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A natural approach to enhance portfolio diversification is to rely on factor-risk parity, which yields the

portfolio whose risk is equally spread among a set of uncorrelated factors. The standard choice is to take

the variance as risk measure, and the principal components (PCs) of asset returns as factors. Although PCs

are unique and useful for dimension reduction, they are an arbitrary choice: any rotation of the PCs results

in uncorrelated factors. This is problematic because we demonstrate that any portfolio is a factor-variance-

parity portfolio for some rotation of the PCs. More importantly, choosing the PCs does not account for the

higher moments of asset returns. To overcome these issues, we propose to use the independent components

(ICs) as factors, which are the rotation of the PCs that are maximally independent, and care about higher

moments of asset returns. We demonstrate that using the IC-variance-parity portfolio helps to reduce the

return kurtosis. We also show how to exploit the near independence of the ICs to parsimoniously estimate

the factor-risk-parity portfolio based on Value-at-Risk. Finally, we empirically demonstrate that portfolios

based on ICs outperform those based on PCs, and several state-of-the-art benchmarks.

Key words : portfolio selection; risk parity; factor analysis; principal component analysis; higher moments

1. Introduction

The mean-variance portfolio of Markowitz (1952) is optimally diversified in the sense that it has the

lowest return variance among all portfolios with the same mean return. However, mean-variance

portfolios estimated from historical data are usually not well diversified in terms of portfolio

weights (Green and Hollifield 1992). Recently, to improve the out-of-sample performance of mean-

variance portfolios, researchers have thus proposed incorporating portfolio-weight diversification as

an explicit objective. For instance, one can shrink the mean-variance portfolio toward the equally

weighted portfolio, which is the most diversified portfolio in terms of weights (DeMiguel et al. 2009b,

Tu and Zhou 2011). However, the equally weighted portfolio is not optimally diversified in terms

of risk when some of the assets are riskier than others.
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2 Lassance, DeMiguel and Vrins: Optimal Portfolio Diversification via ICA

For this reason, investment managers often prefer to diversify their portfolios in terms of asset

risk contributions rather than in terms of asset weights. This leads to the so-called asset-risk-

parity portfolio, which is the portfolio whose risk is spread equally among the different assets; see,

for instance, Maillard et al. (2010), Ji and Lejeune (2015), Bai et al. (2016), and Haugh et al.

(2017). However, the asset-risk-parity portfolio is not optimally diversified in terms of risk unless

the asset returns are uncorrelated. For example, Roncalli (2013, Section 2.5.1.1) shows that it is

not duplication invariant: when adding an asset identical to one in the current investment universe,

the weights on the other assets in the asset-risk-parity portfolio are no longer the same.

To address this weakness of the asset-risk-parity portfolio, researchers have turned to the factor-

risk-parity portfolio, which is the portfolio whose risk is spread equally among a set of uncorrelated

factors; see, for instance, Meucci (2009), Deguest et al. (2013), Meucci et al. (2015), and Roncalli

and Weisang (2015). To implement this portfolio, one needs to rely on a specific set of uncorrelated

factors. The standard choice is to rely on the principal components (PCs) of asset returns, provided

by principal component analysis (PCA).

Although the PCs are useful for dimension reduction (Campbell et al. 1997, Xu et al. 2016), they

are problematic for factor-risk parity, for two main reasons. First and most importantly, the PCs are

not optimal because they are merely uncorrelated, rather than independent. Correlation may not be

sufficient, in particular, when asset returns are not Gaussian. For instance, Poon et al. (2004, p.583)

argue that “[correlation] assumes a linear relationship and a multivariate Gaussian distribution,

which might lead to a significant underestimation of the risk from joint extreme events.” Thus,

just as relying on assets is suboptimal for risk parity because they are correlated, relying on PCs

is suboptimal because they may feature higher-moment dependencies. Second, relying on the PCs

is arbitrary because once dimension has been reduced, any further rotation of the PCs remains

uncorrelated, and thus, is an equally valid set of factors for factor-risk-parity purposes. This is

worrying because we demonstrate that any portfolio spanned by the PCs is actually a factor-

variance-parity portfolio, with associated factors corresponding to a specific rotation of the PCs.

To overcome these two drawbacks, we propose using the factor-risk-parity portfolio based on

maximally independent factors instead of merely uncorrelated ones. This is achieved via independent

component analysis (ICA), a statistical technique that can be used to extract a set ofK independent

components (ICs) from the N observed asset returns (Hyvärinen et al. 2001). Following a popular

approach, we define the ICs as the rotation of the PCs that results in factors as independent as

possible. Independence is particularly relevant in portfolio selection because asset returns often

display fat tails and higher-moment dependencies. For instance, Massacci (2017) shows that global

equity markets present tail connectedness, which increases during periods of turmoil. Performing

risk parity over the ICs overcomes the two drawbacks that arise when opting for the PCs: the ICs

Electronic copy available at: https://ssrn.com/abstract=3285156



Lassance, DeMiguel and Vrins: Optimal Portfolio Diversification via ICA 3

enhance diversification by accounting for higher-moment dependence, and provide a meaningful

way to discriminate among all the uncorrelated factors.

Our contribution is fourfold. First, we demonstrate that the arbitrariness of the PCs is worrying

in the context of factor-risk parity. To do this, we first provide a closed-form expression for the set

of factor-variance-parity portfolios corresponding to a generic rotation of the PCs. We then use this

closed-form expression to show that any portfolio spanned by the PCs is a factor-variance-parity

portfolio corresponding to a specific rotation of the PCs. Thus, the factor-decorrelation criterion

is not sufficient to find a single set of factor-variance-parity portfolios.

Second, to overcome the difficulties associated with the PC-risk-parity portfolio, we propose

relying instead on the ICs. We theoretically demonstrate that, under some assumptions, using the

IC-variance-parity portfolio helps to reduce the return kurtosis. To do this, we show that the excess

kurtosis of the IC-variance-parity portfolio return is 1/K times the arithmetic mean of the excess

kurtosis of the ICs, where K is the number of factors, and that it is often close to the minimum

achievable excess kurtosis. Thus, diversifying the portfolio-return variance among ICs provides a

practical approach to reduce the portfolio-return tail risk, which is an important consideration for

many investors; see Dittmar (2002), Ang et al. (2006), and Gao et al. (2019).

Third, we show how to obtain a parsimonious estimator of the higher moments of portfolio returns

by ignoring the higher comoments of the ICs. This is reasonable because, although the ICs are not

fully independent in general, their higher comoments are small compared to those of other factors,

such as the PCs. More importantly, higher-comoment estimators are noisy and thus ignoring them

results in robust estimators. We exploit this fact to show how to parsimoniously estimate the

IC-risk-parity portfolio based on a four-moment approximation of Value-at-Risk (VaR).

Fourth, we evaluate the out-of-sample performance of the shrinkage portfolios that combine

minimum-risk and IC-risk-parity portfolios, using variance and VaR risk measures, on three

datasets containing the returns of six portfolios sorted on size and book-to-market, six portfolios

sorted on size and profitability, and 30 industry portfolios. We use the linear shrinkage of Kan and

Zhou (2007) and Tu and Zhou (2011) with the shrinkage intensity estimated via cross-validation

(Hastie et al. 2009). We find that the portfolios based on ICs substantially outperform those based

on PCs in terms of Sharpe ratio and tail risk, perform well compared to several state-of-the-art

benchmarks, and have low turnover when relying on the variance risk measure. We also show in

Section EC.6.1 of the e-companion that our findings are robust to considering a larger dataset with

100 stocks. A battery of robustness tests confirm the relevance of the base-case results.

Our work is connected to four streams of literature. First, the literature on risk parity. Maillard

et al. (2010) show that the long-only asset-variance-parity portfolio is unique and its variance is in

between that of the minimum-variance and equally weighted portfolios. Bai et al. (2016) show that
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long-short asset-variance-parity portfolios are no longer unique. Boudt et al. (2013) and Baitinger

et al. (2017) consider higher moments in asset-risk parity. Two recent remarkable contributions are

those in Haugh et al. (2017) and Ji and Lejeune (2015). Haugh et al. (2017) propose optimizing the

investor’s mean-risk utility subject to a risk-budgeting constraint, in which pre-specified budgets

of risk are allocated to sub-portfolios of assets. Like us, Haugh et al. (2017) consider both variance

and VaR risk measures, but for tractability they use the Gaussian VaR approximation, while we

exploit the properties of ICs to rely on an approximation of VaR that incorporates skewness and

kurtosis. Ji and Lejeune (2015) assign downside-risk budgets not only to sub-portfolios of assets

but also to individual assets, and they account for estimation risk via stochastic programming.

The main difference between our work and these papers is that we perform risk parity with

respect to factors, not assets. Factor-risk parity was introduced by Meucci (2009), and its theoretical

properties were explored by Deguest et al. (2013); both studies relied on the PCs as factors. Our

work extends these two studies by allowing for dimension reduction, emphasizing the importance

of the selection of factors, proposing an alternative to the PCs based on ICA and considering

higher-moment risk measures. An alternative to the PCs was also proposed by Meucci et al. (2015)

who derive the uncorrelated factors that track another correlated set of factors, such as the original

assets. These factors benefit from improved economic intuition but similar to the PCs, may still

be far from independent. Finally, Roncalli and Weisang (2015) propose a risk-budgeting approach

based on factors instead of assets. Our paper differs from these papers mainly because we use

maximally independent factors, which account for higher moments.

Second, our work contributes to the literature on higher-moment portfolio selection by showing

theoretically and empirically that IC-risk-parity portfolios help improve tail risk. Most higher-

moment portfolios are obtained via a direct approach that finds a portfolio on a higher-moment

efficient surface, and thus, requires estimating high-dimensional higher-comoment matrices. For

example, Guidolin and Timmermann (2008) and Martellini and Ziemann (2010) use a Taylor-series

expansion of expected utility to include higher moments, Athayde and Flores (2004) maximize

the portfolio-return skewness for a fixed mean and variance, and Briec et al. (2007) look for the

highest improvements in mean, variance and skewness starting from a benchmark portfolio. In

contrast, the IC-risk-parity portfolio is an indirect approach because it does not explicitly optimize

the portfolio-return higher moments: it improves kurtosis indirectly, by diversifying risk across ICs.

Consequently, it is much more parsimonious because, in addition to the covariance matrix, one

just needs to estimate the rotation matrix determining the ICs and, for the VaR risk measure, the

marginal skewness and kurtosis of the ICs. Empirically, we find that our approach outperforms two

mean-variance-kurtosis efficient portfolios based on the framework of Briec et al. (2007).
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Third, our work is related to the literature on portfolio selection under parameter uncertainty.

Several approaches have been proposed to reduce estimation error in the moments of asset returns:

Bayesian approaches (Jorion 1986), shrinkage covariance matrix estimators (Ledoit and Wolf 2003),

robust optimization (Goldfarb and Iyengar 2003), bias adjustment of moment estimators (Siegel

and Woodgate 2007), robust estimation (DeMiguel and Nogales 2009) and machine learning (Ban

et al. 2018). A recent modeling paradigm that tackles parameter uncertainty is distributionally

robust optimization, which bridges robust optimization and stochastic programming. This approach

finds the optimal portfolio for the worst-case distribution, where the true distribution lies within

a specified set of distributions; see Calafiore (2007), Popescu (2007) and Delage and Ye (2010)

for applications to portfolio selection. Other approaches aim at reducing estimation error in the

portfolio weights directly, including shortselling constraints (Jagannathan and Ma 2003), portfolio-

norm constraints (DeMiguel et al. 2009a), cardinality constraints (Bertsimas and Shioda 2009, Gao

and Li 2013), portfolio-turnover constraints (Olivares-Nadal and DeMiguel 2018) and, most closely

related to our work, shrinkage estimators of portfolio weights (Kan and Zhou 2007, DeMiguel et al.

2009b, Tu and Zhou 2011). We introduce shrinkage portfolios that shrink the sample minimum-risk

portfolio toward the IC-risk-parity portfolio, using variance and VaR as risk measures. In contrast

to DeMiguel et al. (2009b) and Tu and Zhou (2011) who shrink the sample mean-variance portfolio

toward the naively diversified equally weighted portfolio, we shrink the sample minimum-variance

portfolio toward a portfolio with equally weighted exposures on the ICs.

Fourth, our work is related to the recent literature that applies ICA to the analysis of financial

data; see, for instance, Chen et al. (2010) for exchange rates, Kumiega et al. (2011) and Garćıa-

Ferrer et al. (2012) for equity returns, and Fabozzi et al. (2016) for CDS spreads. In portfolio

selection, other papers use ICA to ease the modeling and estimation of the dependence between

asset returns. Chen et al. (2007) focus on the computation of the VaR of portfolio returns. Hitaj

et al. (2015) consider the maximization of the expected CARA utility. Finally, Lassance and Vrins

(2020) apply the approach that we propose in Section 5.1 to parsimoniously estimate the higher

moments of portfolio returns. Their purpose is fundamentally different from ours as they use

this approach to enhance the robustness of minimum-risk portfolios, whereas we focus on the use

of ICs to define factor-risk-parity portfolios that are optimally diversified. Masson (2019) in his

master’s thesis implements the approach proposed by Lassance and Vrins (2020) and compares its

performance to that of various benchmarks.

The remainder of the paper is organized as follows. Section 2 reviews PCA and ICA. Section 3

shows that factor decorrelation is not a discriminant criterion for factor-variance parity. Section 4

shows that the IC-variance-parity portfolio helps reduce the portfolio-return kurtosis, and derives
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the conditions under which this portfolio is mean-variance efficient. Section 5 considers the IC-

risk-parity approach with VaR as risk measure. Section 6 evaluates the out-of-sample empirical

performance of the proposed shrinkage portfolios. Section 7 concludes. Section EC.1 of the e-

companion contains proofs for all results.

2. PCA versus ICA: from decorrelation to independence

We first review principal component analysis (PCA), a dimension-reduction technique that gener-

ates a basis of uncorrelated factors ordered by their ability to explain the variance of the projected

asset returns. Although the principal components (PCs) are unique, any rotation of the PCs remains

uncorrelated, and thus, the PCs are an arbitrary choice for factor-risk parity. We then introduce

a popular approach to independent component analysis (ICA) that finds the rotation of the PCs

that are as independent as possible, which discriminates among all bases of uncorrelated factors.

2.1. Principal component analysis

LetX = (X1, . . . ,XN)′ be a random vector ofN asset returns with covariance matrix ΣX , which can

be diagonalized as ΣX = VNΛNV
′
N , where the N columns of VN are the eigenvectors, and ΛN :=

diag(λ1, . . . , λN) contains the eigenvalues sorted in decreasing order. This factorization is at the

heart of principal component analysis (PCA); see Section 6.4 of Campbell et al. (1997). To simplify

notation, we denote Λ the K ×K diagonal matrix containing the K largest eigenvalues, assumed

strictly positive, and V the N ×K matrix whose columns are the corresponding eigenvectors.

Definition 1 (PCA). The principal components (PCs) are the standardized projection of the

asset returns X onto the first K eigenvectors:

Y ? := Λ−1/2V ′X. (1)

PCA is useful for dimension reduction because the first few PCs explain most of the variance in

asset returns (Kozak et al. 2020). However, once dimension has been reduced, it is decorrelation

that makes the PCs appealing for factor-risk parity, which spreads the portfolio-return risk among

a set of uncorrelated factors. Indeed, most existing papers on factor-risk parity rely on the PCs

as factors; see Meucci (2009), Deguest et al. (2013), and Roncalli and Weisang (2015). However,

there is no sound motivation behind this particular choice because any rotation of the PCs remains

uncorrelated, and thus is as suitable for factor-risk parity as the PCs. To see this, let SO(K) be

the special orthogonal group of order K; that is, the set of K ×K rotation matrices R such that

RR′ = IK and det(R) = 1. Then, for any R∈ SO(K), the factors Y =RY ? remain uncorrelated:

ΣY =RΣY ?R′ =RIKR
′ = IK . Note that this is also true for orthogonal matrices with det(R) =

−1. However, we focus on rotations because the sign of the factors is irrelevant for factor-risk parity:
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factor-risk contributions are obtained as the product of the factor exposures and the derivative of

the risk measure with respect to the factor exposures, so that any change of sign cancels out.

Therefore, there is an indeterminacy in the standard formulation of factor-risk parity because it

does not motivate which uncorrelated factors one must consider. This is problematic because we

show in Section 3.2 that any portfolio spanned by the K PCs is a factor-variance-parity portfolio

associated with a particular rotation of the PCs.

2.2. Independent component analysis

To discriminate among all possible uncorrelated factors, one can look for factors that are as inde-

pendent as possible. Independence is a much stronger requirement than decorrelation: it not only

requires the covariance matrix to be diagonal, but also that higher-moment dependence vanishes.

A standard criterion to measure the independence of a random vector is the mutual information.

Definition 2 (Mutual information). The mutual information of a random vector Y is the

Kullback-Leibler divergence between the joint density and the product density of Y :

I(Y ) :=

〈
fY ,

K∏
i=1

fYi

〉
=

∫
fY (y) ln

fY (y)∏K

i=1 fYi(yi)
dy. (2)

Mutual information is nonnegative, and it is zero if and only if the components of Y are mutually

independent (Cover and Thomas 2006, p.253). We now introduce the independent components that

use mutual information instead of linear correlation as dependence measure.

Definition 3 (ICA). The independent components (ICs) are the rotation of the PCs that mini-

mizes the mutual information:

Y † :=R†Y ?, R† ∈
{

arg min
R∈SO(K)

I(RY ?)

}
. (3)

Observe that mutual information is invariant with respect to a permutation or change of sign

of the factors Y . Therefore, the ICs are determined only up to a change of sign and permuta-

tion. However, as we show in Section 3.1, whatever the choice of factors (e.g., the PCs or ICs),

there are always 2K−1 factor-variance-parity portfolios. Thus, ICs do not introduce any additional

indeterminacy. Note also that the ICs may not be perfectly independent; they are the maximally

independent factors found by a linear transformation of the asset returns.

An implication of Definition 3 is that we rely on PCA to reduce the problem dimension and

choose the number of factors K. This PCA preprocessing step is common in the ICA literature

because while PCA is designed to perform dimension reduction by selecting the PCs that maximize

the explained variance, ICA is not. Indeed, ICA provides maximally independent factors (the ICs)

from asset returns, but it does not provide a criterion to choose how many ICs should be retained.
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8 Lassance, DeMiguel and Vrins: Optimal Portfolio Diversification via ICA

Hereafter we assume that at most one of the K principal components is Gaussian. We require

this assumption because, if more than one PC is Gaussian, then the factors obtained by rotating

the Gaussian PCs remain jointly Gaussian and uncorrelated, and thus mutually independent. Thus,

in this case the ICs are undetermined beyond a change of sign and permutation. Nonetheless, a

modified version of our approach can be applied even if several PCs are Gaussian, provided there

are at least two non-Gaussian PCs, because one can still identify the ICs in the subset of the non-

Gaussian PCs. In particular, one can rely on the set of factors consisting of the Gaussian PCs plus

the factors obtained by rotating the non-Gaussian PCs to minimize mutual information. Also, we

find that the non-Gaussianity assumption holds for the three empirical datasets we use in Section 6

because their PCs have significantly positive excess kurtosis. In addition, Section EC.2 of the e-

companion lists the type of asset-return datasets for which, according to the existing literature,

one can expect the non-Gaussianity assumption to hold.

The ICs are computed using independent component analysis (ICA), a well-known technique in

machine learning; see Hyvärinen et al. (2001) and Vrins (2007). To compute the rotation matrix

R† associated with the ICs, we use the FastICA algorithm of Hyvärinen (1999), described in

Section EC.3 of the e-companion. The advantages of FastICA are that it is simple, robust to outliers,

computationally efficient, and has been shown to perform well for a wide range of distribution

types and applications. Nonetheless, as explained in Section EC.3 of the e-companion, FastICA is

derived under approximations, and thus other algorithms may be preferred for certain problems.

For instance, two popular alternative approaches to ICA are JADE (Cardoso and Souloumiac 1993)

and SOBI (Belouchrani et al. 1997); see Garćıa-Ferrer et al. (2012) for a discussion in a financial

context. Expectation-maximization algorithms have also proved successful; see Ablin et al. (2019)

for such a recent ICA algorithm that does not require any hyperparameter tuning, whose stochastic

loss function is guaranteed to decrease at each iteration, and which outperforms state-of-the-art

algorithms for high-dimensional datasets.

2.3. Numerical illustration

In examples 1 and 2 below, we illustrate the arbitrariness of the decorrelation criterion to select a

set of factors, contrary to the independence (mutual-information) criterion. We focus on the case

K =N = 2 for graphical illustration purposes. We parametrize the rotation matrix R∈ SO(2) as

R=R(θ) :=

(
cosθ − sinθ
sinθ cosθ

)
∈ SO(2). (4)

The examples are illustrated with polar plots, which use polar coordinates (θ, r) with r the variable

of interest measured by the radial distance from the origin (θ,0).
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Example 1 (Independent non-Gaussian asset returns). Consider two assets with returns

independently distributed as Student t distributions: X1 ∼ T (ν1 = 3), X2 ∼ T (ν2 = 20). Because the

two asset returns are uncorrelated and X1 has a higher variance than X2, the PCs coincide with

the standardized asset returns: Y ? = Λ−1/2X. The left plot of Figure 1 depicts how the relative

mutual information Ī (a standardized version of the mutual information taking values in [0,1]) and

correlation of the factors Y =R(θ)Y ?, obtained by rotating the PCs, depend on θ. The correlation

is zero for all θ, but the relative mutual information is zero only when θ= kπ/2, k ∈Z; that is, the

ICs Y † coincide with the asset returns up to sign and permutation. Thus, while the decorrelation

criterion is not discriminating, the independence criterion results in a unique set of factors.

Example 2 (Dependent non-Gaussian asset returns). Consider two assets with returns

distributed as a Gaussian copula of correlation ρ= 0.2 and X1,X2 above as marginals. The right

plot of Figure 1 depicts how the relative mutual information and correlation of the factors Y =

R(θ)Y ?, obtained by rotating the PCs, depend on θ. Independence is never achieved but the mutual

information varies with θ and this allows one to discriminate between all uncorrelated factors. In

particular, the ICs Y † are obtained for θ= 0.35 + kπ/2 6= 0, k ∈Z, and thus, differ from the PCs.

Finally, to gauge the practical relevance of the ICs, we use the three equity datasets from Ken

French’s library that we use in Section 6 to evaluate the gain in independence that can be achieved

by moving from the PCs to the ICs. Figure 2 shows that the gain in independence, measured

by I(Y †)− I(Y ?), is particularly substantial in the period preceding and during the 2007-2009

financial crisis, a period characterized by pronounced tail risk and higher-moment dependence of

asset returns. We refer to Section EC.5 of the e-companion for a more detailed discussion.

3. Factor-variance parity via uncorrelated factors

We now introduce additional notation. Let P :=w′X be the portfolio return, where w is the vector

of portfolio weights—simply called portfolio hereafter—that we assume belongs to the set

W := {w ∈RN | 1′Nw= 1}. (5)

Given a random variable X, we denote µ(X) the mean, mk(X) the kth central moment, ζ(X) :=

m3(X)/m2(X)3/2 the skewness and κ(X) :=m4(X)/m2(X)2− 3 the excess kurtosis.

The factor-variance-parity (FVP) portfolio is the portfolio for which each uncorrelated factor

contributes equally to its return variance. In Section 5, we consider higher-moment risk measures.

The original proposal of Meucci (2009) is to diversify the portfolio-return variance among the

PCs. As discussed in Section 2.1, this choice is arbitrary because any rotation of the PCs remains

uncorrelated, and is thus equally valid for FVP purposes. We divide this section in two parts. First,
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10 Lassance, DeMiguel and Vrins: Optimal Portfolio Diversification via ICA

we derive the FVP portfolio for an arbitrary rotation of the PCs. Second, we formally establish the

arbitrariness of the decorrelation criterion by showing that any portfolio in the subspace spanned

by the PCs is an FVP portfolio for a set of factors obtained by rotating the PCs.

3.1. Derivation of the factor-variance-parity portfolio

Consider K factors obtained by rotating the PCs, Y =RY ?. Unlike Meucci (2009) and Deguest

et al. (2013), we allow K to be smaller than the number of assets N , because this reduces the

dimension and thus alleviates the impact of estimation error (Hastie et al. 2009, Kozak et al. 2020).

Because we reduce dimension by considering K PCs, we start by considering the asset returns

reconstructed from the subspace spanned by the K factors Y :

X̃ :=V Λ1/2R′Y =V V ′X. (6)

We then define the reduced portfolio return P̃ as the projection of the return of the portfolio w

onto the subspace spanned by the K factors:

P̃ :=w′X̃ = w̃(R)′Y , (7)

where the factor exposures w̃(R) are defined as

w̃(R) :=RΛ1/2V ′w. (8)

Although the matrix RΛ1/2V ′ is not invertible for K <N , the reduced portfolio return associated

with w, P̃ =w′X̃, is recovered from w̃(R) by taking the pseudo inverse:

w=V Λ−1/2R′w̃(R). (9)

Indeed, P̃ = w′X̃ = w̃(R)′Y = w̃(R)′RΛ−1/2V ′X = w̃(R)′RΛ−1/2V ′X̃ as V ′X = V ′X̃, and

comparing the first and last equalities leads to (9). Consistent with the requirement w ∈W, the

factor exposures w̃(R) must belong to

W̃(R) :=
{
w̃(R)∈RK

∣∣ V Λ−1/2R′w̃(R)∈W
}
. (10)

Observe now that because ΣY = IK , we have from (7) that the variance of P̃ is simply given by

m2(P̃ ) =
K∑
i=1

w̃i(R)2 = ‖w̃(R)‖2, (11)

which allows us to define the FVP portfolio as follows.

Definition 4 (Factor-variance-parity portfolio). A factor-variance-parity (FVP) portfo-

lio associated with the factors Y =RY ? satisfies w̃i(R)2 = w̃j(R)2 for all i, j = 1, . . . ,K.
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In the next proposition, we give an analytical expression for the FVP portfolios.

Proposition 1. Given a rotation matrix R∈ SO(K), the following holds:

(i) There are 2K−1 factor-variance-parity portfolios with respect to the factors Y =RY ?, given

by the set

WFV P (R) :=

{
w ∈W

∣∣∣∣ w=
V Λ−1/2R′1±K

1′NV Λ−1/2R′1±K

}
, (12)

where 1±K is any K-dimensional vector of ±1’s.

(ii) The set of portfolios WFV P (R) is invariant to a change of sign and permutation of rows

of R: WFV P (R) =WFV P (BR) for all orthogonal matrices B of the form B = I±KΠ with I±K a

diagonal matrix of ±1’s and Π a permutation matrix.

(iii) The factor-variance-parity portfolio with minimum return variance is obtained by consid-

ering the particular case 1±K← 1MV
K in (12), where

1MV
K := sign(RΛ−1/2V ′1N). (13)

Part (i) shows that there are 2K−1 FVP portfolios. This is because a portfolio is an FVP portfolio

if all the squared factor exposures are equal, and thus the factor signs are irrelevant. This holds

for any choice of factors, including the PCs and ICs. Part (ii) shows that the sign and order of the

factors is irrelevant for factor-variance parity. Part (iii) identifies the FVP portfolio that minimizes

portfolio-return variance, which we call MV-FVP portfolio, and this allows us to choose one of the

2K−1 FVP portfolios. We rely on the sign vector 1MV
K in the empirical analysis.

3.2. Arbitrariness of the factor-decorrelation criterion

The following proposition shows that the factor-decorrelation criterion is arbitrary because any

portfolio in the subspace spanned by the first K PCs is an FVP portfolio with respect to a set

of uncorrelated factors obtained by rotating the PCs. To set the stage for the proposition, note

that there is a one-to-one mapping between the portfolios spanned by the PCs, w, and their PC

exposures, w̃(IK), defined in (8)–(9). Therefore, the set of portfolios spanned by the K PCs is

WK :=
{
w ∈W

∣∣∣ w=V Λ−1/2w̃(IK), w̃(IK)∈ W̃(IK)
}
.

Proposition 2. Any portfolio in the subspace spanned by the K principal compoments, w ∈WK, is

an FVP portfolio for a set of uncorrelated factors obtained by rotating the K principal components.

Proposition 2 demonstrates that factor decorrelation is not sufficient to discriminate among all

portfolios inWK . Choosing R= IK leads to a unique set of PC-variance-parity (PCVP) portfolios,

but this constitutes an arbitrary choice. As explained in Section 2.1, the only motivation to use

PCs for factor-risk parity is that they are uncorrelated, but there are infinitely many rotations of

the PCs sharing this feature, which, as shown in Proposition 2, lead to different FVP portfolios.

The example below illustrates the result in Proposition 2 for the case K =N = 2.
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Example 3 (Arbitrariness of decorrelation for FVP). We generate 1000 observations

from the asset-return distribution considered in Example 2. Proposition 1 shows that there are

two different FVP portfolios for each rotation of the PCs Y =R(θ)Y ? when K = 2. The left plot

of Figure 3 depicts the weight on the first asset, w1, of the two FVP portfolios as a function of

the rotation angle θ. When K =N , WK =W and in line with Proposition 2, w1 can take any real

value for each of the two FVP portfolios. In other words, any portfolio w= (w1,1−w1)
′ is an FVP

portfolio for some uncorrelated factors R(θ)Y ?. However, if for each θ we choose among the two

FVP portfolios the one with the lowest return variance according to (13), then the optimal weight

on the first asset is no longer unbounded as a function of θ. This is illustrated in the right plot of

Figure 3. Nonetheless, the solution remains arbitrary with respect to θ: any portfolio allocating a

weight to the first asset between −0.25 and 0.7 is an FVP portfolio with minimum return variance.

Example 3 suggests that although not every portfolio is a minimum-variance FVP (MV-FVP)

for a rotation of the PCs, a wide range of portfolios are MV-FVP for some rotation of the PCs.

Identifying theoretically the set of MV-FVP portfolios corresponding to all rotations of the PCs is

complex because the vector of exposure signs that leads to minimum variance, 1MV
K , depends on

the rotation matrix R. However, Section EC.1.3 of the e-companion shows that for the case where

K = 2 and the covariance matrix is diagonal, any portfolio of the two assets with largest variance

whose weights satisfy certain bounds is an MV-FVP portfolio for some rotation of the PCs.

4. Kurtosis diversification via independent component analysis

In Section 3, we showed that decorrelation is not a discriminant criterion for factor-variance parity;

Proposition 2 shows that any portfolio spanned by the K PCs is an FVP portfolio, whereas Exam-

ple 3 suggests that focusing on MV-FVP portfolios does not alleviate this problem. Going from

decorrelation to independence by relying on the ICs resolves this indeterminacy. In this section, we

first show that diversifying variance among ICs provides a natural way of reducing the kurtosis of

portfolio returns, contrary to PCs. Second, we characterize the relation between the tangent mean-

variance portfolio and the IC-variance-parity portfolio. Finally, we introduce a shrinkage portfolio

that combines the minimum-variance portfolio and the IC-variance-parity portfolio.

4.1. IC-variance-parity portfolios

The ICs are obtained by finding the rotation matrixR† in (3) such that the factors Y † =R†Y ? have

least mutual information. Thus, the IC-variance-parity portfolios are particular FVP portfolios.

Definition 5 (IC-variance-parity portfolios). The set of 2K−1 IC-variance-parity (ICVP)

portfolios is given by WFV P (R†) in (12).
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From Proposition 1, the set of ICVP portfolios is unaffected by the sign-and-permutation inde-

terminacy of the ICs. Thus, under the identifiability assumption explained in Section 2.2 that

at most one of the PCs is Gaussian, relying on the ICVP portfolios addresses the arbitrariness

inherent in the factor-decorrelation criterion.

4.2. Kurtosis reduction

We now show that using ICs for variance parity is better than using merely uncorrelated factors,

such as the PCs, because it helps to reduce the kurtosis of portfolio returns.

Proposition 3. Let the N asset returns be given by a linear combination of K standardized

independent factors with strictly positive excess kurtosis, which amounts to the factor model

X = V Λ1/2R†′Y † for some rotation matrix R†. Let the arithmetic and harmonic means be

A(x1, . . . , xK) := 1
K

∑K

i=1 xi and H(x1, . . . , xK) :=K
(∑K

i=1 1/xi
)−1

, respectively.

(i) The minimum and maximum return excess kurtosis achievable by any portfolio are

κmin =
1

K
H
(
κ
(
Y †1
)
, . . . , κ

(
Y †K
))

and (14)

κmax = max
(
κ
(
Y †1
)
, . . . , κ

(
Y †K
))
, (15)

where κ
(
Y †i
)

is the excess kurtosis of the ith independent component.

(ii) The 2K−1 IC-variance-parity portfolios have an identical return excess kurtosis, equal to the

arithmetic mean of the excess kurtosis of the ICs divided by K,

κIC =
1

K
A
(
κ
(
Y †1
)
, . . . , κ

(
Y †K
))
. (16)

(iii) The return excess kurtosis of any FVP portfolio, other than an ICVP one, can take any

possible value in [κmin, κmax] as a function of the rotation matrix R†.

The intuition behind Proposition 3 is that the central limit theorem implies that the asymptotic

distribution of a sum of standardized independent random variables is Gaussian, and thus has zero

excess kurtosis. Although there is only a finite number K of ICs, Equation (16) shows that the

return excess kurtosis of ICVP portfolios decreases toward zero with K. Although ICs are not fully

independent in practice, they are maximally independent, and thus we may expect that the return

excess kurtosis of the ICVP portfolios is closer to zero than those of FVP portfolios based on other

less independent factors such as the PCs.

There are two important implications from Proposition 3. First, concomitantly with diversifying

the portfolio-return variance among independent factors, one obtains a kurtosis that is close to

the minimum one. In particular, for the case where the ICs are fully independent, the excess

kurtosis of the ICVP portfolios is equal to the minimum one, κIC = κmin, if the excess kurtosis of
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all ICs are equal, and it remains close to κmin as long as the excess kurtosis of the ICs are not

too different from one another. For example, taking K = 3 and
(
κ
(
Y †1
)
, κ
(
Y †2
)
, κ
(
Y †3
))

= (3,5,7),

κmin = 105/71 = 1.48, versus κIC = 5/3 = 1.67. Note that in this case the ICVP portfolios have

equal kurtosis because the kurtosis of a weighted sum of independent factors only depends on the

squared weights. This argument does not hold for non-independent factors, such as the PCs.

Second, by diversifying the portfolio-return variance among non-independent factors, we do not

have any control over kurtosis. Specifically, depending on the rotation matrix R† underlying the

asset returns, the FVP portfolio return can have any kurtosis in the range [κmin, κmax]. This is

true in particular for the PCVP portfolios and is a fundamental difference with the kurtosis of the

ICVP portfolios that does not depend on R†.

Thus, the ICVP portfolio strategy naturally reduces the tail risk of portfolio returns, which is

an important concern for many investors; see Dittmar (2002), Ang et al. (2006), and Gao et al.

(2019). Moreover, the ICVP portfolio accounts for kurtosis in a parsimonious way: in addition to

the asset-return covariance matrix, one does not need to estimate the large-dimensional cokurtosis

matrix, but merely the ICA rotation matrix R† made of K(K − 1)/2 distinct parameters only.

The following example illustrates Proposition 3 for the case K = 2.

Example 4 (Kurtosis of ICVP versus PCVP portfolios). When K = 2, the rotation

matrix can be parametrized as R† =R(θ†). Then, the PCs Y ? =R(θ†)′Y † depend on θ† and the

excess kurtosis of the two PCVP portfolios is given by

κPC ∈
1

8

(
±4 sin2θ†

(
κ
(
Y †1
)
−κ
(
Y †2
))

+ (3− cos4θ†)
(
κ
(
Y †1
)

+κ
(
Y †2
)))

; (17)

see Section EC.1.5 of the e-companion. In line with Proposition 3(iii), κPC spans [κmin, κmax] as a

function of θ†. For
(
κ
(
Y †1
)
, κ
(
Y †2
))

= (3,6) for example, κIC = 9/4 is very close to κmin = 2, whereas

κPC takes values in [κmin, κmax] = [2,6]. This shows that the kurtosis of the PCVP portfolio strongly

depends on the matrix R† underlying the asset returns, on which we have no control.

4.3. Relation to mean-variance portfolio

We now characterize the relation between the ICVP portfolio and the mean-variance portfolio of

Markowitz (1952). In particular, we show that the ICVP portfolio can be interpreted as a shrinkage

estimator of the tangent mean-variance portfolio. To do this, we derive a similar result to Maillard et

al. (2010), who show that the tangent mean-variance portfolio is equal to the asset-variance-parity

portfolio when all assets have the same Sharpe ratio and pairwise correlations. In our context, this

condition reduces to the independent components having the same absolute Sharpe ratio.
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Proposition 4. If the Sharpe ratio of the returns of the K independent components are equal

in absolute value, then the tangent mean-variance portfolio of assets spanned by the K principal

components is an IC-variance-parity portfolio.

Proposition 4 shows that the ICVP portfolio can be seen as a shrinkage estimator of the tangent

mean-variance portfolio, where the estimator of the absolute value of the Sharpe ratio of each IC is

fully shrunk towards a common value. Although empirically we do not expect the ICs to have equal

absolute Sharpe ratios, this condition provides a sensible shrinkage target because, as explained by

Kozak et al. (2020), many asset-pricing models assume that if a factor earns high returns, it must

also be a major source of volatility. Indeed, the Bayesian prior used by Pástor (2000) and Pástor

and Stambaugh (2000) is precisely that all factors have the same Sharpe ratio.

4.4. Data-driven shrinkage portfolio

In this section, we introduce the portfolio-selection strategy that we propose to implement when

using the variance as risk measure: a shrinkage of the minimum-variance portfolio toward the

minimum-variance ICVP portfolio.

Proposition 3 supports the use of the minimum-variance ICVP (MV-ICVP) portfolio,

w?
IC :=

V Λ−1/2R†′1MV
K

1′NV Λ−1/2R†′1MV
K

, 1MV
K := sign(R†Λ−1/2V ′1N) (18)

out of the 2K−1 ICVP portfolios because, under the assumptions of Proposition 3, all the ICVP

portfolios have the same return kurtosis but not the same return variance. Thus, the MV-ICVP

portfolio helps reduce variance without increasing kurtosis. This resembles Haugh et al. (2017) who

propose optimizing the investor’s mean-risk utility subject to an asset-risk-budgeting constraint.

The minimum-variance (MV) portfolio,

w?
MV :=

Σ−1X 1N
1′NΣ−1X 1N

, (19)

has been widely shown to exhibit favorable out-of-sample performance in terms of Sharpe ratio;

see, for instance, Jagannathan and Ma (2003), DeMiguel et al. (2009a), and DeMiguel and Nogales

(2009). The reason is that it is the only portfolio on the efficient frontier that does not require any

estimation of asset mean returns, and thus, it has reduced sensitivity to estimation risk.

Next, we introduce a shrinkage portfolio that combines the two portfolios w?
MV and w?

IC .

Definition 6 (ICMV portfolio). The ICMV portfolio is defined as the shrinkage portfolio

w?
ICMV := (1− δ)w?

MV + δw?
IC , (20)

where δ ∈ [0,1] is a given shrinkage intensity.
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We calibrate the shrinkage intensity δ using 10-fold cross-validation, which is a nonparametric

approach that does not require any assumptions on the asset-return distribution; see Section 6.1.

The empirical results show that, out of sample, the ICMV portfolio achieves an appealing trade-

off between the large Sharpe ratio of the MV portfolio and the low kurtosis of the MV-ICVP

portfolio. In contrast, shrinking the MV portfolio toward the minimum-variance PCVP portfolio,

which relies on the principal components, does not reduce the return kurtosis as much.

Shrinkage portfolios as in (20) have been considered by several authors in the literature. In partic-

ular, DeMiguel et al. (2009b) and Tu and Zhou (2011) shrink the MV and mean-variance portfolios,

respectively, toward the equally weighted portfolio. A distinguishing feature of our approach is that

we shrink toward a target portfolio for which the IC exposures are equally weighted.

5. Factor-risk parity with higher-moment risk measures

In sections 3 and 4, we showed how to apply ICs to the traditional factor-risk-parity approach,

which consists of using the variance as risk measure. In this section, we show how to extend our

ICVP approach to other risk measures. In particular, we seek to diversify the modified Value-at-

Risk (MVaR), which is an approximation of the VaR that accounts for the first four moments.

Haugh et al. (2017) consider an asset-risk-parity portfolio under the VaR risk measure, but for

tractability, they rely on the Gaussian VaR approximation. In contrast, the MVaR accounts for

skewness and kurtosis, which we parsimoniously estimate via the ICs.

5.1. Parsimonious estimation of higher moments with ICs

We now show that relying on the ICs allows to parsimoniously estimate the portfolio-return higher

moments. Consider a risk measure that depends on the portfolio-return third and fourth moments.

Then, diversifying the portfolio-return risk with respect to K factors Y given by some rotation

of the PCs, Y =RY ?, requires estimating the third and fourth moments of the reduced portfolio

return P̃ = w̃(R)′Y . From Briec et al. (2007), they can be written concisely as

m3(P̃ ) = w̃(R)′M3(w̃(R)⊗ w̃(R)), (21)

m4(P̃ ) = w̃(R)′M4(w̃(R)⊗ w̃(R)⊗ w̃(R)), (22)

whereM3 :=E
[
Y Y

′⊗Y ′
]

andM4 :=E
[
Y Y

′⊗Y ′⊗Y ′
]
, Y :=Y −µ(Y ), are the coskewness and

cokurtosis matrices of Y and ⊗ is the kronecker product. Boudt et al. (2015) show that estimating

M3 and M4 requires estimating many parameters:

K(K + 1)(K + 2)(K + 7)

24
=O(K4).

To develop a more parsimonious estimation approach, we rely on the ICs Y † = R†Y ? and

assume that they are truly independent. In this case, estimating the matrices M3 and M4 requires

estimating only 2K =O(K) parameters, which are the third and fourth moments of the K ICs.
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Proposition 5. Let the K ICs be independent and have finite fourth moments. Then, the third

and fourth central moments of the reduced portfolio return are given by

m3(P̃ ) =
K∑
i=1

w̃i(R
†)3m3(Y

†
i ), (23)

m4(P̃ ) =
K∑
i=1

w̃i(R
†)4m4(Y

†
i ) + 3

K∑
i=1

K∑
j 6=i

(w̃i(R
†)w̃j(R

†))2. (24)

Although in practice the ICs are not fully independent, the estimators of the third and fourth

central moments provided by Proposition 5 can be interpreted as shrinkage estimators that use as

shrinkage target a K-dimensional independent factor model and set the shrinkage intensity to 100%.

The independent-factor-model assumption is popular in financial econometrics—see Ghalanos et

al. (2015) and Boudt et al. (2020) for applications to portfolio selection—and it is a reasonable

shrinkage target in our context because the ICs are maximally independent by construction.

5.2. IC-risk-parity portfolio with modified Value-at-Risk

We now use Proposition 5 to develop a parsimonious estimator of the factor-risk-parity portfolio

for an approximation of the popular VaR risk measure. The difficulty in using the standard VaR

is that contrary to the central moments in (23) and (24), the quantile of a linear combination of

independent random variables is not an affine function of the individual quantiles.

To circumvent this difficulty, it is useful to employ the Cornish-Fisher expansion of the reduced-

portfolio-return quantile at confidence level α,

Qα(P̃ , r) := µ(P̃ ) +

√
m2(P̃ )

(
zα +

r∑
i=1

pi(zα)

)
, (25)

where zα is the standard Gaussian quantile and the pi’s are polynomials whose coefficients depend

on the standardized moments of P̃ . To avoid estimating all moments, it is common to truncate

the infinite sum and choose r <∞. Choosing r = 0 corresponds to the Gaussian VaR, studied by

Alexander and Baptista (2004) and Haugh et al. (2017). We choose r = 2, the modified VaR of

Favre and Galeano (2002), which allows us to capture the skewness and kurtosis.

Definition 7 (Modified VaR). The modified VaR (MVaR) of the reduced portfolio return is

MVaRα(P̃ ) :=−Qα(P̃ ,2) =−µ(P̃ )−
√
m2(P̃ ) (zα + p1(zα) + p2(zα)) , (26)

where p1(x) = 1
6
(x2− 1)ζ(P̃ ) and p2(x) = 1

24
(x3− 3x)κ(P̃ )− 1

36
(2x3− 5x)ζ(P̃ )2.

Note that, for α = 1% used in the empirical analysis, the MVaR is a sensible higher-moment

criterion because is has the right preferences with respect to skewness and kurtosis: ∂MVaRα(P̃ )

∂ζ(P̃ )
≤ 0

if ζ(P̃ )≥ 3(z2α−1)
2z3α−5zα

=−0.9769, a mild condition, and ∂MVaRα(P̃ )

∂κ(P̃ )
= 1

24
(3zα− z3α)

√
m2(P̃ )≥ 0.
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The Cornish-Fisher approximation is very useful in our context because it relates the reduced-

portfolio-return quantile to its moments, which can easily be differentiated with respect to the

factor exposures, allowing an easy computation of the MVaR contribution of each IC. Specifically,

because MVaR is positive homogeneous, it can be decomposed as

MVaRα(P̃ ) =
K∑
i=1

MVaRα(Y †i |P̃ ) :=
K∑
i=1

w̃i(R
†)
∂MVaRα(P̃ )

∂w̃i(R†)
. (27)

Boudt et al. (2008) provide closed-form expressions for the MVaR contributions in the case of assets.

We extend their results to the case of MVaR contributions of factors and in particular, of ICs. As

shown in Proposition 5, we can do this parsimoniously by assuming the ICs are independent.

Proposition 6. Let the K ICs be independent and have finite fourth moments. Then, the MVaR

contribution MVaRα(Y †i |P̃ ) in (27) is given by

MVaRα(Y †i |P̃ ) = w̃i(R
†)×

[
−µ(Y †i )− ∂im2(P̃ )

2
√
m2(P̃ )

(zα + p1(zα) + p2(zα))+

√
m2(P̃ )

(
− p1(zα)∂iζ(P̃ )− 1

24
(z3α− 3zα)∂iκ(P̃ ) +

1

18
(2z3α− 5zα)ζ(P̃ )∂iζ(P̃ )

)]
,

(28)

where

∂iζ(P̃ ) =
2m2(P̃ )3/2∂im3(P̃ )− 3m3(P̃ )

√
m2(P̃ )∂im2(P̃ )

2m2(P̃ )3
, (29)

∂iκ(P̃ ) =
m2(P̃ )∂im4(P̃ )− 2m4(P̃ )∂im2(P̃ )

m2(P̃ )3
, (30)

with m2(P̃ ), m3(P̃ ), m4(P̃ ) given by (11), (23), (24), respectively.

We assume that the confidence level α is low enough for the MVaR contributions to be all

positive. This assumption typically holds for α= 5% or below.

Equipped with Proposition 6, we define the IC-MVaR-parity portfolios.

Definition 8 (IC-MVaR-parity portfolios). An IC-MVaR-parity portfolio is a portfolio for

which MVaRα(Y †i |P̃ ) = MVaRα(Y †j |P̃ ) for all i, j = 1, . . . ,K.

Because there may be multiple IC-MVaR-parity portfolios, similar to the variance case, we

consider the IC-MVaR-parity portfolio that minimizes MVaR, which we estimate numerically by

solving the following optimization problem:

ŵ?
IC(α) := arg min

w∈W
MVaRα(P ) subject to

(
K∑
i=1

%MVaRα(Y †i |P̃ )2

)−1
≥K − ε, (31)

where %MVaRα(Y †i |P̃ ) :=
MVaRα(Y

†
i |P̃ )∑K

j=1 MVaRα(Y
†
j |P̃ )

and ε is a tolerance parameter set to ε= 5×10−4. This

is a non-convex optimization problem that we solve using Matlab GlobalSearch algorithm (Ugray

et al. 2007). Finally, we propose to implement the following shrinkage portfolio.
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Definition 9 (ICMVaR portfolio). The ICMVaR portfolio is the shrinkage portfolio

w?
ICMV aR(α) := (1− δ)w?

MMV aR(α) + δŵ?
IC(α), (32)

where δ ∈ [0,1] is a given shrinkage intensity, w?
MMV aR(α) is the minimum-MVaR portfolio (see El

Ghaoui et al. 2003 for a study of the minimum-VaR portfolio) and ŵ?
IC(α) is defined in (31).

Section EC.6.5 of the e-companion shows empirically that ignoring the higher comoments of ICs

as proposed above leads to superior out-of-sample performance for the ICMVaR portfolio.

6. Out-of-sample performance

We now evaluate the out-of-sample performance of the proposed shrinkage portfolios. Section 6.1

discusses the empirical data and methodology employed, Section 6.2 discusses parameter calibra-

tion, and Section 6.3 discusses the results. We discuss several robustness checks in Section 6.4.

6.1. Methodology

6.1.1. Data. We consider three equity datasets from Ken French’s library: six size and book-

to-market portfolios (6BTM ), six size and operating-profitability portfolios (6Prof ) and 30 U.S.

industry portfolios (30Ind). We use value-weighted daily returns from 1978 to end of 2017. We use

daily return data because they produce better estimates of risk than weekly or monthly returns;

see Jagannathan and Ma (2003). Daily data also improve the estimation accuracy for PCA and

ICA. In the robustness tests of Section 6.4, we also consider a dataset of 100 individual stocks.

6.1.2. Performance criteria. We evaluate out-of-sample performance in terms of mean-

variance trade-off, tail risk and transaction costs. For mean-variance trade-off, we report the annu-

alized sample mean, volatility and Sharpe ratio. For tail risk, we report the daily sample skewness,

excess kurtosis, 1% MVaR and 1% modified Sharpe ratio, which is the ratio between mean and

MVaR (Gregoriou and Gueyie 2003). For transaction costs, we report the daily turnover, which is

the average of the absolute value of daily rebalancing trades across the N assets over the whole

period. Standard errors computed via non-parametric bootstrap are available upon request.

6.1.3. Portfolio strategies. We consider several portfolio strategies. First, the minimum-

variance asset-variance-parity portfolio (AVP). Bai et al. (2016) show that there are 2N−1 AVP

portfolios and provide an optimization problem to compute them. For 6BTM and 6Prof, we com-

pute all 25 solutions and choose the one with minimum return variance. For 30Ind, it is not feasible

to compute all 229 solutions; we rely instead on the heuristic algorithm of Bai et al. (2016, p.7) that

provides a solution close to the minimum-variance AVP portfolio. Second, the minimum-variance

(MV) portfolio. Third, the minimum-MVaR (MMVaR) portfolio. Although two common choices of
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the confidence level are α= 1% and 5%, we use α= 1% because Cavenaile and Lejeune (2012) show

that setting α> 4.16% is inconsistent with investors’ negative preferences for kurtosis. Fourth and

fifth, the shrinkage portfolio obtained by combining the MV and minimum-variance FVP portfolios

using the ICs (ICMV) and PCs (PCMV), computed analogously to (31). Sixth, the shrinkage port-

folio obtained by combining the MMVaR portfolio and the minimum-MVaR factor-MVaR-parity

portfolio based on the ICs (ICMVaR). Finally, the seventh and eighth portfolios are mean-variance-

kurtosis efficient portfolios based on the framework of Briec et al. (2007); see Section EC.4 of the

e-companion for details on the implementation. This portfolio requires specifying a benchmark

portfolio as a starting point. We rely on the equally weighted portfolio as in Boudt et al. (2020a),

and also the minimum-variance IC-variance-parity portfolio introduced in this paper. We call these

portfolios MVKEW and MVKIC.

We calibrate the shrinkage intensity δ for the ICMV, PCMV and ICMVaR portfolios using 10-

fold cross-validation with modified Sharpe ratio as calibration criterion; see Section 6.1.4 for details.

To make a fair comparison, the three benchmark portfolios (AVP, MV, MMVaR) are also shrunk

toward the equally weighted portfolio using the same calibration approach. We call the resulting

benchmark portfolios EWAVP, EWMV and EWMVaR.

All portfolios are computed using sample moment averages. Portfolios that require optimization

are found using the Matlab function fmincon with the GlobalSearch option based on Ugray et al.

(2007). We find the ICs with the FastICA Matlab package available on Aapo Hyvärinen’s website.

6.1.4. Calibration of K and δ. We select the number of PCs retained, K, using the

minimum-average-partial-correlation method of Velicer (1976). Let R(K) := RX − V V ′ be the

correlation matrix of X after the effect of the first K principal components has been partialed out.

Then, we select the K ∈ [2,N − 1] that minimizes
∑N

i=1

∑N

j 6=iRij(K)2.

We calibrate the shrinkage intensity δ via 10-fold cross-validation; see Chapter 7 in Hastie et

al. (2009). We use as calibration criterion the modified Sharpe ratio, which accounts for higher

moments. Specifically, the 10-fold cross-validation method works as follows. First, set δ= 0. Then,

divide the estimation window in 10 distinct intervals of equal length. Select one interval, remove

it from the estimation window, and use the remaining data to compute the portfolio policy. Use

these portfolio weights to compute out-of-sample returns on the interval that was removed. After

repeating this procedure for each of the 10 intervals, compute the modified Sharpe ratio on all

the out-of-sample returns. Increase δ by 0.01 and repeat the process above. Finally, when δ = 1 is

reached, select the value of δ associated with the maximum modified Sharpe ratio.
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6.1.5. Rolling-horizon methodology. To evaluate out-of-sample performance, we use the

rolling-horizon methodology commonly employed in the existing literature on static portfolio selec-

tion; see, for instance, Jagannathan and Ma (2003), DeMiguel et al. (2009b), Tu and Zhou (2011)

and the references therein. At a given time t, we estimate the different portfolio policies using the

past five years of daily data (a sample size of T = 1260). We keep these portfolio weights constant

for the next six months, thus rebalancing the portfolio every day to account for the impact of asset

returns on portfolio weights, and compute the corresponding out-of-sample daily portfolio returns.

After six months, we roll forward the estimation window by six months and repeat this procedure.

At the end of this process, we obtain 35 years of out-of-sample daily portfolio returns. This rolling-

window methodology helps to address the existence of potential nonstationarities because stock

return data is closer to stationary within each estimation window than over the whole sample.

This methodology also means that the number of factors K and the shrinkage intensities δ are

calibrated on the training data. However, the cross-validation method to calibrate δ attempts to

recreate an out-of-sample calibration and is consistent with other papers in the literature such as

DeMiguel et al. (2009a) and Ban et al. (2018).

6.1.6. Statistical significance. To test the statistical significance of the difference between

the Sharpe ratio or the modified Sharpe ratio of two given portfolios, we compute two-sided p-

values with the circular-bootstrapping methods proposed by Ledoit and Wolf (2008) for the Sharpe

ratio and Ardia and Boudt (2015) for the modified Sharpe ratio, which are well-suited for returns

that have fat tails and non-stationarity. As in DeMiguel et al. (2009a), we use B = 1000 bootstrap

resamples and block size b= 5. We employ the R package PeerPerformance to compute the boot-

strapped p-values. The stars ?, ?? and ? ? ? in Table 1 mean that the p-value is less than 10%, 5%

and 1%. We compare the following pairs of portfolios: PCMV vs EWMV (stars in superscript next

to PCMV quantity), ICMV vs EWMV (stars in superscript next to ICMV quantity), ICMV vs

PCMV (stars in subscript next to ICMV quantity) and ICMVaR vs EWMVaR (stars in superscript

next to ICMVaR quantity). Other p-values are available upon request.

6.2. Discussion on calibrated K and δ

We now discuss the results from the calibration of the number of factors K and the shrinkage

intensities δ. Table 1 shows that the calibration method of Velicer (1976) systematically chooses

K = 2 for the 6BTM and 6Prof datasets, which is sensible because they are driven by two firm

characteristics: size and book-to-market or size and operating profitability. For the 30Ind dataset,

the average K over the 70 rolling windows is 2.73 and it attains a maximum of K = 5. A small K

is consistent with the literature that shows that a few PCs can explain the cross-section of stock
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returns (Kozak et al. 2020). In Section EC.5 of the e-companion, we show that the first K PCs

capture a large proportion of the total variance over time. We also show, for the 30Ind dataset,

that K is larger in more volatile periods. Note also that the PCs are far from being Gaussian,

supporting the identifiability assumption in Section 2.2 that at most one of the PCs is Gaussian.

Specifically, the Gaussianity test of Jarque and Bera (1980) rejects the Gaussianity of all K PCs

for all estimation windows and datasets, with very low associated p-values.

Regarding the shrinkage intensity δ, we observe in Table 1 that it is higher on average for the

ICMV than the PCMV portfolio. This indicates that the ICs provide a superior target portfolio

than the PCs with regards to higher moments. For the ICMVaR portfolio, the optimal δ is quite

low because the MMVaR portfolio already minimizes the denominator of the modified Sharpe ratio.

In Section EC.5 of the e-companion, we discuss how the shrinkage intensities vary over time.

6.3. Results

Table 1 reports the out-of-sample performance of the eight portfolios for the three datasets. First,

we observe that the EWAVP portfolio performs similar to the EWMV portfolio, but with a sys-

tematically higher turnover. It is also outperformed by the ICMV portfolio, which shows that

diversifying the portfolio-return variance among assets is less useful than among ICs.

We then compare the performance of the ICMV and PCMV portfolios to test whether the shrink-

age portfolios based on ICs outperform those based on PCs. The results confirm that portfolios

based on the ICs have superior out-of-sample performance. In terms of Sharpe ratio, the ICMV

portfolio systematically outperforms the PCMV portfolio. The gains come mostly from a higher

portfolio mean return. Regarding tail risk, the ICMV portfolio also outperforms the PCMV port-

folio in terms of kurtosis, modified VaR and modified Sharpe ratio. This result highlights that

diversifying the portfolio-return variance among ICs effectively reduces tail risk, in line with the

theoretical predictions of Proposition 3. The improvement in Sharpe ratio is statistically significant

for 6Prof and 30Ind, and the improvement in modified Sharpe ratio for 6BTM. Moreover, the

ICMV portfolio has lower turnover, which makes its implementation less costly.

Comparing the ICMV and EWMV portfolios, there are clear benefits from shrinking the MV

portfolio toward the minimum-variance ICVP portfolio rather than the naively diversified equally

weighted portfolio. The ICMV portfolio has a substantially higher mean return for a similar volatil-

ity, which results in a Sharpe ratio that is systematically larger. In terms of tail risk, the ICMV

portfolio also outperforms the EWMV portfolio in terms of skewness, kurtosis, modified VaR and

modified Sharpe ratio. The improvement in the Sharpe ratio and the modified Sharpe ratio is

statistically significant. Lastly, the superior performance of the ICMV portfolio is achieved with a

turnover that is not much higher than that of EWMV, and thus, remains appealing in practice.
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We then turn to the two portfolios based on the modified VaR. Like for the variance risk measure,

we find that there are substantial benefits in shrinking the minimum-modified-VaR portfolio toward

a portfolio that is diversified among ICs rather than the equally weighted portfolio. Indeed, the

ICMVaR shrinkage portfolio has a superior Sharpe ratio and modified Sharpe ratio than EWMVaR

on all datasets, the only exception being for the Sharpe ratio for 30Ind. A drawback of MVaR-based

portfolios is however that they have larger turnover than variance-based strategies.

Finally, we consider the two mean-variance-kurtosis efficient portfolios (MVKEW, MVKIC).

Interestingly, relying on the MV-ICVP portfolio as benchmark (MVKIC) yields a better perfor-

mance than relying on the equally weighted portfolio (MVKEW), which indicates its usefulness

in terms of higher moments. However, compared to MVKIC, ICMV has a better Sharpe ratio,

kurtosis, MVaR and modified Sharpe ratio, with a lower turnover. This is because, as the literature

extensively shows, in-sample portfolio efficiency does not necessarily translate in satisfying out-

of-sample performance. In contrast, the ICMV portfolio is generally not efficient in sample but is

parsimonious as it only requires an estimate of the covariance matrix and the ICA rotation matrix.

6.4. Robustness tests

We now test the robustness of our results. To conserve space, we report here only the main con-

clusions; detailed tables and discussion can be consulted in Section EC.6 of the e-companion.

In Section EC.6.1, we assess the performance of the portfolios for a high-dimensional dataset

of N = 100 individual stocks from the Center for Research in Security Prices constructed as in

Jagannathan and Ma (2003), DeMiguel et al. (2009a) and Olivares-Nadal and DeMiguel (2018). In

this high-dimensional setting, the best performance is achieved for the variance-based rather than

MVaR-based portfolios and, among those, the ICMV portfolio has superior Sharpe ratio and tail

risk. It also performs similarly to MVKEW and MVKIC.

In Section EC.6.2, we consider the ICMV portfolio based on the worst-case-robust MV portfolio

of Goldfarb and Iyengar (2003), which accounts for parameter uncertainty in the asset-return

covariance matrix via a minmax formulation. We find that this additional layer of robustness does

not help: the worst-case-robust ICMV portfolio is generally outperformed by the non-robust one.

Nonetheless, is has less excess kurtosis during the financial crisis, as expected.

In Section EC.6.3, we consider the EWMV, ICMV and PCMV portfolios under the no-short-

selling constraint and find the conclusions are qualitatively similar, although the performance is

worse than that of the unconstrained portfolios because, with daily data, preventing short-selling

hurts the out-of-sample performance (Jagannathan and Ma 2003).

In Section EC.6.4, we evaluate the performance of the EWMV, ICMV and PCMV portfolios in

two subsamples, 1983-1999 and 2000-2012, which from Figure 2 correspond, respectively, to periods
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of low and high mutual-information reduction by using ICs instead of PCs. We observe as expected

that the outperformance of ICMV is particularly significant during the 2000 to 2012 period.

In Section EC.6.5, we compare the performance of the ICMVaR portfolios constructing ignoring

and considering the higher co-moments of the ICs. We find that ignoring the higher co-moments

of ICs as proposed in Section 5 improves out-of-sample performance and reduces turnover.

In Section EC.6.6, we consider the plain Value-at-Risk (VaR) with α = 1% as performance

criterion, estimated via the empirical quantile. We find that our proposed portfolios are the best

in terms of modified Sharpe ratio regardless of whether MVaR or VaR is used to evaluate the

modified Sharpe ratio: ICMVaR is the best for 6BTM and 6Prof and ICMV for 30Ind.

In Section EC.6.7, we consider the MVaR and modified-Sharpe-ratio criteria for a more chal-

lenging α of 0.5% and 0.1% and find that the results are consistent with those with α= 1%.

7. Conclusion

Factor-risk-parity portfolios spread their risk equally across a set of uncorrelated factors, and thus

are typically better diversified in terms of risk than the traditional asset-risk-parity portfolios.

A common approach is to use the first K principal components as the uncorrelated factors, but

we show that any portfolio in the subspace spanned by the first K principal components is a

factor-variance-parity portfolio with respect to a particular rotation of the principal components.

This shows that the factor-variance-parity framework is arbitrary when decorrelation is the only

criterion governing the choice of factors. Moreover, the standard approach based on principal com-

ponents is not comprehensive because it ignores the higher-moment dependence in asset returns.

Instead, we propose using as factors the independent components, which are the rotation of the

principal components with least dependence. They offer three benefits: they discriminate among

all the factor-risk-parity portfolios, they reduce the portfolio-return kurtosis, and they provide a

parsimonious way to deal with higher-moment risk measures. Empirically, we find that shrinking

the minimum-risk portfolio toward the IC-risk-parity portfolio generates portfolios with favorable

out-of-sample performance in terms of mean-variance trade-off, tail risk and turnover.
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Table and figures

Table 1 Out-of-sample performance of portfolio policies.

6BTM dataset (average K = 2)

EWAVP EWMV ICMV PCMV EWMVaR ICMVaR MVKEW MVKIC
Mean 19.76% 19.63% 21.39% 20.84% 23.27% 23.93% 19.93% 20.41%

Volatility 13.75% 13.50% 13.41% 13.60% 15.40% 15.14% 13.65% 13.64%

Sharpe ratio 1.44 1.45 1.59?? 1.53 1.51 1.58?? 1.46 1.50
Skewness -0.60 -0.63 -0.33 -0.23 -0.18 -0.16 -0.47 -0.44

Excess kurtosis 16.92 17.54 11.53 18.53 8.74 7.22 19.97 19.55
1% modified Value-at-Risk 5.63% 5.65% 4.33% 5.75% 4.27% 3.84% 6.16% 6.06%

Modified Sharpe ratio (×102) 1.39 1.38 1.96???
? 1.44 2.16 2.47? 1.28 1.34

Turnover 2.91% 2.38% 2.79% 3.29% 5.67% 5.75% 2.62% 2.84%
Average shrinkage intensity δ 0.05 0.05 0.63 0.59 0.03 0.24 / /

6Prof dataset (average K = 2)

EWAVP EWMV ICMV PCMV EWMVaR ICMVaR MVKEW MVKIC
Mean 17.23% 16.93% 20.41% 17.83% 21.81% 22.55% 17.22% 19.25%

Volatility 14.21% 14.23% 14.83% 14.41% 15.94% 15.60% 14.51% 14.72%

Sharpe ratio 1.21 1.19 1.38???
?? 1.24 1.37 1.45? 1.19 1.31

Skewness -0.26 -0.37 -0.35 -0.04 -0.05 -0.25 -0.07 -0.16

Excess kurtosis 17.00 15.38 14.86 20.06 13.55 10.99 19.46 17.59

1% modified Value-at-Risk 5.72% 5.44% 5.53% 6.32% 5.47% 4.88% 6.26% 5.99%
Modified Sharpe ratio (×102) 1.20 1.24 1.46?? 1.12 1.58 1.83? 1.09 1.27

Turnover 3.12% 2.37% 2.93% 3.09% 4.62% 5.00% 2.70% 3.13%
Average shrinkage intensity δ 0.06 0.08 0.71 0.39 0.11 0.23 / /

30Ind dataset (average K = 2.73)

EWAVP EWMV ICMV PCMV EWMVaR ICMVaR MVKEW MVKIC

Mean 12.79% 12.57% 15.14% 10.58% 13.16% 11.70% 11.98% 11.97%
Volatility 14.70% 14.39% 14.60% 12.92% 15.00% 14.14% 12.13% 12.30%

Sharpe ratio 0.87 0.87 1.04? 0.82 0.88 0.83 0.99 0.97

Skewness -0.72 -0.85 -0.49 -0.56 -0.82 -0.78 -0.66 -0.70
Excess kurtosis 21.93 23.07 12.95 16.96 22.65 17.46 22.64 19.91

1% modified Value-at-Risk 7.16% 7.27% 5.11% 5.32% 7.48% 5.97% 6.02% 5.62%

Modified Sharpe ratio (×102) 0.71 0.69 1.18?? 0.79 0.70 0.78 0.79 0.85
Turnover 4.11% 2.01% 2.52% 2.53% 2.78% 3.99% 2.64% 2.99%

Average shrinkage intensity δ 0.34 0.38 0.42 0.27 0.50 0.22 / /

This table reports the out-of-sample performance of the eight portfolio policies on the three datasets following the methodology in
Section 6.1. The portfolio mean return, volatility and Sharpe ratio are annualized, while all other performance criteria are in daily terms. The
shrinkage intensity δ is computed via 10-fold cross-validation, using the modified Sharpe ratio as the calibration criterion. The number of
PCs, K, is selected via the minimum-average-partial-correlation method of Velicer (1976). Bold figures indicate the best strategy for each
criterion and dataset. We evaluate the statistical significance of the difference in Sharpe ratio and the modified Sharpe ratio by computing the
two-sided p-values via the circular bootstrapping methodology of Ledoit and Wolf (2008) for the Sharpe ratio and Ardia and Boudt (2015)
for the modified Sharpe ratio. The stars ?, ?? and ??? mean that the p-value is less than 10%, 5% and 1%. We compare the following pairs
of portfolios: PCMV vs EWMV (stars in superscript next to PCMV quantity), ICMV vs EWMV (stars in superscript next to ICMV quantity),
ICMV vs PCMV (stars in subscript next to ICMV quantity) and ICMVaR vs EWMVaR (stars in superscript next to ICMVaR quantity).
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Figure 1 Mutual information versus correlation.
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Note. The figure depicts the relative mutual information (in solid blue) and correlation (in dashed red) of the K = N = 2
factors Y obtained as a rotation of the principal components, Y = R(θ)Y ?. The left plot considers the case with independent
non-Gaussian asset returns and the right plot the case with dependent non-Gaussian asset returns, corresponding to examples 1
and 2, respectively. The plots are in polar coordinates (θ, r), where θ is the angle determining the rotation matrix R(θ) defined
in (4) and r is the radial distance from the origin (θ,0). The principal components correspond to θ = 0. The independent
components Y † are obtained for θ = 2kπ in the left plot, and θ = 0.35 + 2kπ in the right plot, k ∈ Z. Note that, for clarity of
the figures, the center of the polar plots corresponds to r=−0.05 rather than r= 0.

Figure 2 Mutual information of independent versus principal components.
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Note. The figure depicts the time evolution of the difference in mutual information between the K = 2 independent and
principal components, I(Y †) − I(Y ?), for three datasets: six size and book-to-market portfolios (solid blue), six size and
operating-profitability portfolios (dashed red) and 30 U.S. industry portfolios (dotted green). The mutual-information difference
is computed every six months using an estimation window containing the previous five years of daily asset returns. The x-axis
labels indicate the last year of the window; for instance, the value at the date 2005 is computed from data from 2001 to 2005.
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Figure 3 Arbitrariness of the factor-variance-parity portfolio.
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Note. We consider theN = 2 asset returns in Example 3 andK = 2 factors Y given by some rotation of the principal components
(PCs), Y = R(θ)Y ?. From Proposition 2, there exist two factor-variance-parity (FVP) portfolios for any rotation of the PCs.
The left plot depicts the weight on the first asset, w1, of the two FVP portfolios (in solid blue and dashed red, respectively)
as a function of θ. w1 continues up to ±∞ at the asymptotes. The right plot depicts the weight on the first asset, w1, of the
FVP portfolio with minimum return variance as a function of θ. The plots are in polar coordinates (θ, r), where θ is the angle
determining the rotation matrix R(θ) in (4) and r=w1 is the radial distance from the origin (θ,0), which can be negative. The
PCs correspond to θ= 0.
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Electronic companion to “Optimal Portfolio Diversification
via Independent Component Analysis”

This e-companion contains six sections. Section EC.1 gives proofs of all results in the paper.

Section EC.2 reviews the literature on when the non-Gaussianity assumption is likely to hold.

Section EC.3 describes the FastICA algorithm. Section EC.4 details the implementation of the

MVKEW and MVKIC portfolios. Section EC.5 displays several figures related to the empirical

analysis. Section EC.6 provides detailed results on the robustness tests of our empirical results.

EC.1. Proofs of all results

EC.1.1. Proposition 1

Proof. Let us prove the results one by one:

(i) From Definition 4, the FVP portfolios are obtained for w̃i(R)2 = c for all i, where c ∈R0 is

a constant ensuring that w̃(R) ∈ W̃(R). This can be rewritten as w̃(R) = c1±K , which, from (9),

translates in portfolio weights given by w = cV Λ−1/2R′1±K . After normalization, c vanishes and

the final expression for the FVP portfolios in (12) is obtained. There are 2K different vectors 1±K ,

which, combined with the normalization constraint, means that there are 2K−1 FVP portfolios.

(ii) The set of FVP portfolios WFV P (R) is invariant to a change of sign and permutation

because, from (8), changing the sign or permuting the components of Y changes the corresponding

factor exposures w̃(R) in the same way, so that the reduced portfolio return remains identical.

(iii) Given some sign vector 1±K , the variance of the FVP portfolio return is given by

m2(P ) =
(1±K)′RΛ−1/2V ′VNΛNV

′
NV Λ−1/2R′1±K

(1′NV Λ−1/2R′1±K)2
, (EC.1)

where VN and ΛN are the full N × N eigenvectors and eigenvalues matrices. The matrix

V ′VNΛNV
′
NV is the covariance matrix of the PCs Y ? =V ′X, and thus,

V ′VNΛNV
′
NV = Λ.

As a result, (EC.1) simplifies to

m2(P ) =
(1±K)′1±K

(1′NV Λ−1/2R′1±K)2
=

K

(1′NV Λ−1/2R′1±K)2
. (EC.2)

Clearly, the sign vector 1±K that minimizes (EC.2) corresponds to

1±K = sign((1′NV Λ−1/2R′)′) = sign(RΛ−1/2V ′1N) =: 1MV
K .

�
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EC.1.2. Proposition 2

Proof. To prove the proposition, we need to show that given any portfolio w=V Λ−1/2w̃(IK)∈

WK , there exists an orthogonal matrix R and a scalar c∈R0 such that w is an FVP portfolio on

the factors RY ?; that is, such that

w=V Λ−1/2w̃(IK) = cV Λ−1/2R′1±K . (EC.3)

It is sufficient to find an orthogonal matrix R because if det(R) = −1, one can just change the

sign of one of its rows; the resulting matrix would be a rotation matrix belonging to SO(K) and,

following Proposition 1(ii), would lead to the same FVP portfolios. Equation (EC.3) amounts to

showing that there exists an orthogonal matrix R and c∈R0 such that

w̃(IK) = cR1±K . (EC.4)

We have that ||1±K ||=
√
K and the scaling coefficient c given by

c=
||w̃(IK)||√

K

means that (EC.4) can be written as

Rx= y, (EC.5)

where x := 1±K/
√
K and y := w̃(IK)/||w̃(IK)|| are unit-norm vectors. The claim follows because

given two arbitrary unit-norm vectors x,y ∈ RK , there always exists an orthogonal matrix R

such that Rx = y. To see this, define ỹ := (y − (xy′)x)/||y − (xy′)x||, so that (x, ỹ) forms an

orthonormal basis in the plane spanned by (x,y). The matrix R takes the form P +Q where

P := IK −xx′− ỹỹ′ and Q := [x ỹ]R(θ)[x ỹ]′ with θ := arccos(x′y).

The orthogonality of R can be checked by observing that P is a projection matrix (hence, PP ′ =

P ) and that QQ′ =xx′+ ỹỹ′ = IK −P whereas PQ′ =QP ′ = 0. �

EC.1.3. Arbitrariness of FVP portfolios with minimum return variance

In this section, we formally state and prove the result mentioned in Section 3.2 in the paper that

in the case where K = 2 and the covariance matrix is diagonal, any portfolio of the two assets with

largest variance, whose weights satisfy certain bounds, is an FVP portfolio with minimum return

variance (MV-FVP portfolio) for some rotation of the PCs.

We expect the range of portfolios spanned by MV-FVP portfolios to be smaller than when

choosing a fixed sign vector 1±K as in Proposition 2 because, out of the 2K−1 FVP portfolios given

a rotation R of the PCs, we choose the one that has the lowest variance, which dismisses many
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portfolios whose weights are too extreme. Identifying the range of portfolios spanned by MV-FVP

portfolios is more complex because the sign vector 1MV
K in (13) also depends on R. The proposition

below states a specific result for K = 2 and a diagonal covariance matrix.

Proposition EC.1. Let K = 2, ΣX be diagonal and suppose, without loss of generality, that the

assets are sorted in decreasing order of variance: σ1 ≥ σ2 ≥ . . .≥ σN , N ≥ 2. Define

W̃2 :=

{
w ∈W

∣∣∣ w= (w1,w2,0, . . . ,0), w1 ∈
[
σ2(σ2−σ1)

σ2
1 +σ2

2

,
σ2(σ1 +σ2)

σ2
1 +σ2

2

]}
, (EC.6)

a subset of portfolios investing exclusively in the first two assets according to some constraints.

Then, any portfolio w ∈ W̃2 is an MV-FVP portfolio for factors given by some rotation of the K

principal components.

Proof. We begin with an intermediary result. Under the assumption that ΣX is diagonal and

sorted in decreasing order of variance, the N ×K eigenvectors matrix V corresponds to the first

K columns of IN . It follows that every FVP portfolio constructed from factors that are a rotation

of the first K PCs takes the form w = cV Λ−1/2R′1±K = (w1,w2)
′, where w1 = cΛ−1/2R′1±K ∈RK ,

w2 = 0 ∈ RN−K , c is a normalization constant and R ∈ SO(K). From Proposition 2 for the case

K =N , this set of portfolios corresponds to the set of portfolios investing in the first K assets only.

We now turn to the main proposition. Because K = 2 and ΣX is diagonal and sorted in decreas-

ing order of variance, we know from the intermediary result above that any portfolio w ∈ W

investing exclusively in the first two assets is an FVP portfolio for some R ∈ SO(K). Moreover,

the PCs Y ? correspond to the first two standardized asset returns. Let us now focus on the first

portfolio weight, w1. For K = 2, R=R(θ) in (4), and it is easy to check that

1MV
K = sign

(( cosθ
σ1
− sinθ

σ2
sinθ
σ1

+ cosθ
σ2

))
.

Therefore, w1 is given by the first entry of the vector

cΛ−1/2R′1MV
K = c

( cosθ
σ1

sinθ
σ1

− sinθ
σ2

cosθ
σ2

)
sign

(( cosθ
σ1
− sinθ

σ2
sinθ
σ1

+ cosθ
σ2

))
.

After some developments, we find that

w1 =
cosθ× sign

(
cosθ
σ1
− sinθ

σ2

)
+ sinθ× sign

(
sinθ
σ1

+ cosθ
σ2

)∣∣ cosθ− σ1
σ2

sinθ
∣∣+ ∣∣ sinθ+ σ1

σ2
cosθ

∣∣ . (EC.7)

To find the bounds of w1 as a function of θ, we need to look the value θlim of θ for which one of the

sign quantities in the numerator of (EC.7) switches sign. Indeed, a switch of sign indicates that

the MV-FVP portfolio switches from one of the two FVP portfolios to the other, and thus, that w1

has attained its minimum or maximum value. Formally, it is easy to verify that, within the bounds
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derived below, w1 is always an increasing function of θ. Thus, w1 achieves its maximum (minimum)

by taking the left (right) limit as θ→ θlim. Focusing on the first sign quantity in the numerator

of (EC.7), we find that cosθ
σ1
− sinθ

σ2
= 0 for θlim = tan−1(σ2/σ1). The limit of w1 as θ→ θlim takes

two different values for the left and right limits, corresponding to sign
(
cosθ
σ1
− sinθ

σ2

)
=±1. Thus, we

obtain the following two bounds for w1 by taking the limit as θ→ θlim in (EC.7):

w±1 =
± cosθlim + sinθlim× sign

(
sinθlim
σ1

+ cosθlim
σ2

)∣∣ cosθlim− σ1
σ2

sinθlim
∣∣+ ∣∣ sinθlim + σ1

σ2
cosθlim

∣∣ . (EC.8)

Finally, using the identities cos(tan−1(x)) = (x2 + 1)−1/2 and sin(tan−1(x)) = x(x2 + 1)−1/2, we

obtain after simplifications that w±1 in (EC.8) correspond to the bounds in W̃2 in (EC.6). �

EC.1.4. Proposition 3

Proof. First, we explain why assuming that the N asset returns are given by a linear combina-

tion of K standardized independent factors amounts to the factor model X = V Λ1/2R†′Y †. The

general independent factor model for the asset returns X assumed in the proposition is given by

X =AS, (EC.9)

where A is a full-rank N ×K matrix, ΣS = IK , I(S) = 0 and κ(Si)> 0 for all i. In this setting,

we have from Comon (1994) that the ICs Y † are independent and correspond to S, ignoring

the irrelevant sign-and-permutation indeterminacy. As a result, we indeed find, as claimed in the

statement of the proposition, that the factor model becomes A=V Λ1/2R†′.

From (8), the IC exposures are w̃(R†) =A′w. Thus, the reduced portfolio return P̃ corresponds

to the portfolio return P in this setup:

P̃ = w̃(R†)′Y † =w′AY † =w′AS =w′X = P. (EC.10)

This is a natural result as the asset returns follow an exact K-dimensional factor model without

errors. It is important for the proofs below. For ease of exposition, we denote κi := κ
(
Y †i
)

the excess

kurtosis of the ith IC. Let us prove the results one by one:

(i) The excess kurtosis of the portfolio return P = P̃ = w̃(R†)′Y † is found from the excess

kurtosis of a weighted sum of independent random variables:

κ(P ) =

∑K

i=1 κiw̃i(R
†)4(∑K

i=1 w̃i(R
†)2
)2 =

∑K

i=1 κiz
2
i(∑K

i=1 zi

)2 , (EC.11)

where zi := w̃i(R
†)2 ≥ 0. We begin by noting two things. First, the sum

∑K

i=1 zi 6= 0, otherwise

the portfolio-return variance m2(P ) vanishes. Second, the vector of zi’s can only be identified up
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to a multiplicative constant because, from (EC.11), it results in the same excess kurtosis κ(P ).

Therefore, without loss of generality, we normalize the zi’s so that
∑K

i=1 zi = 1. In turn, the portfolio-

return excess kurtosis simplifies to

κ(P ) =
K∑
i=1

κiz
2
i = z′Kz, (EC.12)

where z = (z1, . . . , zK)′ and K := diag(κ1, . . . , κK). Let us now find the global minimum and maxi-

mum of the excess kurtosis κ(P ).

• To find the global minimum of the excess kurtosis κ(P ), we need to solve the following

quadratic optimization program:

min
z
z′Kz subject to 1′Kz = 1, z ≥ 0. (EC.13)

This is a convex problem with unique solution similar to that of the minimum-variance portfolio:

z =K−11K/1′KK−11K . As desired, z is positive as we assume that the ICs have strictly positive

excess kurtosis. The obtained minimum excess kurtosis κ(P ) corresponds indeed to κmin in (14):

minκ(P ) =
1

1′KK−11K
=

1∑K

i=1 1/κi
=

1

K
H(κ1, . . . , κK) =: κmin.

• To find the maxima of the excess kurtosis κ(P ), we need to solve the following quadratic

optimization program:

max
z
z′Kz subject to 1′Kz = 1, z ≥ 0. (EC.14)

Given that z′Kz is a convex function in z, all maxima correspond to corner solutions of the type

zi = 1 and zj = 0 for all j 6= i, with excess kurtosis κ(P ) = κi. Therefore, the obtained global

maximum corresponds indeed to κmax := max(κ1, . . . , κK) in (15).

(ii) The ICVP portfolio return is given by P = P̃ = c1±′K Y
† and the resulting excess kurtosis in

(EC.11) is independent of c and the particular vector 1±K chosen, and is given by

κ(P ) =

∑K

i=1 κi
K2

=
1

K
A(κ1, . . . , κK) =: κIC .

(iii) Consider the factors Y given by an arbitrary rotation R of the PCs, Y = RY ?. Our

purpose is to show that, depending on the rotation matrix R† hidden behind the mixing matrix

A associated with the linear-mixture model X =AS, the FVP portfolio associated with Y could

be any portfolio, and thus, could have any attainable kurtosis.

To show this, we first need to show that any portfolio return P is an FVP portfolio return for

some rotation of the ICs; that is, that there exists R̃∈ SO(K) such that

P = P̃ = w̃(R†)′Y † = c1±′K R̃Y
†
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holds for some c∈R0. This holds by the same reasoning than in the proof of Proposition 2.

Suppose now without loss of generality that a singular-value decomposition of the mixing matrix

is of the form A =R1DR
′R̃ where R1 is a N ×K orthogonal matrix, D is a K ×K diagonal

matrix, and R, R̃ are defined above. It results that the ICA rotation matrix is R† = R̃′R. Then,

it is easy to see that the factors Y correspond to Y = R̃Y †. Therefore, one obtains

P = c1±′K R̃Y
† = c1±′K R̃R̃

′Y = c1±′K Y .

That is, P is the FVP portfolio return associated with the factors Y . In other words, depending on

the ICA rotation matrix R† hidden behind the mixing matrix A, the FVP portfolio return associ-

ated to the factors Y could be any portfolio return and, consequently, could have any attainable

kurtosis value. This is a fundamental difference with the ICVP portfolio returns that are indepen-

dent from A. Indeed, only the P corresponding to the special case R̃= I (up to a change of sign

and permutation of the rows) are ICVP portfolio returns, and all of those 2K−1 portfolio returns

have the same excess kurtosis in (16). �

EC.1.5. Excess kurtosis of PCVP portfolios in Example 4

Proof. We give the proof for the signs of PC exposures equal to 1±2 = 12. The proof is similar

for the other choice of signs, 1±2 = (1,−1)′. Under the assumptions of Proposition 3, the PCVP

portfolio return is given by

P = c1′2R(θ†)′Y † = c
(
cosθ†− sinθ†

)
Y †1 + c

(
cosθ†+ sinθ†

)
Y †2 ,

where c ∈ R0 is a normalization constant. Then, from (EC.11), the return excess kurtosis of the

PCVP portfolio is given by

κ(P ) =
(cosθ†− sinθ†)

4
κ
(
Y †1
)

+ (cosθ†+ sinθ†)
4
κ
(
Y †2
)(

(cosθ†− sinθ†)
2

+ (cosθ†+ sinθ†)
2 )2 ,

which after algebraic manipulations yields the final expression with minus sign in (17). �

EC.1.6. Proposition 4

Proof. The tangent mean-variance portfolio computed from the asset returns spanned by the

K principal components, X̃ in (6), is given by

w=
Σ−1
X̃
µX̃

1′NΣ−1
X̃
µX̃

. (EC.15)

Because X̃ = V V ′X, we have Σ−1
X̃

= V Λ−1V ′ and µX̃ = V V ′µX . Thus, the tangent mean-

variance portfolio in (EC.15) simplifies to

w=
V Λ−1V ′µX

1′NV Λ−1V ′µX
, (EC.16)
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which, from (8), corresponds to the following exposures on the ICs:

w̃(R†) =R†Λ1/2V ′w=
R†Λ−1/2V ′µX
1′NV Λ−1V ′µX

. (EC.17)

Given that the ICs are defined as Y † = R†Λ−1/2V ′X, the numerator of (EC.17) is the mean-

return vector of the ICs, µY † . Because an IC-variance-parity portfolio must have equal squared IC

exposures, w̃i(R
†)2 = w̃j(R

†)2 for all i, j, the tangent mean-variance portfolio is an IC-variance-

parity portfolio if each IC has the same mean return in absolute value:

w̃i(R
†)2 =

µ
(
Y †i
)2

(1′NV Λ−1V ′µX)
2 is constant for all i if

∣∣µ(Y †i )∣∣= ∣∣µ(Y †j )∣∣ for all i, j.

Given that the ICs all have unit variance, this condition is equivalent to the ICs having the same

Sharpe ratio of returns in absolute value. �

EC.1.7. Proposition 5

Proof. To prove the proposition, we use the well-known fact that cumulants are additive for

independent random variables. The third and fourth cumulants of the reduced portfolio return

P̃ = w̃(R†)′Y † correspond to m3(P̃ ) and m4(P̃ ) − 3m2(P̃ )2, respectively. Therefore, under the

independence of the ICs, we directly find that the third central moment of P̃ is given by

m3(P̃ ) =
K∑
i=1

m3(w̃i(R
†)Y †i ) =

K∑
i=1

w̃i(R
†)3m3(Y

†
i ).

Similarly, the fourth central moment of P̃ is found as follows:

m4(P̃ )− 3m2(P̃ )2 =
K∑
i=1

m4(w̃i(R
†)Y †i )− 3m2

(
w̃i(R

†)Y †i
)2

⇔ m4(P̃ ) =
K∑
i=1

w̃i(R
†)4m4(Y

†
i )− 3

K∑
i=1

w̃i(R
†)4 + 3

(
K∑
i=1

w̃i(R
†)2

)2

⇔ m4(P̃ ) =
K∑
i=1

w̃i(R
†)4m4(Y

†
i )− 3

K∑
i=1

w̃i(R
†)4 + 3

K∑
i=1

K∑
j=1

(w̃i(R
†)w̃j(R

†))2

⇔ m4(P̃ ) =
K∑
i=1

w̃i(R
†)4m4(Y

†
i ) + 3

K∑
i=1

K∑
j 6=i

(w̃i(R
†)w̃j(R

†))2.

�

EC.1.8. Proposition 6

Proof. Boudt et al. (2008) show that the MVaR contribution of the ith asset Xi is given by

MVaRα(Xi|P ) :=wi×
[
−µ(Xi)−

∂im2(P )

2
√
m2(P )

(zα + p1(zα) + p2(zα))+

√
m2(P )

(
− p1(zα)∂iζ(P )− 1

24
(z3α− 3zα)∂iκ(P ) +

1

18
(2z3α− 5zα)ζ(P )∂iζ(P )

)]
,

(EC.18)
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where the portfolio-return central moments are given by

m2(P ) =w′ΣXw, m3(P ) =w′M3(w⊗w) and m4(P ) =w′M4(w⊗w⊗w), (EC.19)

with M3 and M4 the coskewness and cokurtosis matrices of X, respectively. The MVaR contribu-

tion of the ith IC Y †i is equivalent to (EC.18)-(EC.19) with respect to P̃ = w̃(R†)′Y † and, because

we assume the ICs are independent, m3(P̃ ) and m4(P̃ ) simplify to (23)–(24). �

EC.2. When is the non-Gaussianity assumption likely to hold?

In this section, we discuss the evidence in the literature on when we can expect asset returns to

deviate from normality, and thus, that the non-Gaussianity assumption stated in Section 2.2 in the

paper is likely to hold. We have surveyed the literature and we have identified four general themes:

1. Return frequency. High-frequency returns deviate more from the Gaussian distribution

because there is less time aggregation. Martellini and Ziemann (2010, p.1497) for example note

that “[...] daily returns are notoriously exhibiting stronger deviations from normality compared

to weekly and monthly returns.” Cont (2001, p.224) lists this as a stylized fact called aggrega-

tional Gaussianity: “[...] as one increases the time scale ∆t over which returns are calculated, their

distribution looks more and more like a normal distribution.”

2. Macroeconomic conditions. Using monthly returns of the S&P500, Gormsen and Jensen (2020,

p.2) show that higher-moment risk is higher in bull versus bear markets: “The higher order moments

vary substantially with the state of the financial markets. In bad times, such as during the financial

crisis, there is hardly any higher-moment risk. Excess kurtosis is low and skewness is close to zero,

meaning that the return distribution is well approximated by a normal distribution. But going into

good times, the shape of the return distribution changes. The distribution becomes left-skewed and

fat tailed, meaning additional risk builds in the higher order moments.” We also note that, while the

marginal distributions may become closer to a Gaussian in bad periods, there is extensive evidence

that left-tail-risk dependence between asset returns increases in bad times (Massacci 2017), and

such asymmetric dependence dismisses the multivariate Gaussian distribution.

3. Market geography. Comparing monthly returns of the U.S. market and emerging markets

(e.g., Argentina, Mexico, South Korea, Thailand), Bekaert et al. (1998) find that emerging-market

returns deviate more strongly from Gaussianity.

4. Asset classes. The literature shows that the returns of several different asset types (equity,

bonds, currencies, hedge funds) all have heavy-tailed. This is extensively documented for equities

and hedge funds and, in a recent paper called “Tail risk concerns everywhere”, Gao et al. (2019)

show that tail risk matters more generally not only for equities but also for bonds and currencies.

For a comprehensive list of papers that investigate the importance of higher moments in financial

applications, we also refer to Harvey et al. (2010).
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EC.3. The FastICA algorithm

The theory supporting the foundations of FastICA is built upon the independence assumption;

that is, the ICs are truly independent (I(Y †) = 0). Thus, we present the FastICA algorithm under

this assumption, keeping in mind that its practical application does not require this assumption to

hold. In the non-independent case, the algorithm still delivers a special set of factors, associated

with the linear combination of asset returns that minimizes mutual information. Most results below

can be consulted in more details in the textbook of Hyvärinen et al. (2001).

Computing the ICs requires to find the rotation matrix such that the outputs have zero

mutual information. In contrast with PCA, ICA needs to be achieved in an adaptive way, using

gradient-descent techniques for instance. This triggers computational issues since mutual informa-

tion requires the joint distribution of the factors Y , which would need to be estimated at every

step of the algorithm. Fortunately, it is easy to show that (Cover and Thomas 2006, p.251)

I(Y ) =
K∑
i=1

h(Yi)−h(Y )

where h(X) :=−E(lnfX(X)) is the Shannon entropy of X. Because h(AX) = h(X) + ln |detA|,

we have that I(RY ?) =
∑K

i=1 h(RiY
?)−h(Y ?), where Ri is the ith row of R. Because the second

term does not depend on R, minimizing I(RY ?) over the set of rotation matrices SO(K) is the

same as minimizing the sum of the entropies h(RiY
?), a criterion that only features the marginal

densities of Y1, . . . , YK .

Another standard formulation of mutual information consists of using negentropy, defined as

J(X) := h(Z)−h(X) where Z ∼N (0,1) is a standard Gaussian random variable. Because this cri-

terion is positive and vanishes if and only if X ∼N (0,1) whenever X is a standard random variable

with support on the real line, maximizing
∑K

i=1 J(RiY
?) is equivalent to minimizing I(RY ?) over

SO(K). This provides another intuitive interpretation of ICA in terms of non-Gaussianity. From

the central limit theorem, it is known that the asymptotic distribution of a mixture of indepen-

dent random variables is Gaussian. The above formulation suggests indeed that the independent

(assumed non-Gaussian) factors can be recovered by maximizing a non-Gaussianity measure—here,

negentropy—applied to every output Yi =RiY
?.

Interestingly, it has been proven by relying on a truncated development of the density around

the standard Gaussian density using a set of orthogonal basis functions (a generalization of Gram-

Charlier expansion, but using more general functions than simple monomials) that many “non-
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Gaussianity measures” can serve as a criterion to perform ICA. The fact that they correspond to

a crude negentropy estimator is not an issue since it is possible to show that replacing J(X) by

Ĵm(X) :=
m∑
i=1

ci
(
E2(Gi(Z))−E2(Gi(X))

)
,

for a set of functions Gi’s satisfying some technical conditions, leads to a criterion
∑K

i=1 Ĵ(RiY
?)

with stationary points on the set {R∈ SO(K) | I(RY ?) = 0}. As an illustration, plugging a fourth-

order Gram-Charlier expansion of the density fX in the negentropy definition leads to the above

expression with m = 2, c1 = 1/12, c2 = 1/48, G1(x) = x3 and G2(x) = x4. In fact, it can even be

shown that the restriction to m= 1, leading to

Ĵ(X) := Ĵ1(X) =E2[G(Z)]−E2[G(X)]

is enough to perform ICA, in the sense that the stationary points of the above criterion include

the ICs provided that G satisfies some conditions. For instance, taking m= c1 = 1 and G(x) = x4

corresponds to using the kurtosis as non-Gaussianity measure. Even though it is arguably a crude

estimator of negentropy, it is theoretically proven that maximizing the sum of the square of the

output kurtosis does also lead to recover the ICs; see Delfosse and Loubaton (1995). In practice

however, neither the criterion corresponding to the actual negentropy nor that associated with the

kurtosis is an appealing choice: the first one requires the estimation of the density of each of the

factor Yi at every iteration, and the second suffers from high sensitivity to outliers when estimated

from finite samples. When the ICs underlying the data all have a positive excess kurtosis, it has

been suggested to use Ĵ with G(x) := log coshx. This function satisfies the technical conditions

ensuring that the gradient of
∑K

i=1 Ĵ(RiY
?) vanishes whenRY ? =Y † (up to sign and permutation,

as usual), and leads to a very robust algorithm. This choice corresponds to the default setup of the

FastICA algorithm developed by Hyvärinen (1999), the most popular algorithm to perform ICA.

This approach has been successfully used in many applications, from the analysis of hyperspectral

data to biomedical engineering, and thus, is used in the empirical part of the paper.

Finally, one may wonder whether the choice of the criterion used to perform ICA affects the

existence of potential spurious local optima. The choice of the criterion does indeed matter. For

instance, it has been shown that the actual negentropy criterion exhibits spurious local minima

when the independent factors are strongly multimodal (Vrins et al. 2007). In contrast, the kurtosis

criterion is, in theory, free from spurious solutions: all stationary points of the criterion agree with

the recovery of the ICs (Delfosse and Loubaton 1995). This result is however purely theoretical, and

is of little practical interest given the large estimation errors in sample estimates of kurtosis. The

criterion optimized in FastICA is very appealing in this respect: choosing a smooth non-quadratic
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function G that does not grow too fast, like G(x) = lncoshx, gives a robust algorithm, a feature that

has been extensively studied with the help of simulated data. For further details about spurious

solutions of ICA algorithms, we refer to Vrins (2007).

EC.4. Implementation of MVKEW and MVKIC portfolios

In this section, we explain how the MVKEW and MVKIC portfolios we consider in the empirical

analysis of Section 6 are implemented. These two portfolios are mean-variance-kurtosis efficient-

portfolio strategies based on Briec et al. (2007). These authors introduced a method whereby one

searches for the largest improvements in mean, variance and skewness relative to a given benchmark

portfolio wb. This approach is appealing because it is guaranteed to give a global solution, it

does not require specifying a utility function, and it ensures that the portfolio is located on the

mean-variance-skewness efficient surface. Because, as we show both theoretically and empirically,

our IC-risk-parity approach performs particularly well in terms of kurtosis, we consider a mean-

variance-kurtosis version of the portfolio of Briec et al. (2007) that is defined by the following

optimization problem:
max

δ∈[0,1],w∈W
δ

subject to µ(w′X)≥ µ(w′bX),

m2(w
′X)≤m2(w

′
bX)(1− δ),

m4(w
′X)≤m4(w

′
bX)(1− δ),

where mk(·) is the kth central moment. We rely on two different benchmarks wb. First, as in

Boudt et al. (2020) for example, the equally weighted portfolio, which represents the uninformed

choice (MVKEW). Second, we also consider the minimum-variance IC-variance-parity portfolio

introduced in the paper (MVKIC).

EC.5. Further empirical analysis

In this section, we display several figures that provide additional information about the empirical

analysis of Section 6. First, Figure EC.1 reports the proportion of variance explained by the first K

principal components over time. We observe that, for the 6BTM and 6Prof datasets, a very large

proportion of the variance is explained by the first K PCs. This makes sense because these two

datasets are driven by two firm characteristics (size and book-to-market and size and operating

profitability) and the method we use always selects K = 2 for these two datasets. For the 30Ind

dataset, the proportion of variance explained is smaller but still remains at 72% on average. There-

fore, we can be confident that the method we use to select K captures an important proportion

of the variance of the entire set of variables. At the same time, K remains quite small relative

to N , which reduces the sensitivity to estimation risk thanks to dimension reduction. Note that
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Figure EC.1 Proportion of variance explained by the K principal components over time.
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Note. The figure depicts the proportion of variance explained by the first K principal components estimated every

six months using an estimation window containing the previous five years of daily asset returns. The dotted black

line depicts the average over all windows.

the advantage of the method of Velicer (1976) is that it does not require an arbitrary choice of

variance-explained threshold (e.g., above 90%) to fix K.

Second, Figure EC.2 reports the time evolution of K for the 30Ind dataset (note that K is

always equal to two for the 6BTM and 6Prof datasets). In the same figure, we report the average

annualized volatility of the 30 industry returns over time. The figure clearly shows that volatility

and K are positively correlated: on the low-volatility period from 1978 to 1995, K remains equal to

two, whereas on the subsequent period 1996 to 2017, which is characterized by a larger volatility,

K varies between two and five.

Third, Figure EC.3 reports the time evolution of the shrinkage intensity δ for the three datasets.

We focus on the ICMV portfolio and not ICMVaR for brevity. We make two observations. On the

one hand, δ varies quite substantially over time, which can be explained by evolving asset-return

dynamics and also by the use of the modified Sharpe ratio as cross-validation calibration criterion,

which depends on higher moments that also vary substantially over time. However, we note that

the time-variation of δ is not problematic because Table 1 in the paper shows that the resulting

ICMV shrinkage portfolio performs well out of sample and has a turnover that is not much higher

that of the EWMV portfolio. On the other hand, the constraint δ ∈ [0,1] is often binding, and

it is more often equal to one for the small-dimensional datasets (6BTM, 6Prof ) than the higher-

dimensional datasets (30Ind). The explanation for this phenomenon is that δ is determined as a

trade-off between two effects. Firstly, which of the MV and MV-ICVP portfolios has the largest
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Figure EC.2 Time evolution of K and average asset-return volatility for the 30Ind dataset.

Note. This figure depicts the time evolution of the number of factors K (left graph) and of the average annualized

volatility of the 30 industry returns (right graph) estimated every six months using an estimation window containing

the previous five years of daily asset returns. The x-axis labels indicate the last year of the window; for instance, the

value at the date 2005 is computed from data from 2001 to 2005.

in-sample modified Sharpe ratio. The MV-ICVP is expected to perform best in this dimension

because, as shown in Proposition 3 in the paper, it accounts for portfolio-return kurtosis. This

effect will drive δ toward one. Secondly, because cross-validation is an out-of-sample calibration

method, which of the MV and MV-ICVP portfolios is less sensitive to estimation risk. The MV

portfolio is expected to be less sensitive to estimation risk because it does not account for higher

moments. This effect will drive δ toward zero. The fact that δ often equals zero or one means that,

in many estimation windows, one of the two effects dominates the other. Moreover, the fact that δ

is more often equal to one for 6BTM and 6Prof makes sense as there is less estimation risk when

the dimension N is smaller for a fixed sample size.

Fourth, Figure EC.4 complements Figure 2 in the main body of the manuscript, which reports

the mutual information of the PCs and ICs. Although mutual information is a useful dependence

criterion in the context of ICA, it is not easy to interpret: in Figure 2 in the main body of the paper,

it is not obvious whether a reduction of mutual information of 0.1 by going from the PCs to the

ICs is substantial or not, for example. To ease the interpretation, Figure EC.4 depicts the average

of the pairwise non-linear correlations between the ICs and the PCs. That is, for each possible

pair among the K ICs or K PCs, we compute the pairwise non-linear correlation, and we report

the average across all pairs. We define the non-linear correlation as the Pearson linear correlation

applied to a transform G of the ICs or PCs, and we take G(x) = lncoshx as in FastICA. This

yields a number between -1 and 1 that is more easily interpretable. The figure is in line with the

observations based on mutual information in Figure 2 in the main body of the paper. That is, the

reduction in non-linear correlation allowed by the ICs starts to increase in the period preceding the

crisis. This indicates that there is increased non-Gaussianity among asset returns in this period,

which ICs leverage upon in contrast to PCs. This observation is consistent with Gormsen and
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Figure EC.3 Time evolution of the ICMV shrinkage intensity δ.

Note. The shrinkage intensity δ of the ICMV portfolio is computed every six months using an estimation window

containing the previous five years of daily asset returns. The x-axis labels indicate the last year of the window; for

instance, the value at the date 2005 is computed from data from 2001 to 2005.

Jensen (2020), who find that higher-moment risk increases in bull markets where variance is low.

The period leading up to the 2007-2009 financial crisis is such a period. When the financial crisis

enters into the five-year rolling window, non-linear correlation among ICs and PCs increases, but

the reduction allowed by the ICs remains important. We refer to Kumiega et al. (2011) for the

economic interpretation of ICs during the financial crisis.

EC.6. Robustness tests

In this section, we report the numerical results and further discussion related to the robustness

tests mentioned in Section 6.4 in the paper.

EC.6.1. High-dimensional dataset of individual stocks

In this section, we assess the out-of-sample performance of the portfolios for a high-dimensional

dataset of 100 individual stocks. To build the dataset, we follow the methodology in Jagannathan

and Ma (2003), DeMiguel et al. (2009) and Olivares-Nadal and DeMiguel (2018), which is designed

to avoid survivorship bias. We download individual-stock returns from the Center for Research

in Security Prices (CRSP) covering the same period from 1978 to 2017 as for the three other

datasets. Starting from January 1983, and then every six months, we identify the subset of stocks

that have an history of returns for the five preceding years as well as the next six months. As in

the aforementioned papers, we remove microcap and penny stocks, which are the stocks that, in
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Figure EC.4 Non-linear correlation of independent versus principal components.

Note. The figure depicts the average pairwise non-linear correlation across the K PCs (dotted red) and ICs (solid

blue). The non-linear correlations are computed every six months using an estimation window containing the previous

five years of daily asset returns. The x-axis labels indicate the last year of the window; for instance, the value at the

date 2005 is computed from data from 2001 to 2005.

the preceding five years, were below the 20th percentile of average market capitalization and had

an average price below 5 dollars. Finally, out of all remaining stocks, we randomly select N = 100

stocks to form our investment universe for the next six months. We repeat this procedure every

six months until the end of the sample is achieved.

Table EC.1 reports the out-of-sample performance of the various portfolios for the individual-

stocks dataset 100CRSP. A few comments are in order. First, the portfolios based on variance tend

to outperform those based on MVaR for the high-dimensional 100CRSP dataset. This is consistent

with the results for the three original datasets (6BTM, 6Prof, 30Ind), for which ICMVaR was

the best strategy for N = 6 but ICMV did better for N = 30. The explanation for this result

is that the portfolios based on higher-moment measures of risk are more sensitive to estimation

risk, which is more important for high-dimensional asset universes. Second, comparing the four

portfolios based on variance as risk measure (EWAVP, EWMV, ICMV, PCMV), we observe that

our proposed ICMV portfolio outperforms the others: it has the best Sharpe ratio, kurtosis, MVaR

and modified Sharpe ratio, albeit with a larger turnover than EWMV. The improvement in Sharpe

ratio and modified Sharpe ratio compared to EWMV is statistically significant. Third, while for the

three original datasets ICMV outperformed the two mean-variance-kurtosis portfolios MVKEW

and MVKIC, for the 100CRSP dataset their performance is similar. Overall, we note that the
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Table EC.1 Out-of-sample performance for the 100CRSP dataset.

100CRSP dataset (average K = 18.37)

EWAVP EWMV ICMV PCMV EWMVaR ICMVaR MVKEW MVKIC
Mean 16.42% 17.37% 16.29% 18.54% 18.90% 16.77% 16.55% 16.01%
Volatility 20.56% 13.55% 10.78% 13.55% 15.67% 13.54% 10.82% 10.48%
Sharpe ratio 0.80 1.28 1.51? 1.37 1.21 1.24 1.53 1.53
Skewness -0.31 0.04 -0.11 0.04 0.01 0.47 -0.03 -0.16
Excess kurtosis 7.78 13.95 7.73 8.31 9.77 12.29 8.65 8.37
1% modified Value-at-Risk 5.55% 4.68% 2.79% 3.55% 4.47% 4.00% 2.91% 2.84%
Modified Sharpe ratio (×102) 1.17 1.47 2.31??? 2.07?? 1.68 1.66 2.25 2.24
Turnover 7.89% 3.50% 4.74% 4.66% 3.32% 6.11% 4.64% 4.50%
Average shrinkage intensity δ 0.75 0.26 0.18 0.18 0.57 0.02 / /

This table reports the out-of-sample performance of the eight portfolio policies for the 100CRSP dataset following the methodology in
Section 6.1 of the paper and Section EC.6.1 of this e-companion. The portfolio mean return, volatility and Sharpe ratio are annualized,
while all other performance criteria are in daily terms. The shrinkage intensity δ is computed via 10-fold cross-validation, using the modified
Sharpe ratio as the calibration criterion. The number of PCs, K, is selected via the minimum-average-partial-correlation method of Velicer
(1976). Bold figures indicate the best strategy for each criterion. We evaluate the statistical significance of the difference in Sharpe ratio
and the modified Sharpe ratio by computing the two-sided p-values via the circular bootstrapping methodology of Ledoit and Wolf (2008)
for the Sharpe ratio and Ardia and Boudt (2015) for the modified Sharpe ratio. The stars ?, ?? and ??? mean that the p-value is less than
10%, 5% and 1%. We compare the following pairs of portfolios: PCMV vs EWMV (stars in superscript next to PCMV quantity), ICMV vs
EWMV (stars in superscript next to ICMV quantity), ICMV vs PCMV (stars in subscript next to ICMV quantity) and ICMVaR vs EWMVaR
(stars in superscript next to ICMVaR quantity).

empirical finding that our proposed portfolios outperform the benchmark portfolios is robust to

considering a large dataset with the returns of 100 individual stocks.

EC.6.2. Worst-case-robust ICMV portfolio

In this section, we test the robustness of our results to parameter uncertainty in the covariance

matrix of asset returns. To do this, we evaluate the performance of a worst-case-robust ICMV

portfolio that is obtained by combining the minimum-variance IC-variance-parity portfolio with

a worst-case-robust minimum-variance portfolio based on the popular approach by Goldfarb and

Iyengar (2003), who consider parameter uncertainty in the covariance matrix assuming a factor

model for the asset returns.

To do this, we first rewrite the asset returns as a linear combination of the N principal compo-

nents,

X =AΛ
1/2
N Y ?, (EC.20)

where Y ? is the vector of the N standardized PCs, ΛN is the N ×N covariance matrix of the PCs

and A is a N ×N loading matrix. Following Goldfarb and Iyengar (2003), we assume that ΛN is

known, but we account for model uncertainty in A via the elliptical uncertainty set

A :=
{
A∈RN×N

∣∣ A=A0 + ∆, ||∆i||G ≤ ρi, i= 1, . . . ,N
}
, (EC.21)

where ∆i is ith row of ∆ and ||x||G :=
√
x′Gx is the G-norm of x with G a symmetric positive-

definite N ×N matrix. To select A0, G and ρi, we follow Section 5 of Goldfarb and Iyengar (2003)
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and set A0 =VN , the sample eigenvector matrix, and calibrate G and the ρi’s to the data so as to

form a 95% confidence interval around A0.

Given this uncertainty set, the worst-case-robust minimum-variance portfolio is the solution to

the maxmin problem

min
w∈W

max
A∈A

w′AΛNA
′w. (EC.22)

As in Goldfarb and Iyengar (2003), we recast this maxmin problem as a second-order-cone program

(SOCP)

min
w∈W,ψ∈RN ,(ν,τ,σ)≥0,t∈RN+

v

subject to ψi ≥wi, ∀i,

ψi ≥−wi, ∀i,

v≥ τ + 1′Nt,

σ≤ 1/λmax(H),

4(ρ′ψ)2 + (σ− τ)2 ≤ (σ+ τ)2,

4φ2
i + (1−σλi(H)− ti)2 ≤ (1−σλi(H) + ti)

2, ∀i,

(EC.23)

where ρ is the vector of ρi’s defined in (EC.21), H :=G−1/2ΛNG
−1/2, λi(H) is the ith eigenvalue

of H and φ :=Q′H1/2G1/2A0w with Q the eigenvector matrix of H. The last two constraints

in (EC.23) are cone constraints and, because problem (EC.23) is a SOCP, we solve it via Matlab

coneprog algorithm. Once the worst-case-robust minimum-variance portfolio is found, we then

shrink it toward our proposed minimum-variance IC-variance-parity portfolio with the shrinkage

intensity calibrated via 10-fold cross-validation as in the manuscript. The final portfolio is the

worst-case-robust ICMV portfolio.

In Table EC.2, we report the out-of-sample performance of the ICMV portfolio using (i) sample

non-robust estimation as in Table 1 in the manuscript and (ii) worst-case-robust estimation as

described above. We report the same performance criteria as in Table 1 in the manuscript, and in

addition we also report the excess kurtosis in the period from December 2007 to June 2009, which

is the period corresponding to the global financial crisis according to the “NBER based Recession

Indicators for the United States from the Peak through the Trough”. We look at this indicator

because, by construction, worst-case-robust portfolios are expected to have less tail risk in crisis

periods.

The table shows that the standard (non-robust) ICMV portfolio generally outperforms the

worst-case-robust ICMV portfolio. For instance, the non-robust ICMV portfolio is best in terms of

Sharpe ratio for all three datasets and also in terms of modified Sharpe ratio for the 6BTM and

30Ind datasets. Only for the 6Prof dataset does the worst-case-robust ICMV portfolio outperform
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Table EC.2 Out-of-sample performance of worst-case-robust versus non-robust portfolios.

Worst-case-robust Non-robust
6BTM 6Prof 30Ind 6BTM 6Prof 30Ind

Mean 21.73% 19.99% 11.98% 21.39% 20.41% 15.14%
Volatility 13.91% 15.39% 16.07% 13.41% 14.83% 14.60%
Sharpe ratio 1.56 1.30 0.75 1.59 1.38 1.04
Skewness -0.46 -0.39 -0.72 -0.33 -0.35 -0.49
Excess kurtosis 11.58 11.57 14.45 11.53 14.86 12.95
1% modified VaR 4.55% 5.02% 6.06% 4.33% 5.53% 5.11%
Modified Sharpe ratio (×102) 1.89 1.58 0.78 1.96 1.46 1.18
Turnover 2.75% 4.11% 1.80% 2.79% 2.93% 2.52%
Average shrinkage intensity δ 0.92 0.91 0.55 0.63 0.71 0.42
Excess kurtosis 07-09 3.39 2.60 1.99 3.67 4.78 4.59

This table reports the out-of-sample performance of the ICMV portfolio estimated via worst-case-robust and sample non-
robust estimation following the methodology in Section EC.6.2 of this e-companion. The 07-09 excess kurtosis is computed
from December 2007 to June 2009, which corresponds to the global financial crisis according to the “NBER based Recession
Indicators for the United States from the Peak through the Trough”. The portfolio mean return, volatility and Sharpe ratio
are annualized, while all other performance criteria are in daily terms. The shrinkage intensity δ is computed via 10-fold
cross-validation, using the modified Sharpe ratio as the calibration criterion. The number of PCs, K, is selected via the
minimum-average-partial-correlation method of Velicer (1976).

the non-robust portfolio and only in terms of modified Sharpe ratio and tail risk. We also find that,

as expected, the worst-case-robust ICMV portfolio has less excess kurtosis during the financial

crisis. Overall, the out-of-sample performance of the non-robust ICMV portfolio is at least as good

as that of the worst-case-robust ICMV portfolio. The explanation for the good performance of

the non-robust ICMV portfolio is twofold. First, the ICMV portfolio is already robust because

it is based on risk parity and it ignores estimates of mean returns. Thus, adding one more layer

of robustness might not be beneficial. Second, we use daily data, which produce more accurate

estimators than weekly or monthly data. This implies that the non-robust ICMV portfolio is

estimated quite accurately.

EC.6.3. Long-only factor-variance-parity portfolios

In this section, we report the out-of-sample performance of factor-variance-parity (FVP) portfo-

lios, based on PCs and ICs, under the no-short-selling constraint. Preventing short-selling is an

important consideration in practice because many investors are not allowed to short assets and

that it reduces sensitivity to estimation risk (Jagannathan and Ma 2003).

Let us explain how we compute the long-only FVP portfolios. As shown by Roncalli and Weisang

(2015), when short-selling is not allowed there may not exist a portfolio for which all the factors

contribute equally to the variance of the portfolio return; that is, for which factor-variance parity is

achieved. Therefore, we compute the long-only FVP portfolio in two steps. We consider here factors

Y given by some rotation of the PCs: Y =RY ?. First, we compute the maximum factor-variance
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diversification that can be achieved by computing the maximum inverse Herfindahl index under

no short-selling:

max
w∈W

H[p(R)] subject to wi ≥ 0 ∀i,

where

pi(R) :=
w̃i(R)2

||w̃(R)||2

is the relative variance contribution of the ith factor Yi and H[p] := ||p||−2 ∈ [1,K] is the inverse

Herfindahl index, which equals K when pi(R) = 1/K for all i. This first step gives the maxi-

mum inverse Herfindahl index Hmax, which can be lower than K. Second, to be consistent with

our proposal of relying on the FVP portfolio with minimum variance, we compute the long-only

minimum-variance FVP portfolio as follows:

min
w∈W

w′ΣXw subject to H[p(R)]≥Hmax− ε, wi ≥ 0 ∀i,

where ε is a tolerance parameter set to ε= 5× 10−4.

Then, in Table EC.3, we report the out-of-sample performance of three portfolio strategies,

using the same methodology than for the unconstrained portfolios in the paper. First, the portfolio

that shrinks the long-only minimum-variance (MV) portfolio toward the equally weighted portfolio

(EWMV). Second, the portfolio that is a shrinkage between the long-only MV portfolio and the

long-only IC-variance-parity portfolio (ICMV). Third, the portfolio that is a shrinkage between the

long-only MV portfolio and the long-only PC-variance-parity portfolio (PCMV). The shrinkage

intensity is calibrated as for the unconstrained portfolios; that is, via 10-fold cross-validation using

modified Sharpe ratio as calibration criterion.

The table shows that the results obtained for the long-only portfolios remain qualitatively

similar to the unconstrained portfolios in the paper. Specifically, the ICMV portfolio outperforms

the PCMV portfolio in terms of Sharpe ratio for two datasets and modified Sharpe ratio for all

datasets. Moreover, compared to the EWMV portfolio, it systematically outperforms both in terms

of Sharpe ratio and modified Sharpe ratio. Finally, the out-of-sample performance of long-only

portfolios is systematically worse than that of unconstrained portfolios. The reason may be that

we use daily data, and Jagannathan and Ma (2003) show that for daily data the no-short-selling

constraint is likely to hurt performance. One benefit of long-only portfolios however is that they

require much less turnover.

EC.6.4. Subsample analysis: low versus high mutual-information reduction

Figure 2 in the main body of the paper and Figure EC.4 above show that the reduction in mutual

information and non-linear correlations from using ICs instead of PCs varies over time. To study
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Table EC.3 Out-of-sample performance of long-only MV, ICMV and PCMV portfolios.

6BTM dataset 6Prof dataset 30Ind dataset
EWMV ICMV PCMV EWMV ICMV PCMV EWMV ICMV PCMV

Mean 14.37% 14.99% 14.78% 13.19% 14.49% 13.90% 11.13% 15.18% 10.77%
Volatility 15.95% 15.62% 16.07% 15.51% 16.91% 15.24% 14.21% 16.91% 13.66%
Sharpe ratio 0.90 0.96 0.92 0.85 0.86 0.91 0.78 0.90 0.79
Skewness -0.58 -0.72 -0.42 -0.59 -0.54 -0.45 -0.87 -0.20 -0.61
Excess kurtosis 13.63 13.00 13.66 12.61 10.41 15.06 24.59 16.75 18.81
1% modified Value-at-Risk 5.78% 5.55% 5.77% 5.40% 5.32% 5.80% 7.50% 6.73% 6.01%
Modified Sharpe ratio (×102) 0.99 1.07 1.02 0.97 1.08 0.95 0.59 0.90 0.71
Turnover 0.36% 0.44% 0.44% 0.30% 0.50% 0.22% 0.81% 0.95% 0.82%
Average shrinkage intensity δ 0.21 0.36 0.14 0.18 0.52 0.10 0.26 0.37 0.40

This table reports the out-of-sample performance of the variance-based portfolios under the no-short-selling constraint, following the
methodology in Section EC.6.3 of this e-companion. The portfolio mean return, volatility and Sharpe ratio are annualized, while all other
performance criteria are in daily terms. The shrinkage intensity δ is computed via 10-fold cross-validation, using the modified Sharpe ratio
as the calibration criterion. The number of PCs, K, is selected via the minimum-average-partial-correlation method of Velicer (1976). Bold
figures indicate the best strategy for each criterion and dataset.

the impact of this variation on the relative performance of IC-based versus PC-based portfolios, we

now evaluate the out-of-sample performance of the different portfolios on low versus high mutual-

information subsamples.

Note that the out-of-sample period in our analysis covers the period from January 1983 to

December 2017. Based on Figure 2 in the main body of the paper and Figure EC.4 above, we eval-

uate the out-of-sample performance in the following two subsamples: (i) January 1983 to December

1999 (low reduction in mutual information/non-linear correlation) and (ii) January 2000 to Decem-

ber 2012 (high reduction). We also report the performance of the EWMV portfolio for comparison.

The hypothesis underlying the subsample analysis is that we expect the ICMV portfolio to be

particularly useful compared to PCMV when the reduction in mutual information is high.

The results are reported in Table EC.4. We make two main observations. First, in terms of

modified Sharpe ratio, which accounts for the first four moments of portfolio returns, using ICMV

rather than PCMV is particularly appealing during periods of high mutual-information reduction.

Indeed, in the 1983-1999 period (low reduction), ICMV is outperformed by PCMV for 6BTM,

performs similarly for 6Prof, and largely outperforms for 30Ind. The two strategies are therefore

overall on par. In contrast, during the 2000-2012 period (high reduction), ICMV performs much

better than PCMV for all three datasets. This finding is intuitive: ICA-based portfolios are likely

to outperform PCA-based portfolios when the gain in independence from using ICA is substantial,

which in the data corresponds to the period before and around the financial crisis. Second, ICMV

nearly systematically outperforms the benchmark EWMV in both subsamples in terms of Sharpe

ratio and modified Sharpe ratio. Overall, looking at the two subsamples separately, we conclude

that relying on ICMV is always a good strategy because it always performs at least on par with

PCMV, and outperforms PCMV for periods of high mutual-information reduction.
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Table EC.4 Subsample analysis: low versus high mutual-information reduction.

6BTM dataset 1983-1999 2000-2012
EWMV ICMV PCMV EWMV ICMV PCMV

Mean 21.96% 23.66% 23.36% 17.65% 20.05% 20.44%
Volatility 8.54% 9.10% 8.73% 18.44% 17.92% 14.06%
Sharpe ratio 2.57 2.60 2.68 0.96 1.12 1.45
Skewness -1.95 -1.46 -1.39 -0.38 -0.09 -0.23
Excess kurtosis 30.18 24.89 20.15 10.50 6.48 19.57
1% modified Value-at-Risk 4.96% 4.73% 3.94% 5.74% 4.33% 6.16%
Modified Sharpe ratio (×102) 1.76 1.98 2.35 1.22 1.84 1.32
Turnover 1.86% 2.47% 2.50% 2.78% 3.19% 3.99%

6Prof dataset 1983-1999 2000-2012
EWMV ICMV PCMV EWMV ICMV PCMV

Mean 18.20% 22.12% 17.63% 14.91% 19.66% 17.22%
Volatility 10.19% 11.45% 10.96% 18.86% 19.07% 15.07%
Sharpe ratio 1.79 1.93 1.61 0.79 1.03 1.14
Skewness -1.25 -1.06 -0.97 -0.14 -0.11 -0.02
Excess kurtosis 18.65 20.19 14.76 10.30 10.36 20.44
1% modified Value-at-Risk 4.43% 5.25% 4.16% 5.68% 5.72% 6.69%
Modified Sharpe ratio (×102) 1.63 1.67 1.68 1.04 1.36 1.02
Turnover 2.28% 2.37% 2.96% 2.44% 3.77% 3.30%

30Ind dataset 1983-1999 2000-2012
EWMV ICMV PCMV EWMV ICMV PCMV

Mean 16.53% 17.13% 9.97% 7.22% 14.89% 9.56%
Volatility 11.92% 14.04% 11.81% 18.07% 16.05% 13.22%
Sharpe ratio 1.39 1.22 0.84 0.40 0.93 0.72
Skewness -2.28 -1.05 -1.68 -0.25 -0.03 -0.62
Excess kurtosis 46.31 23.62 36.82 12.81 5.23 18.74
1% modified Value-at-Risk 9.60% 7.19% 8.22% 6.21% 3.55% 5.81%
Modified Sharpe ratio (×102) 0.68 0.95 0.48 0.46 1.67 0.65
Turnover 1.58% 2.14% 2.29% 2.37% 3.06% 2.84%

This table reports the out-of-sample performance of the variance-based portfolios in the low (1983-1999) and high
(2000-2012) mutual-information reduction subsamples following the methodology in Section EC.6.3 of this e-companion.
The portfolio mean return, volatility and Sharpe ratio are annualized, while all other performance criteria are in daily
terms. The shrinkage intensity δ is computed via 10-fold cross-validation, using the modified Sharpe ratio as the calibration
criterion. The number of PCs, K, is selected via the minimum-average-partial-correlation method of Velicer (1976). Bold
figures indicate the best strategy for each criterion, dataset and subsample.

EC.6.5. ICMVaR portfolio without assuming the independence of ICs

In this section, we compare the performance of the ICMVaR portfolio computed with and without

the assumption of independence of the ICs. For the sake of comparison, we keep the same shrinkage

intensities in the case without the independence assumption as those originally computed in the

paper for the case with the independence assumption. The computation of the IC-MVaR-parity

portfolio without the independence assumption is similar to what is described in Section 5 in the

paper except that, in Proposition 6 where we derive the MVaR contribution the ICs, m3(P̃ ) and
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Table EC.5 Out-of-sample performance of ICMVaR portfolio with and without
the assumption that ICs are independent.

With independence Without independence
6BTM 6Prof 30Ind 6BTM 6Prof 30Ind

Mean 23.93% 22.55% 11.70% 23.81% 22.19% 10.65%
Volatility 15.14% 15.60% 14.14% 15.76% 16.34% 14.41%
Sharpe ratio 1.58 1.45 0.83 1.51 1.36 0.74
Skewness -0.16 -0.25 -0.78 -0.14 -0.30 -0.77
Excess kurtosis 7.22 10.99 17.46 7.26 11.39 17.60
1% modified Value-at-Risk 3.84% 4.88% 5.97% 4.00% 5.24% 6.11%
Modified Sharpe ratio (×102) 2.47 1.83 0.78 2.36 1.68 0.69
Turnover 5.75% 5.00% 3.99% 6.23% 5.33% 5.15%

This table reports the out-of-sample performance of the ICMVaR portfolio with and without the assumption
that ICs are independent following the methodology in Section EC.6.5 of this e-companion. The portfolio mean
return, volatility and Sharpe ratio are annualized, while all other performance criteria are in daily terms. The
shrinkage intensity δ is computed via 10-fold cross-validation, using the modified Sharpe ratio as the calibration
criterion. The number of PCs, K, is selected via the minimum-average-partial-correlation method of Velicer
(1976).

m4(P̃ ) now admit the more general formulas in equations (21) and (22), which depend on the full

coskewness and cokurtosis matrices of the ICs because we do not assume independence.

The out-of-sample performance is reported in Table EC.5. The table shows that ignoring the

higher-moment dependence of ICs helps to improve the out-of-sample performance of the ICMVaR

portfolio. In addition, the turnover of the portfolios estimated considering the IC comoments are

higher, probably due to the estimation error associated with IC comoments, and thus the relative

performance of these portfolios will be worse in practice.

EC.6.6. Value-at-Risk versus modified Value-at-Risk

In the main body of the paper, we compare the performance of the different portfolios in terms

of various criteria including modified VaR (MVaR) and modified Sharpe ratio. In this section, we

study the robustness of our findings to evaluating the portfolio performance using VaR instead of

MVaR, which we estimate via the empirical 1% quantile of portfolio returns.

Table EC.6 reports the out-of-sample MVaR and VaR of the different portfolios. Our proposed

portfolios are the best in terms of MVaR for all three datasets (ICMVaR for 6BTM and 6Prof and

ICMV for 30Ind), but the best portfolio in terms of VaR varies across the three datasets (PCMV

for 6BTM, EWAVP for 6Prof and MVKEW for 30Ind). More importantly, investors are ultimately

concerned about risk-adjusted returns, and thus we also report in Table EC.6 the modified Sharpe

ratio based on MVaR and VaR, defined as the ratio between the portfolio-return mean and either

MVaR or VaR. Our main finding is that our proposed portfolios are the best in terms of modified

Sharpe ratio across the three datasets regardless of whether MVaR or VaR is used to evaluate the

modified Sharpe ratio: ICMVaR is the best for 6BTM and 6Prof and ICMV for 30Ind. These results
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Table EC.6 Comparison of VaR and modified VaR performance criteria.

6BTM dataset
EWAVP EWMV ICMV PCMV EWMVaR ICMVaR MVKEW MVKIC

VaR 2.38% 2.35% 2.36% 2.27% 2.65% 2.59% 2.29% 2.29%
MVaR 5.63% 5.65% 4.33% 5.75% 4.27% 3.84% 6.16% 6.06%
MSR VaR 3.29 3.31 3.60 3.64 3.48 3.67 3.45 3.54
MSR MVaR 1.39 1.38 1.96 1.44 2.16 2.47 1.28 1.34

6Prof dataset
EWAVP EWMV ICMV PCMV EWMVaR ICMVaR MVKEW MVKIC

VaR 2.44% 2.49% 2.49% 2.48% 2.65% 2.56% 2.52% 2.49%
MVaR 5.72% 5.44% 5.53% 6.32% 5.47% 4.88% 6.26% 5.99%
MSR VaR 2.73 2.75 3.27 2.85 3.27 3.54 2.73 3.04
MSR MVaR 1.20 1.24 1.46 1.12 1.58 1.83 1.09 1.27

30Ind dataset
EWAVP EWMV ICMV PCMV EWMVaR ICMVaR MVKEW MVKIC

VaR 2.37% 2.51% 2.54% 2.28% 2.47% 2.43% 2.04% 2.11%
MVaR 7.16% 7.27% 5.11% 5.32% 7.48% 5.97% 6.02% 5.62%
MSR VaR 2.14 1.99 2.37 1.84 2.11 1.91 2.33 2.25
MSR MVaR 0.71 0.69 1.18 0.79 0.70 0.78 0.79 0.85

This table reports, for all portfolio policies, the out-of-sample VaR, modified VaR (MVaR) and modified Sharpe ratio
(MSR) based on either VaR and MVaR for a confidence level α= 1% following the methodology in Section EC.6.6 of this
e-companion. The criteria are in daily terms, and the MSR is multiplied by 100. The shrinkage intensity δ is computed via
10-fold cross-validation, using the modified Sharpe ratio as the calibration criterion. The number of PCs, K, is selected via
the minimum-average-partial-correlation method of Velicer (1976). Bold figures indicate the best strategy for each criterion
and dataset.

confirm that using MVaR for portfolio selection helps to achieve good out-of-sample risk-adjusted

returns whether these are measured in terms of MVaR or VaR. Table EC.6 also shows that MVaR

tends to overestimate VaR, but this is not a concern because the table also shows that using MVaR

leads to estimated portfolios that have good out-of-sample risk-adjusted returns.

EC.6.7. Modified VaR and modified Sharpe ratio for more challenging α’s

In this section, we test whether the ranking of the different portfolios in terms of MVaR and

modified Sharpe ratio for α= 1% in Table 1 in the paper is robust to using a more challenging α

of 0.5% and 0.1%.

The results are reported in Table EC.7. The main conclusion is that considering more challenging

α’s does not change the relative ranking of the portfolio strategies compared to the case α= 1%.

In particular, in terms of MVaR and modified Sharpe ratio, ICMVaR remains the best strategy

for the 6BTM and 6Prof datasets, and ICMV for the 30Ind dataset.
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