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Probabilistic guarantees in Robust Optimization

Dimitris Bertsimas∗ Dick den Hertog† Jean Pauphilet‡

January 9, 2021

Abstract

We develop a general methodology to derive probabilistic guarantees for solutions of robust optimiza-

tion problems. Our analysis applies broadly to any convex compact uncertainty set and to any constraint

affected by uncertainty in a concave manner, under minimal assumptions on the underlying stochastic

process. Namely, we assume that the coordinates of the noise vector are light-tailed (sub-Gaussian) but

not necessarily independent. We introduce the notion of robust complexity of an uncertainty set, which

is a robust analog of the Rademacher or Gaussian complexity encountered in high-dimensional statistics,

and which connects geometry of the uncertainty set and a priori probabilistic guarantee. Interestingly,

the robust complexity involves the support function of the uncertainty set, which also plays a crucial role

in the robust counterpart theory for robust linear and nonlinear optimization. For a variety of uncer-

tainty sets of practical interest, we are able to compute it in closed form or derive valid approximations.

To the best of our knowledge, our methodology recovers and extends all the results available in the

literature. We also derive improved a posteriori bounds, i.e., significantly tighter bounds which depend

on the resulting robust solution.

1 Introduction

Over the past decades, Robust Optimization (RO) has emerged as an effective framework to account for

uncertainty in optimization problems [see 5, 22, for a review]. Consider a single linear constraint of the form

a>x ≤ b, (1)

where the parameter a is subject to uncertainty and b ∈ R is certain, without loss of generality. In a robust

approach, a is described as a deterministic yet unknown vector belonging to a so-called uncertainty set U
and constraint (1) is imposed to hold for all values of a ∈ U , i.e., we consider its robust counterpart

a>x ≤ b, ∀a ∈ U . (2)

For theoretical as well as practical considerations, a central question in the RO literature has been to

derive probabilistic guarantees for robust solutions, namely to bound the probability of constraint vio-

lation, Pã

(
ã>x > b

)
, for x satisfying (2). Historically, connecting a deterministic model of uncertainty
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(2) with probability theory was needed to endorse RO as a competitive framework to stochastic opti-

mization. In practice, a priori bounds, i.e., bounds that only depends on the uncertainty set U without

knowledge of the robust solution x, are useful to calibrate and size the uncertainty set according to a

desired protection level. Clearly, Pã

(
ã>x > b

)
≤ Pã (ã /∈ U), yet much tighter bounds can be obtained.

For instance, [4] proved that Pã

(
ã>x > b

)
≤ exp(−ρ2/2) for their proposed box-ellipsoidal uncertainty set

U = {a : ‖a‖∞ ≤ 1, ‖a‖2 ≤ ρ}, under the assumption that the coordinates of ã are independent bounded

random variables with mean 0. The bound above is notoriously independent of the number of uncertain

parameters L, which is typically not the case for Pã (ã /∈ U). To guarantee the robust solution to be feasible

with probability at least 1 − ε, for example, this bound prescribes to take ρ =
√
−2 ln(ε). A posteriori

bounds, i.e., bounds that depend on the robust solution x, are also useful to audit the resulting solution

after it has been computed, and assess its performance.

Results for other classes of uncertainty sets U or more general constraint, f(a,x) ≤ 0, have been derived,

yet in a disparate and unsystematic way. Attempts have been made to report existing bounds in a unified

manner [33, 25, 26, 27] for various uncertainty sets. In particular, they provide a catalog of the known a

priori and a posteriori bounds for specific uncertainty sets and linear constraints. Little if no work, however,

provides a disciplined methodology that enables to derive probabilistic guarantees for any uncertainty set U
and any constraint function f . In addition, a clear relationship between the geometry of the uncertainty set

and the resulting guarantee is still needed to understand the connection between robust optimization and

its out-of-sample performance on random instances. Such is the contribution of the present paper.

1.1 Literature review

Safe approximation of ambiguous chance constraint: In this setting, the goal is to reformulate a

given chance constraint Pã

(
ã>x ≤ b

)
≥ 1− ε, with ε > 0. In most cases, the distribution of ã is not known

precisely but rather assumed to belong to a certain class, and the objective is to reformulate the ambiguous

chance constraint

sup
Pã∈P

Pã

(
ã>x ≤ b

)
≥ 1− ε, (3)

where P is a class of allowable probability distributions for ã. Given some assumption on P, the ambiguous

chance constraint (3) can be proven equivalent to a robust constraint of the form (2), where the uncertainty

set U depends on P. Exact reformulations have notably been derived in cases where ã is normally distributed

[17, 44, 45] or has known mean and bounded second-order moments [44, 45]. [3, Chapter 2] derives such

reformulations for a general class of probability distributions and in a disciplined manner. For example, if

the coordinates of ã are independent random variables in [−1, 1] and unimodal with respect to 0, meaning

that 0 is the only mode of the distribution, then constraint (2) with

U =
{

a = a1 + a2 : ‖a1‖∞ ≤ 1/2, ‖a2‖2 ≤
√

ln(1/ε)/6
}

yields Pã

(
ã>x < b

)
≤ ε [3, Theorem 2.4.4 applied to Example 2.4.7.]. This approach, which takes assump-

tions on the distribution of ã as the primitive and provides a corresponding uncertainty set, has two main

shortcomings. First, it cannot provide any probabilistic guarantee for the uncertainty set U whenever ã

satisfies different assumptions. Instead, different assumptions on ã would lead to a different uncertainty set.

In this setting, probabilistic assumptions dictate the type of uncertainty set to use, rather than tractability
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considerations, and impede modeling. Second, their approach systematically results in uncertainty sets in-

volving the Euclidean norm, which is closely related with the notion of variance, but excludes more general

uncertainty sets, such as polyhedral or budget uncertainty sets [8], despite their tractability and wide use in

practice. More recently, [6] propose a data-driven extension of this procedure. Starting from assumptions on

the distribution of ã and given past observations a(1), . . .a(N), they leverage hypothesis testing to construct

an uncertainty set with a probabilistic guarantee of level ε. Their setting is fully data-driven and applies

to a general concave robust constraint. However, the shape of the uncertainty set is still dictated by the

distributional assumptions made - and the corresponding hypothesis test. Also, their uncertainty sets are

calibrated using a single constraint. If multiple constraints are affected by uncertainty, their method fails

to provide guarantees for the ones that were not used during calibration. The latter limitation is partially

addressed by [30], who develop a data-driven approach to calibrate a set Uε such that P(ã /∈ Uε) ≤ ε, leading

to an ε-level probabilistic guarantee for any robust constraint. However, as mentioned in the introduction,

the resulting uncertainty set can be prohibitively large.

Distributionally robust optimization: Probabilistic guarantees and concentration results have been

the fundamental building blocks in the distributionally robust optimization (DRO) literature. In the DRO

setting, reformulations of ambiguous chance constraints (3) have been derived in cases where the ambiguity

set P is constructed from bounds on moments of the distribution [18, 24, 48, 45], or is defined as a ball

around the empirical distribution according to phi-divergence [46], the f-divergence [35], the Wasserstein

distance [23, 15, 21, 42, 32], or the relative entropy [40]. We refer to [28] and references therein for a

comprehensive review. Despite powerful out-of-sample performance guarantees and moderate conservatism,

DRO approaches are usually more computationally expensive than simple robust approaches, especially in

data-driven settings. Notorious exceptions to this claim are [35], which solved DRO problem using first-order

methods and [21], which formulated DRO problems with the Wasserstein distance as linear and second-order

cone problems.

Scenario approach: A general way to deal with chance constraints is the scenario approach, i.e.,

generate N samples a(i), i = 1, . . . , N , of ã and replace the chance constraint by N deterministic constraints

f(a(i),x) ≤ 0. Assuming that the function f is convex in x, [11, 12] prove that this approach yields a feasible

solution to the chance constrained problem with probability 1− δ (over the N samples) if

N ≥ 2L+ 2L
ε ln( 2

ε ) + 2
ε ln( 1

δ ).

This approach has been later refined [36, 34, 13, 31] and extended to ambiguous chance constraints [20, 16].

The scenario approach, yet, suffers from two limitations. First, while the number of constraints to be

sampled, N , scales favorably with respect to the protection level ε, it grows linearly in the dimension of

the uncertainty, L, which makes the approach difficult to apply to medium-size problems. Second, the

probabilistic guarantee is obtained with respect to the sampling distribution, which should be as close as

possible to “true” and potentially unknown distribution of ã.

1.2 Contributions and structure

In this paper, we start from a general robust constraint

f(a,x) ≤ 0, ∀a ∈ U , ⇐⇒ max
a∈U

f(a,x) ≤ 0,
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and derive valid probabilistic guarantees for any solution x satisfying the robust constraint. We will assume

that U is convex and f(a,x) is concave in a for any x. Under this assumption, the maximization problem

above is well-defined and the robust constraint can be reformulated in a tractable way [2]. When f(a,x)

is convex in a however, an equivalent tractable reformulation of the robust constraint is out of reach. Safe

approximations based on scenario sampling [12] or linear approximation [9] have been proposed, but remain

significantly less tractable. Correspondingly, the probabilistic guarantees obtained in the convex case would

require more stringent assumptions on the underlying distribution; see Conjecture 10.1 in [3] for instance.

We restrict our attention to uncertainty sets U of the form

U = {a : ∃z ∈ Z s.t. a = ā + Pz} ,

where ā is the nominal value of a, Z is a given nonempty, fully-dimensional convex and compact set, with

0 ∈ ri(Z), as in [2], which are not overly restrictive assumptions given the general form of the constraint.

In particular, the fully dimensional assumption is without loss of generality given an appropriate matrix P.

Our main contribution is a simple methodology for deriving probabilistic guarantees for solutions of robust

optimization problems, which provides a unifying perspective on existing results from the literature, as well

as extends them significantly.

A unified perspective on the literature Our approach unifies existing results from the literature in

terms of assumptions, proof techniques, and result statement. First, we observe that most results from the

literature assume that the coordinates of z̃ are sub-Gaussian and independent random variables. Under these

generic assumptions, probabilistic guarantees follow directly from elementary concentration inequalities. In

particular, for linear constraints of the form a(z)>x ≤ b(x), ∀z ∈ Z, we show that an uncertainty set Z
yields a probabilistic guarantee of

P
(
ã>x > b(x)

)
≤ exp

(
− 1

2ρ(Z)2
)
,

where we define the robust complexity of Z, denoted ρ(Z), as

ρ(Z) := min
y:‖y‖2=1

max
z∈Z

y>z.

This single and simple result recovers all known probabilistic guarantees for robust linear constraints, with

minimal assumptions on the underlying distribution of the uncertain parameter. In particular, for the box-

ellipsoidal set of [4] and the budget uncertainty set of [8], we show that ρ(Z) ≥ Γ and ρ(Z) ≥ Γ/
√
L

respectively, hence matching existing bounds.

Significant extensions As summarized in Table 1, our approach is also a powerful tool to extend existing

results in significant ways:

• First, we readily generalize all results to the case where the constraint is non-linear in the uncertainty.

Under the same assumptions, for constraints of the form f(a,x) ≤ 0, where f is concave in a, we show

that an uncertainty set Z yields the same probabilistic guarantee:

P (f(ã,x) > 0) ≤ exp
(
− 1

2ρ(Z)2
)
.
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Table 1: Summary of our main findings. Here, δ?(·|Z) and ρ(Z) denote respectively the support
function and the robust complexity of the uncertainty set Z, defined as δ?(y|Z) = maxz∈Z z>y and
ρ(Z) = miny:‖y‖2=1 δ

?(y|Z). For the concave case, f?(v,x) := infa
[

a>v − f(a,x)
]

is often referred to
as the concave conjugate of f(·,x).

Constraint type Linear Concave in a

Nominal constraint a>x ≤ b(x) f(a,x) ≤ 0
Robust counterpart ā>x + δ?(P>x|Z) ≤ b ∃v, ā>v + δ?(P>v|Z)− f?(v,x) ≤ 0
A priori probabilistic guarantee

exp
(
− 1

2
ρ(Z)2

)
exp

(
− 1

2
ρ(Z)2

)
(Corollary 1, 2)
A posteriori probabilistic guarantee

exp

(
− (b(x)−ā>x)2

2‖P>x‖22

)
exp

(
− (f?(v,x)−ā>v)2

2‖P>v‖22

)
(Theorem 1, 2)

• As summarized in Table 2, we are able to compute in closed form or derive valid approximations

of the robust complexity Z for a variety of uncertainty sets of practical interest. In particular, we

provide the first results for polyhedra defined with a finite number of linear inequalities and for the

Minkowski sum of norm balls. From a geometric perspective, sum sets are very similar to intersection

sets, while being computationally more tractable and leading to competitive probabilistic guarantees

when properly scaled.

• We show how to tighten these x-independent probabilistic guarantees a posteriori, i.e., given the

resulting robust solution x. In particular, in the linear case, we prove an a posteriori bound of the

form

P
(
ã>x > b(x)

)
≤ exp

(
−1

2

[
b(x)− ā>x

‖P>x‖2

]2
)
,

and an analogous result in the case where the constraint is concave in the uncertainty, as summarized

in Table 1. Besides being tighter, a posteriori bounds can notably be computed for any general convex

uncertainty set and serve as a useful auditing tool for the robustness of a solution.

• Finally, we analyze the case where the coordinates of z̃ are no longer assumed to be independent.

For sub-Gaussian uncertainty, we derive exponential probabilistic guarantees that still depend on the

robust complexity, yet at a weaker rate. Among others, we prove that

P (f(ã,x) > 0) ≤ exp
(
− 1

2Lρ(Z)2
)
.

We also derive polynomial bounds when only assumptions on the first two moments of z̃ are made.

The rest of the paper is structured as follows: Section 2 recalls equivalent reformulations for general

uncertain constraints. When z̃ has independent sub-Gaussian coordinates, we provide a posteriori and a

priori bounds for general constraints and uncertainty sets in Section 3. Section 4 provides some closed form

expressions or valid approximations for the robust complexity of a set, which drives a priori guarantees.

In Section 5, we challenge the independence assumption on the coordinates of z̃ and provide. Finally, we

illustrate how our results can be applied in practice on a facility location problem in Section 6.

Notations In the remainder of the paper, we use nonbold (x), lowercase bold (x) and uppercase bold (X)

characters to denote scalars, vectors and matrices, respectively. Calligraphic characters such as X denote sets.

We use a tilde symbol (e.g., x̃) to indicate a random variable. We let e denote the vector of all 1’s, 0 denote
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Table 2: Valid lower bound on robust complexity of Z, defined as ρ(Z) := miny:‖y‖2=1 maxz∈Z y>z, for
some common uncertainty sets. For each set, we also provide sufficient conditions to obtain a probabilistic
guarantee of at least ε, i.e., ρ(Z) ≥ γ(ε) :=

√
2 ln(1/ε). Instances denoted by a * are valid under the extra

assumption that the true uncertain parameter z̃ satisfies ‖z̃‖∞ ≤ 1.

Uncertainty set Definition ρ(Z) ≥ . . . s.c. for ε-guarantee Ref.

Norm-set {z : ‖z‖p ≤ Γ} if p ≥ 2: Γ Γ ≥ γ(ε)
Sec. 4.1

if p ≤ 2: ΓL1/2−1/p Γ ≥ L1/p−1/2γ(ε)

Budget set* {z : ‖z‖∞ ≤ 1, ‖z‖1 ≤ Γ} Γ/
√
L Γ ≥

√
Lγ(ε) [8]

Box-Ellipsoidal set* {z : ‖z‖∞ ≤ 1, ‖z‖2 ≤ Γ} Γ Γ ≥ γ(ε) [3]

`∞+`1 set {z1 + z2 : ‖z1‖∞ ≤ ρ1, ‖z2‖1 ≤ ρ2} ρ1 + ρ2/
√
L

ρ1 ≥ αγ(ε), α ∈ [0, 1]

ρ2 ≥ (1− α)
√
Lγ(ε)

Sec. 4.3

`∞+`2 set {z1 + z2 : ‖z1‖∞ ≤ ρ1, ‖z2‖2 ≤ ρ2} ρ1 + ρ2
ρ1 ≥ αγ(ε), α ∈ [0, 1]
ρ2 ≥ (1− α)γ(ε)

[3]

Polyhedral set {z : Dz ≤ d} min
i

di
‖D>ei‖2

di ≥ ‖D>ei‖2γ(ε), ∀i Sec. 4.4

the vector of all 0’s and ei the ith vector of the canonical basis, with dimension implied by the context. For

any p ∈ N, we define the `p-norm of x ∈ Rn as ‖x‖p := (
∑n
i=1 |xi|p)1/p. For p =∞, ‖x‖∞ := maxi |xi|. Any

function f : Rn → R can be defined on a subset of Rn only, called its domain and denoted dom(f). Similarly,

f can be extended to the whole space Rn by setting f(x) =∞ if x /∈ dom(f). For any convex nonempty set

Z, its relative interior is defined and denoted by ri(Z) := {x ∈ Z : ∀y ∈ Z ∃λ > 1,y + λ(x− y) ∈ Z}. We

denote by Sn+ the cone of n× n positive semi-definite matrices, Sn+ := {A ∈ Rn×n : A � 0}.

2 Robust counterparts of general uncertain constraint

In this section, we recall useful results from [2] about tractable reformulations of the robust constraint

f(ā + Pz,x) ≤ 0, ∀z ∈ Z, (4)

when the function f(a,x) is concave in the uncertain parameter a.

2.1 Case when the constraint is linear in the uncertainty

We first consider the case where f is linear in a, f(a,x) = a>x− b(x).

Proposition 1. The decision variable x satisfies ā>x + z>P>x ≤ b(x), ∀z ∈ Z, if and only if it satisfies

ā>x + δ?
(
P>x|Z

)
≤ b(x),

where δ?(y|Z) := supz∈Z y>z is the so-called support function of Z [38, chapter 13].

Proposition 1 uncovers the role played by the uncertainty set Z through its support function δ?(·|Z).

Though general, Proposition 1 is also a practical statement, for the support function can be computed for a

wide range of uncertainty sets [see 2, Section 3]. We report some of these results in Table 3. Observe that

whenever the support function is expressed as a minimization problem, the “min” operator can be omitted

in the robust counterpart of Proposition 1, given the sense of the inequality. We illustrate this point with

the following example.
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Table 3: Examples of uncertainty sets and their associated support function.

Uncertainty region Definition Support function δ?(y|Z)

Box ‖z‖∞ ≤ ρ ρ‖y‖1
Ball ‖z‖2 ≤ ρ ρ‖y‖2
Norm ‖z‖ ≤ ρ ρ‖y‖?

Budget
‖z‖∞ ≤ 1 min

v
‖v‖1 + ρ‖y − v‖∞‖z‖1 ≤ ρ

Polyhedral Dz ≤ d min
v≥0:D>v=y

d>v

Intersection Z1 ∩ Z2 min
v

δ?(v|Z1) + δ?(y − v|Z2)

Minkowski sum Z1 + Z2 δ?(y|Z1) + δ?(y|Z2)

Example 1. If Z = {z : Dz ≤ d} is a polyhedron, then, the support function of Z is given by δ?(y|Z) =

minv≥0:D>v=y d>v, and according to Proposition 1, the robust linear constraint is equivalent to the existence

of a feasible vector v, v ≥ 0 and D>v = y, satisfying ā>x + d>v ≤ b(x).

2.2 Case when the constraint is concave in the uncertainty

We now consider the case where f(a,x) is a concave function in a. Indeed, constraint (4) is equivalent to

max
z∈Z

f(ā + Pz,x) ≤ 0,

and the inner maximization problem is well posed. In this case, [2] provides an equivalent reformulation

under the technical assumption that ā is regular, that is when ā is within the relative interior of the domain

of f , ā ∈ ri(dom(f(·,x))) in short. From a high-level perspective, they require f to be properly defined in

the vicinity of the nominal value ā. So ā should not lie at the boundary of the domain of f . For the rest of

the paper, we will make this assumption when needed.

Proposition 2. If ā ∈ ri(dom(f(·,x))) and f(a,x) is concave in a, then x satisfies

f(ā + Pz,x) ≤ 0, ∀z ∈ Z,

if and only if there exists some vector v such that (x,v) satisfies

ā>v + δ?
(
P>v|Z

)
− f?(v,x) ≤ 0,

where δ?(·|Z) is the support function of Z and f?(v,x) := infa a>v − f(a,x).

Remarkably, Proposition 2 provides a robust reformulation of the nonlinear constraints (4) where the

terms involving Z are independent from those involving f . In this regard, the auxiliary variable v plays

a critical role: v is linearly impacted by the uncertainty on z while being coupled with x through the

concave conjugate f?. Proposition 2 shows that a concave robust constraint in the decision variable x can be

expressed as a linear robust constraint in the variables (x,v). In the special case where f(a,x) = a>x−b(x)

is linear in a, we recover Proposition 1. We refer the reader to [2] Section 4, Table 2 for examples.
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Table 4: Summary of relevant assumptions on z̃ found in the literature and the corresponding variance proxy.
Proofs for the last three lines can be found in [3, Chapter 2.4.]. If z̃ has variance proxy σ2 instead of 1, then
the rate 1/2 in the probabilistic guarantee should be replaced by 1/2σ2.

Assumption on z̃ Variance proxy

E[z̃] = 0
|z̃| ≤ 1, a.s.

1

z̃ ∼ N (0, 1) 1

E[z̃] symmetric w.r.t. 0
E[z̃] unimodal w.r.t. 0
|z̃| ≤ 1, a.s.

1/3

E[z̃] symmetric w.r.t. 0
|z̃| ≤ 1, a.s.
Var(z̃) ≤ ν2

minc≥0

{
c : ∀t, c2t2 ≥ 2 ln(ν2 cosh(t) + 1− ν2)

}
≤ 1

E[z̃] symmetric w.r.t. 0
E[z̃] unimodal w.r.t. 0
|z̃| ≤ 1, a.s.
Var(z̃) ≤ ν2 ≤ 1/3

minc≥0

{
c : ∀t, c2t2 ≥ 2 ln(3ν2 sinh(t)/t+ 1− 3ν2)

}
≤ 1

3 Probabilistic guarantees for independent sub-Gaussian uncer-

tainty

Most probabilistic guarantees in the literature are valid under some light-tail assumption on the random

vector z̃, in particular that z̃ is bounded almost surely or follows a Gaussian distribution. All our results in

this section hold under the weaker assumption that the random vector z̃ is sub-Gaussian.

Definition 1. [Definition 1.2 in 37] A random variable z̃ ∈ R is said to be sub-Gaussian with parameter

σ2, denoted z̃ ∼ subG
(
σ2
)
, if z̃ is centered, i.e., E[z̃] = 0, and for all s ∈ R, E

[
esz̃
]
≤ e

s2σ2

2 .

Naturally, centered Gaussian random variables are also sub-Gaussian. Bounded random variables are also

a special case of sub-Gaussian random variables, as a consequence of Hoeffding’s inequality (see Appendix A,

Lemma 1). The parameter σ2 is usually referred to as a variance proxy, for in the case where z̃ is normally

distributed, the inequality above holds with σ2 = Var(z̃). In the rest of the paper, we make the following

assumption on the randomness z̃:

Assumption 1. We assume that the coordinates of the uncertain parameter z̃ ∈ RL are L sub-Gaussian

random variables with variance proxy 1.

Assumption 1 holds in particular if the coordinates of z̃ are (a) Gaussian random variables with mean

0 and variance 1 or (b) centered random variables in [−1, 1], which is a commonly made assumption in the

RO literature [see 4, 8, for instance]. As summarized in Table 4, common assumptions on the uncertainty

parameter z̃ found in the literature can be all seen as assuming sub-Gaussian random variables for some

well-chosen variance proxy. We report some useful properties of sub-Gaussian random variables in Appendix

A.

In this section, we also require that z̃ has independent coordinates.

Assumption 2. We assume that the coordinates of the uncertain parameter z̃ ∈ RL are independent.

In the Gaussian case for instance, Assumption 2 implies that the mean and the covariance of ã are

known to the decision maker and equal to ā and PP> respectively. As a result, it is an admittedly strong
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assumption - although made in many of the previous analysis on probabilistic guarantees for RO. In practice,

parameters of the linear model ã = ā + Pz̃ are typically unknown and need to be estimated from data. In

Section 5, we will depart from this independence assumption and allow for model misspecification - at the

expense of weaker probabilistic guarantees.

3.1 A posteriori guarantee when the constraint is linear in a

First, we consider the linear case where f(a,x) = a>x − b(x) and prove a solution-specific probabilistic

guarantee:

Theorem 1. Under Assumptions 1 and 2, for any x ∈ X satisfying

ā>x + δ?(P>x|Z) ≤ b(x), we have

P
(
ā>x + z̃>P>x > b(x)

)
≤ exp

(
− (b(x)− ā>x)2

2‖P>x‖22

)
≤ exp

(
−δ

?(P>x|Z)2

2‖P>x‖22

)
.

Proof. Consider a robust solution x ∈ X . We have

P
(
ā>x + z̃>P>x > b(x)

)
= P

(
z̃>P>x > b(x)− ā>x

)
.

Let us denote t := b(x) − ā>x ≥ δ?(P>x|Z). If P>x 6= 0, then δ?(P>x|Z) > 0, since Z is full dimen-

sional. Under Assumptions 1 and 2, z̃>P>x is sub-Gaussian with variance proxy ‖P>x‖22 (see Appendix A,

Proposition 11-a). Hence, we have the following tail bound (Appendix A, Proposition 10)

P
(
z̃>P>x > t

)
≤ exp

(
− t2

2‖P>x‖22

)
.

In the case where P>x = 0, we have ā>x + z̃>P>x = ā>x ≤ b(x) for all z̃, so that the probability of

constraint violation is 0 and our bound holds with the convention 0
0 =∞.

The probabilistic guarantee of constraint violation in Theorem 1 depends on the specific solution x.

As a result, this bound cannot be used a priori to scale the size of the uncertainty set Z. Yet, given a

robust solution x, the bound only involves quantities which can be easily computed and can provide a useful

a posteriori guarantee, as we discuss in Section 6. From a practical standpoint, the bound involving the

slack term b(x) − ā>x is systematically tighter, hence preferable. Yet, from a theoretical perspective, it

is very satisfying to elicit how the uncertainty set impacts the probabilistic guarantee, through its support

function at P>x, which also appears in the reformulation of the robust constraint. The latter bound will be

instrumental in deriving set-specific but solution-independent a posteriori bounds.

Remark 1. Theorem 1 can be used to obtain a robust solution x which would violate the uncertain constraint

with probability at most ε by adding the second-order cone constraint

b(x)− ā>x ≥
√

2 ln
(

1
ε

)
‖P>x‖2,

to the original optimization problem. This corresponds to the robust counterpart of the robust constraint with

the ball uncertainty set, Z =
{

z : ‖z‖2 ≤
√

2 ln (1/ε)
}

.
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Remark 2. The first inequality in Theorem 1

P
(
ā>x + z̃>P>x > b(x)

)
≤ exp

(
− (b(x)−ā>x)2

2‖P>x‖22

)
is valid as long as x satisfies the linear constraint at a = ā: ā>x < b(x).

3.2 A priori guarantee and robust complexity

Theorem 1 can be extended to give a priori probabilistic guarantee which does not depend on a specific solu-

tion x. Among others, these inequalities are largely used in practice to determine the size of the uncertainty

set. We first define the robust complexity of a set Z.

Definition 2. For any set Z ⊆ RL, we define the robust complexity of Z, and denote ρ(Z), the quantity

ρ(Z) := min
y:‖y‖2=1

δ?(y|Z) = min
y:‖y‖2=1

max
z∈Z

z>y.

In statistics, the Rademacher complexity of a set Z is defined as R(Z) := Eỹ

[
supz∈Z z>ỹ

]
, where the

coordinates of ỹ are independently drawn from a Rademacher distribution, i.e., P(ỹj = ±1) = 1/2 [see 41,

Example 2.25]. This quantity describes the size of the set Z and drives the so-called uniform law of large

numbers [see 41, Chapters 4 and 5]. In this regard, our proposed complexity metric ρ(Z) is a robust analog to

the Rademacher complexity, replacing expectation by worst-case value. Indeed, for any Rademacher vector

ỹ, we have ‖ỹ‖2 =
√
L so that

√
Lρ(Z) ≤ R(Z).

Another measure of complexity studied in high-dimensional statistics is the Gaussian complexity, defined

as G(Z) := Eỹ

[
supz∈Z z>ỹ

]
, where the coordinates of ỹ are independent Gaussian random variables with

mean 0 and variance 1 [see 41, Example 2.30 and Chapter 5]. Since R(Z) ≤
√

π
2G(Z) [see 41, Exercise 5.5],

we have ρ(Z) ≤
√

π
2LG(Z). Alternatively, by decomposing ỹ into r̃ũ where ũ is a unit vector uniformely

distributed over the unit sphere and r̃ an independent scaling factor, we obtain G(Z) ≥ ρ(Z)E[r̃], where

E[r̃] is the expectation of a chi distribution with parameter L, i.e., E[r̃] =
√

2Γ((L+ 1)/2)/Γ(L/2) with Γ(·)
denoting Euler’s Gamma function. For large L, Stirling’s approximation yields E[r̃] ∼

√
L, which is tighter

than the previous bound.

To familiarize ourselves with the notion of robust complexity, we derive some of its basic properties:

Proposition 3. The robust complexity of a set satisfies the following properties:

(a) Monotonicity: For any sets Z,Z ′, if Z ′ ⊆ Z then ρ(Z ′) ≤ ρ(Z).

(b) Positive homogeneity: For any set Z and α > 0, ρ(αZ) = αρ(Z).

(c) Invariance by orthogonal transformation: For any orthogonal matrix U and any set Z, ρ(UZ) = ρ(Z),

with UZ := {Uz : z ∈ Z}.

(d) Lipschitz continuity: The robust complexity is 1-Lipschitz continuous with respect to the Hausdorff

distance [19], i.e., for any convex sets Z,Z ′, |ρ(Z)− ρ(Z ′)| ≤ dH(Z,Z ′).

Proof. (a) For any y, Z ′ ⊆ Z yields δ?(y|Z ′) ≤ δ?(y|Z).

(b) For any α > 0,

ρ(αZ) = min
y:‖y‖2=1

max
z∈αZ

y>z = min
y:‖y‖2=1

max
z′∈Z

αy>z′ = αρ(z).

10



(c) The matrix U being orthogonal, the change of variable y = Uy′ satisfies ‖y‖22 = ‖y′‖22, and

ρ(Z) = min
y:‖y‖2=1

max
z∈Z

z>y = min
y′:‖y′‖2=1

max
z∈Z

z>U>y′ = min
y′:‖y′‖2=1

max
z′∈UZ

z′>y′ = ρ(UZ).

(d) The Hausdorff distance between two sets Z,Z ′ can be expressed in terms of their respective support

function as dH(Z,Z ′) = supy:‖y‖2=1 |δ?(y|Z)− δ?(y|Z ′)|. The result follows.

Observe that monotonicity and homogeneity are also properties satisfied by the Rademacher and Gaussian

complexity. Invariance by orthogonal transformation, however, is satisfied by the Gaussian complexity, but

not by the Rademacher complexity since the transformed random variable ỹ′ = U−1ỹ is not a Rademacher

random variable.

Relevant to our analysis, the robust complexity is the key quantity controlling a priori probabilistic

guarantees.

Corollary 1. Under Assumptions 1 and 2, for any x ∈ X satisfying

ā>x + δ?(P>x|Z) ≤ b(x), we have

P
(
ā>x + z̃>P>x > b(x)

)
≤ exp

(
− 1

2ρ (Z)
2
)
.

Proof. Taking the worst over all feasible x in the right hand-side of Theorem 1 yields

P
(
ā>x + z̃>P>x > b

)
≤ exp

(
−1

2
min
x∈X

δ?(P>x|Z)2

‖P>x‖22

)
.

Then, min
x∈X

δ?(P>x|Z)2

‖P>x‖22
=

[
min
x∈X

δ?
(

P>x

‖P>x‖2

∣∣∣∣Z)]2

≥
[

min
y:‖y‖2=1

δ? (y| Z)

]2

.

In Section 4, we analyze properties of the robust complexity and provide explicit analytic expressions of

ρ(Z) for uncertainty sets found in the literature such as the budget [8] and the box-ellipsoidal [4] uncertainty

sets, hence unifying most of the known probabilistic guarantees and their proofs.

3.3 Case when the constraint is concave in the uncertainty

According to Proposition 2, a robust constraint that depends on the uncertainty in a concave manner, as in

Equation (4), can be seen as a linear constraint in the new decision variables (x,v). Correspondingly, we

can now state and derive an analogue of Theorem 1 for this general case.

Theorem 2. Under Assumptions 1 and 2, for any x ∈ X and v satisfying

ā>v + δ?(P>v|Z)− f?(v,x) ≤ 0, we have

P (f(ā + Pz̃,x) > 0) ≤ exp

(
− (f?(v,x)− ā>v)2

2‖P>v‖22

)
≤ exp

(
−δ

?(P>v|Z)2

2‖P>v‖22

)
.

A formal proof of Theorem 2 is given in Appendix B.1. We graphically explain the intuition behind the

result in dimension L = 2, in Figure 1. Assume (z̃1, z̃2) ∈ [−1, 1]2 (black squared box), which is a special

case of Assumption 1. The shaded blue region corresponds to the uncertainty set Z. Let x be a robust

solution. It induces a constraint on z, f(ā + Pz,x) ≤ 0 which is satisfied by all z ∈ Z. By concavity, the

11



z1

z2

Z ā>x + v>Pz− f?(v,x) = 0

f(ā + Pz,x) = 0

Figure 1: Geometrical proof of Theorem 2 in dimension L = 2.

region {z : f(ā + Pz,x) > 0} admits a supporting hyperplane (in red) and is contained within a half-space.

Theorem 2 provides an explicit description of this halfspace, {z : ā>x + v>Pz− f?(v,x) > 0}.
Theorem 2 displays the exact same probabilistic guarantee as in the linear case except that the bound

now involves the extra variable v instead of x. Recall that in the special case where f is linear, the conjugate

f? enforces v = x and we recover Theorem 1. In the general case, the variable v is introduced to express

the robust constraint in a tractable manner, so solving the robust optimization problem provides a vector v

alongside a vector x, and our bound can be computed a posteriori. Taking the worst-case over all potential

vectors v, we get the exact same a priori bounds as in the linear case.

Corollary 2. Under Assumptions 1 and 2, for any x ∈ X and v satisfying

ā>v + δ?(P>v|Z)− f?(v,x) ≤ 0, we have

P (f(ā + Pz̃,x) > 0) ≤ exp
(
− 1

2ρ(Z)2
)
.

4 Robust complexity of a set

The previous section elicited the central role of the robust complexity of the uncertainty set, ρ(Z), in

obtaining a priori probabilistic guarantees. In Section 4.1, we derive closed-form expression for the robust

complexity of norm balls, and analyze the robust complexity of their intersection and Minkowski sum in

Section 4.2 and 4.3 respectively. By doing so, we recover most existing results found in the literature.

Finally, we provide a geometric interpretation of the robust complexity in Section 4.4, which in turns leads

to an analytical expression for polyhedral uncertainty sets and an optimization problem to evaluate ρ(Z)

numerically in general. We also discuss how those bounds should guide modeling in practice.

4.1 Norm-ball uncertainty sets

In practice, Z is often chosen as an `p ball for which one can compute its robust complexity explicitly.

Proposition 4. Z =
{
z ∈ RL : ‖z‖p ≤ Γ

}
has a robust complexity of

ρ(Z) = Γκ(p), with κ(p) :=

1, if p ≥ 2,

L
1/2−1/p, if p ≤ 2.
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Proof. Since the support function for an `p-norm ball is given by its dual norm, the `q-norm with q ∈ [1,∞]

satisfying 1/p + 1/q = 1, we derive

min
y:‖y‖2=1

δ?(y|Z) = Γ min
y:‖y‖2=1

‖y‖q.

If q ≤ 2, 1 = ‖y‖2 ≤ ‖y‖q, which is tight for y = ei for some i ∈ {1, . . . , L}. If q ≥ 2, Hölder’s inequality

yields 1 = ‖y‖2 ≤ L1/2−1/q ‖y‖q, which is tight for y =
√
Le. Hence, the result.

This result generalizes results obtained in the literature. In particular, if the 2-norm is used, the bound is

notably independent of the dimension L, and a priori and a posteriori bounds match. As intuition suggests,

the bound monotonically decreases with Γ. Equivalently, in order for the constraint to be violated with

probability at most ε, it suffices to take Γ ≥ 1
κ(p)

√
2 ln(1/ε).

Proposition 4 applies to norm balls which are isotropic, i.e., which are invariant by permutation of the

coordinates. For uncertainty sets which weight each coordinate zi by a specific weight λi > 0, we can prove

the following extension (proof in Appendix B.2).

Proposition 5. Let Λ = Diag(λ) be a diagonal matrix with λ > 0 and let p ∈ [1,∞]. Then the set

Z =
{

z ∈ RL : ‖Λz‖p = (
∑
i |λizi|p)

1/p ≤ 1
}

has a robust complexity of

ρ(Z) = 1/‖λ‖∞, if p ≥ 2,

ρ(Z) ≥

(
L∑
i=1

λ
1/(1/p−1/2)
i

)1/2−1/p

, if p ≤ 2.

4.2 Intersection of norm balls

Uncertainty sets defined as the intersection of norm-balls have attracted a lot of attention, because of their

tractability and reduced conservatism. For such sets, one can compute an explicit a priori probabilistic

guarantee.

Proposition 6. Let Zi, i = 1, 2, be two uncertainty sets such that ri(Z1) ∩ ri(Z2) 6= ∅.

(a) The robust complexity of Z1 ∩ Z2 satisfies ρ(Z1 ∩ Z2) ≥ mini=1,2 ρ(Zi).

(b) If, in addition to Assumptions 1-2, z̃ ∈ Z1 almost surely, then the probabilistic guarantee is driven by

ρ(Z2).

Proposition 6(a) is non trivial. Since Z1 ∩Z2 ⊆ Zi, i = 1, 2, the constraint violation probability induced

by Z1 ∩Z2 can only be worse than the ones induced by Z1 and Z2 alone. Yet, Proposition 6(a) states that,

as far as upper-bounds are concerned, Z1 ∩ Z2 is no worse than Z1 and Z2 separately. Proposition 6(b)

improves upon Proposition 6(a) under the additional assumption that z̃ ∈ Z1 almost surely, stating that Z2

alone controls the upper bound for constraint violation.

Proof. (a) If Z = Z1 ∩ Z2 with ri(Z1) ∩ ri(Z2) 6= ∅, we have [2, Lemma 6.4] δ?(y|Z) = minv δ?(v|Z1) +

δ?(y − v|Z2). In addition, by definition of the robust complexity δ?(·|Zi) ≥ ρ(Zi)‖ · ‖2 so that

δ?(y|Z) ≥ min
i=1,2

ρ(Zi) min
v

[‖v‖2 + ‖y − v‖2] ≥ min
i=1,2

ρ(Zi) ‖y‖2,
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where the last inequality follows from the triangle inequality.

(b) We sketch the proof for the linear case only, the concave case being similar. Let x be a robust solution,

and v ∈ RL so that δ?(P>x|Z) = δ?(v|Z1) + δ?(P>x− v|Z2).

P
(
ā>x + z̃>P>x > b(x)

)
≤ P

(
z̃>P>x > δ?(P>x|Z1 ∩ Z2)

)
≤ P

(
z̃>v + z̃>(P>x− v) > δ?(v|Z1) + δ?(P>x− v|Z2)

)
= P

z̃>(P>x− v) > δ?(v|Z1)− z̃>v︸ ︷︷ ︸
>0 for z̃∈Z1

+δ?(P>x− v|Z2)


≤ P

(
z̃>(P>x− v) > δ?(P>x− v|Z2)

)
.

Applying a Chernoff bound and uniformly bounding the right hand side concludes the proof.

Remark 3. The proof of Proposition 6(b) is informative for a posteriori bound as well. Indeed, we have

P
(
ā>x + z̃>P>x > b

)
≤ exp

(
−δ

?(P>x− v|Z)2

2‖P>x− v‖22

)
,

which might be tighter than the bound from Theorem 1.

Example 2. The budget uncertainty set. The budget uncertainty set defined as

Z`∞∩`1 :=
{
z ∈ RL : ‖z‖∞ ≤ 1, ‖z‖1 ≤ ρ

}
,

with 1 ≤ ρ ≤ L, and introduced by [8], is the intersection of the `∞ unit-ball with an `1-ball. The robust

constraint ā>x + z>P>x ≤ b,∀z ∈ Z`∞∩`1 is then equivalent to

∃v, ā>x + ‖v‖1 + Γ‖P>x− v‖∞ ≤ b,

requiring the introduction of the L new variables v, in addition to L+1 auxiliary variables and 4L constraints

to linearize the `1 and `∞ norms. With m constraints involving the same uncertain vector a, there is a

total of (2L + 1)m new variables and 4Lm new constraints needed. According to Proposition 6(b), Z`∞∩`1
induces a probabilistic guarantee of exp (−ρ2/2L), recovering the original result from [8]. Our result holds

whenever z̃ is sub-Gaussian with variance proxy 1 (Assumption 1) and ‖z̃‖∞ ≤ 1, but does not require z̃ to

be symmetrically distributed. Similarly, for the so-called box-ellipsoidal uncertainty set from [4], Z`∞∩`2 :={
z ∈ RL : ‖z‖∞ ≤ 1, ‖z‖2 ≤ ρ

}
, we recover their e−ρ

2/2 guarantee.

4.3 Minkowski sum of norm balls

We now provide explicit a priori probabilistic guarantees for sets defined as the Minkowski sum of norm

balls, later referred to as sum sets. Compared to intersection sets, sum sets have not received the attention

they deserve, despite their improved tractability.

Proposition 7. Let Zi, for i = 1, 2, be two uncertainty sets. Then

ρ(Z1 + Z2) ≥ ρ(Z1) + ρ(Z2).
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(a) Intersection set with ρ = 1.5 (b) Sum set with ρ1 = ρ− 1, ρ2 = 2 − ρ.

Figure 2: Comparison of the intersection and sum set in dimension L = 2.

(a) Intersection set with ρ = 2.5 (b) Sum set with ρ1 = (ρ− 1)/2, ρ2 = (3 − ρ)/2

Figure 3: Comparison of the intersection and sum set in dimension L = 3.

Proof. If Z = Z1 + Z2, then δ?(y|Z) = δ?(y|Z1) + δ?(y|Z2) [2, Lemma 6.3]. Hence,

δ?(y|Z) ≥ ρ(Z1)‖y‖2 + ρ(Z2)‖y‖2.

Taking the minimum over all y such that ‖y‖2 = 1 concludes the proof.

Example 3. Alternative to the budget uncertainty set. From a modeling perspective, the budget uncertainty

Z`∞∩`1 set is geometrically very similar to the `∞ + `1 set, defined as

Z`∞+`1 :=
{
z ∈ RL : z = z1 + z2, with ‖z1‖∞ ≤ ρ1, ‖z2‖1 ≤ ρ2

}
.

In dimension L = 2, with proper scaling, those two sets are indeed identical as shown in Figure 2, while this

is no longer the case in higher dimension (see Figure 3 for L = 3).

In terms of tractability, however, the sum is preferable over the intersection for it does not require addi-

tional variables v. The robust constraint ā>x + z>P>x ≤ b, ∀z ∈ Z`∞+`1 is equivalent to

ā>x + ρ1‖P>x‖1 + ρ2‖P>x‖∞ ≤ b,

which requires L + 1 extra variables and 3L extra constraints to linearize the `1 and `∞ norm of P>x.

This gain is particularly sizable when the uncertainty affects multiple constraints since the extra variables

and constraints can be shared across constraints: With m uncertain constraints involving the same uncertain
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vector a, there is a total of (L+1) new variables and 3L new constraints needed only. Applying Proposition 7,

we can show that the Z`∞+`1 set yields a probabilistic guarantee of exp
(
− 1

2

{
ρ1 + ρ2L

−1/2
}2
)

. Consequently,

in the case of the `∞ and `1 norms, the sum set dominates the intersection set in terms of tractability and can

still provide probabilistic guarantees. The intersection set, however, could be used for intuition and scaling

of ρ1 and ρ2. We will concretize this comparison on a numerical example in Section 6.3.

Example 4. Alternative to the box-ellipsoidal uncertainty set. Similarly, we propose an analogous sum set

for the box-ellipsoidal uncertainty set Z`∞∩`2 , namely we consider

Z`∞+`2 :=
{
z ∈ RL : z = z1 + z2, with ‖z1‖∞ ≤ ρ1, ‖z2‖2 ≤ ρ2

}
.

For similar reasons, the robust counterpart associated with Z`∞+`2 is more tractable in terms of additional

variables and constraints. In addition, according to Proposition 7, it yields a probabilistic guarantee of

exp
(
− 1

2 {ρ1 + ρ2}2
)

, which is independent of the number of uncertain parameters L.

Remark 4. Sets of the form Z`∞+`2 have been consider by [3, Chapter 2] in the context of tractable reformu-

lations of scalar chance constraints. Interestingly, sum sets emerge naturally in this context when the mean

of the uncertainty quantity z̃ is assumed to be bounded, rather than equal to 0 [see 3, Theorem 2.4.4 and

Examples 2.4.6, 2.4.7, 2.4.9, 2.4.11]. Alternatively, uncertainty on the expected value of z̃ can be modeled

by decomposing z̃ into z̃1 + z̃2, where z̃1 and z̃2 are unknown parameters with mean 0. Intuitively, given

z̃1, z̃ has mean z̃1 6= 0 and z̃2 represents deviation from the mean. From a practical standpoint, these two

interpretations lead to similar uncertainty sets.

4.4 Numerical computation using the maximum-volume inscribed sphere

For general uncertainty sets Z, an analytical expression for the robust complexity might be out-of-reach.

Monotonicity of the robust complexity (Proposition 3-a) suggests a numerical approach to lower bound ρ(Z):

First, compute Z ′ such that Z ′ ⊆ Z and ρ(Z ′) is reasonably known. Then, use the a priori probabilistic

guarantee of Z ′ for Z. Intuitively, the closer Z ′ is to Z, the tighter the approximation. Actually, this

procedure can produce the exact value of the robust complexity of Z when Z ′ is chosen as an `2-sphere

centered at 0. Denote B(0, r) = {z : ‖z‖2 ≤ r}.

Proposition 8. For any fully-dimensional convex set Z ⊆ RL containing 0 in its interior, the robust

complexity of Z is the radius of the maximum inscribed sphere centered at 0 contained within Z, i.e.,

ρ(Z) = max
r≥0
{r : B(0, r) ⊆ Z}.

Proof. Denote r? the objective value of the optimization problem on the left-hand side. Note that r? > 0

since 0 lies in the interior of Z. By definition, B(0, r?) ⊆ Z so ρ(Z) ≥ ρ(B(0, r?) = r?, where the last

equality follows from Proposition 4. We consider a vector z?, ‖z?‖2 = r?, which lies on the boundary of Z.

Such a vector exists by optimality of r?. Then, z? defines a hyperplane that is tangent to Z, hence proving

that the linear optimization problem maxz∈Z z>z? admits z = z? as an optimal solution. As a result, by

considering y = z?/r? we have ρ(Z) ≤ r?.

The optimization problem in Proposition 8 is a special case of the maximum inscribed ellipsoid [47] or

the maximum inscribed sphere problem [43]. Although we fix the center of the ellipsoid to 0 and only allow

for shape matrices of the form rIL, solving this optimization problem can be challenging in general. For
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polyhedral uncertainty sets defined with k linear constraints, Z = {z : Dz ≤ d}, however, it can be solved

in closed-form:

ρ(Z) = min
i=1,...,k

di
‖D>ei‖2

.

5 Probabilistic guarantees for dependent uncertainty

In the preceding section, we leveraged the assumption that coordinates of z̃ are independent (Assumption 2)

to derive our probabilistic guarantees. We now discuss how this assumption can be relaxed and the impact

on the resulting guarantees. In Section 5.1, we show that exponential, yet weaker, bounds can be derived

when z̃ is sub-Gaussian (Assumption 1) but its coordinates are not necessarily independent. In Section 5.2,

we depart from both Assumptions 1 and 2, and derive polynomial probabilistic guarantees under first and

second moments conditions.

5.1 Exponential guarantees for sub-Gaussian random variables

From a high-level perspective, the proofs of Theorems 1 and 2 are essentially a tail-bound P
(
z̃>P>x > t

)
for some t ≥ δ?(P>x|Z) > 0. When the coordinates of z̃ are L independent sub-Gaussian random variables

with parameter 1, the random variable z̃>P>x is itself sub-Gaussian, with parameter ‖P>x‖22. Without

independence, z̃>P>x remains sub-Gaussian (Proposition 11-b in Appendix A), with a higher parameter

however. We formalize this line of proof in the following theorem.

Theorem 3. Under Assumption 1, for any x ∈ X satisfying ā>x + δ?(P>x|Z) ≤ b(x), we have

P
(
ā>x + z̃>P>x > b(x)

)
≤ exp

(
− (b(x)− ā>x)2

2‖P>x‖21

)
≤ exp

(
−δ

?(P>x|Z)2

2‖P>x‖21

)
.

Proof. We follow the same proof as for Theorem 1. Under Assumption 1, z̃>P>x is sub-Gaussian with

variance proxy ‖P>x‖21 (see Appendix A, Proposition 11-b). Hence, we have the following tail bound

(Appendix A, Proposition 10)

P
(
z̃>P>x > t

)
≤ exp

(
− t2

2‖P>x‖21

)
.

Since ‖P>x‖2 ≤ ‖P>x‖1, the bound obtained from relaxing Assumption 2 is weaker than the one from

Theorem 1, but shares a similar flavor. From the a posteriori bound, we derive an a priori probabilistic

guarantee (proof omitted):

Corollary 3. Under Assumptions 1, for any x ∈ X satisfying ā>x + δ?(P>x|Z) ≤ b(x), we have

P
(
ā>x + z̃>P>x > b(x)

)
≤ exp

(
− 1

2ρ1 (Z)
2
)
,

where ρ1 (Z) = min
y:‖y‖1=1

δ?(y|Z).
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Table 5: Valid lower bound on ρ1(Z) := miny:‖y‖1=1 maxz∈Z y>z, for some common uncertainty sets.
For each set, we also provide sufficient conditions to obtain a probabilistic guarantee of at least ε, i.e.,
ρ1(Z) ≥ γ(ε) :=

√
2 ln(1/ε). Instances denoted by a * are valid under the assumption that the true

uncertain parameter z̃ satisfies ‖z̃‖∞ ≤ 1.

Uncertainty set Definition ρ1(Z) ≥ . . . s.c. for ε-guarantee

Norm-set {z : ‖z‖p ≤ Γ} ΓL−1/p Γ ≥ L1/pγ(ε)

Budget set* {z : ‖z‖∞ ≤ 1, ‖z‖1 ≤ Γ} Γ/L Γ ≥ Lγ(ε)

Box-Ellipsoidal set* {z : ‖z‖∞ ≤ 1, ‖z‖2 ≤ Γ} Γ/
√
L Γ ≥

√
Lγ(ε)

`∞+`1 set {z1 + z2 : ‖z1‖∞ ≤ ρ1, ‖z2‖1 ≤ ρ2} ρ1 + ρ2/L
ρ1 ≥ αγ(ε), α ∈ [0, 1]
ρ2 ≥ (1− α)Lγ(ε)

`∞+`2 set {z1 + z2 : ‖z1‖∞ ≤ ρ1, ‖z2‖2 ≤ ρ2} ρ1 + ρ2/
√
L

ρ1 ≥ αγ(ε), α ∈ [0, 1]

ρ2 ≥ (1− α)
√
Lγ(ε)

This a priori probabilistic guarantee involves the quantity ρ1 (Z) = min
y:‖y‖1=1

δ?(y|Z) that resembles

the robust complexity ρ(Z) except that y has unit `1-norm instead of `2-norm. In particular, we have

ρ(Z)/
√
L ≤ ρ1(Z) ≤ ρ(Z), and can provide closed-form expressions for the most widely-used uncertainty

sets by conducting a similar analysis as Section 4 (see Table 5).

5.2 Polynomial guarantees for bounded covariance matrix

In this section, we depart from the sub-Gaussian assumption and provide polynomial probabilistic guarantees

under some restrictions on the first two moments of z̃, as in [7].

Assumption 3. We assume that the coordinates of the uncertain parameter z̃ ∈ RL are L random variables

with zero mean and covariance matrix bounded by some semi-definite positive matrix Σ � 0, i.e., E[z̃z̃>] � Σ.

We consider the case where the constraint is linear, f(a,x) = a>x − b(x), the general case and treat

sequentially the a posteriori and a priori bounds. We first derive a posteriori guarantees that depend on the

robust solution x.

Theorem 4. Under Assumption 3, for any x ∈ X satisfying ā>x + δ?(P>x|Z) ≤ b(x), we have

P
(
ā>x + z̃>P>x > b(x)

)
≤ ‖Σ

1/2P>x‖22
(b(x)− ā>x)2

≤ ‖Σ
1/2P>x‖22

δ?(P>x|Z)2
.

Proof. We follow the same proof as for Theorem 1. Instead of a Chernoff bound, we apply a Chebyshev’s

inequality

P
(
z̃>P>x > t

)
≤ Var(z̃>P>x)

t2
≤ ‖Σ

1/2P>x‖22
t2

,

with t = b(x)− ā>x ≥ δ?(P>x|Z).

Let λmax(Σ) denote the maximum eigenvalue value of Σ. Then, for any vector y, ‖Σ1/2y‖22 ≤ λmax(Σ)‖y‖22,

and we can derive a priori probabilistic guarantees.

Proposition 9. Under Assumption 3, for any x ∈ X satisfying ā>x + δ?(P>x|Z) ≤ b(x), we have

P
(
ā>x + z̃>P>x > b(x)

)
≤ λmax(Σ) ρ(Z)−2.
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We omit the proof for concision. Notice that the a priori bound is again driven by the robust complexity

of the uncertainty set, ρ(Z), yet in a polynomial way. The proof techniques can be straightforwardly adapted

to the general case where f(a,x) is a concave function of a.

6 Numerical experiments on a facility location example

In this section, we illustrate how our results materialize on a facility location example. In particular, some

decision variables are binary and multiple constraints are subject to uncertainty. In this context, a posteriori

bound are significantly tighter due to discreteness of x, hence especially valuable when considering the

probability of multiple constraints being violated. We also implement and compare uncertainty regions

described as intersection and sums of norm balls.

6.1 Problem formulation

Given a set of n potential facilities and m customers, the facility location problem consists in constructing

facilities i = 1, . . . , n at cost ci in order to satisfy demand at minimal cost, i.e., solve

min
x∈{0,1}n,X∈Rn×m

+

n∑
i=1

cixi +

m∑
j=1

n∑
i=1

CijXij s.t.

n∑
i=1

Xij = 1,∀j = 1, . . . ,m,

m∑
j=1

djXij ≤ uixi,∀i = 1, . . . , n.

In this formulation, Xij corresponds to the fraction of the demand of customer j produced in and shipped from

facility i, at a marginal cost Cij , ui is the production capacity of facility i and dj the demand of customer j.

The first set of constraints ensures that all demand is satisfied, while the second set of constraints corresponds

to production capacity constraints. The latter are linear constraints of the form “a>x ≤ b”(
−ui
d

)>(
xi

Xei

)
≤ 0,∀i = 1, . . . , n, (5)

which we want to protect against uncertainty in the demand vector d. Values for the nominal problem are

taken from the p1 instance of [29] with n = 10 facilities and m = 50 customers. As in [1], we assume that

the true demand can deviate within ε0 of its nominal value (we take ε0 = 20%), namely for each customer

j = 1, . . . ,m,

d̃j = (1 + ε0z̃j)d̄j ,

where z̃ satisfies Assumption 1-2. For simulation purposes, we will consider three particular distributions

for z̃:

• Uniform, where each z̃j is uniformly distributed on [−1, 1].

• Normal, where z̃j ’s are independently sampled from a standard distribution.

• Rademacher, where P(z̃j = ±1) = 1/2.
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Figure 4: Comparison of a priori and a posteriori bounds with empirical probability of constraint violation
as the budget of uncertainty Γ increases, for two production capacity constraints.

For each facility i, we replace the production capacity constraint by its robust counterpart[(
−ui
d̄

)
+

(
0>

ε0Diag(d̄)

)
z

]>(
xi

Xei

)
≤ 0,∀z ∈ Z,

which is of the form “[ā + Pz]
>

x ≤ b”, and consider different uncertainty set. In the expression above,

Diag(d̄) denotes the m×m diagonal matrix whose diagonal entries are given by d̄.

6.2 Box uncertainty set

We first consider a box uncertainty set

Zbox
Γ = {z ∈ Rm : ‖z‖∞ ≤ Γ} ,

as in [1]. According to Corollary 1, the uncertainty set Zbox
Γ a priori induces a probabilistic guarantee of

exp(−ρ(Zbox
Γ )2/2) with ρ(Zbox

Γ ) = Γ (Proposition 4). As for posteriori bounds, given a robust solution

(x,X), we have a probabilistic guarantee of

exp

(
−1

2

|Diag(d̄)>Xei − uixi|2

ε20‖Diag(d̄)>Xei‖22

)
.

Figure 4 compares these a priori and a posteriori bounds to the empirical probability of constraint

violation for three different distributions, and two different constraints. The a posteriori bound brings a

material improvement over the a priori one and better approximates the empirical probability as Γ increases.

This should come as no surprise, since our bounds are consequences of concentration inequalities which are

tighter as we shift further away from the mean.

These bounds can be improved by imposing more assumptions on z̃. For instance, if we assume that z̃j

admits a bounded symmetric unimodal distribution (such as the uniform distribution), then, as reported

in Table 4, Zbox
Γ induces an a priori guarantee of exp(−3Γ2/2) instead of exp(−Γ2/2), and the a posteriori

guarantee is affected by a factor 3 as well. Figure 5 compares the a priori and a posteriori guarantees with

and without this assumption, for the two previous constraints.
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Figure 5: Comparison of a priori and a posteriori bounds with and without the unimodal assumption as the
budget of uncertainty Γ increases, for two production capacity constraints.
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Figure 6: Comparison of the trade-off worst case cost vs. a priori (left), a posteriori probabilistic guarantee
(middle) and empirical probability of constraint violation (with uniform distribution, right) for the budget
(in red) and sum (in blue) uncertainty sets and varying budget of uncertainty. For the sum uncertainty sets,
we connected the points corresponding to sets with the same value of Γ1.

6.3 Budget and sum uncertainty set

In this section, we compare the budget and sum uncertainty sets, defined as

Zbudget
Γ = {z ∈ Rm : ‖z‖∞ ≤ 1, ‖z‖1 ≤ Γ} ,

Zsum
Γ = {z1 + z2 ∈ Rm : ‖z1‖∞ ≤ Γ1, ‖z2‖1 ≤ Γ2} ,

in terms of a priori and a posteriori guarantees, as discussed in Section 4.2. To derive useful conclusions,

probabilistic guarantees need to be put in contrast with the conservatism of the corresponding solutions.

Figure 6 represents the trade-off between the probability of constraint violation and the worst-case cost of

the solution for the two uncertainty sets. For every protection level, the budget uncertainty set a priori

leads (left panel) to a less conservative solution than the sum uncertainty set, by c.10%. A posteriori and

empirically, this gap is generally confirmed yet weaker, in particular when Γ1 is close to 0. This conclusion

is of course valid for this particular problem only and we do not claim any generalization to other contexts.

Yet, we believe that comparing uncertainty sets in terms of the trade-off between conservatism and risk level

is a useful tool to inspect seemingly similar modeling choices.
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Figure 7: Comparison of a priori and a posteriori bounds on the joint probability of at least one constraint
being violated, with the empirical constraint violation probability, as the budget of uncertainty Γ increases.

6.4 Extension to multiple constraints

For now, we only looked at the probability of one constraint being violated. To extend our analysis to

multiple constraints, a simple union bound technique, alternatively called Bonferroni inequality [10], would

bound the probability of at least one constraint being violated by the sum of the individual constraint

violation probabilities. In the presence of k linear constraints subject to uncertainty for instance, we have

P
(
∃i ∈ {1, . . . , k} : x>ā(i) + x̄>P(i)z̃ > 0

)
≤

k∑
i=1

P
(
x>ā(i) + x̄>P(i)z̃ > 0

)
.

We apply this reasoning to the k = n = 10 production capacity constraints (5) for the budget uncertainty

set Zbudget
Γ . We compute a priori and a posteriori guarantees on Figure 7a, with and without the assumption

that z̃ is unimodal with respect to 0. For small values of Γ, these bounds, and a priori bounds especially,

are clueless for they are greater than 1. A posteriori bounds on the other hand are prominently tighter.

This is mainly due to the fact that many facilities are turned off (xi = 0), in which case the corresponding

constraints are no longer subject to uncertainty and the a posteriori bounds equal 0, whereas the a priori

bounds are stricly positive. We further compare our bounds (capped at 1) with empirical probabilities

(Figure 7b). These bounds are noticeably weak for small values of Γ, because the Bonferroni approximation

did not account for correlations between the different constraints. Let us remark that the robust counterpart

of the capacity constraints (5) similarly computes the worst case for each constraint independently.

6.5 Numerical bounds for dependent uncertainty

Finally, we numerically assess the quality of the bounds when the coordinates of z̃ are no longer assumed to be

independent, as in Section 5.1. In particular, we sample z̃ from a multivariate normal distribution with mean

0 and a spiked identity covariance matrix Σ(θ) = (1−θ)IL+θee>. Among others, the eingenvalues of Σ(θ) are

within 1−θ and 1+θ(L−1). We consider an ellipsoidal uncertainty set Zell
Γ = {z ∈ Rm : ‖z‖2 ≤ Γ}, which,

according to Corollary 3 and Table 5, yields a probabilistic guarantee of exp(−Γ2/2L). Figure 8 compares

these a priori bounds with a posteriori ones from Theorem 3 and empirical probability of constraint violation.

For this setting, we believe Berstein-type of inequality could provide exponential probabilistic guarantees

that depend explicitly on the level of correlation between coordinates and would constitute an interesting

extension of our results.
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(a) Facility i = 4 (b) Facility i = 9

Figure 8: Comparison of a priori and a posteriori bounds when z̃ admits dependent coordinates. We consider
an ellipsoidal uncertainty set, various budgets of uncertainty Γ, and two production capacity constraints.

7 Concluding remarks

In this work, we developed a principled methodology for deriving strong a priori and a posteriori probabilistic

guarantees for solutions of robust optimization problems. Our analysis applies broadly to any convex compact

uncertainty set and to any constraint affected by uncertainty in a concave manner, and combines theoretical

appeal with practical relevance. Constraints where the uncertainty appears in a convex way are notably

harder to account for in robust optimization and call for tractable safe approximations [9, 39], a topic which

constitutes an exciting area for future research. In line with the present paper, probabilistic guarantees for

such safe approximations would be particularly beneficial in practice. This question intimately relates to

approximations of chance constrained conic or matrix inequalities [3, Chapter 10], which has received revived

interest recently under the lens of distributionally robust optimization [14, 48, 15].
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A Preliminary results from probability theory

In this section, we recall some useful definitions and results from probability theory regarding sub-Gaussian

variables. We refer to [37] and [41] for a comprehensive treatment.

Definition 3. [Definition 1.2 in 37] A random variable x̃ ∈ R is said to be sub-Gaussian with parameter

σ2, denoted x̃ ∼ subG
(
σ2
)
, if E[x̃] = 0 and for all s ∈ R,

E
[
esx̃
]
≤ e

s2σ2

2 .

Naturally, centered Gaussian random variables are also sub-Gaussian. Of particular interest for the RO

literature, bounded random variables are a special case of sub-Gaussian random variables, a consequence of

Hoeffding’s inequality.

Lemma 1. [Lemma 1.8 in 37] Let x̃ be a random variable such that E[x̃] = 0 and x̃ ∈ [a, b] almost surely.

Then, x̃ ∼ subG
(

(b−a)2

4

)
.

The parameter σ2 is usually referred to as a variance proxy, for any sub-Gaussian random variable x̃

with parameter σ2 satisfies Var(z̃) ≤ σ2 - the equality being tight for Gaussian random variables. Note that

the definition of sub-Gaussian random variables is essentially a Gaussian bound on the moment generating

function of x̃ and is very similar to Property P2 in [3], Section 2.4. Examples from Table 2.3. in [3] for which

µ± = 0 satisfy Definition 3. This definition can be extended to non-centered random variables as well [see

41, Definition 2.2] and account for examples with µ± 6= 0.

A bound on the moment generating function leads to a bound on the tail of the distribution.
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Proposition 10. [Lemma 1.3 in 37] If x̃ ∼ subG
(
σ2
)
, for all t > 0,

P (x̃ > t) ≤ e−
t2

2σ2 , and P (x̃ < −t) ≤ e−
t2

2σ2 .

Actually, all these tail bounds can be used as equivalent definitions of sub-Gaussian random variables

[41, Theorem 2.6].

Relevant for our analysis is the fact that sums of sub-Gaussian random variables are themselves sub-

Gaussian as proved in Proposition 11. The extension to linear combination of sub-Gaussian random variables

is straightforward after observing that if x̃ ∼ subG
(
σ2
)
, then αx̃ ∼ subG

(
|α|2σ2

)
.

Proposition 11. Let x̃i, i = 1, . . . , n, be n sub-Gaussian random variables with respective parameter σ2
i .

(a) If the xi’s are independent, then
∑
i x̃i is sub-Gaussian with parameter

∑
i σ

2
i .

(b) In general,
∑
i x̃i is sub-Gaussian with parameter (

∑
i σi)

2
.

Proof. (a) The first part of the proposition follows from the definition of sub-Gaussian random variables and

a Chernoff bound as proved in [37, Theorem 1.6]. (b) We now prove the second part of the result for n = 2.

Fix s ∈ R. For any p, q such that 1/p + 1/q = 1, Hölder’s inequality yields

E
[
esx̃1+sx̃2

]
≤ E

[
esx̃1/p

]p
E
[
esx̃1/q

]q
≤ exp

(
s2

2

[
pσ2

1 + qσ2
2

])
.

Minimizing the right-hand side with respect to p indicates taking p = 1 +
√
σ2/σ1 and q = 1 +

√
σ1/σ2,

leading to the following inequality:

E
[
esx̃1+sx̃2

]
≤ exp

(
s2

2
[σ1 + σ2]

2

)
.

The general result follows by induction on n.

B Omitted proofs

B.1 Proof of Theorem 2

Proof. Since

ā>v + δ?(P>v|Z)− f?(v,x) ≤ 0,

we can apply Theorem 1 (with b(x) = f?(v,x)) and get

P
(
ā>v + z̃>P>v − f?(v,x) > 0

)
≤ exp

(
− (f?(v,x)− ā>v)2

2‖P>v‖22

)
.

By definition of the conjugate,

∀a, f?(v,x) + f(a,x) ≤ a>v,
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which in turns leads to

f(ā + Pz̃,x) > 0 =⇒ (ā + Pz̃)>v − f?(v,x) ≥ f(ā + Pz̃,x) > 0.

All in all, we have

P (f(ā + Pz̃,x) > 0) ≤ P
(
(ā + Pz̃)>v − f?(v,x) > 0

)
≤ exp

(
− (f?(v,x)− ā>v)2

2‖P>v‖22

)
,

which concludes the proof.

B.2 Proof of Proposition 5

Proof. By a change of variable, we have

δ?(y|Z) = max
z′:‖z′‖p≤1

y>Λ−1z′ = ‖Λ−1y‖q,

with 1/p + 1/q = 1. If q ≤ 2 (i.e., p ≥ 2),

1 = ‖y‖2 =

√√√√ L∑
i=1

λ2
i

(
yi
λi

)2

≤ ‖λ‖∞‖Λ−1y‖2 ≤ ‖λ‖∞‖Λ−1y‖q,

which is tight for y = ei with i ∈ arg maxi λi. If q > 2 (i.e., p < 2), , Hölder’s inequality yields

1 = ‖y‖2 =

√√√√ L∑
i=1

λ2
i

(
yi
λi

)2

≤

(
L∑
i=1

λ
1/α
i

)α
‖Λ−1y‖q,

with α = 1
2

(
1− 2

q

)
= 1

p −
1
2 .
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