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In many low and middle income countries, including Zambia, stockouts of life-saving medicines threaten the

advancement of the Sustainable Development Goals (SDGs); it is therefore vital to reduce stockouts through

the use of improved inventory control policies. The associated medicine distribution problem is challenging

because it involves seasonality and uncertainty in both demand and lead-times, heterogeneous delivery

locations, and lost demand. Besides service level and inventory costs, equity across delivery locations must

also be considered. This empirical study is based on an independently-validated simulation model constructed

from extensive field data, and addresses the lack of rigorous recommendations of inventory policies in this

context. It compares the current base-stock and other policies proposed in the practitioner’s literature

with an optimization-based policy adapted from research on industrial settings. Although the optimization-

based policy may need more implementation efforts, it generally outperforms the other evaluated policies.

Our results also suggest that the prevalent proportional inventory rationing rules may lead to substantial

service level discrepancies between facilities. Finally, the performance metrics of service level and distribution

equity can be at odds, prompting non-trivial design trade-offs and considerations. This work motivated

the development of a digital distribution information system involving smartphones with barcode scanners

deployed in 60 health centers, posts and district hospitals in Zambia until 2018.
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1. Introduction

Achieving equitable access to health resources is necessary to accomplish Sustainable Development

Goal (SDG) 10 (“Reduce inequality within and across countries”) and SDG 3 (“Ensure healthy lives

and promote well-being for all at all ages”). A key challenge is ensuring access to health products —

SDG 3.8 mandates “access to safe, effective, quality and affordable essential medicines and vaccines

for all.” In many low and middle income countries (LMICs), inadequate pharmaceutical distribution

leads to drug stockouts at local health facilities, which contributes to their heavy disease burden. For
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instance, the average service level of essential medicines such as malaria drugs at public health facilities

in sampled LMICs was found as low as 29.4% in some regions (Cameron et al. 2009).

Zambia is representative of the disease burden in sub-Saharan Africa: its under five infant mortality

rate is 87 per thousand live births, compared to the sub-Saharan average of 92 per thousand live births

(You et al. 2015), with malaria being one of the major causes of under five mortality. The qualitative

reviews Yadav (2007) and Yadav et al. (2011) identified lack of reliable transportation, inadequate

staffing, and poor facility infrastructure as the main challenges in supplying local health facilities.

Subsequent assessments have also reported relatively frequent stockouts at the central warehouse, high

rates of stockouts at the health facility level, and substantial variations across regions (Picazo and Zhao

2009, Vledder et al. 2019).

To overcome these challenges, the Zambian Ministry of Health (MoH) and its partners have invested

significant resources in the public sector supply chain for essential medicines in recent years, resulting

in better distribution system performance (Vledder et al. 2019). However, there is strong evidence

that inventory management (i.e., how much inventory should be sent at each time to each location)

remains an important improvement opportunity (Leung et al. 2016). Consistent with the SDGs, the

equity of access to essential medicines across locations is a key strategic goal formulated by the MoH

in its Health Sector Supply Chain Strategy (Zambia Ministry of Health 2015); this contrasts with the

utilitarian (or efficiency-driven) objective, which in this context would consist of exclusively maximizing

the country-wide service level regardless of any resulting local inequalities (McCoy and Lee 2014).

Health access equity is also a sensitive issue in Zambia because its different ethnolinguistic groups are

distributed unevenly across the country. Ensuring this equity is made challenging by the prevalence of

drug shortages at the national, regional and global levels however (Hedman 2016, Gallien et al. 2017).

Unfortunately, the current peer-reviewed literature does not provide recommendations for how to

design an inventory management policy to address the inventory distribution challenge faced by Zambia

or similar countries, because the key features of this problem (seasonality and uncertainty in both

demand and lead-times, heterogeneous delivery locations and lost sales, frequent central warehouse

stockouts, consideration of equity across locations) render mathematical analysis difficult. While some

policies have been recommended in the practitioner literature for this problem (e.g., USAID | DELIVER

PROJECT (2011a)), their performance in certain circumstances is poor (Leung et al. 2016). In this

context, the present empirical study pursues the following objectives:

1. Provide a rigorous description of the challenging medicine distribution problem facing Zambia and

other sub-Saharan African countries;

2. Develop and disseminate a rigorous empirical simulation testbed with validated predictive accuracy

for this problem;
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3. Use this testbed to evaluate various possible policies against inventory distribution policies cur-

rently employed in practice, and develop related evidence-based recommendations for practitioners.

There is a substantial existing literature on inventory distribution models, which we discuss in §2. The

specific distribution problem considered here adds to that literature because of its above-mentioned fea-

tures which are particularly challenging from an analytical standpoint, but also because our motivating

environment involving essential medicines dictates the consideration of service level equity across deliv-

ery locations, a performance dimension which has received little attention in the inventory management

literature. We provide a more detailed discussion of this problem in §3, including some additional back-

ground on Zambia’s public pharmaceutical distribution (in §3.1), a quantitative problem formulation

(in §3.2) and a description of the inventory control policies currently used in Zambia and elsewhere to

address this challenge (in §3.3). We then present three possible improved policies in §4, specifically two

extensions of the current policy recently proposed in USAID | DELIVER PROJECT (2011a) and Wat-

son et al. (2014) (see §4.1 and §4.2), and an optimization-based policy involving an inventory planning

model solved on a rolling horizon basis as in Foreman (2008) (see §4.3).

This paper relies on a realistic simulation-based testbed which has validated performance prediction

accuracy and enables the empirical evaluation of these policies. We specifically leverage extensive field

data to construct a model simulating the inventory of a representative antimalarial drug in 212 delivery

locations in Zambia, as described in §5. An important feature of this model is that the accuracy of

its stockout predictions can be validated out-of-sample, by comparison with another extensive dataset

of historical facility service levels that was collected independently. As discussed in §6, our results

suggest that implementing the above optimization-based inventory distribution method would lead to

substantial improvements in the availability of drugs at health facilities in Zambia. In addition, these

results show that the metric of distribution equity can be at odds with the more traditional performance

metrics of system service levels and inventory costs, and that the prevalent proportional inventory

rationing rule may lead to substantial inequity in environments with heterogeneous delivery locations.

As discussed in §7, this work has motivated the development of a digital distribution information system

involving smart phones with barcode scanners, which was used in 60 health centers, posts and district

hospitals in Zambia before its deployment was paused in 2018 due to lack of funding. We conclude

the paper and discuss opportunities for future related work in §8. The Electronic Companion to this

paper contains a summary of mathematical notations (§A), a discussion of policy implementation issues

(§B), technical details on the simulation model (§C), including the construction and estimation of its

demand (§C.1) and lead-time (§C.2) generation components, and reports on numerical experiments

conducted to evaluate the robustness of our study with respect to the equity metric (§E) and information

transmission speed (§F). In order to facilitate further research by others on inventory theory and/or
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the distribution of essential medicines in low-income countries, all datasets as well as the code of the

simulation model described in this paper are available in the public repository https://github.com/

zacharyleung/ZappSupplyChainSimulator.

2. Literature Review

We study inventory policies for a pharmaceutical distribution system in a resource-constrained envi-

ronment. Accordingly we first discuss the relevant literature on inventory distribution in multi-echelon

systems (§2.1), then the relevant literature on global health supply chains (§2.2).

2.1. Multi-Echelon Inventory Distribution Models

Porteus (2002) contain a review of the large stream of literature on inventory policy in multi-echelon

systems, and Axsäter et al. (2002) contains a good discussion of the subset of these studies that focus on

distribution systems. Within this literature, the problem we consider is distinguished by the assumption

of unsatisfied demand being lost (as opposed to backordered), which seems appropriate in a context

where life-saving medicines are often distributed to patients who need to walk for several hours to

reach care delivery facilities. Remarkably, the optimal replenishment policy is not even known for the

single level version of this problem with stationary demand and constant lead-times (Zipkin 2008).

Our context is further characterized by heterogeneous, non-stationary and stochastic demand and

replenishment lead-times in a distribution system comprising a large number of facilities, and limited

inventory available at the supplying warehouse. We are not aware of any policy, let alone an optimal

one, described in the peer-reviewed research literature for this problem. The practice-based papers by

Foreman et al. (2010) and Caro and Gallien (2010) report heuristic policies adapted to real inventory

distribution problems. The optimization-based policy considered here has a structure similar to that

described in Foreman et al. (2010), namely an inventory planning model solved on a rolling horizon

basis. However, the present paper substantially differs from these studies in the context and details of

the distribution system considered.

Our study further adds to the existing literature on inventory distribution because of the consider-

ation of service level equity. Many studies consider the trade-off between efficiency and fairness in the

context of both specific applications and theoretical resource allocation problems (see Bertsimas et al.

(2011) and references therein). In addition, many studies of operational decisions in health systems rec-

ognize the importance of fairness among patients (e.g. McCoy and Lee (2014), Qi (2017)). However, few

papers on inventory distribution explicitly capture equity considerations beyond the proportional stock

allocation rule that is widely used in practice (e.g., Agrawal and Cohen (2001)). Exceptions include

Ernst and Kamrad (1997), who consider the problem of allocating inventory between different retailers

with individual service level constraints, and Graves (1996), who introduces a notion of equity based on

https://github.com/zacharyleung/ZappSupplyChainSimulator
https://github.com/zacharyleung/ZappSupplyChainSimulator
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prioritizing the oldest outstanding orders. The literature also discusses a wide range of possible metrics

to evaluate equity (e.g., Marsh and Schilling (1994), Bertsimas et al. (2011), McCoy and Lee (2014))

along with various related theoretical and practical considerations. While the primary metric we use to

evaluate distribution equity is the standard deviation of service level across delivery locations, we find

that our results continue to hold qualitatively across a range of different equity measures (see §E in

the Electronic Companion). Furthermore, the simulation results reported in §6 demonstrate that under

realistic and important scenarios some inventory distribution policies can outperform others along the

traditional dimensions of average system-wide service level and inventory holding costs while generating

substantially lower service level equity across delivery locations. The performance dimension of ser-

vice level equity thus introduces new and non-trivial design trade-offs and considerations to inventory

management, and our study may inform future studies of fairness in inventory systems.

2.2. Global Health Supply Chains

Kraiselburd and Yadav (2013) argue that ineffective and poorly designed systems for purchasing and

distributing health products are one of the most important access barriers to medicines in low income

countries. Consequently, a number of studies discuss interventions on various pharmaceutical supply

chain components in resource-constrained environments, including procurement and financing (Sieter

2010), facility location (Raja et al. 2008), information systems (Barrington et al. 2010) and organi-

zational structure (Bossert et al 2007). A particularly relevant study is Vledder et al. (2019), which

reports a quasi-randomized experiment (hereafter referred to as the 2009 Zambia supply chain pilot)

designed to evaluate two different supply chain structures (intermediary stocking versus cross-docking),

and found that the supply chain with fewer tiers results in reduced stock outs at the health facility level.

Although Vledder et al. (2019) does not explicitly consider the impact of inventory distribution policies,

that study has influenced the design of the current pharmaceutical distribution system in Zambia (see

§3.1), and has also generated essential data for this paper (§5).

Turning to inventory control, Leung et al. (2016) presents a single-facility simulation study of the

inventory replenishment policy currently used in Zambia. That paper reports evidence that that policy

causes regular and predictable stock-outs of drugs with seasonal demand (see §3.3), and more broadly

that inventory control constitutes an important opportunity to improve patient access to drugs in

Zambia. Following the dissemination of the Leung et al. (2016) study, practitioners have developed

additional guidance for changing some parameters of the current inventory policy when replenishing

malaria medicines (USAID | DELIVER PROJECT 2011a), and funded another study to develop an

extension of the current policy involving look-ahead seasonality indices (Watson et al. 2014).

While Leung et al. (2016) evaluates the policy variants described in USAID | DELIVER PROJECT

(2011a), it considers neither the policy proposed later by Watson et al. (2014) nor other policies adapted
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from the existing literature such as the optimization-based policy considered here. More importantly,

while Leung et al. (2016) also leverages data collected in the context of the 2009 Zambia supply chain

pilot, that study entirely relies on a model only considering a single facility and assuming unlimited

central warehouse inventory. These assumptions are particularly problematic given the study goals

stated in §1. This is because central warehouse stockouts are prevalent in Zambia and more broadly

sub-Saharan Africa, therefore practitioners routinely face the challenge of allocating inventory between

multiple competing locations. Furthermore, developing rigorous knowledge about this allocation chal-

lenge seems particularly important in the context of distributing life-saving medicines to the public.

Such knowledge may obviously not be developed with a single facility model as that used by Leung

et al. (2016) however. In contrast, the present study relies on a realistic evaluation testbed involving

a large network of facilities, for which more than 200 heterogeneous demand and access lead-times

distributions must be estimated (as opposed to single distributions corresponding to an “typical” facil-

ity in Leung et al. (2016)). This network model allows us to evaluate policies for allocating a limited

amount of inventory between multiple facilities, and the associated performance dimension of service

level equity across delivery locations, which is critical in this setting. Finally, in contrast with Leung

et al. (2016) which essentially establishes the inadequacy of current inventory replenishment policies for

a single facility but does not present specific alternative proposals, this study also develops a specific

and detailed proposal for how practitioners may address the inventory distribution problem in such a

network.

3. The Essential Medicines Distribution Problem
3.1. Background on Public Pharmaceutical Distribution in Zambia

The large scale population level distribution of essential medicines and supplies presents a significant

challenge due to low population density, poor road and communication infrastructure and flood-related

access cutoffs during the rainy season. The three distribution channels for drugs in Zambia include

the private sector, faith-based/mission organizations and the public distribution system (Yadav 2007),

in which drugs are delivered to patients for free by the government. Because of the limited spending

power of Zambia’s population (GDP per capita approximately $1305), the public distribution has an

important impact on public health. In that system, medicines are initially procured by the government

with financial and technical assistance from external donors. Insufficient or delayed funding (Gallien

et al. 2017) as well as inaccurate demand forecasts, inefficient procurement and production processes

among other factors (Hedman 2016) all combine to create frequent drug shortages at the national

level in Zambia, as in most of sub-Saharan Africa (Hwang et al. (2019) and references therein). Once

received at the central warehouse in Lusaka, drugs and medical supplies are shipped on a monthly

basis to approximately 90 district stores and hospitals (primary distribution) by a para-statal agency
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called Medical Stores Limited (MSL). Upon receiving downstream replenishment orders, MSL carries

out picking and packing, and drugs are then shipped to Zambia’s 72 districts by a dedicated truck fleet.

To smooth transportation and warehouse workload, districts are partitioned into four groups of delivery

tours, and MSL’s fleet of trucks performs the deliveries to these four groups following the same sequence

each month. Picking, packing and loading activities carried out at the central warehouse are also driven

by this schedule. Next, secondary distribution involves shipment of these drugs from the districts stores

to 1500 or so health centers. Secondary distribution is more ad-hoc and unreliable because of chronic

shortages of transportation resources and health center staff, and the poorer condition of secondary

roads. Following a large-scale pilot experiment (Vledder et al. 2019), the government of Zambia decided

in 2010 to transition the entire country from intermediary stocking (whereby districts replenish their

own unallocated inventory from MSL and prepare shipments for secondary distribution themselves)

to cross-docking (whereby districts receive from MSL packages already prepared for their final health

center destination), which we assume in this paper.

3.2. Problem Statement

We summarize the inventory distribution problem arising for every health product in the context just

described as follows: every month, a central warehouse (denoted W ) needs to determine shipment

quantities xht to every final delivery location h in a set H, where discrete index t∈ T ,{1, ..., T} refers

to the week in which this shipment is determined (a sensible value of T in practice could cover 6

months to a year, in order to capture key upcoming seasonality features). Delivery locations H are

partitioned into four subsets (Hg)g∈{1,2,3,4} corresponding to each one of the fixed sequential delivery

groups used for transportation and warehouse planning purposes (see §3.1). For exposition simplicity

we assume that the total duration of each monthly delivery cycle is 4 weeks, and that the shipments

to each delivery group are determined at the beginning of the same week each month (in the following

we refer to weeks and time periods interchangeably). We define Tg ⊂ {1, ..., T} as the subset of time

periods when the shipments to facilities in shipment group Hg are being determined, and the shipment

schedule constraints can thus be expressed as

xht = 0 for all (t, h, g) such that h∈Hg and t /∈ Tg. (1)

That is, in any given week the only shipments being determined are those to the facilities in the delivery

group associated with that week.

The information that is relevant to determine the shipments xht includes the on-hand inventory levels

IWt and Iht at the warehouse W and in each location h∈H at the beginning of week t, and the pipeline

inventory to these location. Specifically, the amount shipped in period t′ < t but not yet received in



8 Gallien, Leung, and Yadav: Inventory Policies for Pharmaceutical Distribution in Zambia

location h is denoted Xh
t′ , and the expected supplier delivery to the central warehouse in week t′′ ≥ t is

denoted RW
t′′ . In addition, a distributional forecast Dh

s,t of demand during week t≥ s available at time

s is available for each location h, along with the discrete lead-time distribution Lh
t of the number of

weeks necessary for a shipment determined in week t to reach location h. Both demand and lead-time

distributions are non-stationary and location-dependent in this context; this may reflect local seasonal

patterns such as a demand peak for malaria drugs during the rainy season due to the development of

mosquito populations, and interruptions of access to some health centers due to flooding (see facility

accessibility estimates from field data).

As discussed in section §C of the Electronic Companion dedicated to the estimation of demand

and lead-times from field data, it appears that facility-level demand in this context can be modeled

reasonably well by lognormal distributions with a constant coefficient of variation (see §C.1). We thus

use the standard multiplicative form of the martingale model of forecast evolution (MMFE) described

in Heath and Jackson (1994) in order to model the demand forecast updating process characterizing the

distributional forecast Dh
s,t. Specifically, distributional forecasts available in period s for the demand in

period t≥ s are generated by the process

Dh
s,t = D̄h

t exp(εt,t + εt−1,t + ...+ εs,t) exp(εs−1,t + ...+ εt−H,t), (2)

where D̄h
t = E[D̄h

t ] is the demand mean obtained from our dataset with the estimation procedure

described in section §C.1 of the Electronic Companion, H is the length of the forecast horizon, and εu,t

are normal random variables representing the uncertainty that is revealed in period t− u concerning

demand during period t (bold characters are used to differentiate yet unknown random quantities

from their known realizations)1. In words, the MMFE through equation (2) defines a quantitative

process by which the uncertainty affecting demand at a future time is partially resolved during the

time period leading to that point. Consistent with (2), the realization of demand in period t is given

by D̄h
t exp(

∑t

u=t−H+1 εu,t), which is indeed lognormal. The baseline scenario for forecasting accuracy

considered in this paper corresponds to the “statistical method” derived from actual forecasting data

in Heath and Jackson (1994), and for which the provided parameters are H = 3 months and 44%, 30%,

18% and 7% of demand variability resolved 3, 2, 1 months before sales and during the month of sales,

respectively.

The assumed sequence of events at the beginning of each period is that deliveries to the warehouse

and the facilities occur first, inventory levels are updated as demand is realized and then decisions are

made. Any demand from patients that cannot be satisfied from available inventory in a given week and

1 If εu,t ∼N(µu, σ
2
u), then parameters µu and σ2

u are constrained by µu =− σ2
u/2 so that E[exp(εu,t)] = 1. Others constraints

stem from the specified moments of demand Dt,t and schedule of demand uncertainty resolution with u.



Gallien, Leung, and Yadav: Inventory Policies for Pharmaceutical Distribution in Zambia 9

location is assumed to be lost. The relevant objectives include minimizing total expected lost demand

and average inventory levels at the delivery locations over the entire network. The importance of the

inventory level at the delivery locations, as opposed to the central warehouse, stems from the typically

poorer storage conditions in those facilities and their higher resulting holding costs. Another important

objective is to minimize the standard deviation of service levels (defined as the ratio of satisfied demand

to total demand) across delivery locations, where these quantities are calculated over some specified

time horizon T without weighting facilities by population or demand volume. This objective captures

the equity of any distribution policy considered across patients living in different locations, which is an

important consideration in this setting (see §1). As the standard deviation of service level may seem

an ad-hoc choice among many other possible equity metrics (Marsh and Schilling 1994), we report the

results obtained with other metrics in the Electronic Companion.

Note that this problem definition ignores potential interactions between different products (e.g., trans-

portation volume constraints). This is aligned with our field observations that in primary distribution

sufficient transportation capacity is available and that, given the typical size of individual shipments,

in secondary distribution availability of vehicles is a bigger concern than their capacity. Product expiry

is also ignored here, because in contrast with other products requiring cold chains (e.g., vaccines), the

shelf life of many essential medicines is relatively long (for example, the shelf life of most antimalarials

is about 24 months).

The deliveries by suppliers to the central warehouse RW
t are also considered exogenous. This is

justified by the low frequency of supplier deliveries in this setting (typically a couple per year) relative to

outbound shipments (monthly); the upstream procurement process also involves different considerations

(contractual agreements, production capacity constraints, multiple suppliers), suggesting a hierarchical

/ decoupled approach. The partition of facilities into delivery routes and the design of these routes

are also assumed fixed and exogenous, as in this setting changing the delivery routes on a frequency

comparable to how often shipment decisions are made would be challenging from a practical standpoint.

Finally, the assumption of lost demand (as opposed to backorders) is justified by the long travel required

for many patients to reach a health center, despite the life-saving nature of many of the commodities

considered here. These problem features may not all be appropriate in other settings.

3.3. Current Inventory Distribution Policy

The method currently used in Zambia for addressing the medicine inventory distribution challenge

just described is sometimes referred to by practitioners as the min/max policy. It corresponds to the

base-stock (s,S) policy described in the classical inventory theory literature, however in practice the

min (or s) parameter is often set to max − 1 (or S − 1), and therefore omitted thereafter. In the
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following we will only refer to it as the base-stock policy. This method follows the basic guidelines

recommended by the influential USAID-funded DELIVER project, and for that reason is used widely

throughout sub-Saharan Africa (USAID | DELIVER PROJECT 2011b). This involves the monthly

upstream communication by final delivery locations of replenishment order forms called requests and

requisitions forms, or R&Rs (see Figure 5 in the Electronic Companion for an example). To coordinate

the transmission of this information, each location faces a monthly deadline for transmitting its R&R

upstream, which is linked to the schedule of deliveries from MSL to the districts (see §3.1).

R&R forms fill two purposes: (i) they document the aggregate impact of inventory transactions

(receipt, deliveries, counting adjustments) on local stock, thus providing a monthly snapshot of down-

stream inventory levels; and (ii) they facilitate the implementation of the base-stock policy

Oh
t = (M ×AMIht )− IP h

t , (3)

where:

� Oh
t is the replenishment order quantity requested by facility h in week t;

� M is the maximum stock level, representing the number of months of recent past consumption to

which inventory should be replenished. Our baseline value for M is 4 months, as used in cross-docking

facilities during the 2009 supply chain pilot for example (see Figure 5);

� AMIht is a moving average of past monthly quantities issued to patients by the pharmacy in

location h over the 3 months preceding week t. Later in this paper (in §4.1), we consider inventory

policies involving different periods for calculating this moving average, and expand then that notation

to specify explicitly that calculation period in brackets, so that the default method featured in (3)

would for example be denoted AMIht [−3,0];

� IP h
t is the inventory position of facility h at the beginning of week t , that is the sum of inventory

on-hand Iht and the total quantity ordered in the past by that facility but not yet delivered to date (see

column H in Figure 5). Because of practical challenges associated with tracking pipeline inventory, the

inventory on hand Iht is sometimes used instead of the inventory position IP h
t in (3).

Once R&Rs from various facilities are received at the central warehouse, an allocation rule is followed

in situations where the sum of all replenishment orders received in the same week
∑
k∈H

Ok
t exceeds

the inventory IWt available in the warehouse then. A prevalent allocation rule is first-come-first-serve,

whereby individual shipment requests are filled in the sequence they arrive until no more inventory is

available, at which point the current replenishment order being considered may be filled only partially

and the subsequent ones not at all. Another prevalent practice is the proportional (PROP ) allocation
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rule, which involves reducing all the orders received that week by the same proportion so that the sum

of shipments equals the inventory available at the warehouse, that is

xht =Oh
t ×min(

IWt∑
k∈H

Ok
t

,1). (4)

Based on extensive numerical experiments (not reported here) suggesting that the proportional allo-

cation rule outperforms first-come-first-serve, in the rest of this paper we assume the proportional

allocation rule PROP defined in (4) is used.

In summary, the family of inventory distribution policies used in Zambia for addressing the problem

described in §3.2 can be described (with subscripts and superscripts omitted) by the following symbolic

notation:

4×AMI − IP. (5)

This mathematical expression refers to the order calculation method used by each facility (e.g., replenish

inventory position to 4 months of the average monthly quantity issued, calculated over the last 3

months). In the absence of any ambiguity about the value of specific parameters within the class of

policies discussed here, we will hereafter refer to a policy within this class as the current policy.

Considering a single typical facility having access to infinite warehouse inventory, Leung et al. (2016)

simulate the inventory replenishment policy (3). They find that the policy 4×AMI− IP may be directly

responsible for many of the stockouts of anti-malaria medicines observed in practice. This is because

the forecasts of demand and lead-times implicitly associated with that replenishment order calculation

ignore the predictable increases of these two quantities during the peak demand period occurring for

these medicines in the first quarter of the year (this seasonality is linked to Zambia’s rainy season, when

mosquito population increases and flooding cuts off access to some facilities). Specifically, when demand

starts to increase in the couple of months preceding the demand peak, the quantities ordered then

reflect lower past consumption rates associated with the previous 3 months and are therefore insufficient

to cover the upcoming demand surge. The safety stock resulting from the maximum stock level M

takes some time to deplete however, so that the first stockouts only appear in the second half of the

peak demand period. Because of longer lead-times, the high quantities ordered during the first half are

only received after the peak demand period is over, resulting in a wasteful accumulation of inventory.

This phenomenon has been observed in other inventory systems facing demand seasonality and coined

“the landslide effect” (Neale and Willems 2015). Another pattern is that replenishment orders based

on past issues (as opposed to demand) create a negative self-perpetrating cycle whereby historical

stock-outs are ignored, resulting in insufficient replenishment quantities and increased likelihood that

more stock-outs will subsequently occur. Overall that policy is found to satisfy less than 90% of total



12 Gallien, Leung, and Yadav: Inventory Policies for Pharmaceutical Distribution in Zambia

demand, even though an infinite amount of upstream inventory is assumed and an average on-hand

inventory equal to about two months of demand across the year. These performance concerns, which

have been communicated to a number of relevant practitioners in both Zambia and the US since 2010,

have motivated the development of the enhanced policies described in the next section.

4. Alternative Inventory Distribution Policies

In §3.3, we described the inventory distribution policy which is currently used to address the inventory

distribution challenge of Zambia (see §3.2). We now discuss three alternative policies: (1) a simple

modification of the current inventory policy proposed in USAID | DELIVER PROJECT (2011a) (§4.1);

(2) another modification of the current policy capturing seasonality factors and lead-times recently

described in Watson et al. (2014) (§4.2); and (3) a new rolling horizon policy based on an inventory

planning optimization model (§4.3). We mostly focus here on the mathematical definition of these

policies, and refer the reader to section §B of the Electronic Companion for a discussion of related

implementation issues.

4.1. Last Year Policy

The influential USAID DELIVER project has issued several supply chain management guidance doc-

uments for practitioners, including USAID | DELIVER PROJECT (2011a) focusing on anti-malarial

commodities. It proposes a number of modification of the current policy described in §3.3, specifically

considering different calculation periods for the moving average of past issues and using an estimate

of demand as opposed to issues for the basis of the calculation, for example by tracking the number

of days without stock in any given month and increasing the quantity issued from stock during that

month accordingly. The notation we use to refer to such an enhanced policy is directly derived from

that defined in §3.3, for example AMDh
t [−12,−9] denotes average monthly demand calculated over the

three months following the week one year before t. In the absence of any ambiguity about parameter

values, we will hereafter refer to a policy within the class M ×AMD[−12,−9]− IP as the last year

policy.

4.2. Lookahead Seasonality Index (LSI) Policy

The USAID DELIVER project has also funded the study by Watson et al. (2014) to design and evaluate

an enhancement of order rule (3) explicitly capturing seasonality in demand and access to facilities.

The intent of this approach is to address the performance gaps highlighted in Leung et al. (2016) while

minimizing the potential implementation challenges and costs associated with changes to the current

system. Specific potential benefits of this approach include (i) the continued use of an explicit formula

that ideally remains intuitive to all involved; and (ii) the use of processes and information system for

inventory management that are similar if not identical to the current ones.
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The modified ordering rule proposed by Watson et al. (2014) can be described asOh
t =

(
M × τh2 (t)−τh1 (t)

4
×LSIht ×AMDh

t [−3,0]
)
− Iht

LSIht =
average[s

τh1 (t)−4
,...,s

τh1 (t)−1
,s
τh1 (t)

,...,s
τh2 (t)

,s
τh2 (t)+1

,...,s
τh2 (t)+4

]

average[sht−12,...,s
h
t−1]

, (6)

where:

� τh1 (t) is the median of the distribution of time at which the shipment triggered by the order quantity

determined in week t will be received at facility h, and τh2 (t) is the median of the distribution of time

when the following shipment is received at that facility2. The time interval [τh1 (t), τh2 (t)] can thus be

interpreted as the shipment consumption period during which the shipment determined in week t is

meant to cover demand. Its duration τh2 (t)− τh1 (t) is divided by 4 in (6) in order to express the terms

M and AMD in months as is prevalent in practice, even though the time periods defining our problem

dynamics are one week (see §3.2);

� sht is a seasonality index quantifying for facility h the average expected change of consumption in

period t relative to another period of reference (to simplify notation the superscript is omitted when

obvious from context). When enough historical records are available, Watson et al. (2014) propose to

compute sht by considering one continuous year of historical consumption data and dividing the record

in each period by the consumption in the first period of the year;

� LSIht is the lookahead seasonality index meant to correct the implicit demand forecast associ-

ated with the term AMDh
t [−3,0] so that it better reflects the demand to be expected over the ship-

ment consumption period [τh1 (t), τh2 (t)]. The inclusion of the seasonality indices sτh1 (t)−4, ..., sτh1 (t)−1 and

sτh2 (t)+1, ..., sτh2 (t)+4 in the numerator of the fraction defining LSIht is meant to provide some robustness

with respect to possible shifts of seasonality (Watson et al. 2014 recommend the inclusion of the months

preceding and following the shipment consumption period). The denominator average[sht−12, ..., s
h
t−1]

reflects the time period over which the term AMDh
t [−3,0] is calculated;

In summary, Watson et al. (2014) propose to modify the calculation of the average monthly issues

featured in the existing policy (3) to form a prediction of the average monthly demand rate over the

anticipated consumption period relevant to the shipment being considered, with some consideration for

robustness3. In the remainder of the paper, we will refer to the ordering rule described in this section as

M ×LSI ×AMD− I or more simply as the LSI policy when no ambiguity about the value of specific

policy parameters arises.

2 This definition generalizes the policy described in Watson et al. (2014), which assumes deterministic lead-times.

3 Equations (6) actually generalize Watson et al. (2014)’s ordering rule to the case of non-deterministic lead-times. The
shipment consumption period [τh1 (t), τh2 (t)] featured in (6) also generalizes and makes explicit their recommendation to
increase M for the last shipment before a facility is to get cut off during the rainy season.
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4.3. Proposed Optimization-Based Policy

The third main improved policy considered in this paper to address the practical distribution challenge

described in §3.2 relies on an inventory planning linear program (LP) that is solved on a rolling horizon

basis immediately before any new shipments to facilities are determined. While these high-level features

are similar in spirit to the approach described in Foreman et al. (2010), the structure and formulation of

the model to be described next are distinct and were developed through extensive and specific numerical

experimentation. Its primary decision variables are the quantities of the drug to be sent to each health

center as part of each set of weekly shipments scheduled over the planning horizon (see discussion of

facility shipping groups in §3.2). These variables thus include both shipments to facilities in the next

shipping group and subsequent shipments that are more distant in the future. While these more distant

shipments in the time horizon are considered to prevent any myopic behavior (e.g., shipping enough

inventory in the short run in anticipation of a possible facility cut-off due to flooding in some future

period), upon any model run only computed shipment variables corresponding to the next scheduled

delivery are to be implemented. Given the specific seasonality patterns of demand and delivery lead-

times in this environment (see §5 for a description of the data), a planning horizon length P of six

months to a year seems appropriate (we use P = 48 weeks in experiments). The objective retained for

this LP is to minimize a weighted combination of expected lost demand and inventory holding costs

calculated over the planning horizon for the entire set of delivery locations considered. That expected

lost demand function is captured in this LP as a piece-wise linear convex approximation of the original

nonlinear lost sales function arising in a model with stochastic demand, using a set of approximating

tangents computed from the stochastic primitives of the demand distributions. In the following exact

model definition, dependence on the current time period (t0) is omited when it is clear from context.

Sets and indices:

� H : set of final shipment destinations h (health centers) considered. The central warehouse is

denoted W ;

� TP = {t0, ..., t0 +P} : set of consecutive discrete periods t (weeks) in the planning horizon, where

t0 ∈ {1, ..., T −P} is the first (current) period for which the shipment decisions must be determined;

� Kht : set of approximating tangents k for the lost demand function of health center h∈H in period

t∈ T .

Input data:

� Dh
t ,E[Dh

t0,t
] : expected demand at health center h during week t∈ TP estimated in week t0;
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� Lht [β] : β-conservative deterministic equivalent of the lead time from MSL to health center h for

a shipment initiated in week t and determined as of t0, where β is a parameter in (0,1). These β-

conservative lead time equivalents are defined as follows:

Lht [β],

min{n∈N : P(Lh
t = n|Lh

t > t0− t)> 0) if t < t0
min{n∈N : P(Lh

t = n)> 0) if t= t0
min{n∈N : P(Lh

t ≤ n)≥ β} if t > t0

. (7)

In words, the β-conservative lead time is equal to the minimum of the lead-time distribution support

for the shipment to be determined in the current period t0 and for any pipeline shipments sent before t0

but not yet arrived, and it is equal to the β-fractile of the lead time distribution for future shipments.

That is, the lead times for past and present shipments is deliberately assumed to be short, while the

lead times for all future shipments (most saliently the shipments immediately following the current

ones under consideration) is deliberately assumed to be long. The rationale behind this definition is to

ensure that the consumption period for the next shipments to be sent, that is the period of time during

which these shipments will need to satisfy demand before additional inventory arrives, is conservatively

assumed to be long (when β is chosen to be close to 1) by the LP, so it adds appropriate safety stock

to avoid lost sales;

� Iht0 , I
W
t0

: initial on hand inventory levels at health center h and the central warehouse W , respec-

tively;

� (Xh
t )t<t0 : vector of pipeline shipments quantities sent from the warehouse to health center h in a

past period t < t0 and which have not yet been received;

� (RW
t )t>t0 : vector of (exogenous) replenishment quantities to be delivered at the warehouse by

suppliers in future weeks t > t0 (the assumed sequence of events is such that any supplier delivery in

week t0 is already reflected in the initial warehouse inventory IWt0 );

� Ahtk,B
h
tk : slope and intercept of approximating line segment k ∈ Kht for the lost demand function

of health center h during week t (estimated as of week t0). Since that lost demand E[(Dh
t0,t
−iht )+] is a

convex function of the starting inventory level iht (see variable definition below), it can be approximated

arbitrarily closely by the upper enveloppe of a discrete set Kht of its secants at consecutive points. Their

slopes and intercept are calculated using the closed form expressions for the lost demand function that

are available under the distributional assumptions for Dh
t0,t

(see §5.2)4;

� C : weight / cost parameter representing the cost of one unit of lost demand relative to the cost of

holding one unit of inventory for one period at a health center.

4 Omitting subscripts and superscripts t0, t and h for convenience, for the implementation we define a set of n+ 1 equally
spaced fractiles {i0, ..., in} as ik , F−1( k

n+1
), where F is the distribution function of D. The approximating line segment

with slope Ak and intercept Bk is then obtained as the line joining the points (ik,E[(D−ik)+]) and (ik+1,E[(D−ik+1)+]).
We use n= 7 for the numerical experiments reported in this paper.
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Decision variables:

� xht : quantity to be shipped from the warehouse to health center h during week t;

� iht , i
W
t : expected inventory level at the beginning of week t in health center h and the warehouse

W , respectively;

� `ht : expected shortages (lost demand) at health center h during week t.

Formulation:

min
∑
h∈H

∑
t∈TP

(C × `ht + iht ) (8)

subject to: (1) and

iWt0 = IWt0 (9)

iWt+1 = iWt +RW
t −

∑
h∈H

xht ∀t∈ TP (10)

iht0 = Iht0 ∀h∈H (11)

iht+1 = iht −Dh
t + `ht +

∑
u∈{u<t0:u+Lhu[β]=t}

Xh
u +

∑
u∈{u∈TP :u+Lhu[β]=t}

xhu ∀h∈H, t∈ TP (12)

`ht ≤Dh
t ∀h∈H, t∈ T (13)

`ht ≥Ahtkiht +Bh
tk ∀h∈H, t∈ TP , k ∈Kht (14)

xht , i
W
t , i

h
t , `

h
t ≥ 0 ∀h∈H, t∈ TP (15)

In this deterministic inventory planning LP, the objective (8) captures the weighted sum of lost

demand and inventory holding costs over the planning horizon and the set of health centers considered.

Constraint (1) ensures that in any given week only shipments corresponding to the delivery route

associated with that week are considered (see §3.2); constraints (9)-(10) and (11)-(12) are the inventory

balance equations for the warehouse and all health centers, respectively; constraints (13)-(14) implement

the linear piecewise approximation of the lost demand function; and constraint (15) ensures that all

decision variables are non-negative, which together which (10) implies that total shipments in any

period do not exceed the inventory available at the warehouse then. In the remainder of the paper, we

will refer to the policy described in this section as OPTCβ , or the optimization policy when no ambiguity

about the value of policy parameters arises.

5. Simulation Model

The simulation model to be described next is used in this paper to evaluate and understand the

performance of the proposed enhanced inventory distribution policies described in §4, both in absolute

terms and relative to the inventory control policies currently used in Zambia.
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Consistent with the problem statement in §3.2, we mainly evaluate policy performance along the

following metrics:

System service level: The proportion of total patient demand satisfied from available inventory calcu-

lated over all health facilities in the distribution network;

Distribution equity: The standard deviation of service levels calculated independently for each health

facility across all sites in the distribution network, reflecting distribution fairness or the degree to which

access to drugs may differ for patients depending on their geographic location. Because other equity

metrics besides standard deviation also seem meaningful in this context (Marsh and Schilling 1994),

we report later in §6 on extensive numerical experiments conducted with other equity metrics;

Average inventory level: The average total on hand inventory level at the health facilities in the distri-

bution network, expressed in weeks of average system demand.

Note that these three metrics allow us to quantify the tradeoffs between inventory cost, system service

level, and service equity, as part of this study.

Some questions not considered in this paper are also important in the context of pharmaceutical distri-

bution in low-income countries and/or challenging inventory models (see §8). The facility, demand and

lead-time data we rely on, the description of the generation process for that data and the simulation code

provided in the public repository https://github.com/zacharyleung/ZappSupplyChainSimulator

are meant to facilitate future related work by other researchers.

In the remainder of this section, we discuss the scope and structure of our simulation model in §5.1,

then the policies and scenarios considered in §5.2. For details on the construction and estimation from

data of our demand and lead-time simulation models as well as a description of the work performed to

validate and evaluate the predictive accuracy of this simulation model, we refer the reader to section

§C in the Electronic Companion.

5.1. Model Scope and Structure

Our simulation model focuses on the distribution of the anti-malarial medicine

Artemether/Lumefantrine (brand name Coartem®, from now on abbreviated as AL), for the following

reasons. First, AL is important to global public health as the recommended first-line treatment for

malaria in many countries including Zambia. Second, the demand for AL is seasonal because malaria

incidence is highly correlated with rainfall patterns due to mosquito population dynamics, and Zambia

experiences a marked rainy season between December and March. Third, AL is distributed to all health

facilities in Zambia, including locations that are particularly challenging to access through all or part

of the year. AL is thus an important product in itself, but is also a meaningful test case from a policy

design perspective as the most challenging product, from a distribution standpoint, in a set of several

https://github.com/zacharyleung/ZappSupplyChainSimulator
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hundred essential medicines that do not involve storage and transportation temperature restrictions

or very short shelf lives. Finally, because AL was one of the main tracer drugs considered as part of

the 2009 supply chain pilot, we can use for model validation purposes the availability evaluation data

collected independently for this product then (see §6.1). While AL products come in four different

pack sizes, demand and inventory for these pack sizes are fully substitutable, so that in all experiments

except those reported in §6.1 we aggregate them and consider these pack sizes together as a single

product5.

Written in the Java programming language, our model uses a discrete-event structure and weekly

time period and predicts on-hand inventory dynamics of all combined AL products in each location

of a network comprising the central warehouse, 12 district health offices and 212 health facilities.

This geographic coverage amounts to approximately 17% of Zambia’s facilities and corresponds to the

districts for which historical demand and lead time data could be collected by leveraging the presence

of a commodity planner during the 2010 supply chain pilot (see §3.1). We note that these districts

were selected as a subset that is representative of the entirety of Zambia as part of the experimental

design of that pilot (Vledder et al. 2019). In addition, these facilities cover three of the four sequential

distribution groups discussed in §3.2, allowing investigation of the impact of this partition.

The sequence of events simulated by this model in each period is the following:

1. Planned receipts are added to the on-hand inventory of each location;

2. Demand in each health center is generated according to the nonstationary stochastic demand

model described in §C.1 of the Electronic Companion. This demand is debited from the local on-hand

inventory and lost demand is recorded in case demand exceeds available inventory;

3. Shipments from the central warehouse to the set of facilities on the shipment schedule that week

are computed according to the inventory policy being simulated (see §5.2) and debited from the central

warehouse inventory. Reflecting the actual pre-determined monthly primary distribution schedule of

fixed truck routes covering each a subset of districts (see §3.2), the simulated districts are evenly

partitioned into subsets associated with single monthly shipment opportunities. Lead times for these

shipments are generated according to the nonstationary stochastic lead time model described in §C.2 of

the Electronic Companion, and the corresponding planned receipts are added to a list of future events.

5 AL comes in four different pack sizes (6, 12, 18 and 24), with the numbers indicating the quantity of pills included in a
tablet constituting a single treatment dose for a patient. Any box of AL contains 30 individual tablets regardless of pack
size. The treatment dose for a patient is dependent on his/her body weight, with the pack size of 24 intended for adults
and smaller ones for children with smaller body weights. The pills provided in each tablet are rigorously identical across
pack sizes however, so that two tablets of AL 6 or half of a tablet of AL 24 would be be provided to a patient requiring a
dose of 12 pills whenever a stockout of AL 12 would occur, etc. Our aggregation of these four pack sizes accounts for the
different number of pills in each tablet.
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This simulation model is designed to capture some key features of Zambia’s distribution system that

include the predictable and unpredictable variability associated with both demand and shipment lead

times, the monthly order and shipment schedule at the central warehouse and the scarcity of central

inventory. Its assumptions reflect the discussion in §3.2 and include the independence of different health

products, the exogenous supplier deliveries to the central warehouse and the exogenous schedule of

delivery routes to the districts. Instead of using actual data of inbound deliveries by suppliers to the

central warehouse, we will assume regular shipments of equal quantities every quarter of the year (as

is frequently observed in practice) and will vary the quantities of these shipments in relation to total

demand in the distribution network in order to examine different levels of supply scarcity.

5.2. Policy and Scenario Parameters

The families of inventory distribution policies we evaluate here are as described in §3.3 and §4.1-§4.3,

respectively. Within each family, a given policy is characterized by family-specific inventory control

parameters such as the maximum stock level M , the lost demand penalty C and the lead time fractile

β.

The key simulation scenario variable that we consider is the scarcity of inventory available at the

central warehouse relative to network-wide demand at the health facilities. Specifically, we assume

that the upstream procurement process is characterized by the delivery of RW units of inventory to

the central warehouse four times per year (52 weeks), and vary RW to achieve different values of the

suppy/demand ratio (hereafter denoted S/D) defined as

S/D,
4RW∑52

t=1

∑
h∈H D̄

h
t

,

where the denominator represents the sum over all health facilities of average simulated demand through

one year.

In order to generalize our results (to medicines besides AL and countries besides Zambia), we ran

a set of sensitivity analysis experiments, where we considered different demand and facility lead time

scenarios. For the experiments reported in §6.3.1 we derive different demand datasets from our original

Zambia dataset by varying the relative level of demand seasonality using a demand seasonality parameter

φD ∈ [0,1]. Specifically, the mean demand in each period t and location h in these modified dataset is

obtained by replacing the analogous quantity D̄h
t of the original dataset by

D̄h
t [φD], D̄h

t + (1−φD)
(
Ḋh− D̄h

t

)
,

where Ḋh , 1
T

T∑
t=1

D̄h
t is the average demand mean for facility h throughout the year. As a result, φD = 1

recovers our original malaria drug demand dataset, while at the other extreme φD = 0 generates a
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dataset with constant expected demand in each location (that expected demand may still vary across

locations however).

For the experiments reported in §6.3.2, we similarly derive different facility lead time datasets from

our original Zambia dataset by varying the relative level of facility access challenges using a facility

access challenge parameter φL ∈ [0,1]. Specifically, the accessibility probability for facility h at time t

in these modified datasets (see §C.2) is obtained by replacing the analogous quantity aht estimated in

our original dataset by

aht [φL], φLa
h
t + (1−φL).

As a result, φL = 1 recovers our original Zambia lead time dataset, while at the other extreme φL = 0

generates a dataset where every facility is always accessible and has a constant lead-time through the

year (lead-times may still vary across locations however).

6. Numerical Simulation Results

Our first set of simulation experiments reported in §6.1 focuses on validating and establishing the

predictive accuracy of the simulation model just defined. We then discuss our baseline policy perfor-

mance evaluation experiments in §6.2, and numerically explore in §6.3 the robustness of these policies

with respect to various parameters and environment features. We finally provide an interpretation and

summary of our results in §6.4. In addition, we report our empirical findings that our results are not

qualitatively affected by the choice of the equity metric in Electronic Companion section §E. For each

simulation experiment we report the maximum relative margin of error over all simulation estimates,

defined as the half-width of the 95% confidence interval divided by the estimate.

6.1. Simulation Model Validation

Our validation relies on a survey of facility performance over the 4th quarter of 2009 that was conducted

by a private contractor as part of the 2009 public sector supply chain pilot evaluation (see §3.1 for

background and (Vledder et al. 2019) for a more detailed discussion). Importantly, the data source just

mentioned is completely distinct / independent from all other data collection activities described earlier

in this paper, including those used to develop our simulation model and estimate its parameters.

Specifically, among other data that contractor collected then from the locally-maintained, paper-

based stock records of 192 health centers the number of days of stockout in Q4 2009 (with a maximum

possible value of 92 days) for all drugs in a tracer list that included the four pack sizes of AL. In addition,

the intersection of the set of pilot facilities surveyed then and the set of health centers captured by the

simulation model described earlier in this section includes 51 health centers that were supplied by cross-

docking districts, and 34 health centers that were supplied by intermediate stocking districts during the
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Table 1 Model Validation Results

Intervention Pack Size Mean Actual Mean Simulated Simulated Fractile of
Stockout Days Stockout Days Mean Actual

Stockout Days

Intermediate Stocking 6 12.62 13.29 0.412 (0.382,0.443)
12 4.85 5.76 0.349 (0.320,0.379)
18 7.56 5.86 0.819 (0.794,0.842)
24 7.85 11.26 0.075 (0.060,0.093)

Cross-docking 6 4.18 3.32 0.786 (0.760,0.810)
12 0.00 0.32 0.521 (0.490,0.552)
18 1.39 0.33 0.932 (0.915,0.946)
24 1.80 1.66 0.622 (0.592,0.652)

Note. Simulated results were obtained with 1000 replications. For the simulated fractile of mean actual
stockout days, 95% confidence intervals calculated with the Wilson formula are reported.

pilot (see §3.1). These facilities are hereafter denoted validation facilities. This situation thus offers an

opportunity to compare for these facilities the number of stockout days measured empirically as part

of this independent evaluation with the simulated number of stockout days predicted by our simulation

model when assuming the same inventory distribution policies as those used during the pilot. Because

it was not clear how to meaningfully aggregate stockout days across different pack sizes from the field

observations, as explained in more details in section §D of the Electronic Companion we set up the

model to separately simulate the inventory of all four pack sizes. We otherwise used the same discrete-

event simulation dynamics, demand model and lead time model that were used for all other simulation

experiments reported in this paper (see §5.1 and sections §§C.1 and C.2 of the Electronic Companion,

respectively). The simulated number of stockout days was then recorded for each replication between

weeks 36 and 48 of that simulated time period, corresponding to the fourth quarter of 2009 for which

the same data was obtained from the field.

The results of these validation experiments are shown in Table 1, which specifically reports for every

pack size and intervention the estimated fractiles of the actual number of stockout days measured

empirically relative to the simulated distribution of stockout days predicted by the model (last column).

In other words, these fractiles provide an indication of how likely it is that the actual observed values

of stockout days could have been generated by the simulation model, with moderate values between

0.05 and 0.95 indicating for example that the hypothesis that the simulation model would generate

the same stockout days as observed in the field cannot be rejected at the 10% confidence level. These

computed fractiles indeed have moderate values from a statistical testing standpoint, with the exception

of their minimum (0.075) and maximum (0.932). Table 1 thus indicates that the actual measurements

of stockout days are all fairly likely under the mathematical environment assumed for our simulation

model. While the actual measurements of stockout days for pack size 24 in the intermediate stocking

districts and for pack size 18 in the cross-docking districts seem slightly less likely than all other values,
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we observe that the corresponding difference between actual and simulated mean estimates remains

relatively small in absolute terms. On this basis we conclude that our simulation model seemingly offers

a suitably realistic prediction of the service level associated with a given inventory distribution policy in

this setting, which lends support to the conclusions derived from the numerical performance evaluation

experiments presented in §6.

6.2. Baseline Performance Evaluation

Our baseline simulation experiments investigate the relative performance of policies 4×AMI − IP ,

4×AMD[−12,9]− IP , 4×LSI ×AMD− I and OPT 16
0.99 when the supply/demand ratio S/D varies

between 0.6 and 1.2. The specific parameters characterizing these policies (M = 4, β = 0.99, C = 16)

were selected through extensive numerical experimentation as the best performing variants of the three

enhanced policy families discussed in §§4.1-4.3. In the remainder of this section these four policies will

be referred to as current, last year, LSI and optimization, respectively. Our baseline experiments results

are summarized in Figure 1.

Figure 1 Performance of the three enhanced distribution policies against the current distribution system in Zambia

for different supply/demand ratios.
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Note. Displayed simulation results have a relative margin of error lower than 8.5%.

Figure 1 shows that the system service levels achieved by all policies are similar and close to the

maximum achievable for values of S/D lower than 0.85 – when the overall inventory available to cover
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demand is grossly insufficient, distribution decisions resulting from even simple policies have little

impact on system-wide service level as the probability of fulfilling some demand with each available

unit of inventory is similarly high regardless of where it is shipped. For S/D larger than 0.85, all three

proposed enhanced policies substantially outperform the current one, which does not ever achieve a

system service level greater than 85% and keeps facilities stocked at about 7 weeks of inventory on

average despite the increasing availability of central inventory. The last year policy performs particularly

well in terms of both service level and facility inventory for S/D smaller than 1, which is remarkable

given its simplicity (see §B). For S/D values above 1 however, its performance also flattens at a service

level of approximately 93% and 9 weeks of average facility inventory. In contrast, the optimization

policy achieves a service level of approximately 98% with an average facility inventory of 12 weeks when

S/D reaches 1.1 and beyond. Finally, the LSI policy only achieves the same service level of 98% when

S/D reaches 1.2, and its performance is substantially worse than all other policies in terms of facility

inventory (a 98% service level requires facilities to carry about 22 weeks of inventory on average).

Panel (c) in Figure 1 shows the performance of these four policies along the dimension of geographic

equity in service level. We find that the optimization policy significantly outperforms all other considered

policies for all S/D values, with the exception of the LSI policy for the highest S/D value considered.

Of note, the equity performance of the current and last year policy remains flat and substantially worse

than that of the LSI and optimization policies even for high S/D values when ample inventory is made

available to them.

6.3. Sensitivity Analysis

We now report the results of sensitivity analysis experiments conducted to evaluate the impact on policy

performance of demand seasonality (in §6.3.1) and facility lead time and access challenges (in §6.3.2).

In section §F of the Electronic Companion we also consider the impact of information transmission

speed.

6.3.1. Demand Seasonality Figure 2 shows the simulated performance of the four considered

policies for different levels of demand seasonality φD and inventory scarcity S/D (see §5.2).

As seen in panels (a) and (c) of Figure 2 (S/D = 0.8), the performance of all policies considered

appears relatively insensitive to the level of demand seasonality when inventory is scarce. When more

inventory becomes available however, the service level performance of the current policy as well as the

equity performance of the current and last year policies, and to a lesser extent the LSI policy, degrade

substantially as demand seasonality increases (panels (b) and (d)). In contrast, the performance of

the optimization policy on all dimensions considered appears relatively robust to different demand

seasonality levels.
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Figure 2 Performance of the current, last year, LSI and optimization policies for different levels of demand seasonality

and inventory scarcity.
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Note. φD = 1 corresponds to the original Zambia demand dataset, φD = 0 to stationary demand in each facility. Relative

margin or error lower than 8.8% on all displayed estimates.

6.3.2. Facility Access Challenges Figure 3 shows the simulated performance of the four con-

sidered policies for different levels of facility accessibility φL and inventory scarcity S/D (see §5.2).

As seen in panels (a) and (c) of Figure 3 (S/D= 0.8), when inventory is scarce the performance of all

policies considered appears mostly insensitive to the onset of facility accessibility challenges, with the

possible exception of the optimization policy, which sees its equity performance slightly degrade as some

facilities become harder to reach in some parts of the year. Although these resuts are not reported in

Figure 3, we also observe that the LSI policy sees a substantial increase of its average facility inventory

levels as facility access probabilities become close to their values in the original Zambia facility dataset.

When more inventory is available relative to demand (S/D = 1.1) however, as accessibility challenges

appear the service level performance of the current, last year and LSI policies slightly degrade (panel b)

while the facility inventory levels of the LSI and optimization policies increase somewhat. But the most

salient variation is the substantial deterioration of the current and last year policies’ equity performance

as accessibility challenges appear, even as the performance of the LSI and optimization policies along

this dimension remains relatively stable (panel d).
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Figure 3 Performance of the current, last year, LSI and optimization policies for different levels of facility accessibility

and inventory scarcity.
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Equity (SDR = 0.8)
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Note. φL = 1 corresponds to the original Zambia lead times dataset, φL = 0 to year-round accessibility and stationary lead

times for each facility. Relative margin or error lower than 8.5% on all displayed estimates.

6.4. Results Interpretation and Summary

Supporting our interpretation of the results just presented, Figure 4 provides X-Y plots of every facility

along the dimensions of average service level and mean access lead-time for each one of the four policies

just discussed when S/D is set to 0.8; the delivery groups of each facility (see §3.2) and the coefficient

of variation of the average weekly demand series it faces are also highlighted for analysis purposes.

We now highlight and explain three salient observations from the experimental results just presented.

Observation 1: When inventory is scarce relative to demand the choice of the inventory distribution

policy has limited impact on the utilitarian objective of system-wide service level.

This observation is clear from panel (a) of Figure 1, and arises because when the S/D ratio is low the

probability of fulfilling some demand with each available unit of inventory is similarly high regardless

of where it is shipped.

Observation 2: The consideration of equity across facilities has salient policy implications.

In contrast with the previous observation, Figure 4 and panel (c) of Figure 1 show that even in

situations of inventory scarcity where different policies have similar average service levels, their equity

performance can be very different. In particular a recommendation to use the last year policy, which
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Figure 4 Average service levels of individual facilities under the current, last year, LSI and optimization policies.
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(c) LSI
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(d) Optimization
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Note. Assumed supply/demand ratio is 0.8. Relative margin of error lower than 6.5% on service level estimates and lower

than 2.8% on lead time estimates. Weekly Demand CV is the coefficient of variation of the average weekly demand series

over one year for each facility.

could be easily justified in light of its simplicity and relatively good performance for service level and

facility inventory level (panels (a) and (b) of Figure 1), should arguably be reconsidered when equity

must also be taken into account (panel (c) of Figure 1, panel (b) of Figure 4). Likewise, Figure 1 shows

that the overall performance of the LSI policy is quite appealing in situations with high enough supply

to demand ratio and when average facility inventory levels are not too much of a concern. Whenever

inventory becomes scarce however, its poor equity performance (panel (c) of Figure 1, panel (c) of

Figure 4) seems to preclude recommendation.

Observation 3: The set of policies adapted to a specific distribution environment depends on its demand

seasonality, facility access heterogeneity and inventory scarcity.

Panel (a) of Figure 4 shows the high correlation between facility demand seasonality (the color of each

point) and service level for the current policy, and panel (b) of Figure 2 shows the substantial degra-

dation of both system-wide service level and equity generated by that policy when demand seasonality

increases. This is explained by that policy’s lack of any anticipation for upcoming predictable seasonal

changes in demand, which is clear from its defining equation (3). As a result, it generates substantial

stockouts during the rainy season when demand for antimalarial medicines is highest, regardless of how

much central inventory is available then, a well-known phenomenon which has been previously coined
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“the landslide effect” (Neale and Willems 2015). These results contrast with the lack of apparent neg-

ative correlation between demand seasonality and performance for the LSI and optimization policies

seen in panels (c) and (d) of Figure 4, confirmed by the performance robustness of these two policies

against demand seasonality seen in Figure 2. This is consistent with the mathematical definitions of

the LSI and optimization policies, which both involve more sophisticated mechanisms for capturing

demand seasonality (see (6) and (2)/(12), respectively).

The negative correlation between facility service level and mean access lead time seen in panels (a)

and (b) of Figure 4 for the current and last year policies, along with their performance sensitivity seen

in panels (b) and (d) of Figure 3, show that access lead times constitute another driver of inequity

between facilities for these policies. This contrasts with the LSI and optimization policies, for which

no such correlation can be observed in Figure 4, and is confirmed by the results of the broader set of

experiments reported in Figure 3. These observations are consistent with the lack of any component

capturing lead times explicitly in the equations characterizing the current and last year policies (see §3.3

and §4.1), and the relative sophistication with which the lead times of different facilities are accounted

for in the mathematics defining the LSI and optimization policies (see (6) and (7)). This feature of the

LSI and optimization policies explain both the higher system service level and higher facility inventory

levels they achieve for high S/D values. Specifically, whenever sufficient central inventory is available

these policies send larger shipments to facilities with access challenges before their cutoff periods, which

the current and last year policies fail to do.

Finally panels (a), (b) and (c) of Figure 4 show that facilities from shipment groups 2 and 3 tend

to have lower service levels than facilities in group 1 with the current, last year and LSI policies.

This is consistent with they myopic nature, that is their restricted consideration of only demand from

the shipment group for which shipments are being determined. In contrast, panel (d) in Figure 4,

panel (c) of Figure 1 and panels (c)-(d) of Figures 2 and 3 show that the optimization policy does

not generate a consistent pattern of inequity across facilities with different access lead-times, demand

seasonality and/or delivery groups. Although equity is not explicitly captured in the objective (8) of the

LP formulation used by this policy, the convexity of this objective with respect to the inventory levels

resulting from the shipments being determined (which impact both terms iht and `ht of (8), see §4.3)

still ensures a relatively balanced allocation of inventory across facilities. In contrast with the last year

and LSI policies, the optimization policy is not myopic as it considers through the summation over t in

its objective (8) the implications of current decisions on service levels of all facilities in future periods.

As a result, the optimization policy does not penalize facilities in delivery groups 2 and 3 relative to

those in delivery group 1 to the same extent that the current, last year and LSI policies do.
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Table 2 Qualitative Policy Robustness Results

Robustness with respect to:

Demand Heterogeneous Dynamic Rationing
Policy Seasonality Facility Access of Limited Inventory

Current No No No
Last Year Mixed No No
LSI Yes Yes No
Optimization Yes Yes Yes

Summarizing these observations, Table 2 provides a qualitative summary of our findings on the

robustness of the inventory policies evaluated in this paper with respect to several important environ-

mental features, which is relevant to the potential application of our results across a range of different

drugs and countries. Implementation issues are further discussed in the next section.

7. Implementation Discussion

While our study focuses on inventory distribution as opposed to routing, the framework introduced by

Vries and Wassenhove (2020) for analyzing the cost-effectiveness of decision support systems for human-

itarian logistics remains relevant. Specifically, in times when sufficient central inventory is available,

the LSI policy and (for drugs and countries with little demand seasonality and/or facility access chal-

lenges) the last year and the current policies are relatively appealing from an overall cost-effectiveness

standpoint. The current and last year policies, and to a lesser extent the LSI policy, also offer some

benefits in terms of organizational culture because their rationale is more easily explained relative to

the “black box” nature of the optimization policy. In any situation when central inventory becomes

scarce however, these decentralized policies have lower performance in terms of service level and/or

equity relative to the centralized optimization policy considered here, with potentially severe negative

health consequences.

The optimization policy does involve implementation challenges and costs linked to its higher infor-

mational and computational requirements however. In particular, this policy requires the capabilities of

lead times and demand forecasting for each product and facility in the network. It is therefore synergis-

tic with a digital distribution information system. As seen in Figure 11, such a system would only have a

mild impact on the main performance metrics considered in this paper. But its most important benefits

would arguably include increasing system transparency and accountability, reducing non-value added

and manual work linked to inventory management in chroniquely understaffed patient-facing facilities,

and enabling a shift of demand forecasting for procurement from notoriously unreliable epidemiology-

based “quantification” exercises (Management Sciences for Health 1997) to more reliable bottom-up

and data-driven methods.
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A preliminary version of the results described in this paper was presented in 2010 to Zambia’s Ministry

of Health, MSL and other partners including the World Bank, DFID, UNDP and Crown Agents.

Motivated by these results and the benefits of supply chain digitization, these institutions formed in

2010 a partnership known as eZICS (enhanced inventory control system for Zambia). Partnering with

IBM, this alliance proceeded to develop a system comprising connected smart phones with a bar code

scanner at all inventory storage locations; a forecasting component with a user-friendly interface; a

shipment optimization component interfacing with the central warehouse management software used by

MSL, and a web-based transaction and performance reporting system (IBM 2014). Its field deployment

started in early 2016 (The World Bank 2016), and by 2018 it was used in 60 health centers, posts

and hospitals located in 8 different districts where it was used to manage the flow of products on a

routine basis. While the feedback received from many stakeholders including health center staff was very

positive, deployment was paused in 2018 before a field-based quantitative performance evaluation could

be completed. This interruption was due in part to funding constraints, reflecting the well-documented

challenges faced by low-income countries seeking to improve their health systems and infrastructure

(so called “horizontal” investments, as opposed to disease-specific “vertical” programs). It may also

reflect the challenges of managing different objectives and constraints within partnerships that involve

public and private stakeholders, and the challenges of implementing disruptive technological changes in

the highly political environment of international development assistance for health. From the broader

perspective of using optimization-based planning systems in humanitarian contexts that is discussed in

Vries and Wassenhove (2020), this experience also suggests that the implementation of such systems

remains challenging even when their cost-effectiveness is high.

8. Conclusion

Improved inventory control policies can improve patient access to drugs in Zambia, as demonstrated

by the empirical results reported in §6. Our results have broader relevance beyond Zambia. Zambia’s

current inventory policy is the specific base-stock policy recommended by the multi-country USAID-

funded DELIVER project. Similar policies are widely used throughout sub-Saharan Africa (USAID

| DELIVER PROJECT 2011b) and LMICs in other regions. Specifically, we find that the current

inventory policy as well as the recently proposed enhancements to that policy (so called last year and

LSI policy in the present paper) exhibit a relatively poor performance in terms of equity whenever

inventory in the central warehouse is scarce, a situation prevalent in Zambia and many LMICs. In

contrast, the optimization policy described in this paper appears relatively robust with respect to

inventory scarcity. These results appear to be robust across a variety of demand seasonality and facility

access challenge levels, as well as various equity metrics. This suggests that the dimension of the service
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level equity across facilities or regions should be considered in the design of inventory management

policies for countries’ health systems. Equity metrics should be evaluated in the context of evaluating

global progress towards the SDGs, in particular SDG 3.8.

Our empirical results also suggest broader observations on distribution equity. Firstly, the propor-

tional inventory rationing rule, which is prevalent in practice, may lead to substantial service level

discrepancies between facilities whenever there is any heterogeneity between them in terms of access

lead-times or timing. Furthermore, the performance dimension of distribution equity seems frequently

at odds with the more traditional performance metrics of both system service level and inventory costs,

and this finding appears to be robust across a range of different equity metrics. The consideration of

distribution equity, which seems important in any health-related distribution system, therefore gives rise

to non-trivial design considerations and trade-offs. In particular, the existence of three relevant metrics

(inventory cost, system service level, service level equity) suggests theoretical considerations extending

beyond the classical trade-off of efficiency versus equity highlighted in the literature dedicated to other

contexts or more generic resource allocation problems (e.g. Bertsimas et al. (2011)), which would add

to the existing fairness literature.

Future research could also investigate the specific problem of distributing products with strict storage

and transportation temperature restrictions such as vaccines, which require both different physical

assets and management policies compared to the essential medicines that are covered by the present

study. Separate studies could also consider other important distribution system components beyond

inventory control, such as facility location and delivery route design as well as incentive aspects and

outsourcing of some distribution activities to private providers. We hope that the validated simulation

model and related datasets made public as part of the present study will facilitate these endeavours.
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