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Bayesian Predictive Distributions for Imbalance
Prices with Time-varying Factor Impacts

Luana Marangon Lima, Member, IEEE, Paul Damien and Derek W. Bunn

Abstract—A dynamic Bayesian model is developed to estimate
the time-varying nature of the drivers of the system imbalance
prices in the British electricity market. We find that the key
exogenous factors that significantly influence prices have impacts
that evolve substantially over time. Thus, by modeling their
evolution with time varying parameter estimation and making
conditional forecasts on the latest estimates, more accurate
forecasts are produced. Furthermore, using a Bayesian approach
allows predictive distributions to be developed, as would be
required for value-at-risk compliance purposes. These densities
are also found to be more accurate at the extreme quantiles
than a conventional GARCH model with static parameters. We
validated the superior performance of this Bayesian time varying
predictive density method with the same data as in a previously
published benchmark model.

Index Terms—Balancing market; Bayesian inference; Predic-
tive Distributions; Pinball loss; Time-varying parameters.

I. INTRODUCTION

Research on balancing markets has been growing rapidly
as the uncertainties introduced by renewable resources and
greater consumer engagement create significant real-time risks
to market participants. If market participants (generators or
retailers), produce or consume quantities different to their
final nominations to the system operator for each trading
period, they will be exposed to the imbalance prices on those
volumes. In particular, if retailers fail to adequately hedge their
demands, their subsequent exposure to imbalance prices can
tip them into financial defaults. For example, in Britain in 2018
there were 21 retailers that went into default and, according
to the settlement agency, this was mainly due to a lack of
adequate hedging and their consequent exposure to imbalance
prices . This has been followed by 30 more retailers that had
to cease trading in 2021; see [1]. Imbalance risk is therefore
a significant consideration among energy traders.

Research on the design of balancing markets has looked
at how the markets should be administered ([2], [3], [4]),
whether they should be designed with a single price or separate
prices for positive and negative imbalances ([5], [6]) and
how they may be susceptible to strategic behavior ([7], [8],
[9]). Opportunistic trading strategies based upon predicting the
direction of net volume imbalances at system level, whether
positive or negative, and thereby creating physical positions in
the opposite directions, have been demonstrated as profitable
by [10], [11], [12]. Nevertheless, in the Nordic context, [13]
argued that imbalances were not predictable at the day ahead
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stage. However, within the day, close to real-time, forecasting
the sign and size of the net imbalance volume at system
level has been undertaken successfully by several researchers
using different methods, including [14] on the Nordic data.
Forecasting the net imbalance volumes is of particular value to
the system operators who have to balance the real-time demand
and supply during the defined balancing market delivery
periods.

Among the first to forecast net imbalance volumes were
researchers on the British balancing market, including [15],
who compared ARIMA, exponential smoothing and neural
networks, as did [16]; the conclusions being that all worked
well over short horizons but the simpler methods may be
more robust. More recently in the British context, [17] com-
pared machine learning with logistic regression for predicting
imbalance volumes during 2017-2019 and concluded that
the complexity of the machine learning was not obviously
beneficial in terms of accuracy compared to the transparency
value of the logistic regression. Outside the British context and
going beyond point forecasts, [18] used quantile regressions
for risk metrics on the German balancing market, as did [19]
for the Austrian balancing volumes. [20] developed a full
density forecasting for Austrian imbalance volumes using a
skewed -t specification.

There is less research on forecasting imbalance prices, partly
because the system operators are more concerned about their
volume requirements. Nevertheless, the market participants
(generators, retailers and speculators), who may be exposed to
imbalance prices on their own trading positions, can benefit
substantially from improved predictions. Thus, in the British
imbalance prices, [21] recognized that there may be different
price formation processes depending upon whether the system
operator is seeking to increase or reduce generation in the
system, and as a consequence, they found it beneficial to
use a Markov-switching model to predict imbalance prices. In
contrast, also on British balancing prices, [22] used machine
learning techniques to explore the relevant of various real
time variables with promising implications for forecasting.
Although well-validated, with the focus being upon point
forecasts, not density forecasts, they fail to deal with the full
risk management needs of the participants. [23] sought to
forecast the extreme balancing prices using statistical physics
but did not specify the densities. However, from a risk man-
agement perspective, the chances of extreme price outcomes
are crucial and so the full predictive distributions are often
necessary in practice to provide the required precision in
estimating the risks. A further consideration is that, even
though switching between regimes is somewhat adaptive, it
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assumes that the coefficients relating the various exogenous
inputs to prices are constant over time. Yet we know that the
market structure for power price formation is evolving and
that the impact of some factors (eg coal prices) are declining,
whilst others (eg wind speed) have been increasing, with the
technological transition towards decarbonisation. Hence, we
research an alternative approach to modeling the prices in
balancing markets which can deal with both density prediction
and time-varying parameters.

Our methodological approach to density forecasting with
time varying parameters has its origins in the Bayesian
dynamic linear model (DLM) of [24] and [25]. We adapt
this to model the British electricity imbalance prices in the
dataset used by [21], as previously published in these Trans-
actions. This provides a basis for direct comparison with
those previously-published regime switching results. Our new
results show that the impacts of the exogenous driving factors
for imbalance prices do vary over time and by taking this
into account, more accurate forecasts can be produced. In
our assessment of the density forecasts against conventional
benchmark using the pinball loss functions, the DLM is not
uniformly lower than the GARCH or AR-GARCH for all fore-
casting windows tested, but on average is lower. Importantly,
for the forecasting window with the largest volatility, the DLM
outperforms the GARCH and AR-GARCH. Also, using the
root mean square error, for all of the forecasting windows, the
DLM outperforms the GARCH and AR-GARCH. The paper is
organized as follows. Section II describes the data and various
exogenous variables used in the study. This is followed by the
Bayesian model in Section III. Finally, the empirical analysis
and results are detailed in Section III-E.

II. DATA FROM THE BRITISH MARKET

The British Balancing Mechanism operates on 30-minute
intervals (”Settlement Periods”, SP) during which forward
commitments are delivered and over which imbalance volumes
are settled. An hour prior to each SP all participants must
notify the System Operator (SO) of their expected physical
positions for the SP, namely the amount of electricity to
be generated or consumed during that half-hour. This ”gate-
closure” point is critical for the balancing mechanism since at
this point all flexible generators (and consumers) also inform
the SO of their offers/bids to increase/reduce generation (or
reduce/increase demand). Conditioned on these offers and
bids, the SO produces an order book that is updated during the
SP, predicated on the most economic bids and offers to balance
the system. In practice many offers and bids are accepted
on a minute-by-minute basis to control the balancing. There
are 48 SPs in a day. Within each SP, the SO progressively
accepts higher offers and lower bids as needed to balance
the supply and demand for power and maintain frequency as
efficiently as possible. This process repeats under each SP.
This episodic nature of the SP process led [21] and others to
consider the predictability of prices in the balancing market.
Our focus is to consider how the marginal effects of the
various exogenous factors that influence prices in each SP may
evolve over time. Furthermore, we respond to the need for

more information on the risks of extreme prices by seeking to
estimate predictive densities from these evolving parameters.
A Bayesian approach is natural in this framework.

The data—previously analyzed by [21]—were obtained
from the Balancing Mechanism Reporting Service (BMRS)
provided by ELEXON1. The sampling period is from 1st July
2016 to 30th June 2019, providing 3 years of historical data
for developing and testing the statistical model. We use 2016
data to construct the learning phase of the Bayesian model.
We set aside the last 2000 values in 2019 for out-of-sample
validation. There are 48 data points per day, each representing
an SP, resulting in a total of 52,560 data points within each
time series.

Consider Figure 1 that shows four plots. For the entire
sample period, Panel A and B provide the time series and
histogram plots of the price data. As already noted by [21]
the series has some spikes and occasional negative prices and
was therefore trimmed slightly in that analysis. There are pros
and cons for such trimming, but in order to directly compare
results, we followed the same data pre-processing before fitting
the model: all observations larger than 140 were replaced with
140 and all negative prices were replaced with zeros. Panel C
and D provide the ACF and PACF plots for the series in Panel
A after the trimming process.

The exogenous variables selected for the model are classi-
fied as: (a) market state measures (System Price, Net Imbal-
ance Volume (NIV)); (b) demand and supply forecast errors
(Wind Error, Solar Error and Demand Error); (c) scarcity
indicators in the supply and availability of power volumes
(De-rated Margin, Non-Balancing Mechanism (NonBM) and
Inter Delta). System Price is the imbalance price already
described; NIV is the degree of imbalance per SP in terms
of volume of power required for balancing; NonBM refers to
extra reserve power sourced by the SO outside the balancing
mechanism; Inter delta is the change of power inflows from
interconnections from neighboring markets. The correlations
of these exogenous factors, including their anticipated effects
on system imbalance prices are in Table 1. Since this data
is only revealed to the market about 10 minutes after each
settlement period, and it would only then be useful for the
subsequent period, all the exogenous variables were lagged
two periods. All these time series are stationary; see [21].
Additionally, we use an AR(2) variable and a dummy variable.
The latter is coded one if NIV is positive, zero otherwise.
Along with the intercept term, the evolution of the regression
parameter corresponding to the dummy variable (again lagged
by two periods) will help distinguish the evolution of prices
under the two NIV possibilities. The system imbalance price
will be higher or lower than marginal cost dependent on
whether system is short (NIV < 0) or long (NIV > 0).
The relationship between system price and net imbalance is
depicted in Figure 2.

1www.elexon.co.uk
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Fig. 1: System Price histogram, autocorrelation function (ACF)
and partial autocorrelation function (PACF).

Variable Correlation Coefficient
Lag 0 Lag 1 Lag 2

X1 Net Imbalance Volume (MWh) 0.70 0.59 0.47
X2 DRM 1h (MW) -0.21 -0.19 -0.17
X3 NONBM (MWh) 0.37 0.33 0.26
X4 Inter Delta (MWh) -0.02 0.03 0.02
X5 Wind Error (MW) -0.02 -0.01 -0.002
X6 Solar Error (MW) -0.15 -0.16 -0.15
X7 Demand Error (MW) 0.15 0.16 0.15

TABLE I: Correlations between System Price (£/MWh) and
Exogenous Factors
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Fig. 2: System Price versus Net Imbalance Volume

III. A BAYESIAN DYNAMIC LINEAR MODEL (DLM)

Following the use of state space models in econometric
applications by [26], the subsequent advances to Bayesian
inference were detailed in [24] and [25]. Throughout this
section, we use bold typeface to denote vectors and matrices.
Matrices are always uppercase, vectors can be either lowercase
or uppercase.

A. Dynamic Linear Models

We start by formulating the general DLM modeling frame-
work and then we include the context-specific meaning to
the mathematical representation. Let Y = [Y1, Y2, ..., YN ] be
a vector comprising the imbalance prices. We aim to use
the model for out-of-sample predictions; i.e., predict Yt for
t = N + 1. Note that Yt is a scalar variable. Let F

′

t be
a vector containing all the exogenous variables described in
the previous section, and let θt be a vector containing the
corresponding regression coefficients for all the exogenous
variables at time t. Following [24], the observation equation
for the univariate normal DLM for time t is given by:

Yt = F
′

tθt + νt, νt ∼ N [0, Vt], (1)

where N [0, Vt] is the normal distribution with mean 0 and
variance Vt also known as the observational variance. For the
univariate case, with n predictor variables, F

′

t is a (1 xn)
vector and θt is a (n x 1) vector. The above model is dynamic
because the state vector θt changes with t. It is useful to
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note that this representation automatically also allows for non-
stationarity, although in our dataset all the series are stationary.
The dynamic aspect of the model is formally written as

θt = Gtθt−1 + ωt,ωt ∼ N [0,Wt], (2)

where Gt is a known, (n xn) state evolution matrix and
N [0,Wt] is a multivariate normal distribution with mean 0;
Wt is an (n xn) evolution covariance matrix for θt. This
equation captures the evolutionary changes in the regression
parameters. The evolution and observation equations may also
be expressed for each t as

(Yt|θt) ∼ N [F
′

tθt, Vt], (3)
(θt|θt−1) ∼ N [Gtθt−1,Wt]. (4)

Let Dt be the set containing all information up to and
including time t. At time t = 0, the DLM is specified as

(θ0|D0) ∼ N [m0,C0], (5)

for some prior values m0, C0. At any subsequent time
period t, before the datum Yt is observed, the state equation
(θt|Dt−1) is given by

(θt|Dt−1) ∼ N [at, Rt], (6)

where

at = Gtmt−1, (7)

Rt = GtCt−1G
′

t +Wt. (8)

The one-step ahead forecast or predictive distribution is given
by

(Yt|Dt−1) ∼ N [ft, Qt], (9)

where

ft = F
′

tat, (10)

Qt = F
′

tRtFt + Vt. (11)

After observing Yt, we update the information set Dt =
{Dt−1, yt}, which will then be used to update the mean mt

and standard deviation Ct of the state vector. This update
is essentially the posterior distribution of the state vector
(θt|Dt). These posterior quantities are computed via Bayes’s
theorem, and are given by

(θt|Dt) ∼ N [mt, Ct], (12)

where

mt = at +Atet, (13)

Ct = Rt −AtQtA
′

t, (14)

At = RtFtQ
−1
t , (15)

et = yt − ft. (16)

The DLM is represented by the quadruple
{F′t,Gt, Vt,Wt}. Usually Gt and the relevant values
of the sequence F

′

t are known. The evolution variance matrix
Wt is also chosen by the user. Recall that Wt controls the
stochastic variation of the model. If Wt = 0 then there is
no variation in the regression parameters, leading to a static

regression model. Here we specify Wt using the discount
factor approach described in [24], namely

Wt =
1− δ
δ

GCt−1G
′
. (17)

The roles of Wt, F
′

t and Gt are further discussed in section
III-C. The remaining element of the quadruple, Vt, is often
unknown and large relative to the system variance Wt. [24]
present a Bayesian learning procedure for unknown observa-
tional variance working in terms of the unknown precision
parameter φt = 1/Vt. A simple closed-form Bayesian analysis
is still available if we impose a particular structure on the Wt

sequence and on the initial prior for θ0. This structure enables
a conjugate sequential updating procedure for φt in addition
to θt. The conjugate analysis is based on gamma distributions
for φt. As [24] describe, conditional on Vt being known, the
DLM will be defined by

Obs. eqn.: (Yt|θt) ∼ N [F
′

tθt, Vt], (18)
Sys. eqn.: (θt|θt−1, Vt) ∼ N [Gtθt−1, VtW

∗
t ], (19)

Initial Information:
(θ0|D0, V0) ∼ N [m0, V0C

∗
0]. (20)

Note that all variances and covariances have Vt as a multiplier
providing a scale-free model in terms of the starred variances
C∗

0 and W∗
t . For Vt fixed, the model coincides with the

original model given by equations (1), (2) and (5), with the
scale factor Vt simply being absorbed into these matrices. If Vt
is unknown, [24] show that the normal distribution is replaced
by Student-t distributions in the DLM. Therefore, the new
DLM structure is given by

Obs. eqn.: (Yt|θt) ∼ N [F
′

tθt, Vt], (21)
Sys. eqn.: (θt|θt−1) ∼ Tnt−1

[Gtθt−1,Wt], (22)
Initial Information:

(θ0|D0) ∼ Tnt−1
[m0,C0], (23)

(φt|D0) ∼ G[n0/2, n0S0/2], (24)

with G denoting the Gamma distribution and Tnt−1
[0,Wt] is

the Student-t distribution with nt−1 degrees of freedom. Note
that in specifying the prior, we must choose the prior estimate
S0 and the associated degrees of freedom n0 in addition to
m0 and C0; S0 is a prior point estimate of the observational
variance. Now at any subsequent time period t, before the
datum Yt is observed, the new state equation (θt|Dt−1) is
given by

(θt|Dt−1) ∼ Tnt−1
[at, Rt], (25)

where

at = Gtmt−1, (26)

Rt = GtCt−1G
′

t +Wt. (27)

The new one-step ahead forecast or predictive distribution is
given by

(Yt|Dt−1) ∼ Tnt−1
[ft, Qt], (28)
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where

ft = F
′

tat, (29)

Qt = F
′

tRtFt + St. (30)

The new posterior distribution of the state vector (θt|Dt) is
given by

(θt|Dt) ∼ Tnt−1
[mt, Ct], (31)

where

mt = at +Atet, (32)

Ct =
St

St−1

(
Rt −AtA

′

tQt

)
, (33)

At = RtFtQ
−1
t , (34)

et = Yt − ft, (35)

and
(φt|Dt) ∼ G[nt/2, ntSt/2], (36)

where

nt = nt−1 + 1, (37)

St = St−1 +
St−1

nt

(
e2t
Qt
− 1

)
. (38)

If interest lies in forecasting k steps ahead, the forecasting
distributions are given by

(θt+k|Dt) ∼ Tnt [at(k),Rt(k)], (39)
(Yt+k|Dt) ∼ Tnt [ft(k),Qt(k)], (40)

where

ft(k) = F
′

t+kat(k), (41)

Qt(k) = F
′

t+kRt(k)Ft+k + St, (42)
at(k) = Gt+kat(k − 1), (43)

Rt(k) = Gt+kRt(k − 1)G
′

t+k +Wt+k, (44)

with starting values at(0) = mt and Rt(0) = Ct.

B. The three phases of the DLM process

The process of using the DLM consists of separating the
data into three phases: first: prior construction via training
data; second: estimation; third: prediction. For the dataset at
hand, these phases are as following.

• Phase 1: Data from July to December 2016 correspond
to the training phase of the model. These were used
to construct the prior parameter values described in the
previous section.

• Phase 2: Data from January 2017 to 21st May 2019
are used in the estimation phase of the Bayesian model
detailed earlier. This is the in-sample component of the
model.

• Phase 3: The out-of-sample data are from 22nd May 2019
to 30th June 2019. These were used to test the forecasting
accuracy of the model.

We now describe each of these phases.

C. Phase 1: Prior specifications for the imbalance price model

The univariate DLM is classified by the quadruple
{Ft,Gt, Vt,Wt} and the initial information set D0. In this
section we go through the DLM specification by defining this
quadruple and the prior distributions for (θ0|D0) and (φ0|D0).
Following recommendations in [24], we use historical data
from June 2016 to formulate these priors, where these prior
estimates are obtained via ordinary least squares.

As noted in the previous section, we also introduce a
categorical variable to isolate the possibly differing price
formation effects if the system operator is out of balance in a
positive or negative direction (NIV positive or negative), via a
dummy variable, Xd

t , which equals one if NIV is non-negative
and zero otherwise.

Now we collate all our exogenous variables in one single
vector to get Ft. Explicitly,

F
′

t =
[
1 Yt−2 X1,t−2 X2,t−2 ... Xd

t−2

]
. (45)

The first component of Ft is 1 because it corresponds to the
intercept term. Note that the intercept plays a special role in
the formulation above. Ceteris paribus, the evolution of the
intercept is equivalent to the evolution of price when NIV is
less than zero. The θt coefficients will be the corresponding
regression coefficients.

The error term is given by νt ∼ N [0, Vt]. With respect to
the observational variance Vt, we can see from Figure 1 that
the data distribution is non-normal. Therefore we decided to
work with a variance law for the observational variance given
by

Vt = k(µt)Vt, (46)

where µt = F
′

tθt is the level of the series at time t. Since we
are working with the reciprocal of Vt, i.e., φt we have

Vt = k(µt)φ
−1. (47)

Given the right-skewed histogram in Figure 1b, here we
consider

k(µt) = µp
t , (48)

with p = 2 since this would be equivalent to a log transforma-
tion of the data; see, [24]. Note that by adopting a variance law
we actually allow Vt to change over time. The new variance
law would change the updating equation (30) for the one-step
ahead forecast and equation (42) for the k-step ahead forecast
so that

Qt = F
′

tRtFt + µp
tSt, (49)

Qt(k) = F
′

t+kRt(k)Ft+k + µp
tSt, (50)

where µt = ft, and ft is given by equation (29) for the
one-step ahead forecast or equation (41) for the k-step ahead
forecast. For the system equations we assume the system
matrix Gt is constant over time and equal to the identity
matrix. Hence, the current state θt is only dependent on the
previous state θt−1. The error term vector given by ωt ∼
N [0,Wt] represents purely random, unpredictable changes in
level between time t−1 and t. For the evolution variance Wt

we adopt the discount factor approach. A different δ can be
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specified for each set of predictors. Suppose

Pt = GCt−1G
′
, (51)

and let δT and δC be the discount factor associated with
the autoregressive and exogenous variables, respectively. The
evolution variance matrix is then defined as

Wt = block diag{PtT(δ
−1
T − 1),PtC(δ

−1
C − 1)}. (52)

As described in [24], these δ
′
s usually take values between

0.8 and 1.0, with smaller values anticipating greater change
in the model parameters at each stage and 1.0 being the static
model. In our analysis, based on a little trial and error, we
choose δT ≈ 0.99, and δC ≈ 0.99. Note that larger discount
factors, which are bounded by one, imply that we are being
diffuse in our beliefs.

The use of 2016 data to obtain the prior moments m0 and
C0 from (23) for the regression coefficients via a simple linear
regression may be thought of as the training data. Because we
are working with the reciprocal of Vt, φt, we also need to
specify the moments n0 and S0 from (24). The degrees of
freedom are usually given by nt = t − n. Since we already
used 2016’s data for the prior, n0 = 24−n. We set S0 to 0.12

to reflect vague prior knowledge.

D. Phase 2: Estimation

Since the estimation phase yields voluminous output, for
brevity of presentation, without loss of generality, we only
display the two variables, NIV and Solar Error. Addiitonal
plots can be found on Appendix A. Consider Figure 3 com-
prising of two panels. Panel A (B) depicts the boxplots of
the mean values of the regression parameters corresponding
to NIV (Solar Error). Note that actually we have the entire
posterior distributions corresponding to each value shown in
these plots. It is evident that these posterior distributions
are highly variable since even the mean values from these
distributions range significantly. This confirms one of the
primary hypotheses of this research, namely the time-varying
nature of the factors that influence prices in the balancing
market. Thus, from Panel A of Figure 3, the (mean) marginal
effect of the dummy variable’s coefficient corresponding to
positive NIV values on system prices have an Interquartile
Range of (-5.4572; 2.1070). Likewise the (mean) marginal
effect of Solar Error has and IQR of (-0.007732; -0.0001156).
It is important to model these fluctuating marginal impacts
since they, in turn, will affect the conditional one-step-ahead
predictive accuracy of the model, based upon market data
lagged by two periods, in our application.

E. Phase 3: Prediction

Figure 4 depicts the 2,000 out-of-sample forecasts compared
to the observed values. The DLM point forecasts follow
the actual values quite closely. Note that with the Bayesian
approach, instead of a point forecast, the model outcome is
a distribution forecast at each time period and so we use the
mean of the predictive distribution. Figure 5 depicts the one-
step ahead (but with two period lagged market information)
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Fig. 3: Estimation Phase: Evolution of Posterior Means of θ

0
20

40
60

80
10

0
12

0
14

0

S
ys

te
m

 P
ric

e

20May19 24May19 29May19 03Jun19 07Jun19 12Jun19 17Jun19 21Jun19 26Jun19 30Jun19

Observed
DLM−forecast
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observations

forecast distribution for prices for the last 100 observations.
The green line represents the point forecasts ft(k), which
are the means of the predictive distributions for the last 100
observations; the dotted lines provide the 95% prediction
intervals for Yt+2 given Dt; and the black dots correspond
to the observed prices. We note a further key point here. One
convenient feature of the Bayesian DLM is that when a new
observation arrives, the posterior distribution of the regression
parameters are easily updated without having to go through
the entire Phase 1 and Phase 2 steps. This is the ”learning
from experience” aspect implicit in Bayes’s theorem. Also,
once this update is made, it is straightforward to obtain any
k-step ahead forecast, provided one has data available for the
exogenous variables.

We next turn to assessing the forecasting accuracy of the
model. For these data, [21] expressed concern about model
performance for different forecasting windows; specifically,
they were concerned with periods with higher variability than
what was observed in 2019. For each forecasting window we
considered the first 100 observations to establish the priors
(Phase 1), we reserved the last 2000 observations to check
performance (Phase 3) and all the observations in-between
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Fig. 5: Forecast distribution for the last 100 observations

for training (Phase 2). For example, from Figure 1, 2016 had
a higher variability than subsequent years. Here we test the
DLM for different forecasting windows and for comparison
purposes we implement the GARCH(1,1) from [21] and a
AR(2)-GARCH(1,1) with the same exogenous variables from
Table I. Two measures are used to compare the forecasting
accuracy. Firstly, the commonly used Root Mean Square Error
(RMSE) for accuracy of the point forecasts; and secondly the
Pinball loss function (see, for example, [27]) at the 1st, 5th,
95th and 99th quantiles of the predictive distributions.

The root mean square error (RMSE) given by

RMSE =
1

T

T∑
t=1

(
yt − ŷt
yt

)2

. (53)

The Pinball loss function at time t, denoted Pt, for the q-th
quantile is given by:

Pt =

{
(1− q)(ŷqt − yt), yt < ŷqt
q(ŷqt − yt), yt ≥ ŷ

q
t .

(54)

The out-of-sample RMSE for the Bayesian DLM and the
other two models are given in Table III. And the Pinball loss
values for all three models are given in Table II. For all the
scenarios, we considered all previous observations to estimate
the model parameters. First, consider the RMSE measure.
The DLM outperforms GARCH(1,1) and the AR-GARCH for
all the volatility windows. For the Nov-Dec 2016 window—
the period with the largest volatility—the DLM RMSE is
20.57, which is better than the 22.18 from the AR-GARCH;
importantly, it is also better than the 22.1 regime switching
model proposed and reported in [21]. The latter authors did not
produce density forecasts from their regime switching model.
In our assessment of the density forecasts against conventional
benchmark using the pinball loss functions, the DLM is not
uniformly lower than the GARCH or AR-GARCH for all
forecasting windows tested, but on average is lower. High
prices are the most risky for any participant who is short.
Hence, at the higher quantiles, the DLM outperforms GARCH
in all the windows and outperforms AR-GARCH in four of the
six windows. Overall, in conjunction with the RMSE results,

the densities produced by the DLM are an improvement.

Forecasting Window
Pinball Loss 1% Pinball Loss 5%

DLM GARCH AR- DLM GARCH AR-
GARCH GARCH

Nov-Dec 2016 6.85 8.00 7.35 6.82 8.03 7.35
May-Jun 2017 6.58 9.69 10.3 6.55 9.62 10.1
Nov-Dec 2017 6.53 4.92 4.25 6.52 5.08 4.45
May-Jun 2018 6.26 6.25 4.52 6.24 6.32 4.64
Nov-Dec 2018 7.58 8.21 4.41 7.53 8.24 4.6
May-Jun 2019 6.09 7.70 9.51 6.07 7.71 9.27

(a) 1st and 5th quantiles

Forecasting Window
Pinball Loss 95% Pinball Loss 99%

DLM GARCH AR- DLM GARCH AR-
GARCH GARCH

Nov-Dec 2016 6.27 8.80 7.38 6.25 8.83 7.39
May-Jun 2017 5.87 8.09 5.22 5.84 8.02 5.01
Nov-Dec 2017 6.32 8.57 8.98 6.32 8.72 9.18
May-Jun 2018 5.76 7.90 7.37 5.73 7.97 7.49
Nov-Dec 2018 6.45 9.05 8.81 6.4 9.08 9.00
May-Jun 2019 5.55 7.83 4.01 5.52 7.84 3.78

(b) 95th and 99th quantiles

TABLE II: Pinball Loss over different forecasting windows

Forecasting Window DLM GARCH AR-GARCH
Nov-Dec 2016 20.57 25.22 22.18
May-Jun 2017 16.85 22.14 18.50
Nov-Dec 2017 16.83 18.15 18.24
May-Jun 2018 15.38 17.83 16.11
Nov-Dec 2018 18.52 21.83 19.17
May-Jun 2019 15.92 18.88 17.07

TABLE III: RMSE out-of-sample over different forecasting
windows

A similar plot to the one in Figure 5 is shown on Figure
6 for the Nov-Dec 2016 window. The plot also includes the
forecasts obtained with the AR-GARCH model. Note that the
Bayesian DLM tracks the price data quite well even during
periods of higher variability in prices.
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Fig. 6: Forecast versus observed system price for Nov-Dec
2016

IV. CONCLUSION

The research was motivated by two observations related to
the forecasting of imbalance prices. Firstly, because imbalance
prices are an increasing component of trading risk to market
participants, it is important to understand the extreme price
risks in the forecasts and so a predictive distribution is more
useful than a point forecast. The second observation is that
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the structural drivers of price formation are evolving quite
rapidly in electricity markets. Thus, for example, we expect the
impact of coal prices to become less and wind speed greater, as
evident through the evolution of their respective coefficients in
regression models of price formation. Thus, predictive models
should therefore be conditional upon the latest estimates of
coefficients, as estimated from time-varying parameter models.
Putting these two requirements together, we implemented a
Bayesian dynamic linear model.

To assess the performance of this approach in the con-
text of previous research, we used the same data as in
a previous publication which advocated the use of regime
switching for imbalance price forecasting. Our new Bayesian
DLM was more accurate on the same data than the regime
switching, vindicating the benefit of a model that captures
gradual evolutionary parameter changes over one involving
switching between distinct, constant parameter, specifications.
Regarding the density forecasts, we bench-marked against the
conventional GARCH and AR-GARCH models and again
demonstrated superior performance in general.

We therefore consider that the predictive density model with
Bayesian estimation of time varying parameters represents a
substantial research contribution for imbalance forecasting.
Evidently, balancing mechanisms vary considerably across
markets, both in terms of price formation and in the timely
availability of exogenous factors for market information.
Nevertheless, we believe the methodology in this paper is
generalizable, as the two fundamental driving observations—
the need for density forecasts to model risk and the evolution
of market structure—are unequivocally widespread.

APPENDIX A
ADDITIONAL PLOTS

The boxplots of the mean values of the regression parame-
ters corresponding to the other exogeous variables considered
in the paper are shown in Figure 7. Once again these posterior
distributions are highly variable.

The full forecasting distribution plot for all 2000 observa-
tions during Phase 3 of the analysis is shown in Figure 8.
Note that the observed values are always withing the 95%
forecasting distribution interval.
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