
Stock Market and No-Dividend Stocks∗

Adem Atmaz
Krannert School of Management

Purdue University

Suleyman Basak
London Business School

and CEPR

This Version: June 2021

Abstract
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stock market return and aggregate consumption growth rate, a non-monotonic and even a negative
relation between the stock market risk premium and its volatility, and a downward sloping term
structure of equity risk premia. When we quantify these effects, we find them to be economically
significant. We also find that no-dividend stocks command lower mean returns but have higher
return volatilities and higher market betas than comparable dividend-paying stocks, consistently
with empirical evidence. We provide straightforward intuition for all these results and the underlying
economic mechanisms at play.
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1 Introduction

The aggregate stock market contains both dividend-paying and no-dividend stocks.1 Existing
asset pricing models, however, overlook this composition and typically model the stock market
as being made up of only dividend-paying stocks. We provide the first general equilibrium
model of the stock market in which both types of stocks coexist. We uncover such a simple
feature leads to profound implications that support several empirical regularities on the stock
market which leading consumption-based asset pricing models, such as the habit-formation
model (Campbell and Cochrane (1999)), the long-run risk model (Bansal and Yaron (2004)), and
the rare disaster models (Rietz (1988), Barro (2006)) all have difficulty in reconciling. Namely,
i) the low correlation between the stock market return and the aggregate consumption growth
rate (Cochrane and Hansen (1992), Campbell and Cochrane (1999), Albuquerque, Eichenbaum,
Luo, and Rebelo (2016), Heyerdahl-Larsen and Illeditsch (2017)), ii) the mixed evidence on the
relation between the stock market conditional risk premium and volatility, as numerous works
find this relation to be negative (Campbell (1987), Glosten, Jagannathan, and Runkle (1993),
Whitelaw (2000), Harvey (2001), Brandt and Kang (2004)), while many others find it to be
positive (French, Schwert, and Stambaugh (1987), Scruggs (1998), Ghysels, Santa-Clara, and
Valkanov (2005), Bali and Peng (2006), Guo and Whitelaw (2006), Ludvigson and Ng (2007)),
iii) the downward sloping term structure of equity risk premia (van Binsbergen, Brandt, and
Koijen (2012), van Binsbergen and Koijen (2017)).

Why does the stock market composition matter? After all, it should not matter much if
both types of stocks have similar risk-return profiles. Because then the aggregate stock market
behavior would be similar to that of dividend-paying stocks as in standard models. Howe-
ver, much empirical evidence (highlighted below) reveals considerable differences between the
risk-return behavior of dividend-paying and no-dividend stock returns: stocks that pay no divi-
dends have lower risk premia but have higher return volatilities and higher market betas than
comparable stocks that pay dividends. In this paper, we argue that the presence of dividend-
paying stocks along with their risk-return differences from the no-dividend stock returns could
well be (at least partially) behind the somewhat puzzling empirical regularities on the stock

1For example, Hartzmark and Solomon (2013) find that over the long-sample of 1927-2011, the average
proportion of no-dividend stocks is around 35% and accounts for 21.3% of the aggregate US stock market
capitalization. Similarly, by taking into account of rising share repurchase programs since the mid-1980ies,
Boudoukh et al. (2007) report that over the 1984-2003 period, the average proportion of no-dividend stocks is 64%
and no-payout stocks, i.e., no dividends or no share repurchases, is 51% with the relative market capitalizations
of 16.4% and 14.2%, respectively. See Section 6 for further discussion on firms’ payout policy in the data.
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market discussed above. Towards that, we develop a model of the aggregate stock market featu-
ring both dividend-paying and no-dividend stocks within a familiar consumption-based general
equilibrium framework. In addition to supporting all of the empirical evidence above on the
aggregate stock market, the model also supports the evidence on the cross-sectional differences
between the typical dividend-paying and no-dividend stock returns, and provides simple intui-
tion for the underlying economic mechanisms at play. We obtain closed-form solutions for all
quantities of interest. On the other hand, our simple framework does not generate a sufficiently
rich stochastic discount factor, limiting its ability to quantitatively match the stock market
moments that the leading consumption-based asset pricing models (listed earlier) can do.

Our stock market model is based on recognizing that, differently from dividend-paying stocks,
there are several noteworthy features of no-dividend stocks investors would need to take into
account while determining their prices. First, the absence of their current dividends introduces
information incompleteness, and hence necessities the estimation of their eventual future divi-
dends using other relevant fundamental information. Second, the absence of their dividends also
leads to additional uncertainty about their future dividend payment periods. Third, no-dividend
stocks do not contribute directly to aggregate consumption, and hence to the stochastic discount
factor. We accordingly adopt a standard, workhorse, infinite-horizon, dynamic pure-exchange
economy in which the stock market contains both dividend-paying and no-dividend stocks at
all times, as in reality. We achieve a stationary setting by considering standard dividend stocks
that pay dividends at all times, and additionally two other types of stocks that pay dividends
in alternating random periods that are governed by a Poisson process. In the absence of its
dividends, we employ standard Bayesian filtering theory to estimate the future dividend dis-
tribution of the no-dividend stock using other relevant fundamental information and obtain an
estimated pseudo-dividend process. This necessary filtering process induces additional variation
in the estimated pseudo-dividend by making it more volatile than the corresponding underlying
process, which would have been used under complete information. To better illustrate these
features and our intuition, our multi-stock model is deliberately simple and parsimonious in
the sense that there is a single investor with standard constant relative risk aversion (CRRA)
preferences and the aggregate consumption growth rate has a constant mean and volatility.

Our model generates rich equilibrium implications. We first show that while a dividend-
paying stock price is driven by its dividend, a no-dividend stock price is driven by its estimated
pseudo-dividend in the absence of its dividends. Moreover, the presence of no-dividend stocks
generates a novel spillover effect in that the expected future dividend payment times of no-
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dividend stocks affect the prices of all stocks, including the stocks that pay dividends at all
times. This is because the expected dividend payment times are also when the stochastic
discount factor shocks are anticipated to change, and what portion of the future dividends are
expected to be discounted under which stochastic discount factor matters for all stock prices.

We then demonstrate that the presence of no-dividend stocks in the stock market leads to a
lower correlation between the stock market return and the aggregate consumption growth rate.
This occurs because the stock market consists of stocks that currently do not pay dividends
and hence do not contribute to the current aggregate consumption while contributing to the
fluctuations in the stock market returns. When we quantify this effect in our model, we see
that its magnitude can be economically large. In particular, if we set the no-dividend relative
stock size in our model to equal to the long-run average of the no-dividend relative stock size
in the US data during 1927-2011 as reported by Hartzmark and Solomon (2013), 21.3%, this
correlation is 0.53. When we set it to the average relative size of the no-payout stocks (no
dividends or no share repurchases) during 1984-2003 in the US as reported by Boudoukh et al.
(2007), 14.2%, this correlation is 0.75. In contrast, this correlation is typically close to one in
leading asset pricing models. Our result then illustrates that the presence of no-dividend stocks
can help explain a meaningful fraction of the relatively low correlation documented by empirical
works, as highlighted earlier.

To study the relation between the stock market conditional risk premium and volatility, we
first look at the price dynamics of the individual stocks that make up the stock market. We
show that the risk premium of a no-dividend stock is lower than that of an otherwise identical
dividend-paying stock. This is because in the absence of its dividends a no-dividend stock price
is driven by its estimated pseudo-dividend, which does not contribute directly to aggregate con-
sumption and hence comoves less with it as compared to a dividend-paying stock. Therefore
the investor requires a lower risk premium to hold a no-dividend stock in equilibrium, since in
our model, as also in standard consumption-based models, a stock risk premia is proportional
to the covariance of its returns with the aggregate consumption growth rate. This result is
consistent with much cross-sectional empirical evidence, which documents that stocks that pay
no dividends (or no payouts including share repurchases) have lower average returns than com-
parable dividend-paying stocks (Christie (1990), Naranjo, Nimalendran, and Ryngaert (1998),
Fuller and Goldstein (2011), Hartzmark and Solomon (2013)).

We next demonstrate that a no-dividend stock commanding a lower risk premium does not
necessarily imply that its returns are less volatile or it has a lower market beta than a compa-
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rable dividend stock. On the contrary, we show that a no-dividend stock has a more volatile
return and a higher market beta than a comparable dividend-paying stock. This is due to a
no-dividend stock price being driven by its estimated pseudo-dividend, and the estimation pro-
cess, necessitated by the absence of dividends, inducing additional variability. This additional
variation in a no-dividend stock return also makes its return contribute to and comove with
the aggregate stock market return more than a comparable dividend-paying stock, leading to a
higher market beta for it. These results are also consistent with the cross-sectional empirical
evidence, which documents that stocks that pay no dividends have higher return volatility (Na-
ranjo, Nimalendran, and Ryngaert (1998), Pástor and Veronesi (2003), Hartzmark and Solomon
(2013)), and higher market beta (Boudoukh, Michaely, Richardson, and Roberts (2007), Fuller
and Goldstein (2011)) than comparable stocks that pay dividends. We also offer an alternative
interpretation of the no-dividend (dividend) stocks in our model as the growth (value) stocks.
This is because a typical growth stock is one with a low fundamental to price ratio while also
sharing the three key features of no-dividend stocks in our model. With this interpretation,
our findings are also consistent with the documented empirical regularities for growth and va-
lue stocks, since growth stocks have lower mean returns, higher return volatilities, and higher
market betas than value stocks (e.g., Lettau and Wachter (2007)).

We then show that the presence of no-dividend stocks in the stock market leads to a non-
monotonic and even a negative relation between the conditional risk premium and volatility of
the stock market. This is because the stock market risk premium is a weighted-average of the risk
premia of stocks that make up the stock market. With no-dividend stocks, which command low
risk premia but high volatility, being part of the stock market, the stock market risk premium
is non-monotonically related to, and in particular, is decreasing in its volatility for sufficiently
high relative-size of the no-dividend stocks. This result sheds light on the decidedly mixed
vast empirical findings on this relation, referred to as also “the risk-return tradeoff” (discussed
earlier). Indeed, our result is in line with the empirical findings of Rossi and Timmermann
(2010), who find a non-monotonic relation between the conditional risk premium and volatility
by showing a positive relation for low and medium levels of volatility and a negative relation
for high levels of volatility, and hence argue that the lack of consensus in the earlier empirical
literature may be due to this non-monotonic relation.

Finally, we demonstrate that the presence of no-dividend stocks in the stock market can lead
to a downward sloping term structure of the stock market equity risk premia by showing that
short-term assets, claims to short-term aggregate dividends, tend to command a higher mean
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return than the stock market. This is because a short-term asset is more like a dividend stock
since the no-dividend stocks begin paying out dividends only after some time (which may even
be after the short-term asset maturity). Since the mean return of a dividend stock is higher than
that of a comparable no-dividend stock, this leads to a higher mean return for the short-term
asset as compared to the stock market, supporting the empirical evidence discussed earlier.

In summary, our model generates the following new testable predictions for the aggregate
stock market returns, which are not in the existing literature. The higher the relative market
capitalization of the no-dividend stocks in the stock market, (i) the lower the correlation between
the stock market return and the aggregate consumption growth rate, (ii) the more likely the
relation between the conditional risk premium and volatility of the stock market return to be
negative, (iii) the more likely the term structure of equity risk premia to be downward sloping
(i.e., the short-term asset has a higher mean return than the stock market). When we quantify
these effects in our model, we find them to be economically significant.

Our work is related to the literature on the correlation between the stock market return
and the aggregate consumption growth rate. As discussed earlier, this correlation appears to
be weak in the data and leading consumption-based asset pricing models all have difficulty in
reconciling this evidence. Hence, this finding is sometimes referred to as the “low correlation
puzzle,” and even pointed out by behavioral theories as one of the main shortcomings of the
consumption-based asset pricing framework (e.g., Barberis, Huang, and Santos (2001)). Re-
cently, Albuquerque, Eichenbaum, Luo, and Rebelo (2016) and Heyerdahl-Larsen and Illeditsch
(2017) develop consumption-based models with a single stock and demand shocks that arise
from the time variation in investors’ rate of time preference to reconcile this finding. Our re-
sult here complements these works by offering an alternative, simple, but yet novel, possible
explanation for this apparent low correlation. A similar low correlation may also arise in models
where the aggregate consumption is partially funded by labor income, such as that in Santos
and Veronesi (2006). Our result here demonstrates that in addition to labor income, the relative
size of no-dividend stocks also matters for this correlation.

Our paper is also related to the vast literature studying the relation between the conditional
risk premium and volatility of the stock market. As discussed earlier, numerous works empiri-
cally study this relation, but the conclusions on the sign of the relation are mixed. On the theory
side, a number of works, using a single-stock setup, demonstrate that a non-monotonic relation
can arise in equilibrium if there is time-variation in state variables or investment opportunities
(Abel (1988), Backus and Gregory (1993), Veronesi (2000), Whitelaw (2000)). Our contribution
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here is to illustrate that a non-monotonic relation can arise in equilibrium for an alternative,
simple reason. The stock market also consists of no-dividend stocks that have relatively low
mean returns but high return volatility.

Our analysis is also related to the recently growing literature on the shape of the term
structure of equity risk premia. As discussed earlier, this term structure appears to be downward
sloping, which is considered somewhat puzzling since it goes against the implications of numerous
leading asset pricing models. Indeed, van Binsbergen, Brandt, and Koijen show that the term
structure of equity risk premia is upward sloping in the habit-formation model of Campbell and
Cochrane (1999) and the long-run risk model of Bansal and Yaron (2004), and it is flat in the
rare disaster model of Gabaix (2012). Several recent theoretical works reconcile this finding by
generating a downward sloping term structure of equity risk premia via alternative mechanisms
(Belo, Collin-Dufresne, and Goldstein (2015), Croce, Lettau, and Ludvigson (2015), Hasler and
Marfè (2016)). We complement this literature by demonstrating that a downward sloping term
structure can easily arise when the stock market consists of stocks that do not pay dividends.

Related works that study no-dividend stocks from an asset pricing perspective are Pástor and
Veronesi (2003) and Choi et al. (2013). Our methodology and modeling of no-dividend stocks
differ considerably from both these works, and hence do many of our results, even though each
paper contains one result similar to one of our main cross-sectional results. In particular, Pástor
and Veronesi study the effects of parameter uncertainty about a firm’s average profitability and
primarily focus on its market-to-book ratio, and find that firms that pay no dividends have
more volatile returns due to learning effects, a finding similar to ours. However, differently
from our setting, their framework is a partial equilibrium one in which the stochastic discount
factor is specified exogenously (hence whether a firm pays dividends or not has no effect on
it). Moreover, it is not possible to consider the aggregate stock market consisting of both the
dividend-paying and no-dividend stocks as in our model. Therefore, in their framework, it is not
possible to obtain our key implications on the aggregate stock market nor our cross-sectional
implications for the stock price spillovers, stock mean returns, and market beta. On the other
hand, Choi et al. consider a production economy in which managers choose the firm payout
policy while facing non-convex costs in adjusting dividends and investments. They solve their
model numerically and show that firms with a low probability of paying dividends in the near
term command risk premia close to zero, a result similar to our finding that the no-dividend
stock mean return is lower than that of a dividend-paying stock. Even though our framework
differs from theirs in several major aspects, one key difference is that we explore the information
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incompleteness necessitated by the absence of dividends and show how it leads to higher return
volatility and market betas for no-dividend stocks, as well as providing implications of these for
the aggregate stock market returns.

The corporate finance literature, on the other hand, primarily focuses on the optimality of
firms’ dividend policies. In this literature, there are various theories as to why some firms do not
pay dividends, including the roles of taxes, life-cycle of firms, catering to investor demands, and
asymmetric information (e.g., signaling and agency problems) (see Allen and Michaely (2002)).
Given these potential reasons are mutually exclusive, in our model, we intentionally do not
specify why stocks pay or do not pay dividends so that we do not commit to one particular
reason while ignoring others. In that sense, our model does not determine endogenously why
firms pay or do not pay dividends. However, in return, it generates rich general equilibrium
implications arising from the presence of no-dividend stocks in the stock market.

The remainder of the paper is organized as follows. Section 2 presents our model of the
stock market that features both dividend-paying and no-dividend stocks. Section 3 provides
our results on the correlation of the stock market with aggregate consumption, while Section
4 on the stock market risk premium-volatility relation, and Section 5 on the term structure of
equity risk premia. Section 6 provides a discussion of the model parameter values employed in
our figures and quantitative statements. Section 7 concludes. Appendix A contains the proofs,
while Appendix B discusses the effects of differences in firm characteristics.

2 Stock Market with No-Dividend Stocks

In this section, we present our model of the aggregate stock market, consisting of dividend-paying
and no-dividend stocks. Our model is based on recognizing that, differently from dividend-
paying stocks, there are several noteworthy features of no-dividend stocks investors would need
to take into account while determining their prices. First, the absence of their dividends intro-
duces information incompleteness, and hence necessities the estimation of their future dividends
using other relevant fundamental information. Second, the absence of their dividends also le-
ads to additional uncertainty about their future dividend payment periods. Third, no-dividend
stocks do not contribute directly to aggregate consumption, and hence to the stochastic discount
factor. Since no-dividend stocks are part of the aggregate stock market, these features turn out
to have important implications for the stock market returns, as we demonstrate in subsequent
sections. In the following, we provide the details of our model with the above features.
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2.1 Securities Market

The economy is cast in a stationary setting in the sense that there are dividend-paying and
no-dividend stocks at all times as in reality, and our implications are not transitory and hold in
all periods of the economy. The stationary structure admits much tractability in the analysis
and is achieved by considering a stock market that contains the standard type of stocks that pay
dividends throughout and also two other types of stocks that pay dividends in an alternating
manner.2

In particular, we consider a continuous-time pure-exchange economy with infinite horizon,
denoted by T = [0,∞). We model the stock market as consisting of three types of risky stocks,
each type being in positive net supply of one unit. The first type pays out dividends D1t at all
times t ∈ T with dynamics

dD1t
D1t

= µ1dt+ σ1dω1t, (1)

where µ1 and σ1 are constants representing the mean and volatility of the stock dividend growth
rate, and ω1 is a Brownian motion. The second and third stock types pay out dividends D2 and
D3, respectively, in alternating periods that are some non-overlapping random subperiods of T ,
with dynamics

dD2t
D2t

= µ2dt+ σ2dω2t, (2)
dD3t
D3t

= µ3dt+ σ3dω3t, (3)

where µi and σi, i = 2, 3, are constants representing the mean and volatility of the dividend
growth rates. All Brownian motions ωi have a common pairwise correlation among them
dω1tdω2t = dω1tdω3t = dω2tdω3t = ρdt, with the correlation coefficient ρ ∈ (−1, 1).3

The alternating periods are governed by the arrival times 0 < τ1 < τ2 < . . ., of the independent
Poisson process Nt with intensity λ. Without loss of generality, we assume that stock 2 pays
dividends during the random periods [τn, τn+1) where n is an odd number and denote its set

2Alternatively, one could consider a setting where there is just one standard type of stock that pays dividends
throughout and one no-dividend stock. However, since the no-dividend stock eventually needs to pay dividends
at some point in the future to have a non-zero current price, this would imply a non-stationary structure for
this alternative setting. That is, in some periods all stocks would pay dividends with the model implications of
no-dividend stocks not holding for these periods of the economy.

3For generality and realism, we allow the dividend processes to be possibly correlated. However, all our main
results and mechanisms are equally valid when this correlation is zero, as demonstrated in Propositions 1–6.
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of dividend-paying odd-numbered periods by To ≡ [τ1, τ2) ∪ [τ3, τ4) ∪ . . .. Similarly, stock 3 pays
dividends during [τn, τn+1) where n is an even number and its set of dividend-paying even-
numbered periods is denoted by Te ≡ [0, τ1) ∪ [τ2, τ3) ∪ . . .. We refer to stock i that is currently
not paying dividends, where i = 2 in Te and i = 3 in To, as the no-dividend stock and the
unobservable processes Di with dynamics (2) or (3) during these periods as pseudo-dividends.
We note that since To ∪Te = T and To ∩Te = ∅, at any given time t ∈ T , there is one no-dividend
stock and two dividend (paying) stocks in our model, leading to a stationary dividend-payment
structure. Moreover, this way, in our model and as in reality, the no-dividend stock only
accumulates capital gains/losses as opposed to a dividend stock that also delivers a dividend
yield.4 The individual stock prices Si, i = 1, 2, 3, and hence the stock market level St =

∑3
i=1 Sit,

are to be determined endogenously in equilibrium. Also available for trading is a riskless bond
that is in zero net supply.

Remark 1 (Non-random dividend periods). In our specification, the investor does not
know when exactly the current no-dividend stock starts paying dividends and how long each
dividend period is since the alternating periods are determined by the arrival times of a Poisson
process. In particular, during any period [τn, τn+1) the investor views the next arrival time τn+1

as an independent random variable with an exponential distribution. Moreover, due to the
well-known memoryless property of the exponential distribution, the dividend alternating time
becomes time independent, which in turn leads to stationary, constant discount terms for the
stock prices as we discuss in Section 3. That being said, we note that all our main results
continue to hold in an alternative specification in which the dividend alternating times τn are
non-random known constants. However, in this case, we lose the stationary property as the
discount terms for the stock prices would depend on time.

2.2 Absence of Dividends, Incomplete Information and Learning

In the stock market, the absence of dividends on the no-dividend stocks introduces information
incompleteness while estimating the distribution of their future dividends, an issue that does
not exist for dividend stocks.5 This necessities using other relevant observable (albeit noisier)

4Furthermore, the no-dividend stock in our model can also be mapped into a real world stock that can be
distinguished in the data as the “currently non-dividend paying stock that paid dividends previously” as in Fama
and French (2001). Similarly, the alternating dividend stock can be distinguished in the data as the “currently
dividend-paying stock that did not pay dividends in the previous period”.

5To see this note that the dividend level of a no-dividend stock, say stock 2, at a future time u when paying
dividends can be written as lnD2u = lnD2t + (µ2− 1

2σ
2
2) (u− t) +σ2(ω2u−ω2t). Hence while forming a rational
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information for estimating the no-dividend stock’s future dividends. Towards that, we consider
fundamental news processes Fi, i = 1, 2, 3, that contain valuable information about the future
dividends of each stock.6 Since the no-dividend stock could in principle start paying dividends
very far in the future and the fundamental news process needs to contain valuable information
about those dividends, we assume a long-run dependency between Di and Fi by imposing simple
mean-reverting (stationary) dynamics for their logarithmic difference as follows

d (lnF it − lnDit) = κi [ζi − (lnF it − lnDit)] dt+ νidω
∗
it, (4)

where κi > 0, ζi, and νi are constants representing the mean-reversion, long-run mean, and
the volatility of lnF it − lnDit, respectively, and ω∗i is a Brownian motion independent from all
other Brownian motions introduced earlier. In economic terms, the long-run dependency (the
cointegration between lnF it and lnDit) is equivalent to assuming neither the fundamental news
process Fi nor the dividend Di grow to be infinitely larger than the other in the long-run.7

Note that the dynamics of the fundamental news process Fi itself is readily deduced from the
dynamics (1)–(4) as

d lnF it = (µi − 1
2σ

2
i + κiζi + κi lnDit − κi lnF it)dt+ σidωit + νidω

∗
it. (5)

As (5) reveals, the mean growth rate of the observable fundamental news process Fi contains
information about the unobserved pseudo-dividend Di during the period stock i does not pay
dividends.

We employ the standard Bayesian filtering theory to estimate the unobserved pseudo-dividend

estimate of future dividends, in addition to the known parameters µ2 and σ2, the investor needs to know the
current level D2t, which is not available currently. The future estimates of D2 are then used in the determination
of the stock price in equilibrium via S2t = Et

[∫∞
t
ξt,uD2u1u∈To

du
]
, where ξt,u is the stochastic discount factor.

6For simplicity, we assume there is only one fundamental news process for each stock as this is sufficient for
our purposes. In reality, there are numerous financial and accounting news series, such as cash-flows and earnings
news/announcements, which contain valuable information about a stock’s future prospects in the absence of its
dividends. Such series would be good candidates for our fundamental news processes. Moreover, for symmetry,
the fundamental news process is assumed to exist irrespective of whether the stock currently pays dividends or
not. However, since there is no information incompleteness about the first stock’s future dividend distribution
at all times, the information contained in the fundamental news F1 is redundant in our analysis.

7For instance, in the simpler special case of ζi = 0, the expected long-term (logarithmic) fundamental news
gives the expected long-term (logarithmic) dividend, that is, limu→∞ Et [lnF iu] = limu→∞ Et [lnDiu]. In general,
the long-term relation between the growth rates of the fundamental news process Fi and the dividend Di in our
model is in line with the behavior of the steady-state of the Gordon growth model in which dividends, earnings,
and book equities all grow at the same rate under the so-called clean-surplus accounting (Campbell (2017, p.
131)).
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Di during the period stock i does not pay dividends (i = 2 in Te, i = 3 in To). At the be-
ginning of a no-dividend period [τn, τn+1), the prior distribution of the (logarithmic) pseudo-
dividend is assumed to be normally distributed with mean ̂lnDiτn = limt→τn lnDit, i.e., the last
available observation of lnDit, and variance Viτn .8 The Bayesian updating rule then implies
that for any t ∈ [τn, τn+1), the time-t posterior distribution conditional on the information set
Git = σ {(D1s, Djs, Fis) : τn ≤ s ≤ t}, where j = 2, 3 and j 6= i, is also normally distributed as
presented in the following Lemma 1. The Bayesian estimation for stock i ends once the next
dividend alternating time τn+1 arrives as its dividends become observable (estimation begins
again with the above features when τn+2 arrives, and so on).

Lemma 1. During the random period [τn, τn+1), in which stock i, i = 2, 3, is the no-dividend
stock, let the prior of the (logarithmic) pseudo-dividend lnDi at time τn be normally distributed
with mean ̂lnDiτn and variance Viτn. Then the posterior of lnDi during this period t ∈ [τn, τn+1),
conditional on the information Git = σ {(D1s, Djs, Fis) : τn ≤ s ≤ t}, where j = 2, 3 and j 6= i, is
also normally distributed with mean ̂lnDit and variance Vit such that the mean estimate of the
pseudo-dividend D̂it = E [Dit|Git] = exp( ̂lnDit + 1

2Vit), henceforth the estimated pseudo-dividend,
satisfies the dynamics

dD̂it

D̂it

= µidt+ ρσi
1 + ρ

dω1t + ρσi
1 + ρ

dωjt + (1 + ρ)
(
σ2
i + κiVit

)
− 2ρ2σ2

i√
(1 + ρ)2 (σ2

i + ν2
i

)
− 2 (1 + ρ) ρ2σ2

i

dω̂it, (6)

dVit = −
[ (

(1 + ρ)
(
σ2
i + κiVit

)
− 2ρ2σ2

i

)2

(1 + ρ)2 (σ2
i + ν2

i

)
− 2 (1 + ρ) ρ2σ2

i

−
(
1− 2ρ2

1 + ρ

)
σ2
i

]
dt, (7)

where ω̂i is a Git-Brownian motion independent of the other Brownian motions ω1 and ωj, where
j = 2, 3 and j 6= i.

The posterior variance Vit of the no-dividend stock (stock 2 during Te, stock 3 during To),
is deterministic and converges to its constant non-zero steady-state value, denoted by Vi∞,
in the long-run (see (A.8) in Appendix A). To ensure that learning is optimal in the sense

8We note that, unlike the prior mean, we cannot set the prior variance to its limiting value that would
have been zero, leading to zero posterior variance and dogmatic beliefs (no Bayesian learning). To ensure that
the investor behaves in a rational way and does not discard valuable information when faced with information
incompleteness in the absence of dividends, we set the prior variance to a positive value. Moreover, to also ensure
stationarity, for all periods, we set the same positive common value for the prior variance Viτn

. That being said,
we note that our main results do not depend critically on the latter specification and our results continue to
hold if alternatively we set the prior variance for each period differently (e.g., decreasing over time). Though, in
this case, we would lose the stationary structure of our framework.
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that it leads to more precise estimates over time, we set the exogenous prior variance to be
greater than the steady-state posterior variance, that is, Viτn > Vi∞. One notable implication
of Lemma 1 is that the estimation, necessitated by the absence of dividends, induces additional
variability in the estimated pseudo-dividend D̂i dynamics (6), making it more volatile than
the underlying pseudo-dividend Di (see also (A.10)–(A.11) in Appendix A). This is because
there is an additional uncertainty about the mean estimate of the pseudo-dividend D̂i captured
by the posterior variance Vit, which would not be present had the dividends been observable.
This additional uncertainty amplifies the shocks to the fundamental news process during the
estimation and leads to a more volatile estimate of the pseudo-dividend.

The steady-state posterior variance being less than the prior variance and the estimation
leading to a more volatile process not only make sense economically, but is also present in
the models of learning about a constant parameter, say the expected dividend growth rate
µi. In these models, the posterior variance declines over time and converges to zero in the
steady-state since the investor eventually learns about the true parameter value (e.g., Brennan
(1998), Pástor and Veronesi (2003), Cvitanić, Lazrak, Martellini, and Zapatero (2006), Collin-
Dufresne, Johannes, and Lochstoer (2016)). However, differently from these models of parameter
uncertainty, in our setting the investor learns about a non-stationary stochastic process, Di, and
moreover stops learning at a (random) time τn+1 once the dividends become observable, since
this leads to complete information.9 Nevertheless, our model implications would go through
under parameter uncertainty if alternatively we were to assume that the investors can observe
the dividend levels Di but not their expected growth rates µi. However, we believe it would be
hard to justify the assumption of observable dividends for no-dividend stocks, which is our main
focus. Moreover, since the posterior mean, i.e., the estimated expected growth rate, is typically
time-varying in the case of parameter uncertainty, we would lose the simple Gordon-growth
model like stock price structures of Proposition 1 in Section 3.

Remark 2 (Alternative fundamental news process). We specify the fundamental news
process (5) so that there is a long-run dependency between between Di and Fi for the economic
reasons discussed above. However, this specification is not necessary for our mechanism and
results, which also obtain under an alternative familiar, but somewhat less plausible in our

9Note that our learning is also different from the models in which the investor learns about a stationary
process, e.g., an Ornstein-Uhlenbeck process, that results with smoother estimated processes (e.g., Brennan and
Xia (2001), Scheinkman and Xiong (2003), Dumas, Kurshev, and Uppal (2009), Xiong and Yan (2010)).
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setting, specification of fundamental news that takes the form of a “signal plus noise” process

d lnF it = lnDitdt+ νidω
∗
it. (8)

This is because, under this alternative formulation, the investor again uses noisier information
when estimating the distribution of future dividends, and this procedure induces additional
variability in the estimated pseudo-dividend for the same reasons as discussed above. Therefore
all our subsequent results remain valid with this specification. We provide the details of the
analysis with this alternative formulation in Appendix A.

2.3 Preferences and Endowments

There is a single investor in the economy who chooses a non-negative consumption C and a
portfolio strategy in the three risky stocks that make up the stock market and the riskless bond
so as to maximize her CRRA preferences from intertemporal consumption

u(Ct, t) = e−βt
C1−γ
t

1− γ , (9)

where β is her rate of time preference, γ is the constant relative risk-aversion coefficient, subject
to the appropriate budget constraint. The investor is endowed with all the wealth in the eco-
nomy, which is a claim against the exogenously specified aggregate consumption (endowment)
Y with dynamics at all times t ∈ T given by

dYt
Yt

= µY dt+
∑
k

αk

(
dDkt

Dkt
− µkdt

)
, (10)

where µY =
∑
k αkµk with the summation without a superscript (throughout the paper), ∑k,

indicates that the summation is taken only over the stocks that currently pay dividends, and αk
are the appropriate constants representing the sensitivities of the aggregate consumption growth
rate to each dividend shock. Economically these sensitivities can be thought of as the average
relative share of dividends in the aggregate consumption (see also Remark 3).

As (10) illustrates, the fluctuations in aggregate consumption are driven by current dividend
shocks. In particular, during the odd-numbered periods To, a positive (negative) shock to
any dividend D1 or D2 increases (decreases) the aggregate consumption. The magnitude of the
increase/decrease is determined by the sensitivity parameters, α1 and α2, respectively. Similarly,
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during the even-numbered periods Te, shocks in aggregate consumption only arise from the
shocks to dividends D1 and D3 with the sensitivity parameters, α1 and α3, respectively. In
sum, we can rewrite the aggregate consumption dynamics explicitly in terms of the constant
sensitivities and the dividend dynamics (1)–(3) as

dYt
Yt

=

(α1µ1 + α2µ2)dt+ α1σ1dω1t + α2σ2dω2t, t ∈ To,

(α1µ1 + α3µ3)dt+ α1σ1dω1t + α3σ3dω3t, t ∈ Te.
(11)

We see that the aggregate consumption growth rate in (11) has the same constant mean and
volatility for all times t ∈ T when the second and third stocks are otherwise identical, namely
µ2 = µ3, σ2 = σ3, α2 = α3. We adopt this natural specification along with identical relative stock
sizes, S2t/St = S3t/St, for our comparative statistics results throughout.

We note that in our specification the aggregate consumption Yt does not necessarily coi-
ncide with the aggregate dividends paid out by the stock market, which is D1t + D2t during
To and D1t + D3t during Te, where their difference can be thought of as the investor’s implicit
non-financial income (such as labor and government transfers). This specification is not only
consistent with the data, since the aggregate dividend is only a fraction of the aggregate con-
sumption (Santos and Veronesi (2006)), but is also present in numerous asset pricing models,
including Campbell and Cochrane (1999), Brennan and Xia (2001), Bansal and Yaron (2004),
Barberis, Greenwood, Jin, and Shleifer (2015). As a final note, we sometimes make comparisons
with a comparable benchmark economy in which all three stocks pay dividends with dynamics
(1)–(3). In what follows, we denote the benchmark economy quantities with an upper bar
(¯). Following (10), the aggregate consumption dynamics in this benchmark economy becomes
dYt/Yt =

∑3
i=1 ᾱiµidt+

∑3
i=1 ᾱiσidωit, at all times. To make the benchmark economy comparable

to our economy, we equate the sum of the sensitivities across economies, ∑3
i=1 ᾱi =

∑
k αk, along

with the sensitivity parameter for the first stock, ᾱ1 = α1, since this stock has an identical role
across both economies.10

Remark 3 (Stock dividends, output, and aggregate consumption). Our specification of
the aggregate consumption dynamics is in the spirit of Lucas (1978), in which stocks are claims
to the trees whose output (dividends) are perishable and must be consumed in that period. This
way if a stock currently does not pay dividends, it does not contribute to the current aggregate

10By doing so, we capture the feature that the sensitivity of the aggregate consumption growth rate to the
aggregate dividend is the same both in our main economy and the benchmark economy. Moreover, this way we
also ensure that when the mean dividend growth rates are the same, µ1 = µ2 = µ3, the aggregate consumption
mean growth rate remains the same across economies.
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consumption. We capture this economic mechanism, which is key to our analysis, in a tractable
way through the constant sensitivities, which in turn lead to constant mean and volatility of
the aggregate consumption growth rate in our economy, as (11) illustrates. This simplifies the
analysis leading to the stock prices being as in the Gordon growth model in the comparable
benchmark economy, as discussed in Section 3.

In our model, the aggregate consumption growth rate (10) is i.i.d. since it loads on two i.i.d.
dividend growth rates with constant weights αk. This is in contrast to the somewhat similar
“two-trees” model of Cochrane, Longstaff, and Santa-Clara (2007), in which the aggregate
consumption growth rate is non-i.i.d. since it loads on two i.i.d. dividend growth rates with
time-varying weights being equal to the relative shares of two dividends. This specification
can generate additional aggregate consumption dynamics but it also leads to an analytically
intractable equilibrium and possibly a non-stationarity one in the long-run since one tree can
dominate in the limit. On the other hand, by assuming constant weights (sensitivities), our
setting does not account for the effects of time-variation in the relative shares of dividends in
aggregate consumption. However, it in turn ensures much tractability and leads to a stationary
consumption process over time. Moreover, one may be tempted to deduce that the no-dividend
stock in our model can also be thought of as the limiting case of a low-dividend paying stock in
the two-tree model. This is, however, not correct since in the two-tree model no matter how small
the dividend is, it still provides a valuable signal and there is no information incompleteness.

3 Stock Market Correlation with Consumption

In this section, we investigate how the presence of no-dividend stocks in the stock market affects
the correlation of the stock market with the aggregate consumption in equilibrium. We first
demonstrate that their presence generates a novel spillover effect in that the expected dividend
payment period affects the prices of all stocks. We then show that their presence leads to a
lower correlation between the stock market return and the aggregate consumption growth rate,
consistent with the well-known empirical regularity.

Equilibrium in our economy is defined in a standard way. The economy is said to be in
equilibrium if the equilibrium consumption, portfolio strategy, stock and bond prices are such
that the investor chooses her optimal consumption and portfolio strategy, and the good, stocks
and bond markets clear. One major difficulty obtaining the equilibrium stock prices in our model
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is that the stochastic discount factor shocks alternate countably infinite times at the random
arrival times of the Poisson process Nt. We solve for the equilibrium stock prices by considering
the countably finite case and then taking the limit. While doing so we also make use of the
stationary increments property of Poisson processes, which leads to a recursive relationship
among each random period’s contribution to the stock price. The tractability of our model
leads to closed-form solutions for all economic quantities, as presented in our Propositions.

Proposition 1 presents the equilibrium stock prices.11 In what follows, the stock mean
returns ri, i = 1, 2, 3, are defined as Et [(dSit +Ditdt)/Sitdt] for dividend stocks (i.e., i = 1, 3 in Te,
i = 1, 2 in To) and Et [dSit/Sitdt] for no-dividend stocks (i.e., i = 2 in Te, i = 3 in To).

Proposition 1 (Equilibrium stock prices). The equilibrium stock market level and individual
stock prices i = 1, 2, 3, in the benchmark economy with all dividend stocks are given by

S̄t =
3∑
i=1

S̄it, (12)

S̄it = 1
r̄i − µi

Dit, (13)

and in the economy with no-dividend stocks by

St =
3∑
i=1

Sit, (14)

Sit =


(r̃i−µi+λ)+λ1i=1

(ri−µi+λ)(r̃i−µi+λ)−λ2Dit for a dividend stock,
λ

(ri−µi+λ)(r̃i−µi+λ)−λ2 D̂it for a no-dividend stock,
(15)

where the estimated pseudo-dividend D̂it is as in Lemma 1, and the equilibrium mean returns of
the individual stocks r̄i and ri are provided in Proposition 3 with r̃i denoting the mean returns
in the other alternating period.

In the benchmark economy in which all stocks in the stock market pay dividends, each
individual equilibrium stock price is driven by its current dividends Dit, as in standard asset
pricing models. In our setup, these prices follow the simple Gordon growth model with the
constant discount terms given by the stock mean returns net of dividend growth rates. In
our economy in which there are stocks that do not pay dividends, the individual equilibrium

11The usual parameter restrictions that are necessary to ensure that the stock prices are well defined and finite
in our model are provided in the proof of Proposition 1 in Appendix A.
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stock prices still have simple structures, though differ in two major ways. First, while the
prices of dividend-paying stocks are still driven by their current dividends Dit, the price of a no-
dividend stock is now driven by its estimated pseudo-dividend D̂it in the absence of its dividends.
Second, all individual stock prices now have additional terms adjusting for the changes in the
equilibrium stochastic discount factor shocks at the random dividend alternating times governed
by the arrival times τn of the Poisson process Nt with intensity λ. Naturally, these differences in
individual stock prices are reflected in the stock market level as it is the sum of the individual
stock prices.

The new additional terms in our economy reveal that the no-dividend stock’s expected
dividend payment times that are determined by λ not only affects its own price but also spills over
to all other stock prices including the first stock that pays dividends at all times. This is because
the expected dividend payment times are also the times when the aggregate consumption, and
hence the stochastic discount factor, shocks are anticipated to change. Since stock prices are the
total expected discounted future dividends, what portion of the future dividends are expected
to be discounted under the odd-numbered period To and even-numbered period Te stochastic
discount factors matters for their prices. This spillover effect is noteworthy since it is not
present in the benchmark economy, in which each stock pays dividends at all times and its
price depends only on its own parameters, apart from the obvious indirect dependence through
its endogenous equilibrium mean return (Proposition 3). Moreover, even though a no-dividend
stock’s expected dividend payment times spilling over to the other stock prices is due to a
simple economic mechanism, to the best of our knowledge this is a novel result and has not
been demonstrated previously in the literature.12

Proposition 1 also reveals that at the random dividend alternating times τn there are discrete
changes in stock prices following the changes in price structures when moving from an odd-
numbered period To to an even-numbered period Te, and vice versa, as equations (15) reveal. In
particular, at each point in time the expected discrete change for an individual stock i is λ∆idt

12At this point, we believe it is helpful to highlight that Proposition 1 does not necessarily imply that one
individual stock price is higher than the other. In particular, for suitable parameter choices of the dividend
processes (1)–(3), any equilibrium price ratio, Sit/Dit or Sit/D̂it, can be greater, less, or equal to another.
Indeed, it is straightforward to show that there exist a unique mean growth rate µ∗i > µj as a function of λ
such that the no-dividend stock i and the alternating dividend stock j have the same price ratios. This also
illustrates that our model does not necessarily contradict the classic Miller and Modigliani (1961) finding that a
firm’s dividend policy does not affect its value. Our comparative statics results in this paper are ceteris paribus
(all else being fixed), being valid for otherwise identical stocks with the same parameter values.
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over the next instant, where the constant

∆i =


(ri−µi+λ)1i=1+λ
(r̃i−µi+λ)+λ1i=1

− 1 for a dividend stock,
ri−µi+λ

λ − 1 for a no-dividend stock.
(16)

As we demonstrate in Section 4, these (rare) discrete changes at random times τn contribute to
the individual stock volatilities but do not affect their mean returns and risk premia since there
are no associated discrete changes in the aggregate consumption levels, and hence no discrete
changes in the state price density, leading to a zero risk premium for the discrete covariance.

We now examine our model’s implication for the correlation of the stock market with the
aggregate consumption, ρSY t = Covt [(dSt/St), (dYt/Yt)] /

√
Vart [dSt/St]Vart [dYt/Yt].

Proposition 2 (Equilibrium stock market correlation with consumption). The equili-
brium correlation of the stock market return with the aggregate consumption growth rate in the
benchmark economy is given by

ρ̄SY t =
∑3
i=1 ᾱiσ

2
i
S̄it
S̄t

+
∑3
i=1

∑3
j 6=i ᾱiρσiσj

S̄jt
S̄t√(∑3

i=1 σ̄
2
Sit

(
S̄it
S̄t

)2
+
∑3
i=1

∑3
j 6=i ρσiσj

S̄it
S̄t

S̄jt
S̄t

) (∑3
i=1 ᾱ

2
i σ

2
i +

∑3
i=1

∑3
j 6=i ᾱiᾱjρσiσj

) , (17)

and in the economy with no-dividend stocks by

ρSY t =
∑
k αkσ

2
k
Skt
St

+
∑
k

∑3
j 6=k αkρσkσj

Sjt
St√(∑3

i=1 σ
2
Sit

(
Sit
St

)2
+
∑3
i=1

∑3
j 6=i (ρσiσj + λ∆i∆j) SitSt

Sjt
St

)(∑
k α

2
kσ

2
k +

∑
k

∑
`6=k αkα`ρσkσ`

) ,
(18)

where the equilibrium stock volatilities σ̄Sit and σSit are provided in Proposition 4, the stock
market levels S̄t and St, and the individual stock prices S̄it and Sit are as in Proposition 1, and
the constant discrete changes in the stock prices ∆i at Poisson arrival times are as in (16).

Consequently, in the economy with no-dividend stocks, the correlation of the stock market return
with the aggregate consumption growth rate is lower than that of in the comparable benchmark
economy with the same relative stock sizes Sit/St = S̄it/S̄t, i = 1, 2, 3.

In the benchmark economy with all dividend stocks, a shock to any dividend Di, i = 1, 2, 3,
causes fluctuations in both the aggregate consumption and the stock market returns. This
leads the covariance, and hence the correlation, of the stock market return with the aggregate
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Figure 1: Correlation of stock market return with consumption growth rate. This figure
plots the equilibrium correlation of the stock market return with the aggregate consumption growth rate
by varying the no-dividend relative stock size Sit/St in our economy (blue circles). The corresponding
correlation in the benchmark economy in which all stocks pay dividends, is obtained by setting the
no-dividend stock relative size to zero (black diamonds). The parameter values follow from Table 1 of
Section 6.

consumption growth rate to depend on all dividend growth rate variances and covariances (the
numerator of (17)). However, in our economy with no-dividend stocks, the shocks in aggregate
consumption arise only from the shocks to the dividend stocks, whereas the stock market returns
are additionally driven by the no-dividend stock estimated pseudo-dividends. Hence the variance
term in the numerator of (18) only has the dividend growth rate variances of the dividend
stocks.13

The notable implication here is that the correlation of the stock market return with the
aggregate consumption growth rate in our economy with no-dividend stocks is lower than that
of in the benchmark economy. This result is intuitive as it simply says that when the stocks that

13As highlighted in Section 2.3, recall that a summation without a superscript indicates that the summation
is over dividend-paying stocks, e.g., in

∑
k=1 the index is k = 1, 2 during To and k = 1, 3 during Te.
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do not contribute to the current aggregate consumption are also part of the stock market, the
stock market return is less correlated with the aggregate consumption. Figure 1 illustrates the
low correlation in our economy by plotting the equilibrium correlation of the aggregate stock
market return with the aggregate consumption growth rate against the no-dividend relative
stock size Sit/St. We see that as the no-dividend stocks become more dominant in the stock
market, this correlation progressively becomes smaller. In particular, if we set the no-dividend
relative stock size in our model to equal to the long-run average of the no-dividend relative stock
size in the US data during 1927-2011 as reported by Hartzmark and Solomon (2013), 21.3%,
this correlation is 0.53. When we set it to the average relative size of the no-payout stocks
(no dividends or no share repurchases) during 1984-2003 in the US as reported by Boudoukh
et al. (2007), 14.2%, this correlation is 0.75. In contrast, this correlation is typically close to
one in leading asset pricing models (as discussed below) and also in the comparable benchmark
economy without no-dividend stocks as depicted in Figure 1.

As discussed in the Introduction, this correlation appears to be weak in the data (Cochrane
and Hansen (1992), Campbell and Cochrane (1999), Albuquerque, Eichenbaum, Luo, and Rebelo
(2016), Heyerdahl-Larsen and Illeditsch (2017)), and leading consumption-based asset pricing
models have difficulty in reconciling this evidence, hence this finding is sometimes referred to as
the “low correlation puzzle”. Our contribution here is to demonstrate that a significant portion
of this low correlation may be due to a very simple reason that is typically not considered in
standard consumption-based asset pricing models. That is, the stock market consists of many
stocks that currently do not pay dividends and hence do not contribute to the current aggregate
consumption or dividends, while contributing to the fluctuations in the aggregate stock market
returns. Therefore, it naturally follows that the stock market returns, which are partially driven
by the fluctuations in no-dividend stocks, correlate less with the current aggregate consumption
growth rate. Moreover, as we illustrate in Figure 1, this effect can be quantitatively significant.

4 Risk Premium-Volatility Relation

In this section, we are primarily interested in investigating how the presence of no-dividend
stocks in the stock market affects the relation between the stock market conditional risk premium
and volatility, “the risk-return tradeoff” in equilibrium. Towards that, we first show that a no-
dividend stock’s risk premium is lower, but its return volatility and market beta are higher
than those of an otherwise identical dividend stock, consistent with the empirical evidence.
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More notably, we demonstrate that the presence of no-dividend stocks in the stock market can
generate a non-monotonic and even a negative relation between the stock market risk premium
and its volatility, again consistent with the empirical evidence.

Proposition 3 presents the stock mean returns and their properties in equilibrium.

Proposition 3 (Equilibrium stock mean returns). The equilibrium mean returns of the
stock market and individual stocks i = 1, 2, 3, in the benchmark economy are given by

r̄St =
3∑
i=1

r̄i
S̄it

S̄t
, (19)

r̄i = r̄ + γ
(
ᾱiσ

2
i +

3∑
j 6=i

ᾱjρσiσj
)
, (20)

and in the economy with no-dividend stocks by

rSt =
3∑
i=1

ri
Sit
St
, (21)

ri =


r + γ

(
αiσ

2
i +

∑
j 6=i αjρσiσj

)
for a dividend stock,

r + γ
∑
k αkρσiσk for a no-dividend stock,

(22)

where the interest rates are given by r̄ = β+γ
∑3
i=1 ᾱiµi−1

2γ (γ + 1) (
∑3
i=1 ᾱ

2
i σ

2
i +
∑3
i=1

∑3
j 6=i ᾱiᾱjρσiσj),

and r = β + γ
∑
k αkµk − 1

2γ (γ + 1) (
∑
k α

2
kσ

2
k +

∑
k

∑
`6=k αkα`ρσkσ`), and the stock market levels S̄t

and St, and the individual stock prices S̄it and Sit are as in Proposition 1.

Consequently, in the economy with no-dividend stocks, the risk premium of a no-dividend stock
is lower than that of an otherwise identical dividend stock.

In both the benchmark and our economies, the equilibrium stock market risk premia, rSt−r,
are simple weighted averages of the dividend and no-dividend stock risk premia. The weights
are the relative sizes of the individual stocks, and each individual stock risk premium is propor-
tional to the covariance of its stock return with the aggregate consumption growth rate, as in
standard consumption-based asset pricing models.14 In the benchmark economy when all stocks

14In Proposition 3 we report the equilibrium stock mean returns, which consist of the interest rate (the first
terms) and the risk premium (the second terms). In our analysis we focus primarily on the risk premium, since
the interest rate is a common component across stocks. Naturally, our results for the risk premia also hold for
the mean returns also.
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in the stock market pay dividends, each individual stock risk premium is made up of a vari-
ance component and a covariance component. The variance component is due to the fact that
each stock dividend, which drives the stock price, contributes directly to the current aggregate
consumption with the sensitivity ᾱi, thereby requiring the risk premium γᾱiσ

2
i . The covariance

component is due to the fact that each stock is driven by its dividend, which (potentially) co-
moves with the other stocks’ dividends, thereby requiring the risk premium γ

∑3
j 6=i ᾱjρσiσj. In

our economy, dividend stock risk premium is again made up of a variance and a covariance com-
ponents. However, a no-dividend stock risk premium has only a covariance component since its
estimated pseudo-dividend, which drives its price, does not directly contribute to the aggregate
consumption shocks, but only (potentially) comoves with it.

A notable implication is that a no-dividend stock risk premium is lower than that of an
otherwise identical dividend stock. This is intuitive because as discussed earlier the no-dividend
stock price is driven by its estimated pseudo-dividend, which does not contribute directly to
the aggregate consumption, and hence comoves less with the aggregate consumption growth
rate as opposed to a comparable dividend stock. Therefore the investor requires a lower risk
premium to hold the no-dividend stock in equilibrium.15 This result is consistent with much
cross-sectional empirical evidence, which documents that stocks that pay no dividends (or no
payouts including share repurchases) have lower average returns than comparable stocks that pay
dividends (Christie (1990), Naranjo, Nimalendran, and Ryngaert (1998), Fuller and Goldstein
(2011), Hartzmark and Solomon (2013)).

Proposition 4 reports the equilibrium stock return volatilities for the stock market σSt =√
Vart [dSt/Stdt] and the individual stocks σSit =

√
Vart [dSit/Sitdt] for i = 1, 2, 3.

Proposition 4 (Equilibrium stock return volatilities). The equilibrium volatilities of the
stock market and individual stocks i = 1, 2, 3, in the benchmark economy are given by

σ̄St =

√√√√ 3∑
i=1

σ̄2
Sit

( S̄it
S̄t

)2
+

3∑
i=1

3∑
j 6=i

ρσiσj
S̄it

S̄t

S̄jt

S̄t
, (23)

σ̄Sit = σi, (24)
15In the special case of no-correlation, ρ = 0, the investor in fact does not require any risk premium to hold

the no-dividend stock in equilibrium.
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and in the economy with no-dividend stocks by

σSt =

√√√√ 3∑
i=1

σ2
Sit

(Sit
St

)2
+

3∑
i=1

3∑
j 6=i

(ρσiσj + λ∆i∆j)
Sit
St

Sjt
St
, (25)

σSit =


√
σ2
i + λ∆2

i for a dividend stock,√
2ρ2σ2

i
1+ρ + [(1+ρ)(σ2

i +κiVit)−2ρ2σ2
i ]

2

(1+ρ)2(σ2
i +ν2

i )−2(1+ρ)ρ2σ2
i

+ λ∆2
i for a no-dividend stock,

(26)

where the posterior variance Vit is as in Lemma 1, the stock market levels S̄t and St, and the
individual stock prices S̄it and Sit are as in Proposition 1, and the discrete changes in the stock
prices ∆i at Poisson arrival times are as in (16).

Consequently, in the economy with no-dividend stocks, the volatility of a no-dividend stock is
higher than that of an otherwise identical dividend stock.

The equilibrium stock market volatility is driven by the individual relative stock sizes as
they determine the extent to which each stock’s volatility contributes to the stock market return
fluctuations. In the benchmark economy when all stocks pay dividends, the return volatility
of each stock i is constant and equals to the volatility of its dividend growth rate, σi. In our
economy with no-dividend stocks, in addition to the dividend growth rate volatility σi, the
return volatility of a dividend stock is also affected by the uncertainty about the arrival of the
dividend alternating times due to the discrete changes in their prices during these times. On
the other hand, in the absence of its dividends, the return volatility of a no-dividend stock is
driven by the volatility of its estimated pseudo-dividend growth rate and the uncertainty about
the arrival of the dividend alternating times. Therefore, the posterior variance Vit along with
the parameters of the fundamental news process κi, vi all affect the no-dividend stock volatility.

Consequently, we show that a no-dividend stock return volatility is higher than that of
an otherwise identical dividend stock.16 This is intuitive because as discussed earlier, a no-
dividend stock price is driven by its estimated pseudo-dividend, and the estimation process,
necessitated by the absence of dividends, induces additional variability, which is reflected in
the stock returns. This result is also consistent with the empirical evidence, which documents
that stocks that pay no dividends have higher return volatility than comparable stocks that pay

16We note that both the diffusion and discrete-change components of a no-dividend stock return volatility are
higher than those of an otherwise identical dividend stock. In our discussion we focus on the diffusion component
as it is the dominant volatility term. The component due to the discrete price changes at the arrival of the (rare)
dividend alternating times are economically much smaller.
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Panel A. Risk premium versus volatility
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Panel B. Risk premium versus volatility: Fitted values

Figure 2: Stock market risk premium versus volatility. Panel A plots the equilibrium relation
between the conditional risk premium and volatility of the stock market return for different levels of
no-dividend relative stock size Sit/St within the range of [0, 0.30], in our economy (blue circles). The
corresponding relation in the benchmark economy is denoted by the black diamonds. Panel B plots the
fitted values of the two linear regressions of the conditional risk premium on the stock market return
volatility when the no-dividend relative stock size Sit/St is in the range of [0, 0.15] (low volatility
region) and in the range of [0.15, 0.30] (high volatility region). The parameter values follow from Table
1 of Section 6.

dividends (Naranjo, Nimalendran, and Ryngaert (1998), Pástor and Veronesi (2003), Hartzmark
and Solomon (2013)).

Having determined the aggregate stock market (conditional) risk premium and volatility
in Propositions 3–4, we next investigate our model implications for the relation between these
two quantities. Figure 2 Panel A presents our findings with a scatter plot of the stock market
(conditional) risk premium and volatility, where each point represents a different no-dividend
relative stock size Sit/St within an empirically relevant range of [0, 0.30]. To illustrate this
relation more clearly, Panel B plots the fitted values of the linear regressions of the stock market
risk premium on its return volatility in our model by dividing the no-dividend relative stock
size range into two: [0, 0.15] (low volatility region) and [0.15, 0.30] (high volatility region).

As Figure 2 Panel A illustrates, in the benchmark economy when all stocks pay dividends,
the relation between the stock market risk premium and volatility is monotonically positive,
consistent with the standard intuition. However, as Figure 2 depicts, in our economy with
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no-dividend stocks, this relation becomes non-monotonic and even negative. This is because,
as discussed above, the stock market risk premium is the (relative size) weighted-average of
the corresponding risk premia of stocks that make up the stock market. Therefore, when the
no-dividend stocks, the stocks that command low risk premia but high volatility, are also part of
the stock market, the stock market risk premium is non-monotonically related to its volatility.
In particular, the market risk premium is decreasing in its volatility for high volatility levels,
corresponding to high relative-size of the no-dividend stocks. Our prediction is in line with
the empirical evidence in Rossi and Timmermann (2010), who find a non-monotonic relation
between the conditional risk premium and volatility by showing a positive relation for low and
medium levels of volatility and a negative relation for high levels of volatility. As Figure 2
clearly demonstrates, this result and its mechanism can be economically significant. In terms of
magnitudes of the risk premium and volatility, we find that when the no-dividend relative stock
size in our model is equal to its long-run average in the data, 21.3%, for the same risk premium
of 1.31% the stock market volatility is 8.51% in benchmark economy but it is 15.07% in our
economy. Similarly, when the relative size of the no-dividend stocks is equal to the average
relative size of the no-payout stocks (no dividends or no share repurchases), 14.2%, for the same
risk premium of 1.57% the stock market volatility is 9.76% in benchmark economy but it is
12.81% in our economy.17

As discussed in the Introduction, numerous empirical works find a negative relation between
the stock market conditional risk premium and volatility (e.g., Campbell (1987), Glosten, Jagan-
nathan, and Runkle (1993), Whitelaw (2000), Harvey (2001), Brandt and Kang (2004)), while
many others, consistent with the basic intuition, find this relation to be positive, (e.g., French,
Schwert, and Stambaugh (1987), Scruggs (1998), Ghysels, Santa-Clara, and Valkanov (2005),
Bali and Peng (2006), Guo and Whitelaw (2006), Ludvigson and Ng (2007)). On the theory
side, a number of works, using a single stock setup, demonstrate that a non-monotonic and a
negative relation can arise in equilibrium if there is time-variation in state variables or invest-
ment opportunities. Our contribution here is to illustrate that, using a simple multiple-stocks
setup, a non-monotonic and a negative relation can also arise in equilibrium for a very simple

17We note that as can be seen from the y-axis of Figure 2, our model generates a somewhat low risk premium
for the stock market for plausible parameter values. This is to be expected given our simplistic setting, e.g., a
single investor, standard CRRA preferences, constant mean and volatility for the aggregate consumption growth
rate, which is very similar to the settings of the original “equity premium puzzle” literature (e.g., Mehra and
Prescott (1985)). It is well-known in this literature that models with these simplistic features yield fairly low
risk premium for reasonable parameter values as opposed to what is observed in the data (typically around 6%).
In order to preserve simplicity and tractability, in this paper we refrain from introducing other features that are
typically employed in the literature to obtain a more realistic equity premium, and leave that for future research.
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reason, that the stock market also consists of no-dividend stocks, whose mean return-volatility
relation goes against the standard intuition (low mean return but high return volatility).

In addition to its return volatility, the market beta of an individual stock is another popular
measure of risk for a stock. To examine whether the no-dividend stock is also riskier than the
comparable dividend stock when the risk is measured by the market beta, in Proposition 5, we
present our model implications for the equilibrium market betas βSi for each individual stock
i = 1, 2, 3, defined as βSit = Covt [(dSit/Sit), (dSt/St)] /Vart [dSt/St].

Proposition 5 (Equilibrium market betas of individual stocks). The equilibrium market
betas of individual stocks i = 1, 2, 3, in the benchmark economy are given by

β̄Sit =
σ2
i
S̄it
S̄t

+
∑3
j 6=i ρσiσj

S̄jt
S̄t∑3

i=1 σ̄
2
Sit

(
S̄it
S̄t

)2
+
∑3
i=1

∑3
j 6=i ρσiσj

S̄it
S̄t

S̄jt
S̄t

, (27)

and in the economy with no-dividend stocks by

βSit=
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Sjt
St
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for a dividend stock,
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for a no-dividend stock,

(28)

where the posterior variance Vit is as in Lemma 1, the stock market levels S̄t and St, and the
individual stock prices S̄it and Sit are as in Proposition 1, the individual stock volatilities σ̄Sit
and σSit are as in Proposition 4, and the discrete changes in the stock prices ∆i at Poisson
arrival times are as in (16).

Consequently, in the economy with no-dividend stocks, the market beta of a no-dividend stock is
higher than that of an otherwise identical dividend stock.

In the benchmark economy, the equilibrium market betas are in terms of the underlying risks
σi and relative stock sizes S̄it/S̄t. When two stocks are otherwise identical (i.e., same underlying
risks and relative stock sizes), they have the same market beta. In our economy with no-dividend
stocks, the market beta of a dividend stock is additionally affected by the uncertainty about
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the arrival of the dividend alternating times due to the discrete changes in stock prices during
these times. The market beta of a no-dividend stock is further affected by its posterior variance
Vit along with the parameters κi, vi through their effects on its return volatility.

Consequently, a no-dividend stock market beta is higher than that of a comparable divi-
dend stock. This is because a no-dividend stock return is more volatile (Proposition 4), and
hence it contributes to and comoves with the aggregate stock market return more as compa-
red to a comparable dividend stock. This result is also consistent with the empirical evidence,
which documents that stocks that pay no dividends (or no payouts including share repurchases)
have higher market betas than comparable stocks that pay dividends (Boudoukh, Michaely,
Richardson, and Roberts (2007), Fuller and Goldstein (2011)).

Remark 4 (Our model’s relation to value vs growth stocks). In our model, we refer to
the stock that is currently not paying dividends as a no-dividend stock since it has zero dividend
yield. Therefore, one could also think of no-dividend (dividend) stocks in our model as the gro-
wth (value) stocks, since in the literature a typical growth (value) stock is one with a low (high)
fundamental to price ratio, where this ratio typically is the book-to-market, earnings yield, divi-
dend yield, or the ratio of cash flows to price (Lettau and Wachter (2007)). Moreover, the three
key features of no-dividend stocks in our model are also valid for growth stocks. For example,
growth stocks too share the element of estimation of their true future dividends, since their
current low fundamentals are not representative of their eventual significant future dividends.
Second, growth stocks also share the element of having additional uncertainty about their main
future dividend payment period. Third, due to their low current fundamentals, the growth
stocks currently contribute little to aggregate consumption, and hence to the stochastic dis-
count factor. With this interpretation our cross-sectional model implications are also consistent
with the documented empirical regularities for growth and value stocks, since as summarized in
Lettau and Wachter (2007), in the data, growth stocks have lower mean returns, and yet they
have higher return volatilities and higher market betas as compared to value stocks.

5 Term Structure of Equity Risk Premia

Finally, we investigate our model implications for the shape of the term structure of stock
market equity risk premia. There has been growing interest in this term structure following the
findings of van Binsbergen, Brandt, and Koijen (2012), who study a claim on the dividends of
the S&P 500 index in the near future, i.e., the short-term asset, and find that the short-term
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asset commands a higher average return (and Sharpe ratio) than the underlying index, and
conclude that the term structure of equity risk premia is downward sloping. As discussed in
the Introduction, this empirical finding is considered somewhat puzzling since it goes against
the implications of several leading asset pricing models. We here demonstrate that the presence
of no-dividend stocks in the stock market can generate this downward sloping term structure
of equity risk premia. Towards that, we define the short-term asset following van Binsbergen,
Brandt, and Koijen (2012) as a claim to the aggregate dividends up to maturity T at a time t,
and then present its equilibrium mean return, denoted by rSt,T , in Proposition 6.18

Proposition 6 (Equilibrium short-term asset mean return). The equilibrium mean return
of the short-term asset in the benchmark economy is given by

r̄St,T =
3∑
i=1

h̄it,T S̄it∑3
j=1 h̄jt,T S̄jt

r̄i, (29)

and in the economy with no-dividend stocks by

rSt,T =
3∑
i=1

hit,TSit∑3
j=1 hjt,TSjt

ri, (30)

where h̄it,T = 1− e−(r̄i−µi)(T−t), i = 1, 2, 3, and

hit,T =



λ (ri−µi+λ)(r̃i−µi+λ)−λ2
(r̃i−µi)(r̃i−µi+2λ)

[
1−e−(ri−µi+λ)(T−t)

ri−µi+λ
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]
1i=1

+ (ri−µi+λ)(r̃i−µi+λ)−λ2
(ri−µi)(r̃i−µi+λ+λ1i=1)

[
1−e−(ri−µi+λ)(T−t)−λ1−e−(ri−µi+λ)(T−t)

ri−µi+λ

]
for a dividend stock,

(ri−µi+λ)(r̃i−µi+λ)−λ2
r̃i−µi

[
1−e−(ri−µi+λ)(T−t)

ri−µi+λ
− e−(r̃i−µi)(T−t)−e−(ri−µi+λ)(T−t)

ri−r̃i+λ

]
for a no-dividend stock,

(31)
where the individual stock prices S̄it and Sit are as in Proposition 1, and the mean returns r̄i
and ri are as in Proposition 3.

Consequently, in the economy with no-dividend stocks, the mean return of the short-term asset
is higher than that of the stock market if the deterministic term hit,T for a dividend stock is
greater than that of a no-dividend stock.

18In our analysis, we restrict ourselves to the case of there being at most one arrival of the dividend alternating
times in the life of the short-term asset. That is, if currently t ∈ [τn, τn+1), the short-term asset maturity is
either T ∈ [t, τn+1) or T ∈ [τn+1, τn+2). This specification is sufficient for us to make our point. Moreover, it
is also economically more plausible since the maturity of a short-term asset considered in the pertinent studies
is typically upto 2 years (van Binsbergen, Brandt, and Koijen (2012)), and therefore it is not very likely for a
stock to change its payout policy and switch from being classified as a dividend-paying to a no-dividend stock,
and vice versa, twice or more, in such a short time interval.
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Similar to the structure of the equilibrium stock market mean return of Proposition 3,
the short-term asset equilibrium mean return is a weighted average of the mean returns of the
individual stocks. For the stock market these weights are simply the relative stock sizes, whereas
for the short-term asset the weights also include the deterministic terms hit,T , which represent
the fraction of each stock in the short-term asset. In particular, in the benchmark economy,
these fractions have simple forms and are driven by the dividend yield r̄i−µi and the short-term
asset maturity T − t. In our economy with no-dividend stocks, as (31) illustrates, these fractions
are more involved and are additionally affected by the no-dividend stock’s expected dividend
payment time that is governed by λ. These more complicated forms for the fractions hit,T arise
because the short-term asset is a claim to the aggregate dividends upto T − t, during which the
aggregate dividends (and the stochastic discount factor) shocks may remain the same or change
when the no-dividend stock starts paying dividends.

Importantly, we find that in our economy with no-dividend stocks, the mean return of the
short-term asset is higher than that of the stock market if the fraction of the dividend stocks in
the short-term asset is greater than the corresponding fraction for the no-dividend stocks. This
condition is satisfied for plausible parameter values since the short-term asset is more like a
dividend stock than a no-dividend stock. This is because the value of the short-term asset only
depends on the aggregate dividends upto its maturity, during which the no-dividend stock may
not start paying dividends, and hence it is represented less in the short-term asset. Moreover,
a dividend stock mean return is higher than that of an otherwise identical no-dividend stock
(Proposition 3), and hence by giving higher weights to the stocks with higher mean returns, the
short-term asset mean return becomes higher than that of the stock market.

This result also implies a downward sloping term structure of equity risk premia as illustrated
in Figure 3, which plots the equilibrium risk premium of the short-term asset and the stock
market against the maturity date of the short-term asset T − t in our economy. We see that
the shorter the maturity of the short-term asset, the higher its risk premium, which approaches
monotonically to the stock market risk premium as its maturity increases, consistent with the
empirical evidence (van Binsbergen, Brandt, and Koijen (2012), van Binsbergen and Koijen
(2017)). For the economic magnitude of the effects, we see that when the no-dividend relative
stock size in our model is equal to its long-run average in the data, 21.3%, (Panel A) or is equal
to the average relative size of the no-payout stocks (no dividends or no share repurchases),
14.2%, (Panel B), the risk premium of the short-term asset with maturity up to 2 years is 18%
higher (1.55% vs 1.31% in Panel A) and 12% higher (1.75% vs 1.57% in Panel B) than the risk
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Panel A. No-dividend stock relative size: 21.3%
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Panel B. No-dividend stock relative size: 14.2%

Figure 3: Term structure of equity risk premia. These panels plot the equilibrium risk premium
of the short-term asset and the stock market against the maturity date of the short-term asset T − t
in our economy in which the no-dividend stock relative size is 21.3% (Panel A) and 14.2% (Panel B).
The parameter values follow from Table 1 of Section 6.

premium of the stock market, respectively. We note that even though we do not provide it for
brevity, the corresponding Sharpe ratio for the short-term asset is higher than that of the stock
market in our model as also in the data.

Finally, we note that our model implications are for the unconditional slope of the term
structure of equity risk premia. There are recent empirical works looking at the shape of the
conditional term structure by studying the time-variation and trends in this term structure
(e.g., Gormsen (2018), Gormsen and Lazarus (2020)). Due to the simplicity of our model (i.e.,
having standard CRRA preferences and aggregate consumption growth rate being i.i.d.), it is
beyond the scope of our current setting to meaningfully study the time-variation and trends in
this term structure. We leave these interesting features for future research.

6 Parameter Values

To quantify the effects in our model, particularly the key results involving the aggregate stock
market, in this section, we discuss the determination of the parameter values employed in our
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figures. We do so by primarily matching the aggregate consumption growth rate mean and
volatility in our economy to the corresponding ones in the US data in Campbell (2017). We
also use the US stock market data from Robert Shiller’s website to estimate the fundamental
news process parameters.19 Table 1 summarizes the parameter values used. We note that the
behavior of the equilibrium quantities depicted in our figures is typical and does not vary much
with alternative plausible values of parameters.

We start by setting the sum of the sensitivities, ∑k αk = α1 + α2 = α1 + α3, which captures
the sensitivity of the aggregate consumption growth rate to the aggregate dividend in our model
to the relative-share of the aggregate dividend in the aggregate consumption in the data, as 15%
(Santos and Veronesi (2006)). We decompose the sum of the sensitivities to capture the fact
that dividend-paying stocks are several times larger than no-dividend stocks in reality. Indeed,
Fama and French (2001, Table 3) reports that the assets of a typical dividend-paying firm is
5.3 times (1,389 vs 262) that of a no-dividend stock that formerly paid dividends in their full
sample. Accordingly, we set the ratio of the total sensitivity of the dividend-paying stocks
to the sensitivity of the no-dividend stock, which paid dividends previously in our model, as
0.15/α2 = 0.15/α3, to 5.3, yielding α1 = 0.122 and α2 = α3 = 0.028.20 We then set the common
correlation coefficient to simply ρ = 0 and treat each dividend growth rate symmetrically, and
match the mean and volatility of the aggregate consumption growth rate in our economy to the
corresponding ones in the data, 1.74% and 1.64%, respectively, as reported in Campbell (2017).
This gives the mean and volatility of each dividend growth rate as µi = 11.6% and σi = 13.1%, for
i = 1, 2, 3. We note that the values for µi are somewhat large but their values do not affect our
main results. To choose the intensity parameter for the Poisson process λ, we use the average
propensity of a no-dividend stock start to pay dividends next year in the data, which is reported
to be 10.1% in the full sample (1927-1999) of Fama and French (2001, Table 2). Equating this
value to the corresponding propensity in our model 0.101 = 1− e−λ, yields λ = 0.106. With this
choice, the expected next dividend payment time (1/λ) is around 10 years in our economy.

For the fundamental news process parameters, we use the monthly US stock market data
from Robert Shiller’s website (footnote 19), which provides the time-series of the aggregate real
dividends and earnings, among other quantities. We take the difference between the logarithm of
the real earnings and the logarithm of the real dividends as a proxy for the process lnF it− lnDit

19 Source: http://www.econ.yale.edu/~shiller/data/ie_data.xls
20As we discuss in Section 2.3, to make the benchmark economy comparable to our economy, we equate the

sum of the sensitivities across economies,
∑3
i=1 ᾱi =

∑
k αk, along with the sensitivity parameter for the first

stock, ᾱ1 = α1, which always pays dividends. We also treat the remaining stock sensitivities in the benchmark
economy as equal, which yields ᾱ1 = 0.122 and ᾱ2 = ᾱ3 = 0.014.
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Table 1: Parameter values. This table reports the parameter values used in our Figures.

Parameter Symbol Value
Stock i, i = 1, 2, 3, dividend growth rate mean µi 0.116
Stock i, i = 1, 2, 3, dividend growth rate volatility σi 0.131
Stock i, i = 1, 2, 3, fundamental news mean reversion κi 0.082
Stock i, i = 1, 2, 3, fundamental news long-run mean ζi 0.550
Stock i, i = 1, 2, 3, fundamental news volatility νi 0.127
No-dividend stock i, i = 2, 3, prior variance Viτn 5.480
Intensity of the Poisson process N λ 0.106
Correlation coefficient ρ 0
Investor’s relative risk aversion coefficient γ 10
Investor’s time preference coefficient β 0.001
Sensitivity parameters (α1, α2, α3) (0.122, 0.028, 0.028)

with Ornstein-Uhlenbeck dynamics (4) in our model. This monthly series in the data, for
the period January 1871-January 2020, has a sample mean of 0.55, sample standard deviation
of 0.315, and the first-order autocorrelation of 0.9932. Using the well-known properties of
Ornstein-Uhlenbeck processes, matching to our model, these values imply the long-run mean
to be ζi = 0.55, the mean-reversion speed κi = −12 × ln (0.993) = 0.082, and the volatility
parameter νi = 0.315

√
2× 0.082 = 0.127, for i = 1, 2, 3. We next choose the common prior

variance Viτn for the pseudo-dividend level for each random period [τn, τn+1) sufficiently high to
ensure that learning is optimal. We evaluate the posterior variance at its average value denoted
by V Ai ≡ 1

τn+1−τn
∫ τn+1
τn

Vitdt = 1
τ!

∫ τ1
0 Vitdt, where the second equality follows from the stationarity

of Poisson processes, which has a closed-form solution in our model as

V Ai = Vi∞

[
1 +

(
1 + pi

qi

) 1
miτ1

ln
(

1− qie−miτ1
1− qi

)]
,

where the constants Vi∞, pi, qi, and mi are provided in the proof of Lemma 1 in Appendix
A. Evaluating the first arrival time τ1 at its expected arrival time of 1/λ leads to the average
posterior variance of V Ai = 1.12 for the prior variance of Viτn = 5.48. Finally, for the investor-level
parameters, we set the relative risk aversion coefficient to γ = 10 and a relatively low subjective
time preference β = 0.001, consistent with leading asset pricing models (e.g., Bansal and Yaron
(2004)) so that the stock prices are finite, and hence well-defined.
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To make our quantitative statements corresponding to our Figures more relevant, we choose
the no-dividend relative stock sizes Sit/St, i = 2, 3, as the average value in the data. However,
choosing the right no-dividend relative stock sizes is not straightforward, as numerous empirical
works illustrate there are trends in the firms’ payout policies. For instance, dividends were the
major payout choice until mid-1980ies, but since then share repurchases have become more pre-
valent (e.g., Grullon and Michaely (2002). See also the recent survey of Farre-Mensa, Michaely,
and Schmalz (2014) for more on trends in payout policy). For this reason, we use two sources
of evidence. First, we make use of the long-sample evidence in Hartzmark and Solomon (2013),
who find that over 1927-2011, during most of which dividends are the main payout choice, the
no-dividend stocks account for 21.3% of the aggregate stock market capitalization in the US.
Second, we use the evidence in Boudoukh et al. (2007), who report that over the 1984-2003
period, during which share repurchases are also a significant fraction of the total payouts, the
no-payout stocks, i.e., no dividends or no share repurchases, have an average relative market
capitalization of 14.2%.21 With our baseline parameter values in Table 1, the stock market has
a risk premium of 1.31%, return volatility of 15.07%, and correlation with the aggregate con-
sumption of 0.53 when the no-dividend relative stock size in our model is equal to the long-run
average of the no-dividend relative stock size in the data, 21.3%, as reported by Hartzmark
and Solomon (2013). Similarly, when the no-dividend relative stock size in our model is equal
to the average relative size of the no-payout stocks (no dividends or no share repurchases) in
the data, 14.2%, as reported by Boudoukh et al. (2007), the stock market risk premium incre-
ases to 1.57%, its return volatility decreases to 12.81%, and its correlation with the aggregate
consumption increases to 0.75 (these can also be seen in our Figures 1 and 2).

21To be more specific, using monthly data from January 1927 to December 2011, Hartzmark and Solomon
(2013, Table 1) report 718, 726 no-dividend firms with average market capitalization of 894 millions of dollars.
The corresponding numbers for the dividend-paying stocks are 1, 359, 690 and 1, 739 millions of dollars, implying
the no-dividend stock average relative size to be (718, 726×894)/(718, 726×894+1, 359, 690×1, 739) = 21.3%. On
the other hand, Boudoukh et al. (2007) use monthly data from July 1984 to December 2003 and two measures
of payout yield, one based on the statement of cash flows (Table 3 Panel B), the other based on the change
in Treasury stock (Table 3 Panel C), and we report the average relative stock size across the two measures.
For instance, based on the change in Treasury stock, they report 1, 986 zero-payout firms with average (log)
market capitalization of 3.71 millions of dollars, implying the no-payout stock average relative stock size to be
(1, 986× e3.71)/(1, 986× e3.71 +

∑10
i=1 Ni× eln(MEi)), where Ni and ln (MEi) denote the corresponding numbers

for the decile i payout yield.
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7 Conclusion

In this paper, we provide an analysis of the aggregate stock market that features both dividend-
paying and no-dividend stocks within a familiar consumption-based general equilibrium fra-
mework. Our analysis leads to closed-form solutions for quantities of interest and profound
qualitative implications that support several empirical regularities on the aggregate stock mar-
ket while providing simple intuition for the underlying economic mechanisms at play. Most
notably, we show that the presence of no-dividend stocks in the stock market leads to a lower
correlation between the stock market return and the consumption growth rate, a non-monotonic
and even a negative relation between the stock market risk premium and its volatility, and a
downward sloping term structure of equity risk premia. In terms of new testable predictions for
the aggregate stock market returns, these findings translate into: the higher the relative market
capitalization of the no-dividend stocks in the stock market, (i) the lower the correlation between
the stock market return and the aggregate consumption growth rate, (ii) the more likely the
relation between the conditional risk premium and volatility of the stock market return to be
negative, (iii) the more likely the term structure of equity risk premia to be downward sloping.

We also show that the presence of no-dividend stocks in the stock market generates a novel
spillover effect in that the expected future dividend payment times of no-dividend stocks also
affect the prices of all other stocks. Furthermore, consistently with much cross-sectional empiri-
cal evidence, we find that no-dividend stocks command lower mean returns while having higher
return volatilities and higher market betas than comparable stocks that pay dividends.

The framework we consider in this paper is parsimonious in the sense that there is a single
investor with standard CRRA preferences, and the aggregate consumption growth rate has a
constant mean and volatility. Therefore, this framework can be extended in several different
dimensions to study other potentially important issues such as, heterogeneous investors, more
exotic preferences, and more general aggregate consumption process. For instance, considering
decreasing relative risk aversion (DRRA) preferences rather than CRRA may yield interesting
implications in our framework. This is because the investor’s relative risk aversion would be
more sensitive to the shocks of the dividend stocks than to the shocks of the no-dividend stocks,
which may help explain the findings of Fuller and Goldstein (2011) that no-dividend stocks
command lower mean returns even more in declining markets. We leave these considerations
for future research.
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Appendix A: Proofs

Proof of Lemma 1. We employ the standard Bayesian filtering theory (e.g., Liptser and
Shiryaev (2001), Theorem 12.7) to estimate the unobserved pseudo-dividend Dit during the
random period [τn, τn+1), in which stock i, i = 2, 3, is the no-dividend stock. We first denote
the vector of relevant observable processes by Xt ≡

[
lnD1t lnDjt lnFit

]ᵀ
, where j = 2, 3, and

j 6= i, and the relevant vectors for their drift terms by

A0 ≡


µ1 − 1

2σ
2
1

µj − 1
2σ

2
j

µi − 1
2σ

2
i + κiζi − κi lnF it

 , A1 ≡


0
0
κi

 , (A.1)

and the variance and covariance matrices of observable and unobservable processes by

Σoo ≡


σ2

1 ρσ1σj ρσ1σi

ρσ1σj σ2
j ρσjσi

ρσ1σi ρσjσi (σ2
i + ν2

i )

 , Σuo ≡
[
ρσ1σi ρσjσi σ2

i

]
. (A.2)

The filtering theory then implies that if the prior of the lnDi at time τn is normally distributed
with mean ̂lnDiτn and variance Viτn , then the posterior of lnDi during the period t ∈ [τn, τn+1)
conditional on the information Git = σ {(D1s, Djs, Fis) : τn ≤ s ≤ t} is also normally distributed
with mean ̂lnDit = E [lnDit|Git] and variance Vit = E

[
(lnDit − ̂lnDit)2|Git

]
with dynamics

d̂lnDit = (µi −
1
2σ

2
i )dt+ (Σuo + VitA

ᵀ
1) Σ−1

oo

[
dXt − (A0 + A1 ̂lnDit)dt

]
, (A.3)

dVit = −
[
(Σuo + VitA

ᵀ
1) Σ−1

oo (Σuo + VitA
ᵀ
1)ᵀ − σ2

i

]
dt. (A.4)

Substituting (A.1)–(A.2) into the posterior mean dynamics (A.3) and rearranging after some
algebra yields

d̂lnDit = (µi −
1
2σ

2
i )dt+ ρσi

(
ν2
i − κiVit

)
(1 + ρ)

(
σ2
i + ν2

i

)
− 2ρ2σ2

i

dω1t + ρσi
(
ν2
i − κiVit

)
(1 + ρ)

(
σ2
i + ν2

i

)
− 2ρ2σ2

i

dωjt

+ (1 + ρ)
(
σ2
i + κiVit

)
− 2ρ2σ2

i

(1 + ρ)
(
σ2
i + ν2

i

)
− 2ρ2σ2

i

√
σ2
i + ν2

i dω̂
∗
it, (A.5)

where the innovation process is given by dω̂∗it=
[
d lnFit−(µi− 1

2σ
2
i +κiζi−κi lnF it+κîlnDit)dt

]
/
√
σ2
i +ν2

i ,

with the correlations dω1tdω̂
∗
it = dωjtdω̂

∗
it = (ρσi/

√
σ2
i + ν2

i )dt. Since it is typically more convenient
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to work with independent (uncorrelated) Brownian motions, we define a new Brownian motion
ω̂i that is independent of the Brownian motions ω1 and ωj through the relation

dω̂∗it = 1√
σ2
i + ν2

i

 ρσi
1 + ρ

dω1t + ρσi
1 + ρ

dωjt +
√
σ2
i + ν2

i − 2 ρ
2σ2
i

1 + ρ
dω̂it

 ,
which after substituting into (A.5) yields the dynamics

d̂lnDit = (µi −
1
2σ

2
i )dt+ ρσi

1 + ρ
dω1t + ρσi

1 + ρ
dωjt + (1 + ρ)

(
σ2
i + κiVit

)
− 2ρ2σ2

i√
(1 + ρ)2 (σ2

i + ν2
i

)
− 2 (1 + ρ) ρ2σ2

i

dω̂it. (A.6)

We next substitute (A.1)–(A.2) into the posterior variance dynamics (A.4) and obtain

dVit = −
[ (

(1 + ρ)
(
σ2
i + κiVit

)
− 2ρ2σ2

i

)2
(1 + ρ)2 (σ2

i + ν2
i

)
− 2 (1 + ρ) ρ2σ2

i

−
(

1− 2ρ2

1 + ρ

)
σ2
i

]
dt, (A.7)

as in (7). The steady-state value of the posterior variance Vi∞ is the constant which solves the
quadratic equation by setting dVit = 0 in (A.7), and given by

Vi∞ = 1
κi

[√
((1− ρ̂2)σ2

i + ν2
i )(1− ρ̂2)σ2

i − (1− ρ̂2)σ2
i

]
, (A.8)

where we have defined the constant ρ̂2 ≡ 2ρ2/(1 + ρ). Moreover, the closed-form solution for the
posterior variance at all times t ∈ [τn, τn+1) follows from the well-known solution to the Riccati
equation and is given by

Vit = Vi∞
1 + pie

−mi(t−τn)

1− qie−mi(t−τn) , (A.9)

where we have defined the constants

mi ≡ 2κi

√
(1− ρ̂2)σ2

i

(1− ρ̂2)σ2
i + ν2

i

, qi ≡
κiViτn −

√
((1− ρ̂2)σ2

i + ν2
i )(1− ρ̂2)σ2

i + (1− ρ̂2)σ2
i

κiViτn +
√

((1− ρ̂2)σ2
i + ν2

i )(1− ρ̂2)σ2
i + (1− ρ̂2)σ2

i

,

pi ≡
κiViτn

[√
((1− ρ̂2)σ2

i + ν2
i )(1− ρ̂2)σ2

i + (1− ρ̂2)σ2
i

]
− (1− ρ̂2)σ2

i ν
2
i

κiViτn

[√
((1− ρ̂2)σ2

i + ν2
i )(1− ρ̂2)σ2

i − (1− ρ̂2)σ2
i

]
+ (1− ρ̂2)σ2

i ν
2
i

.

It is also easy to see from (A.9) that the prior variance Viτn is greater than the steady-state
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posterior variance, Viτn > Vi∞, if and only if pi + qi > 0.22

Finally, applying Itô’s Lemma to the estimated pseudo-dividend relation D̂it = exp( ̂lnDit +
1
2Vit) gives its dynamics as

dD̂it

D̂it

= d̂lnDit + 1
2
(
d̂lnDitd̂lnDit + dVit

)
= d̂lnDit + 1

2σ
2
i dt,

where the second equality follows from (A.6)–(A.7). After substituting (A.6) into the last
equality above we obtain (6).

The volatility of the estimated pseudo-dividend is readily given by the dynamics (6) as

σ
D̂it

=

√√√√2 ρ
2σ2
i

1 + ρ
+

(
(1 + ρ)

(
σ2
i + κiVit

)
− 2ρ2σ2

i

)2
(1 + ρ)2 (σ2

i + ν2
i

)
− 2 (1 + ρ) ρ2σ2

i

. (A.10)

Since Viτn > Vit > Vi∞ at all times t, (A.10) takes its minimum value, σi, when the posterior
variance is at its steady-state (A.8) implying

σ
D̂it

> σi, (A.11)

that is, the estimated pseudo-dividend is indeed more volatile than the pseudo-dividend at all
times t ∈ [τn, τn+1).

Proof of statements in Remark 2. Under the alternative “signal plus noise” specification
(8), the corresponding quantities of (A.1)–(A.2) in the proof of Lemma 1 become

A0≡


µ1 − 1

2σ
2
1

µj − 1
2σ

2
j

0

 , A1≡


0
0
1

 , Σoo≡


σ2

1 ρσ1σj 0
ρσ1σj σ2

j 0
0 0 ν2

i

 , Σuo≡
[
ρσ1σi ρσjσi 0

]
.

Following similar steps to those for the filtering in the proof of Lemma 1 yield the dynamics for
the posterior mean and variance as

d̂lnDit=(µi −
1
2σ

2
i )dt+ ρσi

1 + ρ
dω1t + ρσi

1 + ρ
dωjt + Vit

νi
dω̂∗it, dVit=−

[
V 2
it

ν2
i

−
(

1− 2ρ2

1 + ρ

)
σ2
i

]
dt,

22A simpler sufficient condition for Viτn > Vi∞ to hold is given by Viτn ≥ νi

κi

√
(1− ρ̂2)σ2

i , which is satisfied
for an appropriate choice of an initial prior.
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where the innovation process ω̂∗i is given by dω̂∗it = 1
νi

[
d lnFit − ̂lnDitdt

]
, with the correlations

dω1tdω̂
∗
it = dωjtdω̂

∗
it = 0. In this case, the steady-state value of the posterior variance Vi∞ is simply

given by Vi∞ = νiσi
√

1− (2ρ2/(1 + ρ)), and the volatility of the estimated pseudo-dividend by
σ
D̂it

=
√

(2ρ2/(1 + ρ))σ2
i + (V 2

it/ν
2
i ), from which we again obtain σ

D̂it
> σi, that is, the estimated

pseudo-dividend is more volatile than the pseudo-dividend under this specification also.

Proof of Proposition 1. We proceed by determining the equilibrium state price density
process. We then recover the equilibrium stock prices, and hence the stock market level, first in
the comparable benchmark economy and then in our economy.

The equilibrium state price density process ξ at all times is given by the marginal utility of
the representative investor evaluated at the aggregate consumption

ξt = e−βtY −γt . (A.12)

In the benchmark economy in which all three stocks pay dividends, applying Itô’s Lemma to
(A.12) using the aggregate consumption dynamics dYt/Yt =

∑3
i=1 ᾱiµidt+

∑3
i=1 ᾱiσidωit, gives the

state price density dynamics as

dξt
ξt

= −r̄dt− γᾱ1σ1dω1t − γᾱ2σ2dω2t − γᾱ3σ3dω3t, (A.13)

where r̄ is the equilibrium interest rate in this economy as provided in Proposition 3. In this
economy, by no arbitrage, the stock prices are given by

S̄it = 1
ξt
Et
[∫ ∞
t

ξuDiudu

]
, for i = 1, 2, 3. (A.14)

Applying Itô’s Lemma to ξDi, using the dividend dynamics (1)–(3) and (A.13) yields the drift
terms −(r̄i − µi) where the constants r̄1, r̄2, and r̄3 are given by

r̄1 = r̄ + γ(ᾱ1σ
2
1 + ᾱ2ρσ1σ2 + ᾱ3ρσ1σ3), (A.15)

r̄2 = r̄ + γ(ᾱ1ρσ1σ2 + ᾱ2σ
2
2 + ᾱ3ρσ2σ3), (A.16)

r̄3 = r̄ + γ(ᾱ1ρσ1σ3 + ᾱ2ρσ2σ3 + ᾱ3σ
2
3). (A.17)

Since the process ξDi, for i = 1, 2, 3, has a constant drift of −(r̄i − µi), we have the expectation
Et [ξuDiu] = e−(r̄i−µi)(u−t)ξtDit, which after substituting into (A.14) yields S̄it=

∫∞
t e−(r̄i−µi)(u−t)duDit.

Evaluating the simple integral (under the parameter restriction of r̄i − µi > 0, so that the stock
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price is finite, and hence, well-defined) leads to the individual stock price expressions (13), and
hence the stock market level (12), in the benchmark economy. Moreover, applying Itô’s Lemma
to these price expressions gives the benchmark economy individual stock price dynamics as

dS̄it

S̄it
+ Dit

S̄it
dt = r̄idt+ σidωit, for i = 1, 2, 3, (A.18)

and the stock market dynamics as

dS̄t

S̄t
+
∑3
i=1Dit

S̄t
dt =

3∑
i=1

(
dS̄it

S̄it
+ Dit

S̄it
dt

)
S̄it

S̄t
=

3∑
i=1

r̄i
S̄it

S̄t
dt+

3∑
i=1

σi
S̄it

S̄t
dωit. (A.19)

In our economy with no-dividend stocks, applying Itô’s Lemma to (A.12) using the aggregate
consumption dynamics (11) gives the state price density dynamics as

dξt
ξt

=

−rdt− γα1σ1dω1t − γα2σ2dω2t, t ∈ To,

−rdt− γα1σ1dω1t − γα3σ3dω3t, t ∈ Te,
(A.20)

where r is the equilibrium interest rate in this economy as provided in Proposition 3. In our
economy, by no arbitrage, the stock prices are given by

Sit = 1
ξt
Et
[∫

[t,∞)∩Ti
ξuDiudu

]
, for i = 1, 2, 3,

where Ti denotes the period stock i pays dividend, which is [0,∞) for stock 1, To for stock 2,
and Te for stock 3. To be able to solve for the equilibrium stock prices in this economy in which
stochastic discount factor shocks alternate infinite times, we partition the time horizon [0,∞)
into J + 1 random periods

[0,∞) = [0, τ1) ∪ [τ1, τ2) ∪ [τ2, τ3) ∪ . . . ∪ [τJ−1, τJ) ∪ [τJ ,∞),

where τj are the arrival times of the Poisson process Nt. Without loss of generality, we assume
J is an odd number. We observe that in the limit J → ∞ the last period [τJ ,∞) vanishes, and
for this reason we simply assume that during the last period all stocks pay dividends, leading
to the benchmark economy stock price expressions (13) for the period [τJ ,∞).23

23Alternatively, one could simply set the stock prices in the last period [τJ ,∞) to be all zero without affecting
the equilibrium stock prices since in the limit J →∞ the contribution of this period to the stock prices is zero.
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Working backwards, we note that period [τJ−1, τJ) is a subset of Te during which stocks 1
and 3 pay dividends, and hence the stock prices during this period satisfy

S1t = 1
ξt
Et
[∫ τJ

t
ξuD1udu+ ξτJS1τJ

]
, (A.21)

S2t = 1
ξt
Et
[
ξτJS2τJ

]
, (A.22)

S3t = 1
ξt
Et
[∫ τJ

t
ξuD3udu+ ξτJS3τJ

]
. (A.23)

Using the well-known properties of Poisson processes that during any time t ∈ [τj−1, τj), the
next arrival time τj is an exponential random variable that is independent from all Brownian
motions with its distribution function given by

G (u− t) = P (τj ≤ u|τj > t) = P (τ1 ≤ u− t) = 1− e−λ(u−t), (A.24)

and its corresponding density function by

g (u− t) = λe−λ(u−t), (A.25)

we obtain the first term in (A.21) as

Et
[∫ τJ

t
ξuD1udu

]
= Et

[∫ ∞
t

ξuD1u1{u<τJ}du
]

= Et
[∫ ∞
t

ξuD1uP (u < τJ |τJ > t) du
]
,

where the last equality follows from taking the expectation with respect to τ and the property
of indicator functions. Substituting the right tail probability P (u < τJ |τJ > t) = 1 − G (u− t) =
e−λ(u−t) gives

Et
[∫ τJ

t
ξuD1udu

]
= Et

[∫ ∞
t

ξuD1ue
−λ(u−t)du

]
, (A.26)

where now the expectation needs to be taken with respect to the Brownian motions only. Ap-
plying Itô’s Lemma to ξD1, using (1) and (A.20) for this period yields the drift term −(r1,e−µ1)
where the constant r1,e is given by

r1,e = r + γα1σ
2
1 + γα3ρσ1σ3. (A.27)

Since the process ξD1 has a constant drift of −(r1,e−µ1) during this period, we have Et [ξuD1u] =
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e−(r1,e−µ1)(u−t)ξtD1t, which after substituting into (A.26) yields

Et
[∫ τJ

t
ξuD1udu

]
=
∫ ∞
t

e−(r1,e−µ1+λ)(u−t)duξtD1t = 1
r1,e − µ1 + λ

ξtD1t,

where the last equality follows from solving the simple integral (under the parameter restriction
of r1.e − µ1 > 0, so that the stock price is finite, and hence well-defined for any value of λ). For
the second term in (A.21), we substitute the stock 1 price at time τJ given by S1τJ = A1,JD1τJ
where the constant A1,J = 1/ (r̄1 − µ1) , to obtain Et

[
ξτJS1τJ

]
= A1,JEt

[
ξτJD1τJ

]
. Taking the

expectation with respect to τJ gives

Et
[
ξτJD1τJ

]
= Et

[∫ ∞
t

ξuD1ug (u− t) du
]

= Et
[∫ ∞
t

ξuD1uλe
−λ(u−t)du

]
,

and using the conditional expectation result again we obtain

Et
[
ξτJD1τJ

]
=
∫ ∞
t

e−(r1,e−µ1+λ)(u−t)duλξtD1t = λ

r1,e − µ1 + λ
ξtD1t.

Substituting the first and second terms into (A.21) gives the stock 1 price during [τJ−1, τJ) as

S1t = 1
r1,e − µ1 + λ

D1t + λ

r1,e − µ1 + λ
A1,JD1t.

Following similar steps for the dividend-paying stock 3 leads to its price during [τJ−1, τJ) as

S3t = 1
r3,e − µ3 + λ

D3t + λ

r3,e − µ3 + λ
A3,JD3t,

where the constants
r3,e = r + γα1ρσ1σ3 + γα3σ

2
3, (A.28)

and A3,J = 1/ (r̄3 − µ3). For the no-dividend stock 2 during this period, we substitute the stock 2
price at time τJ given by S2τJ = A2,JD2τJ where the constant A2,J = 1/ (r̄2 − µ2) into (A.22) and
obtain Et

[
ξτJS2τJ

]
= A2,JEt

[
ξτJD2τJ

]. Since in the absence of its dividends, the investor uses
the estimated pseudo-dividend D̂2 (Lemma 1) to estimate the distribution of future dividends,
we simply substitute D̂2τJ for D2τJ in the above expectation to obtain

Et
[
ξτJD2τJ

]
= Et

[
ξτJ D̂2τJ

]
= Et

[∫ ∞
t

ξuD̂2ug (u− t) du
]

= Et
[∫ ∞
t

ξuD̂2uλe
−λ(u−t)du

]
,
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where again the second equality follows from taking the expectation with respect to τJ .24 Ap-
plying Itô’s Lemma to ξD̂2, using the dynamics of the estimated pseudo-dividend (6) and (A.20)
for this period yields the drift term −(r2,e − µ2) where the constant r2,e is given by

r2,e = r + γα1ρσ1σ2 + γα3ρσ2σ3. (A.29)

Since ξD̂2 has a constant drift of −(r2,e − µ2) during this period, we have the expectation
Et
[
ξuD̂2u

]
= e−(r2,e−µ2)(u−t)ξtD̂2t, which yields

Et
[
ξτJD2τJ

]
=
∫ ∞
t

e−(r2,e−µ2+λ)(u−t)duλξtD̂2t = λ

r2,e − µ2 + λ
ξtD̂2t,

where the last equality follows from solving the simple integral (under the parameter restriction
of r2,e − µ2 > 0). This gives the stock 2 price during the period [τJ−1, τJ) as

S2t = λ

r2,e − µ2 + λ
A2,JD̂2t.

Moving one period backwards to the period [τJ−2, τJ−1), which is a subset of To during which
stocks 1 and 2 pay dividends, the stock prices during this period satisfy

S1t = 1
ξt
Et
[∫ τJ−1

t
ξuD1udu+ ξτJ−1S1τJ−1

]
, (A.30)

S2t = 1
ξt
Et
[∫ τJ−1

t
ξuD2udu+ ξτJ−1S2τJ−1

]
, (A.31)

S3t = 1
ξt
Et
[
ξτJ−1S3τJ−1

]
. (A.32)

Using the distribution function (A.24) for the next arrival time during this period, and following
similar steps as in the previous case, we obtain the first term in (A.30) as Et

[∫ τJ−1
t ξuD1udu

]
=

Et
[∫∞
t ξuD1ue

−λ(u−t)du
]
. Applying Itô’s Lemma to ξD1, using (1) and (A.20) for this period

yields the drift term −(r1,o − µ1) where the constant r1,o is given by

r1,o = r + γα1σ
2
1 + γα2ρσ1σ2. (A.33)

Since the process ξD1 has a constant drift of −(r1,o−µ1) during this period, we have Et [ξuD1u] =
24Note that during this period, the estimation of D2 does not affect the aggregate consumption, and hence

the state price density ξ, since the fluctuations in aggregate consumption are driven by current dividend shocks.
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e−(r1,o−µ1)(u−t)ξtD1t, which yields

Et
[∫ τJ−1

t
ξuD1udu

]
=
∫ ∞
t

e−(r1,o−µ1+λ)(u−t)duξtD1t = 1
r1,o − µ1 + λ

ξtD1t.

For the second term in (A.30), we substitute the stock 1 price at time τJ−1 given by S1τJ−1 =
A1,(J−1)D1τJ−1 , where we have defined the constant

A1,(J−1) = 1
r1,e − µ1 + λ

+ λ

r1,e − µ1 + λ
A1,J ,

to obtain Et
[
ξτJ−1S1τJ−1

]
= A1,(J−1)Et

[
ξτJ−1D1τJ−1

]
. Taking the expectation with respect to

τJ−1 gives

Et
[
ξτJ−1D1τJ−1

]
= Et

[∫ ∞
t

ξuD1ug (u− t) du
]

= Et
[∫ ∞
t

ξuD1uλe
−λ(u−t)du

]
,

and using the conditional expectation result for this period, we obtain

Et
[
ξτJ−1D1τJ−1

]
=
∫ ∞
t

e−(r1,o−µ1+λ)(u−t)duλξtD1t = λ

r1,o − µ1 + λ
ξtD1t.

Substituting the first and second terms into (A.30) gives the stock 1 price during [τJ−2, τJ−1) as

S1t = 1
r1,o − µ1 + λ

D1t + λ

r1,o − µ1 + λ
A1,(J−1)D1t.

Following similar steps for the other dividend stock 2 leads to the first term in (A.31) as
Et
[∫ τJ−1
t ξuD2udu

]
= ξtD2t/(r2,o − µ2 + λ), where the constant

r2,o = r + γα1ρσ1σ2 + γα2σ
2
2. (A.34)

For the second term in (A.31), we substitute the stock 2 price at time τJ−1 given by S2τJ−1 =
A2,(J−1)D̂2τJ−1 , where we have defined the constant

A2,(J−1) = λ

r2,e − µ2 + λ
A2,J ,

to obtain Et
[
ξτJ−1S2τJ−1

]
= A2,(J−1)Et

[
ξτJ−1D̂2τJ−1

]
= A2,(J−1)Et

[
ξτJ−1D2τJ−1

]
, with the last

equality following from the fact that ̂lnD2τn = limt→τn lnD2t for all τn. Taking the expectation
with respect to τJ−1 and using the conditional expectation result for this period, we obtain
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Et
[
ξτJ−1D2τJ−1

]
=
∫∞
t e−(r2,o−µ2+λ)(u−t)duλξtD2t = λξtD2t/(r2,o − µ2 + λ). Substituting the first

and second terms into (A.31) gives the stock 2 price during [τJ−2, τJ−1) as

S2t = 1
r2,o − µ2 + λ

D2t + λ

r2,o − µ2 + λ
A2,(J−1)D2t.

For the no-dividend stock 3 during this period, we substitute the stock 3 price at time τJ−1

given by S3τJ−1 = A3,(J−1)D3τJ−1 , where we have defined the constant

A3,(J−1) = 1
r3,e − µ3 + λ

+ λ

r3,e − µ3 + λ
A3,J ,

to obtain Et
[
ξτJ−1D3τJ−1

]
= Et

[
ξτJ−1D̂3τJ−1

]
= Et

[∫∞
t ξuD̂3uλe

−λ(u−t)du
]
where again the last

equality following from taking the expectation with respect to τJ−1. Applying Itô’s Lemma to
ξD̂3, using the dynamics of the estimated pseudo-dividend (6) and (A.20) for this period yields
the drift term −(r3,o − µ3) where the constant r3,o is given by

r3,o = r + γα1ρσ1σ3 + γα2ρσ2σ3. (A.35)

Since ξD̂3 has a constant drift of −(r3,o − µ3) during this period, we have the expectation
Et
[
ξuD̂3u

]
= e−(r3,o−µ3)(u−t)ξtD̂3t, which yields Et

[
ξτJ−1D3τJ−1

]
=
∫∞
t e−(r3,o−µ3+λ)(u−t)duλξtD̂3t,

and the stock 3 price during [τJ−2, τJ−1) as

S3t = λ

r3,o − µ3 + λ
A3,(J−1)D̂3t.

Following similar steps as above, by working backwards, we obtain the stock prices in any
period [τJ−M , τJ−M+1) where M is an odd number such that 1 < M < J , so that this period is a
subset of Te, as

S1t =
1 + λA1,(J−M+1)
r1,e − µ1 + λ

D1t, where A1,(J−M+1) =
1 + λA1,(J−M+2)
r1,o − µ1 + λ

,

S2t =
λA2,(J−M+1)
r2,e − µ2 + λ

D̂2t, where A2,(J−M+1) =
1 + λA2,(J−M+2)
r2,o − µ2 + λ

,

S3t =
1 + λA3,(J−M+1)
r3,e − µ3 + λ

D3t, where A3,(J−M+1) =
λA3,(J−M+2)
r3,o − µ3 + λ

,

and in any period [τJ−M , τJ−M+1) where M is an even number such that 1 < M < J , so that this
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period is a subset of To, as

S1t =
1 + λA1,(J−M+1)
r1,o − µ1 + λ

D1t, where A1,(J−M+1) =
1 + λA1,(J−M+2)
r1,e − µ1 + λ

,

S2t =
1 + λA2,(J−M+1)
r2,o − µ2 + λ

D2t, where A2,(J−M+1) =
λA2,(J−M+2)
r2,e − µ2 + λ

,

S3t =
λA3,(J−M+1)
r3,o − µ3 + λ

D̂3t, where A3,(J−M+1) =
1 + λA3,(J−M+2)
r3,e − µ3 + λ

.

Finally, to obtain the stock prices in closed-form, we solve the difference equations Ai. We first
consider A1,(J−M+1) whereM is an odd number (t ∈ Te) and recursively substitute its next period
value to obtain

A1,(J−M+1) =
[
1 + k1 + k2

1 + k3
1 + ....+ k

(M−3)/2
1

] λ

r1,o − µ1 + λ

1
r1,e − µ1 + λ

(A.36)

+
[
1 + k1 + k2

1 + k3
1 + ....+ k

(M−3)/2
1

] 1
r1,o − µ1 + λ

+ k
(M−1)/2
1

1
r̄1 − µ1

,

where the positive constant k1 = λ2/ ((r1,e − µ1 + λ)(r1,o − µ1 + λ)) < 1. In the limit M →∞, also
J → ∞, the square bracket terms in (A.36) becomes a geometric sum 1/(1 − k1) while the last
term converges to zero resulting with the constant that does not vary for any period in Te

A1,e = r1,e − µ1 + 2λ
(r1,e − µ1 + λ) (r1,o − µ1 + λ)− λ2 ,

yielding stock 1 price during t ∈ Te as

S1t = 1 + λA1,e
r1,e − µ1 + λ

D1t = (r1,o − µ1 + λ) + λ

(r1,e − µ1 + λ) (r1,o − µ1 + λ)− λ2D1t. (A.37)

Similar steps as above for stock 2 difference equation A2,(J−M+1) also leads to

A2,(J−M+1) =
[
1 + k2 + k2

2 + k3
2 + ...+ k

(M−3)/2
2

] 1
r2,o − µ2 + λ

+ k
(M−1)/2
2

1
r̄2 − µ2

,

where k2 = λ2/ ((r2,e − µ2 + λ)(r2,o − µ2 + λ)) < 1, and in the limit M →∞, we obtain

A2,e = r2,e − µ2 + λ

(r2,e − µ2 + λ) (r2,o − µ2 + λ)− λ2 ,
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yielding stock 2 price during t ∈ Te as

S2t = λA2,e
r2,e − µ2 + λ

D̂2t = λ

(r2,e − µ2 + λ) (r2,o − µ2 + λ)− λ2 D̂2t. (A.38)

Similar steps as above again for stock 3 difference equation A3,(J−M+1) leads to

A3,(J−M+1) =
[
1 + k3 + k2

3 + k3
3 + ...+ k

(M−3)/2
3

] λ

r3,e − µ3 + λ

1
r3,o − µ3 + λ

+ k
(M−1)/2
3

1
r̄3 − µ3

,

where k3 = λ2/ ((r3,e − µ3 + λ)(r3,o − µ3 + λ)) < 1, and in the limit M →∞, we obtain

A3,e = λ

(r3,e − µ3 + λ) (r3,o − µ3 + λ)− λ2 ,

yielding stock 3 price during t ∈ Te as

S3t = 1 + λA3,e
r3,e − µ3 + λ

D3t = r3,o − µ3 + λ

(r3,e − µ3 + λ) (r3,o − µ3 + λ)− λ2D3t. (A.39)

Similar arguments also leads to the stock prices during To, as

S1t = (r1,e − µ1 + λ) + λ

(r1,o − µ1 + λ) (r1,e − µ1 + λ)− λ2D1t, (A.40)

S2t = r2,e − µ2 + λ

(r2,o − µ2 + λ) (r2,e − µ2 + λ)− λ2D2t, (A.41)

S3t = λ

(r3,o − µ3 + λ) (r3,e − µ3 + λ)− λ2 D̂3t. (A.42)

Using the stock prices in (A.37)–(A.39) for t ∈ Te and (A.40)–(A.42) for t ∈ To, we obtain the
compact stock price expressions for any t ∈ [0,∞) in (15). Moreover, applying Itô’s Lemma to
these price expressions gives the dynamics of a dividend stock i by

dSit
Sit

+ Dit

Sit
dt = ridt+ σidωit + ∆i (dNt − λdt) , (A.43)

and of a no-dividend stock i by

dSit
Sit

= ridt+
∑
k

ρσi
1 + ρ

dωkt + (1 + ρ)
(
σ2
i + κiVit

)
− 2ρ2σ2

i√
(1 + ρ)2 (σ2

i + ν2
i

)
− 2 (1 + ρ) ρ2σ2

i

dω̂it + ∆i (dNt − λdt) , (A.44)

where the equilibrium mean returns of the individual stocks ri, i = 1, 2, 3, are as in (A.27)–
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(A.29) for t ∈ Te and (A.33)–(A.35) for t ∈ To, and also reported in a compact way for any
t ∈ [0,∞) in (22), and the expected discrete changes ∆i, i = 1, 2, 3, are as in (16). We recall
that the summation without a superscript, ∑k, indicates that the summation is taken only over
the stocks that currently pay dividends (across k = 1, 3 in Te and across k = 1, 2 in To), and it
is also understood that all price levels Sit above denote the left-limit prices, limu→t Siu, which
coincides with its right-limit level at all times except at the Poisson arrival times τn. The stock
market dynamics in our economy with no-dividend stocks is given by

dSt
St

+
∑
kDkt

St
dt =

∑
k

(
dSkt
Skt

+ Dkt

Skt
dt

)
Skt
St

+ dSit
Sit

Sit
St
, (A.45)

and substituting (A.43)–(A.44) into (A.45) and rearranging yields the stock market dynamics

dSt
St

+
∑
kDkt

St
dt =

3∑
i=1

ri
Sit
St
dt+

∑
k

(
σk
Skt
St

+ ρσi
1 + ρ

Sit
St

)
dωkt

+ (1 + ρ)
(
σ2
i + κiVit

)
− 2ρ2σ2

i√
(1 + ρ)2 (σ2

i + ν2
i

)
− 2 (1 + ρ) ρ2σ2

i

Sit
St
dω̂it +

3∑
i=1

∆i
Sit
St

(dNt − λdt) , (A.46)

when the current no-dividend stock is stock i (i = 2 in Te, i = 3 in To).

Proof of Proposition 2. In the benchmark economy, using the dynamics of the stock mar-
ket (A.19) and the aggregate consumption dYt/Yt =

∑3
i=1 ᾱiµidt +

∑3
i=1 ᾱiσidωit, we obtain the

equilibrium covariance of the stock market return with the aggregate consumption growth rate
as

Covt
[
dS̄t

S̄t
,
dYt
Yt

]
1
dt

=
3∑
i=1

ᾱiσ
2
i

S̄it

S̄t
+

3∑
i=1

3∑
j 6=i

ᾱiρσiσj
S̄jt

S̄t
.

Using the stock market dynamics (A.19), we also obtain its return variance as

Vart
[
dS̄t

S̄t

]
1
dt

=
3∑
i=1

σ̄2
Sit

( S̄it
S̄t

)2
+

3∑
i=1

3∑
j 6=i

ρσiσj
S̄it

S̄t

S̄jt

S̄t
, (A.47)

where the individual stocks volatilities σ̄Sit are as in Proposition 4. Substituting these along
with the consumption growth rate variance Vart [dYt/Yt] /dt =

∑3
i=1 ᾱ

2
i σ

2
i +

∑3
i=1

∑3
j 6=i ᾱiᾱjρσiσj ,

into the correlation definition ρ̄SY t = Covt
[
dS̄t/S̄t, dYt/Yt

]
/

√
Vart

[
dS̄t/S̄t

]
Vart [dYt/Yt] gives the

equilibrium correlation of the stock market return with the aggregate consumption growth rate
in the benchmark economy as (17).
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In our economy with no-dividend stocks, using the dynamics of the stock market (A.46)
and the aggregate consumption dYt/Yt =

∑
k αkµkdt +

∑
k αkσkdωkt, we obtain the equilibrium

covariance of the stock market return with the aggregate consumption growth rate as

Covt
[
dSt
St

,
dYt
Yt

] 1
dt

=
∑
k

αkσ
2
k

Skt
St

+
∑
k

3∑
j 6=k

αkρσkσj
Sjt
St
.

Using the stock market dynamics (A.46), we also obtain its return variance as

Vart
[
dSt
St

] 1
dt

=
3∑
i=1

σ2
Sit

(Sit
St

)2
+

3∑
i=1

3∑
j 6=i

(ρσiσj + λ∆i∆j)
Sit
St

Sjt
St
, (A.48)

where the individual stocks volatilities σSit are as in Proposition 4. Substituting these along
with the consumption growth rate variance Vart [dYt/Yt] /dt =

∑
k α

2
kσ

2
k +

∑
k

∑
`6=k αkα`ρσkσ`,

into the correlation definition ρSY t = Covt [dSt/St, dYt/Yt] /
√
Vart [dSt/St]Vart [dYt/Yt] gives the

equilibrium correlation of the stock market return with the aggregate consumption growth rate
in our economy as (18).

The property that the correlation of the stock market return with the aggregate consumption
growth rate in our economy with no-dividend stocks is lower than that of in the comparable
benchmark economy follows from the facts that in the correlation (18) the covariance term
in its numerator is not greater than while the variance terms in its denominator are greater
than the corresponding quantities in the benchmark correlation (17) when the stocks have the
same relative sizes Sit/St = S̄it/S̄t (along with our comparable benchmark economy assumptions∑3
i=1 ᾱi =

∑
k αk, ᾱ1 = α1, and the second and third stocks being otherwise identical, µ2 = µ3,

σ2 = σ3, α2 = α3, S2t/St = S3t/St, as discussed in Section 2.3).

Proof of Proposition 3. In the benchmark economy, the stock market dynamics is as in
(A.19), whose drift term immediately gives its mean return as reported in (19). Similarly, the
drift term of (A.18) gives the individual stock mean returns, which are derived in (A.15)–(A.17)
and as reported in (20).

In our economy with no-dividend stocks, the stock market dynamics is as in (A.46), whose
drift term immediately gives its mean return as reported in (21). Similarly, the drift terms of
(A.43) and (A.44) give the dividend and no-dividend stock mean returns, respectively, which
are derived in (A.27)–(A.29) for t ∈ Te and (A.33)–(A.35) for t ∈ To, and reported compactly for
any t ∈ [0,∞) in (22).
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The property that the risk premium, ri − r, of a no-dividend stock is lower than that of
an otherwise identical dividend stock in our economy follows immediately by comparing the
quantities in (22).

Proof of Proposition 4. In benchmark economy, the equilibrium stock market volatility (23)
is given by the square root of (A.47), and the individual stock return volatilities (24) are by the
diffusion terms in (A.18).

In our economy with no-dividend stocks, the equilibrium stock market volatility (25) is given
by the square root of (A.48), and the individual stock return volatilities (26) are the square roots
of the individual stock return variances, which are obtained by using (A.43)–(A.44).

The property that the volatility of a no-dividend stock is higher than that of an otherwise
identical dividend stock in our economy follows immediately by comparing the quantities in
(26). We also observe that both the diffusion (using (A.10)–(A.11)) and the discrete change
component ∆i given by (16) of no-dividend stocks are larger than those of dividend stocks.

Proof of Proposition 5. Using the dynamics in (A.18) and (A.19), we obtain the covariance
between the individual stock i and the stock market returns in the benchmark economy as

Covt
[
dS̄it

S̄it
,
dS̄t

S̄t

]
1
dt

= σ2
i

S̄it

S̄t
+

3∑
j 6=i

ρσiσj
S̄jt

S̄t
.

Substituting these into the market beta definition β̄Sit = Covt
[
dS̄it/S̄it, dS̄t/S̄t

]
/Vart

[
dS̄t/S̄t

]
,

along with (A.47) gives the equilibrium market betas of individual stocks as reported in (27).

Similarly, using the dynamics (A.43)–(A.44) and (A.46), we obtain the covariance between
the individual stock i and the stock market returns in our economy as

Covt
[
dSit
Sit

,
dSt
St

] 1
dt

= σ2
i

Sit
St

+
3∑
j 6=i

ρσiσj
Sjt
St

+ λ
3∑
j=1

∆i∆j
Sjt
St
,

for a dividend stock, and as

Covt
[
dSit
Sit

,
dSt
St

] 1
dt

=
(

2ρ2σ2
i

1 + ρ
+
[
(1 + ρ)

(
σ2
i + κiVit

)
− 2ρ2σ2

i

]2
(1+ρ)2 (σ2

i +ν2
i

)
−2 (1+ρ) ρ2σ2

i

)
Sit
St

+
3∑
j 6=i

ρσiσj
Sjt
St

+λ
3∑
j=1

∆i∆j
Sjt
St
,

for a no-dividend stock. Substituting these into the market beta definition
βSit = Covt [dSit/Sit, dSt/St] /Vart [dSt/St] , along with (A.48) gives the equilibrium market betas
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of individual stocks as reported in (28).

The property that the market beta of a no-dividend stock is higher than that of an otherwise
identical dividend stock in our economy follows from comparing the quantities in (28). Since
in their numerators, the middle terms ∑3

j 6=i ρσiσj(Sjt/St) are identical and in the last terms
the discrete change component ∆i for the no-dividend stock is always larger than that of the
dividend stock, this property holds if

σ2
i <

2ρ2σ2
i

1 + ρ
+

[
(1 + ρ)

(
σ2
i + κiVit

)
− 2ρ2σ2

i

]2
(1 + ρ)2 (σ2

i + ν2
i

)
− 2 (1 + ρ) ρ2σ2

i

,

and this inequality always holds due to the relation (A.10)–(A.11).

Proof of Proposition 6. In benchmark economy, by no-arbitrage, the short-term asset price
is given by S̄t,T = Et

[∫ T
t ξuDudu

]
/ξt, where the aggregate dividend is Du =

∑3
i=1Diu for all u ≥ t,

and the state price density is as in (A.13). Using the individual stock results in the proof of
Proposition 1 we obtain

S̄t,T =
3∑
i=1

1
ξt
Et
[∫ T

t
ξuDiudu

]
=
∑3
i=1

∫ T

t
e−(r̄i−µi)(u−t)duDit =

3∑
i=1

1− e−(r̄i−µi)(T−t)

r̄i − µi
Dit,

where r̄i is as in (20), and the benchmark economy short-term asset price as S̄t,T =
∑3
i=1 h̄it,T S̄it,

where the deterministic process h̄it,T = 1− e−(r̄i−µi)(T−t) and the stock price S̄it is as in (13) for
i = 1, 2, 3. The risk premium of the short-term asset in the benchmark economy r̄St,T − r̄ is given
by

r̄St,T − r̄ = −dξt
ξt

dS̄t,T

S̄t,T

1
dt
. (A.49)

Applying Itô’s Lemma to the short-term asset price S̄t,T =
∑3
i=1 h̄it,T S̄it leads to the dynamics

dS̄t,T

S̄t,T
+ Dt

S̄t,T
dt =

3∑
i=1

h̄it,T S̄it∑3
j=1 h̄jt,T S̄jt

(r̄idt+ σidωit) ,

which after substituting into (A.49) along with the state price density dynamics (A.13) gives

r̄St,T − r̄ =
3∑
i=1

h̄it,T S̄it∑3
j=1 h̄jt,T S̄jt

(r̄i − r̄) ,

where the individual stock mean returns r̄i are as in (20). Canceling out the interest rates in
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the above expression gives the equilibrium short-term asset mean return as in (29).

In our economy with no-dividend stocks, by no-arbitrage, the short-term asset price is given
by St,T = Et

[∫ T
t ξuDudu

]
/ξt, where the aggregate dividend is Du =

∑
kDku, where again the

summation without a superscript, ∑k, indicates that the summation is taken over the stocks
that pay dividends (across k = 1, 3 in Te and across k = 1, 2 in To). We restrict ourselves to
the case of there being at most one arrival of the dividend alternating times in the life of the
short-term asset. That is, if currently t ∈ [τn, τn+1), the short-term asset maturity is either
T ∈ [t, τn+1) or T ∈ [τn+1, τn+2). As we discuss in footnote 18, this specification is sufficient for
us to make our point while also being economically plausible. Without loss of generality, we
assume that currently we are in period To, i.e., in [τn, τn+1) where n is an odd number, so that
currently stocks 1 and 2 are dividend stocks and stock 3 is the no-dividend stock. To determine
the short-term asset price, we first consider a fixed τn+1 for the next alternating period arrival
time, and for simplicity drop the subscripts and denote it simply by τ . We also denote the
short-term asset price when τ is fixed by Sτt,T , which is decomposed into two cases, whether the
dividend-paying stocks (hence the stochastic discount factor shocks) alternate within the life of
the short-term asset or not, i.e., T ≤ τ and T > τ , by considering

Sτt,T = Sτt,T1{T≤τ} + Sτt,T1{T>τ}. (A.50)

Then by taking the expectation of Sτt,T with respect to the uncertainty about the next arrival
time τ , we determine the short-term asset price St,T .

In the first case T ≤ τ , the dividend-paying stocks do not alternate within the life of the
short-term asset so that the aggregate dividend is Du = D1u+D2u for all t ≤ u < T , and the state
price density is as in (A.20). In this case, we have Sτt,T =

∑2
i=1 Et

[∫ T
t ξuDiudu

]
/ξt, and using the

individual stock results in the proof of Proposition 1 we obtain

Sτt,T =
2∑
i=1

1
ξt
Et
[∫ T

t
ξuDiudu

]
=

2∑
i=1

∫ T

t
e−(ri,o−µi)(u−t)duDit =

2∑
i=1

1− e−(ri,o−µi)(T−t)

ri,o − µi
Dit, (A.51)

where ri,o, i = 1, 2, is as in (A.33)–(A.34).

In the second case T > τ , the dividend-paying stocks do alternate within the life of the
short-term asset so that the aggregate dividend is Du = D1u + D2u for all t ≤ u < τ and
Du = D1u + D3u for all τ ≤ u < T and the state price density is as in (A.20). In this case, we
have Sτt,T = Et

[∫ τ
t ξu

∑2
i=1Diudu+ ξτS

τ
τ,T

]
/ξt, and using similar steps as in (A.51) gives the first
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term as
2∑
i=1

1
ξt
Et
[∫ τ

t
ξuDiudu

]
=

2∑
i=1

1− e−(ri,o−µi)(τ−t)

ri,o − µi
Dit,

and the second term component Sττ,T as

Sττ,T = 1− e−(r1,e−µ1)(T−τ)

r1,e − µ1
D1τ + 1− e−(r3,e−µ3)(T−τ)

r3,e − µ3
D3τ ,

which in turn yields

1
ξt
Et
[
ξτS

τ
τ,T

]
= 1− e−(r1,e−µ1)(T−τ)

r1,e − µ1

1
ξt
Et [ξτD1τ ] + 1− e−(r3,e−µ3)(T−τ)

r3,e − µ3

1
ξt
Et [ξτD3τ ]

= 1− e−(r1,e−µ1)(T−τ)

r1,e − µ1
e−(r1,o−µ1)(τ−t)D1t + 1− e−(r3,e−µ3)(T−τ)

r3,e − µ3
e−(r3,o−µ3)(τ−t)D̂3t,

and putting these together we obtain the short-term asset price for a fixed τ in the second case

Sτt,T =
2∑
i=1

1− e−(ri,o−µi)(τ−t)

ri,o − µi
Dit

+ 1− e−(r1,e−µ1)(T−τ)

r1,e − µ1
e−(r1,o−µ1)(τ−t)D1t + 1− e−(r3,e−µ3)(T−τ)

r3,e − µ3
e−(r3,o−µ3)(τ−t)D̂3t. (A.52)

Finally, substituting the first and second case prices (A.51)–(A.52) into (A.50), and taking
the expectation with respect to τ , using the independent exponential distribution for its density
given by (A.25), we determine the short-term asset price St,T as

St,T =
2∑
i=1

1−e−(ri,o−µi)(T−t)

ri,o − µi
Ditλ

∫ ∞
0

1{T−t≤u}e−λudu+λ
∫ ∞

0

2∑
i=1

1−e−(ri,o−µi)u

ri,o − µi
Dit1{T−t>u}e−λudu

+λ
∫ ∞

0

1− e−(r1,e−µ1)(T−t−u)

r1,e − µ1
e−(r1,o−µ1)uD1t1{T−t>u}e−λudu

+λ
∫ ∞

0

1− e−(r3,e−µ3)(T−t−u)

r3,e − µ3
e−(r3,o−µ3)uD̂3t1{T−t>u}e−λudu,
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which after removing the indicator functions becomes

St,T =
2∑
i=1

1− e−(ri,o−µi)(T−t)

ri,o − µi
Ditλ

∫ ∞
T−t

e−λudu+λ
∫ T−t

0

2∑
i=1

1− e−(ri,o−µi)u

ri,o − µi
Dite

−λudu

+λ
∫ T−t

0

1−e−(r1,e−µ1)(T−t−u)

r1,e − µ1
e−(r1,o−µ1)uD1t+

1−e−(r3,e−µ3)(T−t−u)

r3,e − µ3
e−(r3,o−µ3)uD̂3t

e−λudu.
Evaluating the simple exponential integrals and rearranging yields St,T =

∑3
i=1 hit,TSit, where

the stock prices Sit are as in (15) and the deterministic processes hit,T are as in (31). Following
similar steps also leads to the same short-term asset price when we are currently in period Te.
The risk premium of the short-term asset rSt,T − r in our economy is given by

rSt,T − r = −dξt
ξt

dSt,T
St,T

1
dt
. (A.53)

Applying Itô’s Lemma to the short-term asset price leads to the continuous dynamics

dSt,T
St,T

= . . . dt+
3∑
i=1

hit,TSit∑3
j=1 hjt,TSjt

dSit
Sit

,

which after substituting into (A.53) along with the state price density dynamics (A.20) gives

rSt,T − r =
3∑
i=1

hit,TSit∑3
j=1 hjt,TSjt

(ri − r) ,

where the individual stock mean returns ri are as in (22). Canceling out the interest rates in
the above expression gives the equilibrium short-term asset mean return as in (30).

The property that the mean return of the short-term asset is higher than that of the stock
market in the economy with no-dividend stocks holds if and only if

3∑
i=1

hit,TSit∑3
j=1 hjt,TSjt

ri >
3∑
i=1

Sit∑3
j=1 Sjt

ri.

Since the no-dividend stock mean return is lower than that of dividend stocks, this property
holds if the no-dividend stock i weight in the short-term asset mean return is less than or equal
to its weight in the stock market mean return, that is hit,TSit/(

∑3
j=1 hjt,TSjt) ≤ Sit/(

∑3
j=1 Sjt).

Since this is equivalent to 0 ≤
∑
k (hkt,T − hit,T )Skt, we see that when the deterministic term

hkt,T for a dividend stock is greater than that of a no-dividend stock this condition holds.
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Appendix B: Differences in Firm Characteristics

Thus far, we have quantified the effects in our model under the assumption that dividend and no-
dividend stocks have the same characteristics. In reality, several firm characteristics are shown
to affect the decision to pay dividends or not. In particular, Fama and French (2001) and Denis
and Osobov (2008) show that more profitable firms, firms with less investments and growth
opportunities, and larger firms are more likely to pay dividends. Since these firm characteristics
are bound to affect an individual stock mean return and volatility, it would be of interest to
decompose our cross-sectional results to see to what extent they are due to our mechanisms
and to what extent they are due to differences in firm characteristics. In this Appendix, we
discuss the effects of different firm characteristics, namely the differences in mean growth rates,
volatilities, and sizes of their fundamentals, on our results.25 We find that these differences in
firm characteristics can capture a significant portion of the difference in individual stock risk
premia but can only explain a small portion of the differences in stock volatilities and market
betas between the dividend and no-dividend stocks. We also find that our key results involving
the aggregate stock market become more pronounced under these different characteristics.

To quantify our results under different firm characteristics, we modify our main parameter
values determined in Section 6 and summarized in Table 1 as follows. We keep the sensitivity
parameters, which essentially capture the average size of fundamentals in our model, αi, i =
1, 2, 3, as before since they already take into account of the fact that a typical dividend-paying
stock fundamental is (5.3 times) larger than that of a typical no-dividend stock. We choose
the mean growth µi and volatility σi parameters so that the no-dividend stock fundamentals
have higher mean growth rates and volatilities than those of the dividend stock, while ensuring
that the aggregate consumption growth rate mean and volatility are still as in the data, 1.74%
and 1.64%, respectively. Towards that we consider the case when µi = 1.5µ1 while σi = 1.5σ1 or
σi = 2σ1, for no-dividend stocks i = 2, 3.26 This leads to the mean growth rates of µ1 = 0.106 and
µ2 = µ3 = 0.159, and the growth rate volatilities of σ1 = 0.127 and σ2 = σ3 = 0.191 in the case of
σi = 1.5σ1, and σ1 = 0.122 and σ2 = σ3 = 0.244 in the case of σi = 2σ1. All other parameter values
are as before and presented in Table 1. We conduct our analysis for the no-dividend relative

25Due to the pure-exchange economy setting of our model, we cannot meaningfully consider the effects of other
characteristics such as firms’ different investment rates and profitability.

26We are unable to consider the case of µi = 2µ1, since such a high mean growth rate would violate the usual
parameter restriction of r̄i−µi > 0 in the stock price expression (13), leading to negative, not-well-defined prices
in equilibrium even in the benchmark economy. That being said, our analysis shows that the differences in mean
growth rates do not play much of a role in our results.
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Table 2: Effects of different firm characteristics on our cross-sectional results. This table
reports what fraction of the cross-sectional results in our economy are due to our mechanisms as op-
posed to the differences in firm characteristics that are also present in the benchmark economy, for
varying no-dividend relative stock sizes Sit/St, and no-dividend stock relative fundamental volatility
σi/σ1. The mean growth rate of the no-dividend stock fundamental is fixed at µi = 1.5µ1. The
reported effects for the benchmark economy are computed using (r̄i − r̄1) / (ri − r1) (risk premium),
(σ̄Sit − σ̄S1t) / (σSit − σS1t) (return volatility), and (β̄Sit − β̄S1t)/(βSit − βS1t) (market beta). The re-
ported effects for our model are one minus the effects for the benchmark economy. The parameter
values are µ1 = 0.106, µ2 = µ3 = 0.159, and σ1 = 0.127, σ2 = σ3 = 0.191 in the case of σi/σ1 = 1.5,
and σ1 = 0.122, σ2 = σ3 = 0.244 in the case of σi/σ1 = 2 for i = 2, 3. The other parameter values are
as in Table 1 of Section 6.

Risk premium Return volatility Market beta
Sit/St σi/σ1 Benchmark Our model Benchmark Our model Benchmark Our model

21.3% 1.5 73.8% 26.2% 12.2% 87.8% -5.8% 105.8%
2 53.5% 46.5% 21.7% 78.3% 12.7% 87.3%

14.2% 1.5 73.8% 26.2% 12.2% 87.8% -24.0% 124.0%
2 53.5% 46.5% 21.7% 78.3% -7.2% 107.2%

stock size in our model being equal to its average value in the data, 21.3% or 14.2%.

Table 2 reports what fraction of the differences in stock risk premium, volatility, and market
betas in our economy are due to our mechanisms as opposed to the differences in the funda-
mental mean growth rates and volatilities that are also present in the benchmark economy.
Table 2 reveals that the differences in firm characteristics can play a role at varying degrees in
explaining our cross-sectional results. We see that a significant portion of our result that the
risk premium of a no-dividend stock is lower than that of a dividend stock, ri − r1 < 0, can
be attributed to the differences in firm characteristics, particularly the dividend-paying firms
being larger than the no-dividend ones. That being said, we also see that as the fundamental
volatility difference increases, our model mechanism contribution to the risk premium difference
increases. For example, when σi = 2σ1, a no-dividend stock risk premium is 1.82% lower than
that of a dividend stock in our model, whereas the corresponding difference is only 0.97% in
the benchmark economy. This implies that 0.97/1.82 = 53.5% of our risk premium result can be
attributed to the different characteristics, namely dividend-paying stocks being large with less
volatile fundamentals, and the remaining 46.5% due to our mechanisms, namely the no-dividend
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stock not contributing directly to the aggregate consumption.27

However, looking at our return volatility and market beta results we see that the differences in
firm characteristics can only explain small fractions of them. For instance, even when σi = 2σ1,
only 21.7% of our result that the return volatility of a no-dividend stock is higher than that
of a dividend stock, σSit − σS1t > 0 can be attributed to the different characteristics, namely
no-dividend stocks having more volatile fundamentals, and the remaining 78.3% due to our
mechanisms, namely the no-dividend stock price being driven by its estimated pseudo-dividend,
which requires estimation. Interestingly, we also see that our result that the market beta of
a no-dividend stock is higher than that of a dividend stock, βSit − βS1t > 0, cannot even be
immediately generated in the benchmark economy, which typically generates the wrong sign for
this difference, leading to negative values in Table 2. This occurs since in the absence of our
mechanism, large stocks (dividend stocks) contribute to and comove with the aggregate stock
market return more, leading to their market betas to be higher than smaller stocks.

Finally, we also look at the effects of different firm characteristics on our aggregate stock
market results. We find that our main results continue to hold and in fact quantitatively become
more pronounced under the different firm characteristics that we consider. In particular, when
σi = 1.5σ1, we find that the correlation between the stock market return and the aggregate
consumption growth rate becomes 0.51 and 0.72 (previously, 0.53 and 0.75) when the no-dividend
relative stock size is equal to 21.3% and 14.2%, respectively. We also find the presence of no-
dividend stocks in the stock market still generates a non-monotonic and particularly negative
relation between the stock market risk premium and its volatility for relatively high volatility
periods, and downward sloping term structure of equity risk premia. For the latter result, the
economic magnitude of the effects are significant. For instance, we find that the risk premium
of the short-term asset is 41% and 24% higher than the risk premium of the stock market
(previously, 18% and 12% higher) when the no-dividend relative stock size is equal to 21.3%
and 14.2%, respectively.

27We find it helpful to present the decomposition in relative terms in percentages rather than in absolute
differences in Table 2, since as also discussed in footnote 17 our model does not generate realistic equity risk
premium so their difference may not be indicative of the contribution of different firm characteristics in reality.
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