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Distribution Locational Marginal Pricing (DLMP)
for Unbalanced Three-Phase Networks
Saeed Mohammadi, Student Member, IEEE, Mohammad Reza Hesamzadeh, Senior

Member, IEEE, and Derek W. Bunn

Abstract—This paper applies the principles of distribution lo-
cational marginal pricing (DLMP) to unbalanced three-phase
distribution networks. We first propose a linear model for AC op-
timal power flow derived through a series of approximation and
reformulation techniques. Then a scenario-generation algorithm
is proposed to properly model the uncertain parameters in the
linear model. Through a proposed No U-Turn sampler (NUTS)
based algorithm, probability density functions (PDFs) of DLMPs
are calculated. These PDFs provide statistical information about
the locational and temporal price risks. By means of applications
to two IEEE unbalanced test networks, the numerical results
show promising performance for the proposed linear model
and the NUTS-based algorithm in creating PDFs of DLMPs.
DLMP price densities will be increasingly useful as distribution
system operators seek flexible, low risk solutions from embedded
generators and aggregators of distributed energy resources.

Index Terms—Battery storage system, distributed energy re-
source, distribution locational marginal price, prosumer, solar
energy, three-phase unbalanced distribution network, wind power.

I. NOMENCLATURE:

NOMENCLATURE

Constants
E Euler’s number ≈ 2.71282;
 Imaginary unit  =

√
−1;

NB Number of buses;
NC Number of capacitors;
ND Number of demands;
NE Number of battery storage system (BSS) units;
NF Number of Feeders;
NG Number of distributed energy resources (DERs);
NH Number of inequalities;
NL Number of feeders;
NM Number of segments;
NS Number of scenarios;
NT Number of time steps;
NV Number of photovoltaic (PV) units;
NW Number of wind units;
1 Vector of ones;
Sets
B Set of buses {1, 2, . . . , NB};
Bb Set of buses that are connected to node b ∈ B;
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B(S) Set of slack buses;
C Set of buses with switchable shunt capacitors;
D Set of demands {1, 2, . . . , ND};
E Set of BSS units {1, 2, . . . , NE};
F Set of feeders {1, 2, . . . , NF};
G Set of DER units {1, 2, . . . , NG};
H Set of inequality constraints {1, 2, . . . , NH};
L Set of lines;
M Set of segments;
P Set of phases {A,B,C};
R Set of voltage regulators;
S Set of scenarios {1, 2, . . . , NS};
T Set of time steps {1, 2, . . . , NT};
V Set of PV units {1, 2, . . . , NV };
V(E) Set of PV units with BSS;
W Set of wind units {1, 2, . . . , NW};
W(E) Set of wind units with BSS;
X Set of decision variables;
Parameters (upper-case letters)
A

(R)
r Regulator’s availability;

B
(C)
c Per phase susceptance of switchable shunt capacitor

c ∈ C (Ω-1);
B

(SC)
c Number of step capacitors of switchable shunt capacitor

c ∈ C (Ω-1);
B(C)
c Susceptance of fixed capacitor in switchable shunt

capacitor c ∈ C (Ω-1);
M A large positive number;
C

(D)
dt Value of lost load ($/MWh);

C
(EC)
et /C(ED)

et Marginal operational cost of charg-
ing/discharging BSS e ($/MWh);

C
(F )
f Marginal cost of feeder’s energy ($/MWh);

C
(G)
g Marginal cost of fuel for DER ($/MWh);

C
(M)
mg Relative cost of segment m in cost curve of DER g;

C
(V C)
vt /C(V D)

vt Marginal operational cost of charg-
ing/discharging PV unit v with BSS ($/MWh);

C
(WC)
wt /C(WD)

wt Marginal operational cost of charg-
ing/discharging wind turbine (WT) unit w with
BSS ($/MWh);

EEeφ/ EEeφ Maximum/minimum capacity of BSS e (MWh);
ηce/ηde Charge/discharge efficiency of BSS e;
ηcv/ηdv Charge/discharge efficiency of BSS of PV unit v;
ηcw/ηdw Charge/discharge efficiency of BSS of wind unit w;
EV vφ/ EV vφ Maximum/minimum capacity of BSS of PV v ∈

V(E) (MWh);
EWwφ/ EWwφ Maximum/minimum capacity of BSS of WT

w ∈W(E) (MWh);
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FVvφt/FWwφt Active power generation forecast for PV v/WT
w (MW);

δ No U-Turn sampler (NUTS)-based algorithm: desired
mean;

P NUTS-based algorithm: target distribution function;
NP NUTS-based algorithm: number of iterations;
NP a NUTS-based algorithm: number of iterations to adapt;
N NUTS-based algorithm: normal distribution function;
uni NUTS-based algorithm: uniform distribution function;
U NUTS-based algorithm: step function;
PDdφts/QDdφts Active/reactive power forecast delivered to

demand d (MW)/(MVAr);
PEeφ/PEeφ Maximum/minimum active power delivered to

BSS e (MW);
PEvφ/PEvφ Maximum/minimum active power delivered to

BSS of PV v (MW);
PEwφ/PEwφ Maximum/minimum active power delivered to

BSS of WT w (MW);
PGg/PGg Maximum/minimum active power generated by

DER g (MW);
PMmg Maximum active power of segment m of DER unit g

(MW);
PPφg/QPφg Maximum active/reactive power generation of

DER g (MW)/(MVAr);
PRs probability of scenario s;
PV vφ/PWwφ Maximum active power generation of PV v/WT

w (MW);
QCc Maximum reactive power generation by shunt capacitor

(MVAr);
QV vφ/QWwφ Maximum reactive power of PV v/WT w

(MVAr);
Rr/Rr Vector of maximum/minimum ratio of voltage regulator

r;
SCct Number of switched steps in switchable capacitor c ∈

C;
SLbk/SF fφ Maximum apparent power of line (b, k)/feeder f

(MVA);
Sbk Three-phase apparent power of feeder (b, k) ∈ L

(MVA);
UDdt Status of demand d (available ⇔ UDdt = 1);
UEets Status of BSS unit e;
UFfts Status of feeder f ;
UGgts Status of DER unit g;
ULφbkt Status of feeder (b, k) ∈ L;
URrts Status of regulator r;
UVvt Status of PV v;
UWwt Status of WT w;
V b/V b Maximum/minimum voltage (kV);
Zbk Three-phase impedance of feeder (b, k) ∈ L (Ω);
Z̃bk Modified three-phase impedance of feeder (b, k) ∈ L

(Ω);
Variables (lower-case letters)
e
(E)
eφts Energy stored in BSS e (MWh);
e
(V )
vφts Energy stored in BSS of PV v ∈ V(E) (MWh);
e
(W )
wφts Energy stored in BSS of WT w ∈W(E) (MWh);
ibφkt Current in line (b, k) (kA);
ibkt Current vector of line (b, k) (kA);

λbφts/µbφts Lagrangian multiplier of Active/Reactive power
balance equation which is DLMP-P/DLMP-Q
($/MWh)

ρ NUTS-based algorithm: momentum;
x NUTS-based algorithm: position;
ξ NUTS-based algorithm: step size;
p
(D)
dφts/q

(D)
dφts Active/reactive power delivered to demand d
(MW)/(MVAr);

p
(EC)
eφts /p(ED)

eφts Active power of charge/discharge of BSS e
(MWh);

p
(F )
fφts/q

(F )
fφts Active/reactive power absorbed from feeder f
(MW)/(MVAr);

p
(G)
gts Active power generated in DER g (MW);
p
(L)
bkφts/q

(L)
bkφts Active/reactive power of line (b, k)
(MW)/(MVAr);

p
(M)
mgts Active power of segment m in DER g (MW);
p
(P )
gφts/q

(P )
gφts Active/reactive power generated by DER g
(MW)/(MVAr);

p
(V )
vφts/q

(V )
vφts Active/reactive power generated by PV v
(MW)/(MVAr);

p
(V C)
vφts /p(V D)

vφts Active power to charge/discharge BSS of PV v
(MW);

p
(W )
wφts/q

(W )
wφts Active/reactive power generated by WT w
(MW)/(MVAr);

p
(WC)
wφts /p(WD)

wφts Active power to charge/discharge BSS of WT
(MW);

q
(C)
cφts Reactive power generated by Shunt capacitor c (MVAr);
q
(E)
eφts Reactive power generated by BSS e (MVAr);
ubφts Square of voltage at phase φ (MV2);
ubts/ukts Voltage-square vector of bus b (MV2);
vbts/vkts Voltage vectors (kV);

II. INTRODUCTION

A. Motivation

ONE of the most remarkable changes in the operations
of the power system supply chain has been in the

distribution networks. For many years they were operated
in a passive “invest and forget” manner, being the necessary
infrastructure carriers between the high voltage grids and
the end-users who simply consumed. But with end-users in
the low voltage distribution networks now having embedded
generation facilities, both conventional and renewable, with
electric vehicles and batteries actively charging and discharging,
as well as smart energy management systems, the power flows
within the distribution networks exhibit higher volatility and
greater quality fluctuations. Furthermore, even the use of
the existing infrastructure is changing with various, possibly
surprising, innovations. Thus, for example in London, the
existing street lamps have been converted into electric vehicle
(EV) charging pods [1], with all the awkward implications for
the pre-existing network which that entails. As a consequence
of all of these end-user changes, distribution power flows are
becoming much more challenging to manage.
One traditional, but quite unsatisfactory, solution would simply
be to over-invest. However, the direction of the change is
now much harder to anticipate and thus any selective network
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strengthening through fixed investments is risky. There is
clearly a need to be more efficient in managing the distribution
assets, but optimization models to support this have to be very
detailed in terms of their spatial-temporal operations, as well
as stochastic in order to represent the random effects of wind,
solar, and EV in particular. Furthermore, the value of better
optimization models is not just in more precise monitoring
of the potential risks in power quality. Distribution system
operators (DSOs) are increasingly avoiding the costs and risks
of over-investment by procuring flexibility services from the
distributed resources [2]. This requires them to accept offers
from the owners of embedded facilities for their services in
relieving congestion at specific times and locations. Computing
a fair value for these services, in terms of economic theory,
requires an application of distribution locational marginal
pricing (DLMP), analogous to the nodal locational marginal
price (LMP) which has become a standard approach for
congestion in the wholesale market at the transmission grid
level.
The complexity of the analysis is enhanced not only by
the large-scale nature of the problem, when the required
granularity for all voltages and flows is specified, but also
because distribution networks are potentially highly unbalanced
due to single/double-phase lines and loads. Thus, DLMP models
need to be formulated for three-phase unbalanced distribution
networks (TUDNs) to be realistic for the existing distribution
networks. Therefore, the computational challenges of DLMP
are substantial. Currently there appears to be no practical
approach to calculate DLMPs, with all the complexities in
real distribution networks. In the absence of even a good
approximation to DLMP, the pragmatic choice is often long
run marginal cost analysis (minimum increase in total cost
when more electricity is consumed by one customer) [3]. This
analytical inadequacy creates inefficient signals for consumer
behavior, network investment, and the financial performance
of distribution utilities [4], [5]. Nevertheless, even without a
DLMP solution, utilities recognize a need to adapt their pricing
schemes and are motivated, in particular, by the charging and
discharging behavior of EVs. For example, 29 distributors in
New Zealand planned new pricing solutions (e.g. based on
long run marginal costs) in 2020-21 [6], [7]. The ideal DLMP
approach would however provide locational and time-of-day
prices to keep overall costs down, maintain power quality and
avoid the distributional effects of some consumers effectively
subsidizing the behavior of others. In this paper we provide
such an approach based upon DLMPs, demonstrated on two
case-studies to be scalable for real applications.
In order to represent the stochastic effects, e.g. from wind and
solar outputs, on the DLMPs, probability density functions
(PDFs) of DLMPs are estimated. The probability density
function fX(X) of a DLMP, specified on the continuous
random variable X , can be used to estimate the extreme
local price risks. As regulated companies, DSOs will be cost-
conscious and will be averse to the risk of procuring flexibility
services at high prices. The conventional risk management
controls in many companies use the so called “value-at-risk”
limits, computed from the PDFs. Thus a 95% value-at-risk
limit a would be the value at which there is only a 5 percent

probability of the DLMP being higher. If b is the market price
cap, it would be expressed as

Pr(a ≤ X ≤ b) =
∫ b
a
fX(x)dx = 0.05.

Therefore, these PDFs provide information regarding the risks
of high or low prices in different parts of distribution network,
being useful, we would argue, not just to the risk-averse
procurement of services by the DSO, but also to the asset
owners of flexibility services in terms of their operational
revenue risks. Some researchers such as [8] have gone beyond
point estimates of the mean nodal prices to include variance as a
risk measure, but this is clearly inadequate to properly estimate
the tail probability risks in non-Normal distributions. Hence,
we propose to use the full PDFs. Overall, such probabilistic
analysis through PDFs provides a more complete assessment
of TUDN risks for both operational and investment decisions.

B. Background research

Power flow equations are intrinsically nonlinear (due to the
convolution of voltages) and so determining DLMP becomes a
nonconvex and nonlinear problem. Whilst various approaches
can handle this nonlinearity, we have focused on developing
a linear program (LP) approximation. From existing research,
second order cone programming (SOCP) [9], semi-definite
programming (SDP) [10], and branch flow formulations [11]
are the most common alternatives. The algorithmic tightness
and solution times are crucial considerations in the different
solution algorithms [12]. Nevertheless, these approaches may be
employed for three-phase power flow models [13]. Regarding
DLMPs, these are mostly calculated for balanced distribution
networks such as [14] which uses the branch flow formulation.
But distribution networks are naturally highly unbalanced, since
the majority of consumers are single phase demands. Although
Hanif et. al. formulated a multiphase DLMP model based on
SOCP [15], it requires heuristics to deal with the tightness
and solution times at large-scale. Another class of methods to
determine LMPs is predictive, based upon historical data. This
is an active research theme in which the prices are predicted
either by 1) applying machine learning approaches such as
neural networks [16] or 2) simulating the network and market
behavior [17], [18].
Traditionally researchers develop point estimates for the LMPs
[19], [20] without addressing the uncertainties in the prices.
However, with the rise in intermittent end-user generation,
these uncertainties are becoming more important operational
considerations. Thus, machine learning and maximum like-
lihood methods have been used to forecast the variances as
well as means of the prices [21]. We have summarised several
relevant papers in Table I, in which it is evident that most
of the research focus is on single phase models assuming
that the distribution network is balanced. The only available
three-phase models for distribution networks can be broadly
categorized as: (1) A group of models proposing an SDP for
modeling three-phase distribution networks. The SDP models
are computationally complex and it is often hard to find a
solution with zero optimality gap. (2) The second group of
models rely on DC optimal power flow (DCOPF) approximation.
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While this approximation might be acceptable for transmission
network operation, it is not suitable for distribution networks
due to their high R/X ratio. The R/X ratio in a distribution
network is between 0.5 and 2 while it is less than 0.1 in a
transmission network. (3) The third group of models solve the
ACOPF formulation for distribution networks using variants of
the Newton–Raphson (NR) method. However, the NR method
has a slow convergence rate and its convergence to a solution
is not guaranteed.

Table I
RESEARCH ON DLMP
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[22] 1 × SOCP SOCP 15-bus single phase, relaxation gap,
computation time

[23] 1 × MIQP CCMIP 33-bus single phase
[24] 1 × QP QP 38-bus single phase
[25] 1 × DCOPF LP 38-bus single phase, R/X ratio

[26] 3 X SDP SDP 123-bus
exactness of SDP relaxation,

computational complexity is high
for large scale problems.

[27] 1 × DCOPF LP 1022-bus single phase, R/X ratio

[28] 1 × SOCP SOCP 300-bus single phase, relaxation gap,
computation time

[29] 3 X DCOPF LP 69-bus R/X ratio in DN

[30]–[32] 3 X FCIM NR 123-bus convergence not guaranteed, slow
convergence

[33] 1 × DCOPF LP 6-bus single-phase, R/X ratio in DN
[8] 1 × SOCP SOCP 33-bus relaxation gap, computation time

SOCP: second order conic programming, MIP: mixed-integer programming,
MIQP: mixed-integer quadratic programming, QP: quadratic programming,
LP: linear programming, SDP: semidefinite programming, CCMIP: chance

constrained MIP, DCOPF: DC optimal power flow, DN: distribution network,
NR: Newton Raphson, FCIM: four-conductor current injection method

C. Contributions of this paper

This paper contributes to the existing literature in the following
ways:
(a.) We propose a linear mathematical model for the operation

of three-phase unbalanced distribution networks (TUDNs).
To the best of our knowledge, the proposed model in
this paper for calculating DLMPs is state-of-the-art. It is
applicable to three-phase unbalanced distribution networks
and it does not suffer from the convergence issues,
relaxation gap, and high R/X ratios, as do the various
alternative approaches listed in Table I. Our proposed
model is a straightforward linear programming (LP) model
which can be solved by available commercial LP solvers.
This advantage makes our proposed LP model suitable for
solving large-scale TUDNs in practice.

(b.) We specify an extensive set of distribution network
elements, such as solar units, wind units, shunt capacitors,
transformers, voltage regulators, feeders, and grid-forming
units. Furthermore the availabilities of these units are
modeled in detail. This specification is one of the most
complete and accurate models for distribution networks
that we have seen in the research literature. Moreover, we

are able to solve such a complete and detailed model for
large-scale TUDNs due to the linearity of our formulation.

(c.) A cluster-based scenario generation algorithm is developed
to model the uncertain parameters in the proposed model.
The generated scenarios are used to solve the proposed LP
model as a stochastic program. The good performance of
the innovative cluster-based scenario generation algorithm
is validated.

(d.) A No U-Turn Sampler (NUTS) algorithm is proposed to
calculate the PDFs of the DLMPs. Numerical results show
that the proposed NUTS-based algorithm significantly
reduces the required number of scenarios to calculate
these PDFs. The PDFs would then enable probabilistic
risk assessment of the DLMPs in TUDNs, and it would
be useful for cost control by both risk averse DSOs and
the flexibility asset owners.

The remainder of this paper is organized as follows. Section
III presents the problem formulation. Section IV focuses on
case studies and numerical results and Section V concludes
the paper.

III. THE LINEAR PROGRAMMING MODEL AND THE
PROPOSED ALGORITHM

The network optimization problem for a TUDN is formulated
as an LP problem in (1).

Minimize
X

∑
sPRs

(∑
gtC

(G)
g C(M)

mg p
(M)
mgts+

∑
fφtC

(F )
f p

(F )
fφts

-
∑
φdtC

(D)
dt p

(D)
dφts+

∑
eφt(C

(EC)
et p

(EC)
eφts +C

(ED)
et p

(ED)
eφts )

+
∑
vφt(C

(V C)
vt p

(EC)
eφts +C

(V D)
vt p

(V D)
vφts )

+
∑
wφt(C

(WC)
wt p

(EC)
eφts +C

(WD)
wt p

(WD)
wφts )

)
(1a)

Subject to: (2) to (14) (1b)

Decision variables are X = {e(E)
eφts, e

(V )
vφts, e

(W )
wφts, p

(EC)
eφts , p(ED)

eφts ,
ibkt, p

(D)
dφts, q

(D)
dφts, p

(F )
fφts, q

(F )
fφts, p

(G)
gts , p(L)bkφts, q

(L)
bkφts, p

(M)
mgts, p

(P )
gφts,

q
(P )
gφts, p

(V )
vφts, q

(V )
vφts, p

(W )
wφts, q

(W )
wφts, p

(V C)
vφts , p(V D)

vφts , p(WC)
wφts , p(WD)

wφts ,
q
(E)
eφts, q

(C)
cφts, vbts, ubts}. The objective function (1a) represents

the expected operational cost of the TUDN over different
scenarios s ∈ S with probability PRs. The first term is the
operational cost of the distributed energy resources (DER) units
with fuel cost C(G)

g for generator g. The fuel consumption of
DER units is formulated as a second order quadratic function
of the generated power. Then, this function is linearized with
the piecewise-linearization technique as shown in Fig. 1.

4

formulation for distribution networks using variants of the
Newton–Raphson (NR) method. However, the NR method has
a slow convergence rate and its convergence to a solution is
not guaranteed.
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[22] 1 ⇥ SOCP SOCP 15-bus single phase, relaxation gap,
computation time

[23] 1 ⇥ MIQP CCMIP 33-bus single phase
[24] 1 ⇥ QP QP 38-bus single phase
[25] 1 ⇥ DCOPF LP 38-bus single phase, R/X ratio

[26] 3 X SDP SDP 123-bus
exactness of SDP relaxation,

computational complexity is high
for large scale problems.

[27] 1 ⇥ DCOPF LP 1022-bus single phase, R/X ratio

[28] 1 ⇥ SOCP SOCP 300-bus single phase, relaxation gap,
computation time

[29] 3 X DCOPF LP 69-bus R/X ratio in DN

[30]–[32] 3 X FCIM NR 123-bus convergence not guaranteed, slow
convergence

[33] 1 ⇥ DCOPF LP 6-bus single-phase, R/X ratio in DN
[8] 1 ⇥ SOCP SOCP 33-bus relaxation gap, computation time

SOCP: second order conic programming, MIP: mixed-integer programming,
MIQP: mixed-integer quadratic programming, QP: quadratic programming,
LP: linear programming, SDP: semidefinite programming, CCMIP: chance

constrained MIP, DCOPF: DC optimal power flow, DN: distribution network,
NR: Newton Raphson, FCIM: four-conductor current injection method

C. Contributions of this paper

This paper contributes to the existing literature in the following
ways:
(a.) We propose a linear mathematical model for the operation

of three-phase unbalanced distribution networks (TUDNs).
To the best of our knowledge, the proposed model in
this paper for calculating DLMPs is state of the art.
It is applicable to three-phase unbalanced distribution
networks and it does not suffer from the convergence issues,
relaxation gap, and high R/X ratios, as do the various
alternative approaches listed in Table I. Our proposed
model is a straightforward Linear Program (LP) which
can be solved by available commercial LP solvers. This
advantage makes our proposed LP model suitable for
solving large-scale TUDNs in practice.

(b.) We specify an extensive set of distribution network
elements, such as solar units, wind units, shunt capacitors,
transformers, voltage regulators, feeders, and grid-forming
units. Furthermore the availabilities of these units are
modeled in detail. This specification is one of the most
complete and accurate models for distribution networks
that we have seen in the research literature. Moreover, we
are able to solve such a complete and detailed model for
large-scale TUDNs due to the linearity of our formulation.

(c.) A cluster-based scenario generation algorithm is developed
to model the uncertain parameters in the proposed model.
The generated scenarios are used to solve the proposed LP

model as a stochastic program. The good performance of
the innovative cluster-based scenario generation algorithm
is validated.

(d.) A No U-Turn Sampler (NUTS) algorithm is proposed to
calculate the PDFs of the DLMPs. Numerical results show
that the proposed NUTS-based algorithm significantly
reduces the required number of scenarios to calculate
these PDFs. The PDFs would then enable probabilistic
risk assessment of the DLMPs in TUDNs, and it would
be useful for cost control by both risk averse DSOs and
the flexibility asset owners.

The remainder of this paper is organized as follows. Section
III presents the problem formulation. Section IV focuses on
case studies and numerical results and Section V concludes
the paper.

III. THE LINEAR PROGRAMMING MODEL AND THE
PROPOSED ALGORITHM

The network optimization problem for a TUDN is formulated
as an LP problem in (1).

Minimize
X

P
sPRs

�P
gtC

(G)
g C(M)

mg p
(M)
mgts+

P
f�tC

(F )
f p

(F )
f�ts

-
P
�dtC

(D)
dt p

(D)
d�ts+

P
e�t(C

(EC)
et p

(EC)
e�ts +C

(ED)
et p

(ED)
e�ts )

+
P

v�t(C
(V C)
vt p

(EC)
e�ts +C

(V D)
vt p

(V D)
v�ts )

+
P

w�t(C
(WC)
wt p

(EC)
e�ts +C

(WD)
wt p

(WD)
w�ts )

�
(1a)

Subject to: (2) to (14) (1b)

Decision variables are X = {e
(E)
e�ts, e

(V )
v�ts, e

(W )
w�ts, p

(EC)
e�ts , p

(ED)
e�ts ,

ibkt, p
(D)
d�ts, q(D)

d�ts, p(F )
f�ts, q(F )

f�ts, p(G)
gts , p(L)

bk�ts, q(L)
bk�ts, p(M)

mgts, p(P )
g�ts,

q
(P )
g�ts, p

(V )
v�ts, q

(V )
v�ts, p

(W )
w�ts, q

(W )
w�ts, p

(V C)
v�ts , p

(V D)
v�ts , p

(WC)
w�ts , p

(WD)
w�ts ,

q
(E)
e�ts, q

(C)
c�ts, vbts, ubts}. The objective function (1a) represents

the expected operational cost of the TUDN over different
scenarios s 2 S with probability PRs. The first term is the
operational cost of the distributed energy resources (DER) units
with fuel cost C

(G)
g for generator g. The fuel consumption of

DER units is formulated as a second order quadratic function
of the generated power. Then, this function is linearized with
the piecewise-linearization technique as shown in Fig. 1.

P

Q

S

(3b)
(3a)

(3b)
(3a)

(3c)

(3d)

(3c)

(3d)

Figure 1. The piecewise-linear fuel cost function (left) and circular constraint
linearization method (right)

The parameter C
(M)
mg is assigned to the cost-curve segment m

of the DER unit g. The second term models cost of the received
energy from the distribution feeder f . The next term is used
to penalize the curtailed demand d with a value of lost load
C

(D)
dt . The last terms are marginal costs of charging/discharging

Figure 1. The piecewise-linear fuel cost function (left) and circular constraint
linearization method (right)
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The parameter C(M)
mg is assigned to the cost-curve segment m

of the DER unit g. The second term models cost of the received
energy from the distribution feeder f . The next term is used
to penalize the curtailed demand d with a value of lost load
C

(D)
dt . The last terms are marginal costs of charging/discharging

different storage systems multiplied by charged/discharged
active power. The active power generation of DER unit g
at each segment m is constrained in (2b). The total active
power generation is constrained in (2a). Since we need the
power flow equation for each phase φ∈P, the variable p(P )

gφts

is defined to model the DER generation of each phase. The
total active power generated by DER unit g is the sum of
power on all phases as well as all segments as shown in (2b).
Similarly, the generated active and reactive power by DER unit
g (both emergency and DER units) and distribution feeder f
are constrained in (2c).

p
(G)
gts =

∑
mC

(M)
mg p

(M)
mgts; PGg≤p(G)

gts ≤PGg (2a)
∑
φ p

(P )
gφts=

∑
m p

(M)
mgts; p

(M)
mgts ≤ PMmg (2b)

0≤p(P )
gφts≤PPφgUGgts;-QPφgUGgts≤q

(P )
gφts≤QPφgUGgts (2c)

The emergency generation units have black start capability and
could deliver energy even when their buses are not energized.
In contrast, other DER units are able to generate electricity
only when their corresponding buses are energized. The feeders
apparent power ( p(F )

fφts+q
(F )
fφts) is bounded by thermal limits as

(p
(F )
fφts)

2+(q
(F )
fφts)

2≤UFftsSF
2

fφ which is linearized employing
the circular constraint linearization method shown in Fig. (1).
Accuracy of this approximation technique is discussed in [34].
Eight linear constraints approximate the feeder power capacity
constraint in (3).

-UFftsSF fφ ≤ p(F )
fφts ≤ UFftsSF fφ (3a)

-UFftsSF fφ ≤ q(F )
fφts ≤ UFftsSF fφ (3b)

-
√

2UFftsSF fφ ≤ p(F )
fφts+q

(F )
fφts ≤

√
2UFftsSF fφ (3c)

-
√

2UFftsSF fφ≤p(F )
fφts-q

(F )
fφts ≤

√
2UFftsSF fφ (3d)

Similarly, the active and reactive power flowing through the
feeder (b, k)∈L is limited by (4a)-(4d). Two square constraints,
first square constraints are (4a) to (4b) and second one are
(4c) to (4d), are employed to substitute (p

(L)
bkφts)

2+(q
(L)
bkφts)

2 ≤
ULφbkt(SLbk)2. The binary parameter ULφbkt represents the
feeder status which is zero if the corresponding phase is not
available (e.g. due to a fault).

-ULφbktSLbk ≤ p(L)bkφts ≤ ULφbktSLbk (4a)

-ULφbktSLbk ≤ q(L)bkφts ≤ ULφbktSLbk (4b)

-
√

2ULφbktSLbk ≤ p(L)bkφts+q
(L)
bkφts ≤

√
2ULφbktSLbk (4c)

-
√

2ULφbktSLbk ≤ p(L)bkφts-q
(L)
bkφts ≤

√
2ULφbktSLbk (4d)

p
(D)
dφts ≤ PDdφtsUDdt; q

(D)
dφts ≤ QDdφtsUDdt (4e)

The active/reactive demands are controllable and curtailable
(UDdt is availability of demand). The binary parameter
UDdt models the on/off status of the demand unit. Ohms
law for each distribution feeder can be written as vbts =

vkts-Zbkibkt [13]. When both sides are multiplied by their
conjugate transpose (The sign ()? is used for element by
element complex conjugate for matrices), we have vbtsvbts? =
(vkts−Zbkibkt)(vkts − Zbkibkt)

?
= (vkts−Zbkibkt)(vkts

?−
ibkt

?Zbk
?) = vktsvkts

? − vktsibkt?Zbk? − Zbkibktvkts
? +

Zbkibktibkt
?Zbk

?. Also from definition we have Sbk =
vktsibkt

?, which results in vbtsvbts? = vktsvkts
?−SbkZbk?−

ZbkSbk
? +Zbkibktibkt

?Zbk
?. The last term is nonlinear which

will be linearized in the following. When phase voltages are
nearly balanced (vA,t,s/vB,t,s≈vB,t,s/vC,t,s≈vC,t,s/vA,t,s≈
E2π/3) and feeder losses are relatively small Zbkibkt�Sbk, the
linear form of the unbalanced three-phase power-flow equation
can be written as ubts-ukts+Z̃bkS?bk+Z̃

?
bkSbk = 0 where the

terms Zbkibkt are removed. The vector variable of square-
voltage magnitudes ubts=[ubφts]φ∈P is used to linearize the
quadratic term. Similarly, the vector of currents is defined as
ibkt=[ibφkt]φ∈P. The linear power flow model for a TUDN is
presented in (5). The binary parameter ULφbkt and the big-M
are used to model feeders which are not available at time t.

ubts-ukts+Z̃bkS
?
bk+Z̃

?
bkSbk ≤M(1-ULφbkt) (5a)

-M(1-ULφbkt)≤ubts-ukts+Z̃bkS?bk+Z̃?bkSbk (5b)

Where Z̃bk=

[
1 E-2π/3 E2π/3

E2π/3 1 E-2π/3
E-2π/3 E2π/3 1

]
�Zbk and Zbk=Rb,k +

Xb,k is a complex matrix for the three-phase impedance
of the distribution feeder (b, k) ∈ L. The symbol � is used
for component-wise multiplication of matrices. The voltage
magnitude is limited in (6) and fixed for slack buses.

|V b|2≤ubts≤|V b|
2
, ∀b ∈ B;ubts=1, ∀b ∈ B(S) (6)

The active and reactive power balance is written in (7a)
and (7b) where the Eb is set of all battery storage systems
(BSSs) connected to bus b. The Lagrange dual variables
λbφts/µbφts of the active/reactive power balance equation
in (7a)/(7b) represents DLMP for active/reactive power, i.e.
DLMP-P/DLMP-Q.
∑
g∈Gb

p
(P )
gφts+

∑
f∈Fb

p
(F )
fφts+

∑
(b,k)∈Lb

p
(L)
bkφts-

∑
(b,k)∈Lb

p
(L)
bkφts-

∑
d∈Db

p
(D)
dφts

+
∑
v∈Vb

p
(V )
vφts+

∑
w∈Wb

p
(W )
wφts+

∑
e∈Eb

(p
(EC)
eφts -p

(ED)
eφts )=0 : λbφts (7a)

∑
g∈Gb

q
(P )
gφts+

∑
f∈Fb

q
(F )
fφts+

∑
(b,k)∈Lb

q
(L)
bkφts-

∑
(b,k)∈Lb

q
(L)
bkφts-

∑
d∈Db

q
(D)
dφts

+
∑
v∈Vb

q
(V )
vφts+

∑
w∈Wb

q
(W )
wφts+

∑
e∈Eb

q
(E)
eφts=0 : µbφts (7b)

The reactive power of a shut capacitor c∈C is calculated by
multiplying square of its voltage magnitude ubφts by its per-
phase susceptance B(C)

c in (8) which is then constrained by
its nominal reactive power. The number of switched steps
SCct of the switchable shunt capacitor c ∈ C is used to
calculate reactance of the shunt capacitor bank. Each switchable
shunt capacitor c ∈ C has a susceptance of fixed capacitor
B(C)
c which can be connected to the system all the time,

and switchable capacitors which are switched to meet the
TUDN requirements. By connecting SCct steps of switchable
capacitors with susceptance B(SC)

c , total susceptance of the
switchable capacitor will be B(C)

c =B(C)
c +SCctB

(SC)
c .

q
(C)
cφts=ubφtsB

(C)
c ;0≤q(C)

cφts≤QCc;B(C)
c =B(C)

c +SCctB
(SC)
c (8)
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The active power output of PV unit v is constrained in (9) to
nominal output PV vφ and forecasted output FVvφt based on
forecasted solar irradiance. Also, the reactive power output is
constrained in (9) by its nominal output QV vφ.

p
(V )
vφts ≤ PV vφUVvt; p

(V )
vφts ≤ FVvφtUVvt (9a)

-QV vφUVvt ≤ q(V )
vφts ≤ QV vφUVvt (9b)

The prosumers with PV units and BSS v∈V(E) can store the
absorbed energy in their BSS as modeled in (10). Therefore,
these units could be used to generate electricity as a grid-
forming unit with black start capability during blackout.

p
(V )
vφts+p

(V D)
vφts -p

(V C)
vφts ≤PV vφUVvt; p

(V )
vφts≤FVvφtUVvt (10a)

-QV vφUVvt≤q(V )
vφts≤QV vφUVvt; EV vφ≤e

(V )
vφts≤EV vφ (10b)

PEvφ ≤ p(V D)
vφts ≤ PEvφ; PEvφ ≤ p(V C)

vφts ≤ PEvφ (10c)

e
(V )
vφts-e

(V )
vφ(t-1)s = ηcvp

(V C)
vφts -p

(V D)
vφts /ηdv (10d)

A PV unit with BSS generates p
(V )
vφts+p

(V D)
vφts -p

(V C)
vφts which

is limited by its maximum nominal generation PV vφ and
predicted output FVvφt in (10a). Similarly, reactive power is
limited in (10b) with its nominal value QV vφ. The charging
and discharging powers p(V C)

vφts and p(V D)
vφts are limited in (10c)

to enhance the life time of the BSS connected to the PV unit
v ∈ V(E). Charge and discharge rates are ηcv and ηdv as
enforced in (10d) and the stored energy e

(V )
vφts is limited in

(10b). The active and reactive powers of wind unit w ∈W are
limited in (11).

p
(W )
wφts ≤ PWwφUWwt; p

(W )
wφts ≤ FWwφtUWwt (11a)

-QWwφUWwt ≤ q(W )
wφts ≤ QWwφUWwt (11b)

The prosumers with wind units and BSS (w∈W(E)) can store
extra generation as modeled in (12). Therefore, these units,
also, could be used to generate electricity as a grid-forming
unit with black start capability following a blackout.

p
(W )
wφts+p

(WD)
wφts-p

(WC)
wφts ≤PWwφUWwt; p

(W )
wφts≤FWwφtUWwt (12a)

-QWwφUWwt≤q(W )
wφts≤QWwφUWwt;EWwφ≤e(W )

wφts≤EWwφ(12b)

PEwφ ≤ p(WD)
wφts ≤ PEwφ; PEwφ ≤ p(WC)

wφts ≤ PEwφ (12c)

e
(W )
wφts-e

(W )
wφ(t-1)s = ηcwp

(WC)
wφts -p

(WD)
wφts /ηdw (12d)

The set of constraints (13) models a general BSS.

PEeφ≤p(ED)
eφts ≤PEeφ; PEeφ≤p(EC)

eφts ≤PEeφ (13a)

e
(E)
eφts-e

(E)
eφ(t-1)s=ηcep

(EC)
eφts -p

(ED)
eφts /ηde;EEeφ≤e

(E)
eφts≤EEeφ (13b)

The voltage regulator or tap changing transformer r ∈ R is
modeled as three single-phase voltage regulators connected
between buses b and k with maximum/minimum ratio vector as
Rr/Rr. Each single-phase voltage regulator is modeled with an
ideal transformer in series with a leakage impedance. Therefore,
in a three-phase voltage regulator Rr�Rr ≤ ubts/ukts ≤
Rr�Rr. Which is enforced by (14) using the binary on-off
parameter of the regulator URrts and the availability vector
A

(R)
r .

Rr�Rr� ukts-ubts ≤ (1-URrts)M(1-A(R)
r ) (14a)

-(1-URrts)M(1-A(R)
r ) ≤ Rr�Rr� ukts-ubts (14b)

A. The proposed NUTS-based algorithm to estimate PDF of
DLMPs

The Hamiltonian Monte Carlo (HMC) algorithm is a Markov
Chain Monte Carlo (MCMC) method which can be used to
propose a sequence of samples that follow a target distribution
for which a direct sampling is difficult [35]. The HMC has
been used in reliability analysis in [36] and for estimating
genetic parameters and breeding values in [37]. As compared
to many MCMC methods, the HMC algorithm avoids (a) the
random-walk behavior and (b) sensitivity to correlated random
variables. Accordingly the HMC algorithm can effectively
explore the target probability space [37]. When estimating a
random variable x with probability density function f(x) using
the HMC algorithm, we define an auxiliary momentum variable
ρ and consider the joint probability f(x,ρ)=f(ρ|x)f(x). In
practice, ρ follows a normal distribution f(ρ) ∼ N(0,M)
(where M is the covariance matrix). Now, we define the
Hamiltonian as H(x,ρ)=- log f(x,ρ) which can be re-written
as: H(x,ρ)=- log f(ρ|x)- log f(x)=K(ρ|x)+V (x). We can
solve the Hamiltonian dynamics (equations) below to create a
new sample (x,ρ) from an existing one (which is a system of
differential equations) [38].

dx/dt = ∂H/∂ρ = ∂K/∂ρ (15a)
dρ/dt = -∂H/∂x = -∂K/∂x-∂V/∂x (15b)

Where t is a fictitious time. The standard approach in the
literature is to solve the Hamiltonian dynamics (15) in a
discrete time setting using the leapfrog algorithm (there is
no analytical solution to solve this dynamic system) [35]. The
HMC algorithm at each iteration t solves the Hamiltonian
dynamics using discrete approximation to find the new sample
at next iteration t+∆t. Fig. 2 shows an example probability
space where the x-axis represents the random variable x, the
y-axis is the auxiliary momentum variable ρ, and the z-axis
(shown with coloring) is the joint probability function f(x,ρ).
In Fig. 2, performance of the leapfrog (random-walk) algorithm
in two different initial samples (a) and (b) are compared with the
HMC algorithm in (c) and (d). To estimate the joint probability
function, the HMC starts with an initial sample and solves the
Hamiltonian dynamics (15) to find the next sample. As we can
see the marked HMC paths follow our target distribution and
avoid the random-walk behavior.
However, performance of the HMC algorithm is highly sensitive
to proper tuning of the step-size (∆t) and number of steps
(NP ) [39] in solving the Hamiltonian dynamics (15). Recently,
the NUTS algorithm has been introduced to improve the HMC
algorithm [40]. There is no need to tune these parameters
(∆t and NP ) in the NUTS algorithm. In this paper, we
have used the NUTS algorithm as an extension of the HMC
algorithm to estimate PDF of DLMPs. General steps of the
proposed NUTS-based algorithm are shown in Fig. 3. It uses
the provided data (historical data of WT, PV, demands, and
electricity price) as input and provides PDF of DLMPs as
output employing the proposed NUTS-based algorithm. The
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Figure 2. The illustration of HMC initial samples and their associated paths
for exploring the target probability space

DLMP-P/Q prices are obtained by solving (1) and finding the
Lagrange multipliers associated to active-power and reactive-
power balance constraints. At this stage, the initial samples for
DLMP-P/Q prices and momentum variables ⇢ are generated.
Then, the NUTS algorithm is used to solve the Hamiltonian
dynamics (equations). This algorithm keeps moving to a new
point in the probability space to estimate PDF of DLMPs.

Step 1: Obtain the time series of the WT/PV generations, the load levels, and

electricity prices

Step 2: Use cluster-based scenario generation algorithm to generate scenarios

Step 3: Solve LP problem (1) for generated scenarios in Step 2 and get

associated DLMP-P/Q

Step 4: Set the initial point for DLMP-P/Q

Step 5: Generate momentum ⇢ from normal distribution

Step 6: Solve the Hamiltonian dynamics using the NUTS algorithm

Figure 3. The proposed NUTS-based algorithm flowchart

No U-turn sampler: In the following, Steps 4 to 6 of the
proposed NUTS-based algorithm flowchart are explained in
detail. In the proposed NUTS-based sampler (Fig. 4), a
multimodal distribution is used as the target distribution for
DLMPs (P). This choice is motivated by our observations on
the calculated DLMPs in different TUDNs. The total number
of iterations (NP ), number of iterations to adapt (NP a), initial
position (x0), and desired mean acceptable probability (�) are
inputs of the algorithm where NP a iterations are used to adapt

the step size ⇠. A heuristic approach is employed in Steps (iii)
to (vi) to find an initial value for step size ⇠ where the step
size is regularly divided by two or doubled until the acceptance
probability is reached. Hence, NP iterations are done in Steps
(vii) to (xx). At each iteration, a random direction is taken
(Step (x)) and this process builds a binary tree via repeated
doubling (Steps (xi) to (xiv)) with the proposed tree algorithm
in Fig. 5. Doubling stops if the probability of the previous
state is very low in Step (xv) or when states overlap (making a
U-turn) in Step (xvi). The step size ⇠ is only tuned in adaptive
iterations in Steps (xvii) to (xviii). After NP a iterations, tuning
stops and the algorithm keeps using the tuned step size ⇠NP a .
The proposed NUTS-based algorithm enables us to estimate
the PDFs of DLMPs accurately with less computational burden
than if all scenarios were considered. The performance of the
proposed NUTS-based algorithm is analyzed later in Section
IV.

Start

Input: P, NP, NP a, x0, �

⇢⇠N (0, 1), ⇠0 �1, x0=x+⇠0(⇢+OxP(x)⇠0/2),
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Figure 4. The proposed NUTS-based algorithm

The proposed NUTS-based algorithm in Fig. 4 uses a tree

Figure 2. The illustration of HMC initial samples and their associated paths
for exploring the target probability space

algorithm starts with gathering the input data. Then, a cluster-
based scenario generation is used to generate required scenarios
to solve the stochastic programming problem (1). Optimal
DLMP-P/Q prices are obtained by solving (1) and finding the
Lagrange multipliers associated to active-power and reactive-
power balance constraints. At this stage, the initial samples for
DLMP-P/Q prices and momentum variables ρ are generated.
Then, the NUTS algorithm is used to solve the Hamiltonian
dynamics (equations). This algorithm keeps moving to a new
point in the probability space to estimate PDF of DLMPs.

Step 1: Obtain the time series of the WT/PV generations, the load levels, and

electricity prices

Step 2: Use cluster-based scenario generation algorithm to generate scenarios

Step 3: Solve LP problem (1) for generated scenarios in Step 2 and get

associated DLMP-P/Q

Step 4: Set the initial point for DLMP-P/Q

Step 5: Generate momentum ρ from normal distribution

Step 6: Solve the Hamiltonian dynamics using the NUTS algorithm

Figure 3. The proposed NUTS-based algorithm flowchart

No U-turn sampler: In the following, Steps 4 to 6 of the
proposed NUTS-based algorithm flowchart are explained in
detail. In the proposed NUTS-based sampler (Fig. 4), a
multimodal distribution is used as the target distribution for
DLMPs (P). This choice is motivated by our observations on
the calculated DLMPs in different TUDNs. The total number
of iterations (NP ), number of iterations to adapt (NP a), initial
position (x0), and desired mean acceptable probability (δ) are

inputs of the algorithm where NP a iterations are used to adapt
the step size ξ. A heuristic approach is employed in Steps (iii)
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size is regularly divided by two or doubled until the acceptance
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state is very low in Step (xv) or when states overlap (making a
U-turn) in Step (xvi). The step size ξ is only tuned in adaptive
iterations in Steps (xvii) to (xviii). After NP a iterations, tuning
stops and the algorithm keeps using the tuned step size ξNPa .
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IV.
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The proposed NUTS-based algorithm in Fig. 4 uses a tree
algorithm in Fig. 5 to build a binary tree via repeated doubling
[40]. Each state of the proposed NUTS-based algorithm is
described by a position x=[λbφts, µbφts]

ᵀ and a momentum ρ.
Inputs are current state (x, ρ), initial state (x0,ρ0), resample
value (y), direction (z ∈ {-1, 1}), step size (ξ), and tree
height (j) which are given to the tree algorithm in Step (ii).
The choice of direction z is done with a discrete uniform
distribution. For a given real number x, the step function is
used as U(x)={1 if x≥0, 0 if x<0}. This algorithm uses a
leapfrog integrator to discover the next steps by going forward
or backward for 1, 2, 4, etc. steps (repeated doubling) via a
recursive algorithm. If the tree height is zero in Step (iii), one
step is taken in the given direction z in Steps (iv) and (v). If
the height j is non-zero, it does recursive doubling with height
j-1. This algorithm stops by zeroing the indicator w′ when
most right state and most left state overlap (making a U-turn).
Therefore, if w′=0 in Step (vii) then the tree algorithm returns
the calculated values in Step (xi). If the indicator w′ = 1 in
Step (vii), there is no U-turn yet and the leapfrog integrator is
used again to take one more step in the given direction z in
Steps (viii) to (x). At each doubling, the next forward/backward
state (x+/x-, ρ+/ρ-) is found in Step (viii)/(ix). The previous
state x′ is defined in Step (x). Then the tree algorithm returns
the results in Step (xi).
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IV. CASE STUDIES

In this section, the effectiveness of the above model is evaluated
in two TUDNs (modified IEEE 34- and 123-bus unbalanced
networks). We compare the calculated PDFs of DLMPs using
all scenarios with results of our proposed sampling approach.
The feeders and demands in these networks are unbalanced
(detailed characteristics are available in [41]). The costs of

active and reactive power vary together by time and scenario
and they are at most $1/kWh.
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In this section, the effectiveness of the above model is evaluated
in two TUDNs (modified IEEE 34- and 123-bus unbalanced
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Figure 6. The three-line diagram of the 34-bus unbalanced network

A. IEEE 34-bus three-phase unbalanced distribution network

The single-line diagram of the IEEE 34-bus TUDN is shown in
Fig. 6. This network is supplied by two DERs, two WTs, two
PV units, two BSS units, and the main grid through the point
of common coupling (PCC). Their features are summarised in
Table II.

Table II
DATA FOR THE UNBALANCED 34-BUS NETWORK

Unit Buse P⇥1e-3
(kW)

Q⇥1e-3
(kVAr)

Q⇥1e-3
(kVAr)

E(%) E(%)

G1 23 180 -90 90 ⇥ ⇥
G2 28 90 -90 90 ⇥ ⇥

PCC 5 2000 -1000 1000 ⇥ ⇥
PV1 2 100 -50 50 ⇥ ⇥
PV2 32 150 -75 75 10 100
W1 17 50 -25 25 10 100
W2 22 200 -100 100 ⇥ ⇥

BSS1 9 60 0 30 10 100
BSS2 27 50 0 25 10 100
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active and reactive power vary together by time and scenario
and are at most $1/kWh.
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A. IEEE 34-bus three-phase unbalanced distribution network

The single-line diagram of the IEEE 34-bus TUDN is shown in
Fig. 6. This network is supplied by two DERs, two WTs, two
PV units, two BSS units, and the main grid through the point
of common coupling (PCC). Their features are summarised in
Table II.
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Figure 7. Voltage profile and feeder flow in 34-bus TUDN

This network has two three-phase shunt capacitors, two voltage
regulators, one voltage transformer, and one of each WT and
PV units has a BSS unit. The voltage profile of the 34-bus
TUDN is shown in Fig. 7 in p.u. for phases A to C. The PCC
at bus 5 is used as the slack bus and its voltage is fixed to 1
p.u. Voltages in the other buses change due to the directions
of active/reactive power and losses. This graph shows mean
voltage and corresponding 95% confidence interval for each
phase. They are within the predefined minimum/maximum
of 0.95/1.05 per unit. The voltages drop as low as 0.9551
p.u., due to the relatively higher length of distribution feeders
(ranging from 85.344m to 14,676m with a mean of 3,130m
and a standard deviation (SD) of 4,080m). The profile of active
power flows for each phase are shown in Fig. 7, again with
95% confidence intervals around the means. Generally the
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The single-line diagram of the IEEE 34-bus TUDN is shown in
Fig. 6. This network is supplied by two DERs, two WTs, two
PV units, two BSS units, and the main grid through the point
of common coupling (PCC). Their features are summarised in
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Unit Buse P×1e-3
(kW)
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BSS1 9 60 0 30 10 100
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p.u. Voltages in the other buses change due to the directions
of active/reactive power and losses. This graph shows mean
voltage and corresponding 95% confidence interval for each
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of 0.95/1.05 per unit. The voltages drop as low as 0.9551
p.u., due to the relatively higher length of distribution feeders
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(ranging from 85.344m to 14,676m with a mean of 3,130m
and a standard deviation (SD) of 4,080m). The profile of active
power flows for each phase are shown in Fig. 7, again with
95% confidence intervals around the means. Generally the
flow of feeders corresponds to the changes in demand. The
key factors that change over time are shown in Fig. 8. These
values are scaled by their maxima to fit in one graph. Each
of these daily factor profiles are selected from different days
to be representative means for zone SE1 of Sweden. Thus,
demand is from 2019-03-01, wind power is from 2018-02-26,
solar irradiation is Global Horizontal Irradiation (GHI) from
2019-05-19, and generation cost is from 2019-12-18.
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9. Means of each factor are calculated at each cluster and
then random normal variations are generated accordingly. The
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algorithm. This works with a set of correlated samples to
estimate DLMPs as a multimodal distribution (defined as a
mixture of three normal distributions). Firstly, the convergence
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of the means and SDs of DLMPs with increasing number of
scenarios is analyzed. Fig. 12 shows how the mean and SD of
the generated samples by the proposed NUTS-based algorithm
converged to the mean and SD of the calculated DLMPs (data).
It appears that 300 scenarios (instead of the 98,500 scenarios)
by the proposed NUTS-based algorithm is sufficient to match
the calculated DLMPs. Secondly, Fig. 12 shows the capability
of generating adequate samples by the proposed NUTS-based
algorithm to match the calculated DLMP PDFs.
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The voltage profile of this network is shown in Fig. 14. The
PCC is used as the slack bus and voltages at the slack bus
are fixed to one, whilst the other voltages change due to the
feeder flows and losses. This graph shows the voltage means
and 95% confidence intervals, which are within the predefined
acceptable range 0.95 to 1.05 p.u. Since feeders in this network
are relatively smaller (from 30.5m to 304.8m with mean 101.2m
and SD 47.9m), the voltages do not vary as much as in the
previous 34-bus TUDN.
This network is supplied by five DERs, four WTs, ten PV
units, four independent BSS units, and the main grid through
the PCC in bus 610. Detailed characteristics are presented in
Table III. Four solar units have BSS as well as three wind
generation units. The price of electricity drops during the
day from 11:00 to 14:00 due to the output of the solar units.
Feeder flows are shown in Fig. 14 for each phase and all of
them are within the acceptable range (0.95 to 1.05 p.u.). 500
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scenarios are used at each time we solve (1) for the 123-bus
TUDN.

Next, problem (1) is solved 60 times (with 500 scenarios each
time) to visualize changes in DLMPs. The PDF of DLMPs
in the 123-bus TUDN for 60⇥500=30,000 scenarios over one
day (24 hours) for buses 13, 15, and 59 are shown in Fig. 15
for hours 10:00, 14:00, and 17:00, respectively. As before, the
PDFs clearly have multimodal distributions. Buses 15 and 59
are connected to phases C and B respectively. Therefore, the
inapplicable phases are shown blank. The prices of electricity
do not change with phases.
Fig. 16 represents the convergence of the means and SDs of
the sampled DLMPs which in turn shows that 500 scenarios
are sufficient for obtaining PDFs. The estimated PDFs of
DLMPs at bus=15, time=14:00, and phase=C are shown in
Fig. 16 for 500 scenarios. Using the proposed NUTS-based
algorithm for the 123-bus TUDN reduces the computation time
significantly from 617 hours (considering all scenarios) to 10
hours (considering only 500 scenarios using our proposed
NUTS-based algorithm). Total number of iterations (NP ),
number of iterations to adapt (NP a), initial position (x0), and
desired mean acceptable probability (�) are set to 4000, 1000,
0, and 0.9, respectively.
In the proposed linear model, the linearization is explained
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scenarios are used at each time we solve (1) for the 123-bus
TUDN.

Next, problem (1) is solved 60 times (with 500 scenarios each
time) to visualize changes in DLMPs. The PDF of DLMPs
in the 123-bus TUDN for 60⇥500=30,000 scenarios over one
day (24 hours) for buses 13, 15, and 59 are shown in Fig. 15
for hours 10:00, 14:00, and 17:00, respectively. As before, the
PDFs clearly have multimodal distributions. Buses 15 and 59
are connected to phases C and B respectively. Therefore, the
inapplicable phases are shown blank. The prices of electricity
do not change with phases.
Fig. 16 represents the convergence of the means and SDs of
the sampled DLMPs which in turn shows that 500 scenarios
are sufficient for obtaining PDFs. The estimated PDFs of
DLMPs at bus=15, time=14:00, and phase=C are shown in
Fig. 16 for 500 scenarios. Using the proposed NUTS-based
algorithm for the 123-bus TUDN reduces the computation time
significantly from 617 hours (considering all scenarios) to 10
hours (considering only 500 scenarios using our proposed
NUTS-based algorithm). Total number of iterations (NP ),
number of iterations to adapt (NP a), initial position (x0), and
desired mean acceptable probability (�) are set to 4000, 1000,
0, and 0.9, respectively.
In the proposed linear model, the linearization is explained
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data points (specified by bus and over time) to estimate the
multimodal distribution. For DLMP-P and DLMP-Q, the mixing
parameters for the three latent normal densities are all non-zero,
so the choice of three was appropriate, but four would have
been superfluous. As the number of scenarios are decreased
from 98,500 to 300, the elapsed time goes down from 14:47
minutes to 3 seconds.
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by the proposed NUTS-based algorithm is sufficient to match
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of generating adequate samples by the proposed NUTS-based
algorithm to match the calculated DLMP PDFs.
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Table III. Four solar units have BSS as well as three wind
generation units. The price of electricity drops during the
day from 11:00 to 14:00 due to the output of the solar units.
Feeder flows are shown in Fig. 14 for each phase and all of
them are within the acceptable range (0.95 to 1.05 p.u.). 500
scenarios are used at each time we solve (1) for the 123-bus
TUDN.

Next, problem (1) is solved 60 times (with 500 scenarios each
time) to visualize changes in DLMPs. The PDF of DLMPs
in the 123-bus TUDN for 60×500=30,000 scenarios over one
day operation time (|T| = 24 hours) for buses 13, 15, and
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Table III
DATA FOR THE UNBALANCED 123-BUS NETWORK

Unit Bus P×1e-3
(kW)

Q×1e-3
(kVAr)

Q×1e-3
(kVAr) E(%) E(%)

G1 29 100 -50 50 × ×
G2 82 50 -25 25 × ×
G3 95 50 -25 25 × ×
G4 105 100 -50 50 × ×
G5 149 200 -100 100 × ×

PCC 610 5000 -2500 2500 × ×
PV1 13 100 -50 50 10 100
PV2 18 30 -15 15 × ×
PV3 25 100 -50 50 × ×
PV4 48 50 -25 25 10 100
PV5 60 20 -10 10 × ×
PV6 81 60 -30 30 10 100
PV7 87 20 -10 10 × ×
PV8 101 30 -15 15 × ×
PV9 151 80 -40 40 10 100

PV10 450 30 -15 15 × ×
W1 21 50 -25 25 10 100
W2 47 100 -50 50 10 100
W3 52 50 -25 25 10 100
W4 78 150 -75 75 × ×

BSS1 35 40 0 20 10 100
BSS2 58 50 0 25 10 100
BSS3 64 80 0 40 10 100
BSS4 112 40 0 20 10 100

59 are shown in Fig. 15 for hours 10:00, 14:00, and 17:00,
respectively. As before, the PDFs clearly have multimodal
distributions. Buses 15 and 59 are connected to phases C and
B respectively. Therefore, the inapplicable phases are shown
blank. The prices of electricity do not change with phases.
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in detail in Section III for the constraints (5), (6), and (7). In
this model, the relatively small feeder losses Zbkibkt⌧Sbk

are used. Accuracy of the linearization method is validated by
calculating |Zbkibkt

Sbk
| which should be as close as possible to zero

for the linearization to be valid. Therefore, value of |Zbkibkt

Sbk
| is

calculated for the IEEE 123-bus TUDN as shown in Table IV.
Mean of |Zbkibkt

Sbk
| for phases A, B, and C are 8.0238 ⇥ 10�6,

1.0012 ⇥ 10�5E, and 8.0605 ⇥ 10�6, respectively. Therefore,
|Zbkibkt

Sbk
| is close to zero and feeder losses are relatively small

Zbkibkt⌧Sbk and (5) is an accurate linearization. This evidently
shows the accuracy of the proposed model in Section III.

V. CONCLUSION

In this paper we have calculated DLMPs for three-phase
unbalanced distribution networks. As shown in the case studies

Table IV
ACCURACY VALIDATION: VALUE OF |Zbkibkt/Sbk| IN IEEE 123-BUS

TUDN

|Zbkibkt
Sbk

| Phase A Phase B Phase C

Maximum 1.5769 ⇥ 10�4 1.5705 ⇥ 10�4 1.5700 ⇥ 10�4

Minimum 2.1984 ⇥ 10�7 2.1777 ⇥ 10�7 0

Mean 8.0238 ⇥ 10�6 1.0012 ⇥ 10�5 8.0605 ⇥ 10�6

Figure 16. PDF of DLMP-P/DLMP-Q and convergence of the proposed NUTS-
based algorithm in 123-bus unbalanced network at bus=15, time= 14:00, and
phase=C. Observed data and posterior predictions are shown.

based upon IEEE unbalanced test networks, DLMPs vary by
phase, time, scenario, and location. DLMPs are of increasing
interest as distribution network operators seek to manage
their networks by making more use of flexibility services
from distributed energy resources such as batteries or from
aggregators operating several kinds of assets with various
response capabilities. These DLMPs can be the basis for the
valuation of such services in short term operations and thereby
help motivate long-term investment in more flexibility assets
and arrangements. Furthermore, with increasing uncertainty in
consumer behavior through local generation, storage, and EV
activity, the need to model these DLMPs as PDFs is becoming
crucial for the network operators. The PDFs would allow a risk
analysis and stochastic optimization of the flexibility resources.
Risk averse DSOs and owners of these flexibility resources will
be concerned about the risk of extremely high or low local prices.
The PDFs are necessary to compute these risks. In this paper,
we have focused upon an efficient method of generating these
PDFs, which may be used operationally in various ways. In
particular we demonstrated the effectiveness of a new sampling
approach. Following a scenario-based cluster analysis, DLMPs
are calculated through a NUTS-based algorithm for active and
reactive power. The numerical results demonstrate the accuracy
and computational efficiency of the proposed linear model in
two IEEE unbalanced distribution networks. The performance
of the proposed approach is remarkable in maintaining accuracy
at much lower computational times, and this suggests that the
scalability to real systems will be feasible. Overall, we contend
that an efficient sampling procedure such as the one developed
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Fig. 16 represents the convergence of the means and SDs of
the sampled DLMPs which in turn shows that 500 scenarios
are sufficient for obtaining PDFs. The estimated PDFs of
DLMPs at bus=15, time=14:00, and phase=C are shown in
Fig. 16 for 500 scenarios. Using the proposed NUTS-based
algorithm for the 123-bus TUDN reduces the computation time
significantly from 617 hours (considering all scenarios) to 10
hours (considering only 500 scenarios using our proposed
NUTS-based algorithm). Total number of iterations (NP ),

number of iterations to adapt (NP a), initial position (x0), and
desired mean acceptable probability (δ) are set to 4000, 1000,
0, and 0.9, respectively.
In the proposed linear model, the linearization is explained
in detail in Section III for the constraints (5), (6), and (7). In
this model, the relatively small feeder losses Zbkibkt�Sbk
are used. Accuracy of the linearization method is validated by
calculating |ZbkibktSbk

| which should be as close as possible to zero
for the linearization to be valid. Therefore, value of |ZbkibktSbk

| is
calculated for the IEEE 123-bus TUDN as shown in Table IV.
Mean of |ZbkibktSbk

| for phases A, B, and C are 8.0238× 10−6,
1.0012× 10−5E, and 8.0605× 10−6, respectively. Therefore,
|ZbkibktSbk

| is close to zero and feeder losses are relatively small
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shows the accuracy of the proposed model in Section III.
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V. CONCLUSION

In this paper we have calculated DLMPs for three-phase
unbalanced distribution networks. As shown in the case studies
based upon IEEE unbalanced test networks, DLMPs vary by
phase, time, scenario, and location. DLMPs are of increasing
interest as distribution network operators seek to manage
their networks by making more use of flexibility services
from distributed energy resources such as batteries or from
aggregators operating several kinds of assets with various
response capabilities. These DLMPs can be the basis for the
valuation of such services in short term operations and thereby
help motivate long-term investment in more flexibility assets
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and arrangements. Furthermore, with increasing uncertainty in
consumer behavior through local generation, storage, and EV
activity, the need to model these DLMPs as PDFs is becoming
crucial for the network operators. The PDFs would allow a risk
analysis and stochastic optimization of the flexibility resources.
Risk averse DSOs and owners of these flexibility resources will
be concerned about the risk of extremely high or low local prices.
The PDFs are necessary to compute these risks. In this paper,
we have focused upon an efficient method of generating these
PDFs, which may be used operationally in various ways. In
particular we demonstrated the effectiveness of a new sampling
approach. Following a scenario-based cluster analysis, DLMPs
are calculated through a NUTS-based algorithm for active and
reactive powers. The numerical results demonstrate the accuracy
and computational efficiency of the proposed linear model in
two IEEE unbalanced distribution networks. The performance
of the proposed approach is remarkable in maintaining accuracy
at much lower computational times, and this suggests that the
scalability to real systems will be feasible. Overall, we contend
that an efficient sampling procedure such as the one developed
in this paper is crucial if PDFs are to be used in larger scale
practical applications. It is not just the size and complexity of
the network that creates this computational requirement, it may
also be a matter of timeliness, as such prices may be required
at high frequency throughout the day as circumstances on the
network change rapidly. In future paper, authors are planned
to compare the DLMP results with other tariffs strategies and
improve the proposed scenario generation algorithm.
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VII. APPENDIX: ILLUSTRATIVE EXAMPLE

An illustrative example is used in this section to explain
the proposed NUTS-based algorithm in Fig. 4 for estimating
the PDFs of DLMPs. It is 100 sample points from the
normal distribution with mean=0 and standard deviation=1
(N(muactual = 0, sigmaactual = 1)). The sample points
and their PDF are shown in Fig. 17.
Parameters of the proposed NUTS-based algorithm in Fig. 4
and Fig. 5 are P : mu = N(0, 1), sigma = 1, return =
N(mu, sigma), NP = 50, NP a = 5, x0 = 0, and δ = 0.95.
NP a iterations are used to adapt the step size to ξ = 0.09896.
Iterations 1 to 8, from NP iterations, in the proposed NUTS-
based algorithm are shown in Fig. 18. Current and proposed
means are shown at each iteration.
The PDF of the actual data and one set of the generated samples
in the proposed NUTS-based algorithm are shown in Fig. 19
which demonstrates similarity of the PDFs obtained from the
actual data and from our NUTS-based algorithm. Mean values
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the network that creates this computational requirement, it may
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network change rapidly. In future paper, authors are planned
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VII. APPENDIX II: ILLUSTRATIVE EXAMPLE

An illustrative example is used in this section to explain
the proposed NUTS-based algorithm in Fig. 4 for estimating
the PDFs of DLMPs. It is 100 sample points from the
normal distribution with mean=0 and standard deviation=1
(N(mu actual = 0, sigma actual = 1)). The sample points
and their PDF are shown in Fig. 17. 1
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Parameters of the proposed NUTS-based algorithm in Fig. 4
and Fig. 5 are P : mu = N(0, 1), sigma = 1, return =
N(mu, sigma), NP = 50, NP a = 5, x0 = 0, and � = 0.95.
NP a iterations are used to adapt the step size to ⇠ = 0.09896.
Iterations 1 to 8 in the proposed NUTS-based algorithm are
shown in Fig. 18. Current and proposed means are shown at
each iteration.
The PDF of the actual data and one set of the generated samples
in the proposed NUTS-based algorithm are shown in Fig. 19
which demonstrates similarity of the PDFs obtained from the
actual data and from our NUTS-based algorithm. Mean values
are 0.12 and 0.09 in the generated samples and the actual data,
respectively.
50 predictive samples are generated employing trace of the
model P . The PDF of all these samples is shown in Fig. 20
with black lines and PDF of the actual data is shown with blue
lines. As we can see, the proposed NUTS-based algorithm is
able to generate samples with similar probability distribution
as the original samples in Fig. 17.

-
2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

1

mu cur=0.04 mu prop=0.12

-
2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

2

mu cur=0.12 mu prop=0.07

-
2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

3

mu cur=0.07 mu prop=0.35

-
2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

4

mu cur=0.35 mu prop=0.35

-
2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

5

mu cur=0.35 mu prop=0.18

-
2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

6

mu cur=0.18 mu prop=0.17

-
2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

7

mu cur=0.17 mu prop=0.20
-

2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

8

mu cur=0.20 mu prop=0.18

Figure 18. First 8 iterations of the proposed NUTS-based algorithm

-
4

-
3

-
2

-
1 0 1 2 3 4

0

0.1

0.2

0.3

0.4

0.5 NUTS

Actual

Figure 19. The PDFs obtained from the actual data and the NUTS-based
algorithm

-
3

-
2

-
1 0 1 2

0.0

0.2

0.4

0.6

0.8

Data

PD
F

Figure 20. PDF of the generated samples in the proposed NUTS-based
algorithm (black) and PDF of the actual data (blue)

Figure 18. First 8 iterations of the proposed NUTS-based algorithm

are 0.12 and 0.09 in the generated samples and the actual data,
respectively.
50 predictive samples are generated employing trace of the
model P . The PDF of all these samples is shown in Fig. 20
with black lines and PDF of the actual data is shown with blue
lines. As we can see, the proposed NUTS-based algorithm is
able to generate samples with similar probability distribution
as the original samples in Fig. 17.
As another numerical study, performance of our proposed
NUTS-based algorithm is compared with the leapfrog algorithm.
Accordingly, the leapfrog algorithm is also applied to this
illustrative example. Iterations in the leapfrog algorithm are
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in this paper is crucial if PDFs are to be used in larger scale
practical applications. It is not just the size and complexity of
the network that creates this computational requirement, it may
also be a matter of timeliness, as such prices may be required
at high frequency throughout the day as circumstances on the
network change rapidly. In future paper, authors are planned
to compare the DLMP results with other tariffs strategies and
improve the proposed scenario generation algorithm.
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VII. APPENDIX II: ILLUSTRATIVE EXAMPLE

An illustrative example is used in this section to explain
the proposed NUTS-based algorithm in Fig. 4 for estimating
the PDFs of DLMPs. It is 100 sample points from the
normal distribution with mean=0 and standard deviation=1
(N(mu actual = 0, sigma actual = 1)). The sample points
and their PDF are shown in Fig. 17. 1
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Parameters of the proposed NUTS-based algorithm in Fig. 4
and Fig. 5 are P : mu = N(0, 1), sigma = 1, return =
N(mu, sigma), NP = 50, NP a = 5, x0 = 0, and � = 0.95.
NP a iterations are used to adapt the step size to ⇠ = 0.09896.
Iterations 1 to 8 in the proposed NUTS-based algorithm are
shown in Fig. 18. Current and proposed means are shown at
each iteration.
The PDF of the actual data and one set of the generated samples
in the proposed NUTS-based algorithm are shown in Fig. 19
which demonstrates similarity of the PDFs obtained from the
actual data and from our NUTS-based algorithm. Mean values
are 0.12 and 0.09 in the generated samples and the actual data,
respectively.
50 predictive samples are generated employing trace of the
model P . The PDF of all these samples is shown in Fig. 20
with black lines and PDF of the actual data is shown with blue
lines. As we can see, the proposed NUTS-based algorithm is
able to generate samples with similar probability distribution
as the original samples in Fig. 17.
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in this paper is crucial if PDFs are to be used in larger scale
practical applications. It is not just the size and complexity of
the network that creates this computational requirement, it may
also be a matter of timeliness, as such prices may be required
at high frequency throughout the day as circumstances on the
network change rapidly. In future paper, authors are planned
to compare the DLMP results with other tariffs strategies and
improve the proposed scenario generation algorithm.
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An illustrative example is used in this section to explain
the proposed NUTS-based algorithm in Fig. 4 for estimating
the PDFs of DLMPs. It is 100 sample points from the
normal distribution with mean=0 and standard deviation=1
(N(mu actual = 0, sigma actual = 1)). The sample points
and their PDF are shown in Fig. 17. 1
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Parameters of the proposed NUTS-based algorithm in Fig. 4
and Fig. 5 are P : mu = N(0, 1), sigma = 1, return =
N(mu, sigma), NP = 50, NP a = 5, x0 = 0, and � = 0.95.
NP a iterations are used to adapt the step size to ⇠ = 0.09896.
Iterations 1 to 8 in the proposed NUTS-based algorithm are
shown in Fig. 18. Current and proposed means are shown at
each iteration.
The PDF of the actual data and one set of the generated samples
in the proposed NUTS-based algorithm are shown in Fig. 19
which demonstrates similarity of the PDFs obtained from the
actual data and from our NUTS-based algorithm. Mean values
are 0.12 and 0.09 in the generated samples and the actual data,
respectively.
50 predictive samples are generated employing trace of the
model P . The PDF of all these samples is shown in Fig. 20
with black lines and PDF of the actual data is shown with blue
lines. As we can see, the proposed NUTS-based algorithm is
able to generate samples with similar probability distribution
as the original samples in Fig. 17.
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shown in Fig. 21. Due to the random-walk feature of leapfrog
algorithm, proposed means keep changing at each iteration.
Current and proposed means at each iteration are also shown
in Fig. 21. The current mean is shown with blue circle and the
proposed one is shown with either green circle (if accepted)
or red circle (if denied).
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As another numerical study, performance of our proposed
NUTS-based algorithm is compared with the leapfrog algorithm.
Accordingly, the leapfrog algorithm is also applied to this
illustrative example. Iterations in the leapfrog algorithm are
shown in Fig. 21. Due to the random-walk feature of leapfrog
algorithm, proposed means keep changing at each iteration.
Current and proposed means at each iteration are also shown
in Fig. 2. The current mean is shown with blue circle and the
proposed one is shown with either green circle (if accepted)
or red circle (if denied).

-
2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

1

mu cur=-1.00 mu prop=-1.16

-
2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

2

mu cur=-1.00 mu prop=-0.64

-
2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

3

mu cur=-0.64 mu prop=-0.53

-
2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

4

mu cur=-0.53 mu prop=-0.98

-
2

-
1 0 1 2

0
0.1
0.2
0.3
0.4
0.5

PD
F

ite
ra

tio
n

5

mu cur=-0.53 mu prop=0.04

Figure 21. First five iterations in the leapfrog algorithm

After 50 iterations, in both algorithms, PDFs of sample means
in the leapfrog and our proposed NUTS-based algorithms are
shown in Fig. 22. Mean values are 0.12 and 0.22 in the
proposed NUTS-based and the leapfrog algorithms, respectively.
Also PDF of the samples in the leapfrog algorithm is different
from the one from the NUTS-based algorithm as shown in Fig.
22. This is while our proposed NUTS-based algorithm had
similar PDF to the actual data one as was shown in Fig. 19.
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After 50 iterations, in both algorithms, PDFs of sample means
in the leapfrog and our proposed NUTS-based algorithms are
shown in Fig. 22. Mean values are 0.12 and 0.22 in the

proposed NUTS-based and the leapfrog algorithms, respectively.
Also PDF of the samples in the leapfrog algorithm is different
from the one from the NUTS-based algorithm as shown in
Fig. 22. This is while our proposed NUTS-based algorithm
had similar PDF to the actual data as was shown in Fig. 19.
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As another numerical study, performance of our proposed
NUTS-based algorithm is compared with the leapfrog algorithm.
Accordingly, the leapfrog algorithm is also applied to this
illustrative example. Iterations in the leapfrog algorithm are
shown in Fig. 21. Due to the random-walk feature of leapfrog
algorithm, proposed means keep changing at each iteration.
Current and proposed means at each iteration are also shown
in Fig. 2. The current mean is shown with blue circle and the
proposed one is shown with either green circle (if accepted)
or red circle (if denied).
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Figure 21. First five iterations in the leapfrog algorithm

After 50 iterations, in both algorithms, PDFs of sample means
in the leapfrog and our proposed NUTS-based algorithms are
shown in Fig. 22. Mean values are 0.12 and 0.22 in the
proposed NUTS-based and the leapfrog algorithms, respectively.
Also PDF of the samples in the leapfrog algorithm is different
from the one from the NUTS-based algorithm as shown in Fig.
22. This is while our proposed NUTS-based algorithm had
similar PDF to the actual data one as was shown in Fig. 19.
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