021 1,995 1,997 2,003
N 558,692 558,692 558,692 558,692

Product Entry
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Table A2.2: Alternative Measures of Technological Relatedness based on Bryce and Winter 
(2009) 

 

 
 
 
 
 
 
 
 

Baseline Tech.
measure

Bryce-Winter
Tech.

measure 1

Bryce-Winter
Tech.

measure 2

Bryce-Winter
Tech.

measure 3
(1) (2) (3) (4)

Market relatedness        2.017***        2.337***        2.357***        2.327***
(0.120) (0.106) (0.108)      (0.104)

Tech. relatedness 0.033        0.154 -0.076 -0.056
(0.113)      (0.163)      (0.068) (0.048)

Market. rel x Tech. rel -0.370 -0.095 -0.146       -0.095
(0.249) (0.066) (0.093) (0.067)

log (Sales)        0.052 0.109 0.110        0.108
     (0.087) (0.106) (0.106)      (0.106)

Tech. generality 0.287       -0.711*       -0.717*       -0.711*
-0.442 -0.319 (0.319)      (0.319)

No. of Products        0.014** -0.003       -0.003+       -0.003
     (0.005) (0.002) (0.002)      (0.002)

No. of firms in Category        0.061***        0.076***        0.076***        0.076***
     (0.004)      (0.004)   (0.004)      (0.004)

No. of firms in Category (sq)       -0.003***       -0.001***       -0.001***       -0.001***
     (0.000)      (0.000)   (0.000)      (0.000)

Tech generality missing dummy yes yes yes yes
Sector fixed effect yes yes yes yes
Year fixed effect yes yes yes yes
Firm fixed effect yes yes yes yes
(Pseudo) R2 0.104 0.102 0.102 0.102
Log Likelihood -8,289 -18,831 -18,832 -18831
Chi-square 2,021 2,203 2,222 2,202
N 558,692 649,999 649,999 649,999

Product Entry

Note. Standard errors are in parentheses.
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In replicating Bryce and Winter’s (2009) measurement of industry relatedness, we need to adjust some 
weighting schemes to accommodate differences (detailed below). As we modify the weighting scheme 
(specifically in Step 2 of Bryce and Winter’s procedure), we test whether our Bryce and Winter approach-
based measure is robust to changes in our weighting scheme. We made three different versions of the 
Bryce and Winter approach-based technological relatedness measures by following procedures. 

Bryce and Winter (2009) developed their industry relatedness measure by using the Longitudinal 
Research Database (LRD) at the Center for Economic Studies (CES) at the U.S. Census Bureau. As we 
need to measure technological relatedness between different products from different datasets (i.e., 
Corptech and NBER Patent database), we need to modify the original Bryce and Winter to accommodate 
such differences. Specifically, we calculate Bryce-Winter approach-based technological relatedness 
measure by the following procedures (from Steps 1, 2, and 3). Our procedure is almost identical to Bryce 
and Winter’s measure in Steps 1 and 3. We need to modify Step 2 due to the difference between the LRD 
database and the NBER Patent database. Specifically, the LRD database has the sales data for each 
business unit (by SIC code), and Bryce and Winter use this business unit sales to give a weight between 
different business units. When we apply this Bryce and Winter type of measure, an ideal patent dataset 
needs to have a contribution (e.g., in terms of the impact or novelty) of each patent class for each 
multiclass paten. However, no patent datasets have such data; we need to have a modified version of the 
weighting scheme in Step 2. The details are below.  

Step 1 – First, we make a roster of all possible dyads of patent classes. Then, for all dyads, we count the 
number of patents in both classes. Precisely, let Cik = 1 if patent k is with class i, and 0 otherwise. The 
number of patents with class i is ni = Σk Cik, and the number of patents with class i and j is Jij = k ΣCik∙Cjk.  

Second, although Jij increases with the technological relatedness of patent classes i and j, it also 
increases with the technological prominence (i.e., size; the number of patents) of patent classes ni and nj. 
Therefore, Jij must be adjusted for the number of patents in the dyad if patents were allocated to patent 
classes at random. To do this, we define a random draw from this distribution Jij as a random variable Xij. 
We calculate the probability that x out of K patents receive a random assignment to patent classes i and j. 
First, we calculate the number of ways of selecting x from a total of ni patents, that is, �𝑛𝑛𝑖𝑖𝑥𝑥 �. Second, there 
are (nj − x) positions in the nj list to be added with patents that do not have class i. The number of ways of 
adding patents without patent class i is the number of ways of choosing (nj − x) from a possible (K − ni) 

patents, that is, �
𝐾𝐾 − 𝑛𝑛𝑖𝑖
𝑛𝑛𝑗𝑗 − 𝑥𝑥�. Thus, the number of unique ways of selecting a list for patent class j is 

�𝑛𝑛𝑖𝑖𝑥𝑥 � �
𝐾𝐾 − 𝑛𝑛𝑖𝑖
𝑛𝑛𝑗𝑗 − 𝑥𝑥�. 

Third, we transform this count variable into a probability. We divide it by the number of possible 

ways of the co-occurrence of patent class j in total, which is �
𝐾𝐾
𝑛𝑛𝑗𝑗
�. The probability of random co-

occurrences Xij of two patent classes of size ni and nj follows a hypergeometric random variable,  

𝑃𝑃�𝑥𝑥 = 𝑋𝑋𝑖𝑖𝑖𝑖� =  �𝑛𝑛𝑖𝑖𝑥𝑥 � �
𝐾𝐾 − 𝑛𝑛𝑖𝑖
𝑛𝑛𝑗𝑗 − 𝑥𝑥� / �

𝐾𝐾
𝑛𝑛𝑗𝑗
�. The average of Xij is  µ𝑖𝑖𝑖𝑖  (= 𝐸𝐸�𝑋𝑋𝑖𝑖𝑖𝑖� = 𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗

𝐾𝐾
), and the variance of Xij 
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is 𝜎𝜎𝑖𝑖𝑖𝑖2  (= µ𝑖𝑖𝑖𝑖(1 − 𝑛𝑛𝑖𝑖
𝐾𝐾

)(𝐾𝐾−𝑛𝑛𝑗𝑗
𝐾𝐾−1

).. The difference between Jij and the expected value of Xij is normalized as 
𝜏𝜏𝑖𝑖𝑖𝑖 = (𝐽𝐽𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝑖𝑖)/𝜎𝜎𝑖𝑖𝑖𝑖. 

Step 2 – Because we calculate τij with raw co-occurrence counts, it is a rough measure of the extent to 
which dyad ij is technologically prominent. This measure does not reflect the dyad’s technological 
prominence to the average patent with the dyad. The dyad of two patent classes could be only weakly 
related in a patent with many patent classes than in a patent with two patent classes only. If this tendency 
is consistent across all patents with two focal patent classes, then relatively lower or higher weights need 
to be allocated to the dyad’s relatedness score. We compute these weights by comparing the proportions 
of the focal patent classes to all the patent classes. The lower value of these two proportions (for the two 
focal patent classes) is chosen for each patent. This lower value is an upper bound of how closely related 
the two patent classes are when they show up together. When patent class A has a proportion of 0.5, and 
patent class B has a proportion of 0.1, the 0.1 will be chosen. Then, these lower proportions are averaged 
across all patents with the dyad to create the dyad weight Sij as follows. 

𝑆𝑆𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 =
𝛴𝛴𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘[𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗]𝐶𝐶𝑖𝑖𝑖𝑖𝐶𝐶𝑗𝑗𝑗𝑗

𝛴𝛴𝑘𝑘𝐶𝐶𝑖𝑖𝑖𝑖𝐶𝐶𝑗𝑗𝑗𝑗
 

Then, scores of τij in Step 1 are normalized by the weights in Sij in Step 2. Before normalizing, we change 
the scores of τij to a distance measure (i.e., transforming a relatedness matrix into a distance matrix). First, 
we identify the largest τij among the scores. Then, we subtract all scores τij from this largest value. In the 
distance matrix, smaller values represent high relatedness. Also, the value of zero means the most related 
pair. All other cells have positive values. Also, we divide cell values in the distance matrix by Sij. The 
final distance matrix represents a network in which matrix cells’ values are the distances between patent 
classes i and j. The network comprises patent class vertices linked by arcs having weights (inversed with 
technological relatedness). We used this version of the Bryce-and-Winter-style technological relatedness 
measure in Column 2.  

As we mentioned above, because of the difference in data (LRD vs. NBER Patent database), we create 
two different versions to check the robustness of our procedure. Precisely, the second version of Bryce 
and Winter technological relatedness measure (which is used in Column 3) is calculated with the 
following weight Sij: 

𝑆𝑆𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
𝛴𝛴𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘[𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗]𝐶𝐶𝑖𝑖𝑖𝑖𝐶𝐶𝑗𝑗𝑗𝑗

𝛴𝛴𝑘𝑘𝐶𝐶𝑖𝑖𝑖𝑖𝐶𝐶𝑗𝑗𝑗𝑗
 

Finally, the third version of Bryce and Winter technological relatedness measure (which is used in 
Column 4) is calculated with the following weight Sij: 

𝑆𝑆𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
𝛴𝛴𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘[𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗]𝐶𝐶𝑖𝑖𝑖𝑖𝐶𝐶𝑗𝑗𝑗𝑗

𝛴𝛴𝑘𝑘𝐶𝐶𝑖𝑖𝑖𝑖𝐶𝐶𝑗𝑗𝑗𝑗
 

Step 3 – First, to determine relatedness for any possible dyads, the measure should provide values for all 
possible class combinations. We address this issue by using the shortest path distance between every pair 
of patent classes in the final distance matrix in Step 2. The method creates a distance measure for all 
dyads.  
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Second, the weighted distance matrix, where cell values are replaced with shortest distance 
scores, is converted to a similarity matrix. We subtract each computed path length score from the largest 
distance value. Then, we calculate the similarities score by subtracting the mean of the distribution from 
each value and dividing by the standard deviation.  
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A.3. Identification of a Firm’s Patent Portfolio 

In order to identify a firm’s patent portfolio and its evolution over time, we need to match the CorpTech 
DB with the NBER patent DB. Because the two databases do not share a common company identifier, 
firm entries are matched based on firm name, state, and city locations to identify each firm’s patent 
portfolio. There are also multiple ids (pdpass) for some firms in the NBER patent database while 
CorpTech maintains one id for each firm even as firms go through name changes, mergers, and 
acquisitions. We experimented with several methods to find a compromise between too many “false 
positives” (different companies being incorrectly classified as the same) and too many “false negatives” 
(the same company misclassified as different companies). In Table A.1, we list matching algorithms and 
their performances from the most stringent one (matching algorithm 1) to the most lenient one (matching 
algorithm 8). Stem name (algorithm 5 and 8) removes “Inc.”, “Corp.”, “Corporation”, “Com.”, and other 
appendices from full firm names using algorithms used by Hall et al. (2001) available from their website. 
Next, we randomly selected matches and checked for their integrity. Since we found that there are too 
many false positives with the matching algorithm 8, the stem-name-only criteria, we regard two 
companies as the same if one of the first seven conditions holds. Irrespective of the algorithm used, there 
will be some errors in any matching process. However, there is no reason to believe that the matching is 
producing systematic errors. 

 
Table A3.1: Matching Algorithm and No. of Matches 

 

 Matching algorithm 
No. of additional matches 

(unit: NBER pdpass - 
CorpTech id) 

No. of cumulative matches a 
(unit: NBER pdpass - 

CorpTech id) 
1 Full name, State, City 48,980 48,980 

2 Stem name, State, City 5,780 54,760 

3 Full name, City 301 55,061 

4 Full name, State 7,108 62,169 

5 Stem name, City 48 62,217 

6 Stem name, State 1,224 63,441 

7 Full name only 7,468 70,909 

8 Stem name only 9,960 80,869 
 
Note: a sum of number of additional matches. For example, the number of cumulative matches of 
algorithm 2 (54,670) is the sum of the no. of additional matches of algorithm 1 (48,980) and 2 (5,780).  
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Appendix B: Sample Selection 

 

Note.a The table provides the total number of firms and product categories in CorpTech and our sample 
numbers. We use data from the three years prior to each entry year to construct measures of technological 
resources, technological relatedness, market resources, and market relatedness. The drop in the number of 
sample categories for 2005 is due to right censoring of the NBER patent data at 2006.  
 

Year Entry 
Year

Total 
Firms

Sample 
Firms

Total 
Categories

Sample 
Categories

No. of 
Entries

No. of 
Observations

1997-1999 2000 41,339  2,734 2,063      178 194     71,875
1998-2000 2001 40,412  2,878 2,084      188 251     99,097
1999-2001 2002 43,274  2,963 2,190      188 325     117,147
2000-2002 2003 45,151  2,859 2,172      199 372     126,528
2001-2003 2004 52,264  2,883 2,115      199 362     125,829
2002-2004 2005 58,118  2,944 2,104      34 69       18,216
Total - - - - - 1,851 3,090,189
Unique - 77,100 5,755 2,681 341 - -
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Appendix C: Post-Entry Changes in Technological Relatedness in Logit Specification 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year: -2 Year: -1 Year: 0 Year: 1 Year: 2 
Entry -0.001 0.079 -0.005 0.821*** 1.207***

[0.166] [0.142] [0.095] [0.109] [0.142]
log (Sales) 0.026 -0.011 -0.035 0.026 0.038

[0.109] [0.078] [0.054] [0.072] [0.073]
Tech. generality 0.531 0.238 -0.405 -0.446 -0.463

[0.715] [0.473] [0.350] [0.502] [0.647]
No. of products -0.005 0.003* -0.001 -0.001 -0.003

[0.004] [0.002] [0.002] [0.003] [0.004]
No. of firms in category 0.094*** 0.091*** 0.087*** 0.092*** 0.096***

[0.002] [0.001] [0.001] [0.001] [0.002]
No. of firms in category (sq) -0.001*** -0.001*** -0.000*** -0.001*** -0.001***

[0.000] [0.000] [0.000] [0.000] [0.000]
Tech generality missing dummy yes yes yes yes yes
Sector fixed effect yes yes yes yes yes
Year fixed effect yes yes yes yes yes
Firm fixed effect yes yes yes yes yes
R2 / Log Likelihood -42119 -69592 -124727 -68347 -40884
N 160,145 270,535 579,584 266,280 156,744
Note.  +p<0.1; *p<0.05; **p<0.01; ***p<0.001.

Tech. Relatedness=1
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Appendix D: Case Studies of 50 Market-driven Entries 

 

 
1. Includes 4 cases with limited information on both external and internal related activities  
2. https://en.wikipedia.org/wiki/WebEx 

 



57 
 

Appendix E: Additional Robustness Tests 

 

Models (6) and (7) employ a matching approach. In Model (6) we include firm-year fixed effects and 
focus on observations from the same firm-year as an observed entry with a nearly identical (within 0.001) 
level of technological relatedness to the observed entry. This allows us to test the effect of market 
relatedness and eliminates technological relatedness (since this is nearly identical across observations) 
and variables with no variation at the firm-year level, such as firm size. Model (7) takes the opposite 
approach – matching on market relatedness within the same firm-year and assessing the effect of 
technological relatedness. 
 
 
Additional Analyses: Counterfactuals in the Data 
To further explore the data, we wanted to see if any firms seemed to follow a “technology leading” 
approach to product market entry, as opposed to the “market leading” approach that is apparent in the 
regression results. To do this, we split the levels of both market relatedness and technological relatedness 
into thirds. We considered a given product market entry decision to be “technology leading” if the 
technological relatedness variable was in the highest third of the data and the market relatedness variable 
was in the middle or lowest third, or if the technological relatedness variable was in the middle third 
while the market relatedness variable was in the bottom third. For these entries, the level of technological 
relatedness is significantly higher than that of market relatedness, making the entry behavior consistent 
with a logic favoring technology. We then looked at the firm level to find firms that had multiple 
technology-driven entries and no market-driven entries (determined through the inverse of the approach 
discussed above). These are firms that show consistency in their reliance on technology (having used 
made technology-leading entries at least twice) and have ignored the role of market resources. 

This analysis shows that there are 57 firms with multiple technology-driven entries and no 
market-driven entries in the data. This includes 53 entries by 23 companies where technology relatedness 

Random effects
 Tech. rel.

range: [0, 1)
Tech rel

range: [0.5, 1]
Market-Year
with 2+ entry

Expanded
Product FE

Matching
on

Tech rel.

Matching
on

Market rel.
(1) (2) (3) (4) (5) (6) (7)

Tech. relatedness -0.146       -0.177       -0.275       -0.037        0.051                   -0.088
     (0.093)      (0.176)      (0.397)      (0.104)      (0.104)                  (0.153)

Market relatedness        1.876***        1.989***        2.140***        1.986***        2.082***        2.501***             
     (0.078)      (0.116)      (0.245)      (0.111)      (0.111)      (0.223)             

log (Sales)        0.035*        0.030        0.070        0.048        0.056                         
     (0.017)      (0.087)      (0.223)      (0.087)      (0.087)                         

Tech. generality        0.224        0.366       -0.203        0.324        0.298                         
     (0.178)      (0.449)      (0.937)      (0.443)      (0.444)                         

No. of products        0.016***        0.016***        0.007        0.016***        0.015***                         
     (0.001)      (0.005)      (0.006)      (0.004)      (0.005)                         

No. of firms in category        0.062***        0.063***        0.059***        0.050***        0.002        0.052***        0.066***
     (0.004)      (0.004)      (0.009)      (0.004)      (0.010)      (0.007)      (0.005)

No. of firms in category (sq)       -0.000***       -0.000***       -0.000***       -0.000***       -0.000       -0.000***       -0.000***
     (0.000)      (0.000)      (0.000)      (0.000)      (0.000)      (0.000)      (0.000)

Tech generality missing dummy yes yes yes yes yes yes yes
Sector fixed effect yes yes yes yes yes yes yes
Year fixed effect yes yes yes yes yes yes yes
Firm fixed effect yes yes yes yes yes yes yes
Log Likelihood -11,760 -7,304 -957 -7,657 -7,961 -1,038 -3,106
Chi-square 2,313 1,939 38,833 1,603 4.59e+09 554 30,371
N 2,809,340 475,909 22,285 411,062 558,692 6,548 89,256

Product Entry

Note.  +p<0.1; *p<0.05; **p<0.01; ***p<0.001.
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is in the top 10% (generally equal to one) and market relatedness is zero (they are not present anywhere in 
the same sector). The set of firms includes Guidant (medical devices), Motorola (telecommunications), 
Planar (displays), and Tektronix (software), all firms that would generally be considered to be 
technology-focused companies with a strong history of patenting. The existence of these technology-
leading companies raises the question of whether the observed results are driven by (a) fewer technology-
leading companies than market-leading companies, or (b) fewer entries by technology-leading companies, 
even though the technology-leading companies may be as plentiful in number in the data. The data show 
that technology-leading companies make as many entries across the range of our data as market-leading 
companies (3.2 entries versus 3.3 entries, respectively), but that there are more market-leading firms in 
the data overall. This suggests that some firms make entry decisions based on technological relatedness 
and that these companies appear on the surface to be the types of firms that make heavy investments in 
technology, but just that there are relatively few such companies in the data. 
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Appendix F: Boundary Conditions and Limitations 

From both an empirical and theoretical perspective, we highlight three important boundary conditions. 
First, our empirical approach does not allow us to consider “new-to-the-world” product categories, only 
existing categories. As such, we study entry decisions that may be organizationally radical but are not 
necessarily technologically radical (Henderson, 1993). Many of the entries that we study represent 
significantly novel entries, but only from the perspective of being “new-to-the-firm.” We recognize that it 
is entirely possible that truly radical entries are determined more by technological resources than market 
resources. Second, our focus on comparisons between technological and market resources means that firm 
must have an established track record to be included in our data. Thus, the entries that we consider are not 
the first products offered by new firms, but are at least the second product launched by the firm. 

Third, we focus on industries where intellectual property (patents) is especially relevant, in part to 
measure the firm’s relevant technological resources. This is an especially important boundary condition, 
because our theory about the results showing the importance of downstream resources derives in part 
because of assumptions about the availability of technological (or operational) resources in the factor 
market. If industries have little codifiable intellectual property, then such markets are likely to function 
quite poorly, which should increase the importance of tacit operational resources. Thus, we would predict 
that our theory would only really hold in industries where transferrable intellectual property exists – a 
theory that is consistent with the results that we show in Table 6, but the testing of which is beyond the 
scope of this paper and our data. Given our medium range panel (1997-2005) that includes the dot-com 
bubble, there is a distinct possibility that we may be observing specific phases of economic development 
where the diffusion of information communication technology and the increasing availability of other 
general purpose technologies (Bresnahan and Trajtenberg, 1995) enabled a relatively crude initial market-
based entry followed by technological refinement through subsequent investments. Our theory also 
highlights how technological resources can be less important in high technology sectors, and it would be 
interesting to verify whether our finding generalizes to low technology sectors. 

There are several other important limitations to our empirical approach. Most notably, we rely on 
patents to proxy for technological resources of firms as well as to identify technological profiles of each 
product market. Small firms are less likely to patent their technological resources, which may contribute 
to the null finding on technological relatedness. However, we find a limited difference in the effects of 
technological relatedness across subsamples based on firm size. As another partial redress, we have also 
varied the threshold for each patent technology class to be associated with a product category. Lowering 
or increasing the threshold for a technological class to be counted as a technological profile has minimal 
effects on our findings on technological relatedness. As noted earlier, another issue is that NBER patent 
database does not track changes in the ownership of patents through acquisition or licensing, limiting our 
ability to directly test for the role of external markets for technology that serve as an important underlying 
mechanism in the development of our hypotheses. An in-depth study similar to Sosa (2009) or Nerkar and 
Roberts (2004) has the potential to provide more detailed measure of firm resources and resource profiles 
of a product market. However, one of the primary goals of the present paper is to test patterns in firm 
entry behavior across a wide range of market relatedness in a cross-industry study. 
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