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[bookmark: _Hlk62305620]Highlights
· [bookmark: _Hlk48724565]The enhanced benefits of public charging stations in four business models are compared. 
· A two-stage model regarding the infrastructure investment and operational planning is formulated. 
· The uncertainties of electricity tariff and solar generation are considered for more realistic simulations.
· The integrated business models are conducive to increasing the investment viability and reducing the carbon intensity.



Abstract
[bookmark: _Hlk81227506]Whilst the widespread adoption of electric vans is necessary to improve urban air quality and reduce carbon emissions, it is also self-evident that adequate charging stations are a precondition. However, the investment case for basic charging stations without public subsidies is challenging. In the context of a London case study, four business models are compared, which integrate solar power generation and new/second-life battery storage system with the basic charging facilities. Considering the uncertainties of electricity tariff and solar generation, the optimal infrastructure investment and operational planning has been formulated as a two-stage stochastic optimization model. The results show that: (i) in the integrated business models, the return on investment and charger installations could be increased by up to 5.39% and 17.06% respectively, and the carbon intensity could be reduced by up to 8.13%; (ii) the nondiscriminatory grant annualized as 50 £ is not sufficient, and a differentiated government subsidy policy may be more conducive to achieving a positive return on investment, such as 50 £ for fast chargers and 100 £ for rapid chargers; (iii) in the integrated business models, fast chargers undertake more vehicle-to-grid electricity exchange with the pattern adoption rate increased by up to 52.38%, while rapid chargers mainly ensure the timely charging completion with the usage frequency increased by up to 2.82%.

Keywords: Electric vans; Public charging station; Investment viability; Business models


1. Introduction
[bookmark: _Hlk81210046][bookmark: _Hlk69062009][bookmark: _Hlk69062109][bookmark: _Hlk81211181]Although commercial vehicles make up a slighter market share of urban transportation, they can emit around 30% higher carbon dioxide emissions per kilometer than passenger cars [1]. With the widespread policy ambitions for reducing oil dependency and combating climate change, Light Commercial Vehicles (LCVs), commonly referred as ‘vans’, will switch away from diesel and most likely into electric [2–4]. In 2019, new registrations of Electric Light Commercial Vehicles (ELCVs) rose by a quarter over the previous year, with the global stock reaching 378,000. Nevertheless, the combustion engine still dominates the LCV market. For instance, roughly 3300 electric vans were sold in UK in 2019, accounting for only 0.91% of overall sales [5].
[bookmark: _Hlk75174528][bookmark: _Hlk81211520][bookmark: _Hlk75174625][bookmark: _Hlk81235096][bookmark: _Hlk69062149][bookmark: _Hlk81211357]There are a number of significant challenges which hold back the penetration of electric vans, such as the power grid reinforcement [6], sale price imparity[7], and especially range anxiety concerns [8].Moreover, there is a lack of charging infrastructure. The ratio of global EVs to publicly accessible chargers was approximately 9.51 in 2019, substantially worse than the recommended benchmark of 8 [9]. Another key issue is to establish a balance between speedy-yet-costly rapid charging and inexpensive-but-inconvenient fast charging, especially for electric vans which would want to reduce idle parking time [10]. In this context, the basic charging station projects have been financially unattractive, presenting payback time between 17 and 26.5 years [11]. In addition, the cost of a rapid charger (RC) is estimated to be almost an order of magnitude higher than that of a fast charger (FC) [12], making RCs not the preferred facility option. For instance, as shown in Figure 1, RCs took up only 7.41% of the total public charging devices in London [13].
[image: ]
Figure 1. Proportion of public rapid chargers in London
[bookmark: _Hlk81211743]
[bookmark: _Hlk62556684][bookmark: _Hlk62556212]Currently, there are only a few targeted incentives aimed at developing charging infrastructure and they mainly take the form of general subsidies. The UK government, for example in 2020, provides basic funding of 350 £ for each charger [14]. However, with the technology readiness of end-user resources, such as solar panels and new, or second-life batteries, more business models are emerging, which may be more cost-effective compared with basic charging stations. Therefore, we seek to address the research questions of whether there are enhanced benefits with integrated energy resources, including photovoltaic (PV) and batteries, on the investment attractiveness of charging stations. In so doing, it is necessary to envisage a more complex optimization model, which integrates the infrastructure investment together with the consequent operational planning in the face of daily uncertainties.

1.1 Background research
To clarify the contribution of this paper, previous research on charging stations will be discussed from three research streams: target customers, business models, and optimization method.
[bookmark: _Hlk93508819][bookmark: _Hlk93237002]So far, the load curve of charging stations is mainly derived by taking passenger cars as the research object. According to a sample survey in six European countries, Pasaoglu et al. [15] observed that the passenger EVs were mainly used for short home-based trips with a daily mileage of 40-80 km. Furthermore, their average duration of parking time was estimated to be around 6 hours per day, indicating that a slow topping up would be relatively sufficient [16]. Other stochastic features were also examined, such as arrival time, departure time, initial state-of-charge (SOC) level and charging demand [17–19]. There are distinctive characteristics between passenger EVs and ELCVs. For instance, commercial cars generally conduct more long-distance trips. Baford et al. [20] and Christensen et al. [21] found that nearly 31% and 29% of ELCVs would perform more than 100 km per day in Denmark and Germany, respectively. In terms of charging behavior, it was found that a larger percentage of charging events took place at nighttime for private vehicles than the commercial vehicles [22]. Since the nature of the service business required punctuality, it was noted that commercial users were willing to detour up to 500 m for fast charging, which was 70% less than the distance for private users [23,24]. In summary, commercial vehicles are confronted with more uncertainties, such as the route selection [25], parking duration [24], parking times [26] and charging timing [22]. However, as an important participant in the public charging, the typical driving characteristics of ELCVs have not yet been fully considered, which promotes this study to make some contributions into this aspect.
As summarized in Table 1, the existing research mainly focusses on the impacts of several charging facilities and services in a particular business model. For instance, Neyestani et al. [17] found that the Vehicle-to-Grid (V2G) service could stabilize the operation of distribution network and enrich the revenue sources. The possibility of coordinating renewable generation to power charging stations was also investigated [27]. In terms of energy storage system, Figueiredo et al. [11] put forward that when its price dropped to a certain level in the future, the integration with solar parking lots would be economically feasible. In this context, the use of retired EV batteries appears to be potentially competitive. Apart from Tong et al. [28] and Han et al. [29], there has been relatively little research on their applications in charging stations. With evolution of various business models, it is necessary to fully analyze the enhanced benefits of different integrated facility combinations, so as to improve the financial viabilities of charging infrastructure. However, few studies have considered the renewable generation, new/second-life battery storage system, and fast/rapid chargers in the same framework. This study seeks to fill this research gap.

Table 1. Summary of the related research
	Research
	Charging facilities and service involved 
in the public charging station
	Fixed configuration?
	Stochastic perspective?

	
	FC
	RC
	PV
	New
battery
	Second-life battery
	V2G
service
	FC 
or RC
	Other facilities
	

	Schroeder &Traber [30]
	√
	√
	
	
	
	
	Yes
	Yes
	No

	Mouli et al. [31]
	√
	
	√
	
	
	√
	
	
	

	Shafie-Khah et al. [18]
	√
	
	
	√
	
	√
	
	
	Yes

	Cardoso et al. [32], 
Neyestani et al. [17], 
Shafie-Khah et al. [19]
	√
	
	√
	√
	
	√
	
	
	

	Mouli et al. [16], 
Figueiredo et al. [11], 
Novoa & Brouwer [27]
	
	
	
	
	
	
	
	
	No

	Tong et al. [28]
	√
	
	√
	
	√
	
	
	
	

	Funke et al. [33], 
Muratori et al.[34]
	
	√
	
	
	
	
	
	
	

	Muratori et al. [35]
	
	√
	√
	√
	
	
	
	
	

	Han et al. [29]
	√
	√
	√
	
	√
	
	
	No
	

	Luo et al. [36]
	
	√
	√
	
	
	
	No
	No
	



[bookmark: _Hlk81213194]Different mathematical optimization problems have been proposed to minimize the total cost of public charging stations. As shown in Table 1, they are mainly based on the precondition that the facility configuration has been determined. For example, Figueiredo et al. [11] developed a genetic algorithm to optimize charging strategies, with the given premise of 1041 FCs, 3480 PV modules and 1800 kWh of energy storage. However, this fixed setting ignores the co-optimization of initial capital investment and subsequent energy management operations. Furthermore, it also obscures the differences between various facility combinations, especially when government subsidies are applied to some of them at a micro level. Additionally, most of the existing research has been formulated with a static set of external parameters. Therefore, this paper is inspired to relax the assumption of asset configuration and focus on the stochastic perspective. The well-established Benders decomposition algorithm is adopted here for solving large-scale stochastic optimization problems [37]. Instead of tackling all decision variables and constraints at the same time, it decentralizes the overall problem into multiple subproblems by iteration, which alleviates the computational diﬃculty and improves algorithm efficiency. A variety of its successful applications are found in the energy fields [38]. 

1.2 Innovations and contributions
[bookmark: _Hlk48724146]The main contributions of this research are as follows:
1. The typical driving characteristics associated with ELCVs, as distinct from passenger vehicles, are more fully described and considered in this study than previously.
1. One basic and three integrated business models with a mix of facilities are analyzed within the same framework for the first time, including FCs, RCs, PV panels, and new/second-life battery storage systems.
(2) Distinct from previous studies of pre-specified asset configurations, the optimal installation configuration, energy management and investment feasibility are formulated together, thereby revealing the enhanced benefits of integrated facilities.
(3) Considering the various uncertainties, a general two-stage stochastic model for charging infrastructure investment and daily operational planning is established, in which a Benders decomposition algorithm is adopted to obtain the optimal solutions. 

1.3 Paper organization
The reminder of this paper is structured as follows: In Section 2, the problem description is introduced. Section 3 explains the proposed model formulation. Section 4 presents the input data and stochastic settings. In Section 5, the optimal numerical results are compared followed by the main conclusions and policy implications in Section 6.

2. Research framework
[bookmark: _Hlk36930273]The schematic illustration of the charging station is shown in Figure 2. The optimal decisions include two stages: the initial asset configuration and the consequent operational planning, which are closely intertwined. In the investment stage, confronted with physical space constraints, the investor evaluates a range of chargers and related energy resources, such as PV panels, new and second-life battery storage systems. Additionally, as for the regular contracts signed with van distribution companies, such as flower and parcel deliveries, their daily charging demands can be predicted based on the historical data. In the scheduling stage, the charging station is assumed to have a grid connection via a licensed electricity retailer, offering time-of-use consumption and export tariffs. The energy management of the facilities is in the charge of a specialized company, such as an aggregator or an energy service company. With the transactional interface between electric vans and the grid, the aggregator can not only bid for a certain amount of electricity, but also offer ancillary services and achieve the V2G potential. It will also plan the charging and discharging decisions, including arranging the parking time window, selecting the charger type, and specifying the power delivery quantities. Furthermore, it is assumed that these operational strategies are in response to the day-ahead electricity prices rather than the more volatile spot prices. Given the predominance of day-ahead electricity wholesale markets and the routine of commercial delivery routes, a standard daily optimization based upon day ahead information is likely to be preferred in the investment analysis. 

[image: ]
Figure 2. Schematic illustration of the charging station

[bookmark: _Hlk81213537]The charging station consisting only of charging facilities such as FCs and RCs is regarded as the basic business model. Since the bi-directional electricity exchange is generally conducted with relatively small rated power capacities [39], it is assumed that only FCs come with V2G function. Considering the technical feasibility and practical application, three additional integrated business models are proposed and correspond to the following specifications.
1. [bookmark: _Hlk65425518]S1-basic chargers only, that is, the electricity is procured solely from the power grid.
1. S2-integration with chargers and PV panels, which supplies solar energy as an additional source of electricity on the basis of S1.
1. S3-integration with chargers, PV panels and new battery storage system, which provides the ability to capture electricity at one time for later use on the basis of S2.
1. S4-integration with chargers, PV panels and second-life battery storage system. Compared with S3, it offers another cost-effective but technically less efficient energy storage solution.

3. Methodology
3.1 Notation
The notations are defined and summarized in Table 2. 

Table 2. Nomenclature and notations
	Category
	Symbol
	Description
	Symbol
	Description

	Indices
	

	
Index of electric vans 
	

	
Index of hours in a day 

	
	

	
Index of scenarios 
	
	

	Superscript
	

	Fast charger
	

	Rapid charger

	
	

	PV system
	

	Battery system

	
	

	Power grid
	

	Electric van

	
	

	Parking lot
	

	Parking space

	
	

	Charging process
	

	Discharging process

	
	

	Arrival time of electric van 
	

	Departure time of electric van

	
	

	V2G mode
	

	G2V mode

	
	

	Day-ahead electricity wholesale market
	

	Ancillary services market

	
	

	Charging service contract
	
	

	Parameters
	

	Unit annualized capital cost
	

	Unit annual operating expenditure

	
	

	Cost of power trading activities
	

	Income of power trading activities

	
	

	Share of stored energy to battery capacity
	

	Occurrence number of scenarios in a year

	
	

	Area of the parking space for a van
	

	Area conversion ratio

	
	

	Quantity of parking spaces
	

	Rated power of the charger

	
	

	Electricity tariff
	

	Solar generation per kW of PV system

	
	

	Battery capacity
	

	Maximum capacity of the battery system

	
	

	Unit degradation cost
	
	

	
	

	Input and output efficiency
	

	Charging and discharging rate

	Variables
	

	Installed configuration
	

	Power amount

	
	

	Available energy stored
	

	Binary status of charger connection

	
	

	Binary status of mode selection
	

	Binary status of charging and discharging



3.2 Model formulations
[bookmark: _Hlk62667251]Due to space limitation, only the specification of S4 is described in detail. The others are special cases with relaxation of the relevant features. The objective function is to minimize the total cost of the investment and operations over all scenarios. The first three lines of Eq. (1) denote the capital costs and operating expenses of charging facilities. Specifically, the first-stage variables include the installed number of FCs and RCs, and the installed capacity of PV and battery system. As expressed by Eqs. (2) and (3), they are constrained by the number and area of parking spaces. The coverage period is set to 1 year and the annualized capital cost is adopted, which is widely used in the investment analysis of facilities with different service life.
	

	(1)

	

	(2)

	

	(3)

	

	(4)



The last line of Eq. (1) is associated with the second-stage variables, which can be interpreted as the cost and income of power trading activities. With a further formula expansion, Eq. (5) represents the expenditure of procuring electricity from grid, which is determined by the amount of power injected from grid to the battery system and the electric vans. Since the V2G mode accelerates the battery degradation, the additional cost is introduced as Eqs. (6) and (7) [40]. Regarding the income, the first source is the sale of solar generation. Ancillary services provided by V2G mode also bring extra income and is reflected by Eq. (9). As shown in Eq. (10), the third part comes from the provision of the charging service to fleet owners, which mainly depends on the charging demand and retail price. Furthermore,  represents the occurrence number of each typical scenario and will be further explained in Section 4.
	

	(5)

	

	(6)

	

	(7)

	

	(8)

	

	(9)

	

	(10)






Related constraints for the second-stage variables are described as below. Eq. (11) is to ensure the real-time balance between the supply and demand of solar generation. As for the battery system, Eq. (12) defines the state of available energy over time. Since the capacity of battery is finite, it should be prevented from being charged to an extremely high level or discharged after the stored energy runs out. Therefore, the lower and upper limits of SOC are applied in Eq. (13), which defines the percentage level of available energy relative to battery capacity. Similar to previous work [41], the initial value for the first hour is assigned as Eq. (14). As for Eqs. (15) and (16), the constraints are also imposed on the charging and discharging rate by the symbol of  and , respectively. Furthermore, to incentivize the green electricity export, the V2G payment is only for the battery power that does not arise from the grid purchases [42]. With  and  as the subdivisions, Eqs. (17) and (18) ensure that the exported electricity does not exceed their corresponding original source.
	

	(11)

	

	(12)

	

	(13)

	

	(14)

	

	(15)

	

	(16)

	

	(17)

	

	(18)


With basically the same working principles as the battery system, electric vans are subject to similar constraints. Eq. (21) is to assign the initial SOC level of the vans upon their arrival, which is featured by fleet driving behavior and will be described in Section 4. As represented by Eq. (22), the aggregator should ensure that when the van leaves, the available stored electricity reaches the level required by the fleet owner. The maximum current flow of G2V activity and V2G activity is defined as Eqs. (25) - (27).
	

	(19)

	

	(20)

	

	(21)

	

	(22)

	

	(23)

	

	(24)

	

	(25)

	

	(26)

	

	(27)







There are also binary variables in the second stage, illustrating whether a certain mode is being adopted. Specifically,  is labeled as 0 or 1 in accordance with status that the van  is being charged through a FC or not.  is also defined in this way for RC. As expressed by Eq. (28), only one charger can be selected. Since the charging service can only be completed during a van’s stay in the parking lot, the charging status value in other time periods will be set as 0, as shown in Eqs. (29) and (30). Furthermore, Eqs. (31) and (32) denote that the number of vans which are being charged should not exceed the total number of chargers. As for Eqs. (33) - (35), the right-hand sides are in a unified form of multiplying the binary status with a fixed input parameter. This is to ensure that the power exchanges between vans and other facilities are allowed only if a certain charger is connected. Taking Eq. (33) for instance, when , it can be seen that the sum of charged electricity will not exceed the battery capacity. But this constraint is actually redundant as there are more stringent constraints, such as Eq. (20). However, when , all the variables on the left-hand side will be forced to zero automatically. 
	

	(28)

	

	(29)

	

	(30)

	

	(31)

	

	(32)

	

	(33)

	

	(34)

	

	(35)









With the same logic mentioned in the last paragraph, related constrains for the remaining three sets of binary variables are expressed as follows.  and  display the status of G2V mode and V2G mode.  and  represent the charging and discharging operation of battery system. Similarly,  and are the binary indicators for electric vans. 
	

	(36)

	

	(37)

	

	(38)

	

	(39)

	

	(40)

	

	(41)

	

	(42)

	

	(43)

	

	(44)

	

	(45)

	

	(46)

	

	(47)

	

	(48)



3.3 Benders decomposition algorithm
A classical Benders decomposition-based method is adopted here to solve the solutions. Without loss of generality, this mixed-integer problem can be represented as Eq. (49). 
	

	(49)


[bookmark: _Hlk81215658]By classifying the integer and binary variables into the master problem, only continuous variables remain in the subproblem to ensure the strong duality [38]. As expressed below, the problem is programmed using General Algebraic Modeling System (GAMS) with CPLEX solver.
	[bookmark: _Hlk62809775]Steps of Benders decomposition algorithm

	1:
	

Initialize the integer variables, binary variables, lower bound  and upper bound

	2:
	
while  do

	3:
	
   Solve the subproblem 

	4:
	   if subproblem is unbounded then

	5:
	

     Get unbounded ray  and add feasibility cut  to master problem

	6:
	   else 

	7:
	

     Get extreme point  and add optimality cut  to master problem

	8:
	
     Update the upper bound 

	9:
	   end if

	10:
	

   Solve the mater problem  and update the lower bound 

	11:
	end while



4. Simulation settings
[bookmark: _Hlk93478683]As a pioneer in decarbonizing the transportation sector, London is identified as one of the global “EV capitals” [43], which includes 25 metropolitan cities with the most EV registrations in 2020. With the forecast of a tenfold increase in the EV sales by 2025, the roll out of charging facilities needs to be accelerated in London [44]. In addition, the UK has been widely regarded as one of the world’s leaders in liberalization of power generation and retail. Its deregulated electricity market not only contributes to the formation of flexible pricing mechanism, but also provides aggregators with rich service options and revenue streams. This is further helpful to analyze the enhanced benefits of public charging stations from a market-based perspective. Therefore, the above formulations are applied to a case study based upon the London context, which aims to provide insights for more countries that are launching the power sector reform and addressing the availability of charging infrastructure. Three kinds of uncertainties are detailed in Section 4.1: namely, day-ahead electricity prices, solar generation, and the driving characteristics of ELCV fleet. The other input parameters are shown in Section 4.2.

4.1 Uncertainty characterization
4.1.1 Day-ahead wholesale prices













[bookmark: _Hlk62813548][bookmark: MTBlankEqn]Whilst the charging station will pay and receive payments based upon arrangements with its retailer, these tariffs are assumed to be wholesale-linked to reflect time of day variations. Similar to Ketterer [45], an AR-GARCH model is proposed. In Eq. (50), the day-ahead electricity price  is the dependent variable. The explanatory variables include the day-ahead demand forecast , the generation forecasts of solar  and wind , natural gas price  and carbon emission price . The dummy variable  correspond to spring, summer, autumn and winter.  refer to sunny, rainy, cloudy and snowy days.  and  stand for a constant term and hourly sequence. The residual series , the conditional variance  and the long-run variance  are in the form of Eqs. (51) and (52). 
	

	(50)

	

	(51)

	

	(52)





The relevant British historical data from 24 February, 2015 through 23 February, 2020 were obtained from Elexon, Intercontinental Exchange and European Energy Exchange. With the check of Akaike Information Criterion and Ljung-Box Q-test statistics, the specification of AR (3)-GARCH (1,1) model is established. According to Table 3, except for snowy days in spring  and snowy days winter , other dummy variables are statistically significant, which provides a basis for scenario selection .

Table 3. Results of AR–GARCH model
	Mean equation

	Quantitative variables
	Dummy variables

	

	-5.4690***
	

	0.0003***
	
	
	

	0.8718***
	

	-1.5925***
	

	-1.5150***

	

	0.9137***
	

	-0.0005***
	

	0.9885***
	

	0.9524***
	

	-1.5925***
	

	-1.2342***

	

	-0.2181***
	

	-0.0002***
	

	0.4632***
	

	0.6892***
	

	-1.3659***
	

	-1.8352***

	

	-0.0472***
	

	0.2556***
	

	0.0447
	
	
	
	
	

	-0.3310

	
	
	

	0.1551***
	
	
	
	
	
	
	
	

	Variance equation

	

	7.9895***
	

	0.3893***
	

	0.2607***
	

	Fitness evaluation

	Adjusted R-squared
	0.7727
	P value of Chi-square in ARCH-LM test
	0.2142

	AIC
	5.9260
	Mean absolute percentage error (MAPE)
	11.36%






Note: 1. The declared dummy variables are one less than the classified values of  and  to avoid multicollinearity. The constant  defaults to the case of sunny days in spring . 
2. Confidence level is denoted by * for 90%, ** for 95% and *** for 99%.



The forecasts of  are shown in Figure 3. And the probability of each typical scenario is assumed to be its occurrence frequency  throughout the historical data. 
[image: ]
[bookmark: _Hlk43108577]Figure 3. Forecast of day-ahead wholesale electricity prices



In the UK, the Smart Export Guarantee has been introduced since 2020 to replace Feed-in Tariff, which obligates retailers to offer and pay tariffs for renewable generation exported to the grid. For instance, Octopus Energy establishes the Agile Outgoing Tariff associated with day-ahead wholesale price , line losses, etc. [46]. As for the consumption price, it designs the Agile Tariff which is also dynamically tied to  [47]. Thus, with its published calculation model, a consistent set of consumption and export price pairs at the retail level can be obtained (see Figure 4).

[image: ]
Figure 4. Consumption and export electricity prices

4.1.2 Solar generation

Based on the historical data mentioned in 4.1.1, the unit generation of PV system  can be obtained by dividing the predicted solar generation by the total installed capacity. As shown in Figure 5, it is intuitive that the generation is the highest on a sunny day in summer.
[image: ]
Figure 5. Forecast of solar generation per kW of PV system
4.1.3 Charging demand


In addition to the supply side, the charging station aggregator is also confronted with uncertainties on the demand side, which requires estimation from historic driving information. Due to its large sample size and easy access, the latest 2017 database under the van category from National Household Travel Survey [48] is analyzed. Histograms in Figure 6 suggest that most vans start to be plugged in between 16 to 21 o'clock. Their common mileage is about 50–100 km, and nearly 30% of them travel more than 100 km per day. The kernel density and lognormal distribution are adopted to simulate the probability density function (PDF) and cumulative distribution function (CDF) of  and , respectively.
[image: ]
Figure 6. PDF and CDF of charging start time and daily driving distance

[bookmark: _Hlk93341338]Similar to previous research [49], the fleets are supposed to set out with fully charged batteries, and are parked at the charging station once the delivery task is completed. Given the interference of a large number of random variables, such as charging start time and charging end time, it is usually difficult to obtain the numerical values of the varying outcomes [50]. With focuses on constantly repeating random samples to achieve certain results, Monte Carlo simulation makes probabilistic valuation possible with regard to the volatility of relevant factors [51]. Therefore, it is a suitable research tool for predicting charging demand here. With the steps presented in Figure 7, a Monte Carlo algorithm is implemented.

[image: ]
Figure 7. Flowchart of proposed Monte Carlo algorithm






It is assumed that ,  and [52]. Considering the available capacity of the local distribution network [53], the fleet size  is presumed to range from 10 to 80 vehicles. With , the charging load curves can be obtained. After adopting the k-medoid method to calculate the distance between each curve at each hour, the highest expected case is selected as the representative input parameter of this paper (see Figure 8).

[image: ]
Figure 8. Charging demand in a day with different fleet size
4.2 Local data and parameters





With a parking space of 15 m2,  and  are set as 1.25 and 0.15 [32]. The annual rental fee across London is about 55 £/m2 [54], of which 2% would be attributable to the operating and maintenance (O&M) costs. To fully identify a feasible region for the model, is set as the fleet size multiplied by the capacity of each electric van. According to the main commercial products,  and  are assumed to be 7 kW and 50 kW [52]. With the grid reinforcement service, their connection costs are approximately discounted as 142 £ and 285 £ [53]. The input/output efficiency of the PV inverter, FC and RC are respectively set at 88%, 85% and 85% [30]. Cost parameters are shown in Table 4. In terms of technical performance parameters, Table 5 summarizes the conversion loss between electrical energy and chemical energy, the allowable amount of transferred electricity and the extreme limits of stored electricity relative to battery capacity per unit time. Considering the additional cycles caused by V2G operation, the battery degradation penalty undertaken by the charging station aggregator is also listed below.

Table 4. Cost parameter list
	
	Annualized capital cost
	Annual O&M cost
	Source

	PV system 
	55 £/kW
	11 £/kW
	[29,40,55]

	New battery system
	40 £/kWh
	8 £/kWh
	

	Second-life battery system
	22 £/kWh
	4.4 £/kWh
	

	FC
	535 £
	100 £
	[12,56]

	RC
	5194 £
	300 £
	



[bookmark: _Hlk81226425][bookmark: _Hlk81236453]Note: 1. , where capital cost covers procurement and installation of the facility itself and its hardware components. The residual value is 30% of the initial value, and the discount rate is set as 7.0% [11]. 
2. The annual O&M cost includes maintenance inspection, data collection and warranty insurance.



Table 5. Technical performance parameter list
	
	New battery 
	Second-life battery
	Electric van
	Source

	Charge and discharge efficiency 
	90%
	85%
	90%
	[28,41]

	Maximum charge and discharge rate 
	85%
	85%
	85%
	

	Minimum SOC level 
	5%
	10%
	5%
	

	Maximum SOC level 
	95%
	90%
	95%
	

	Degradation cost caused by V2G
	1.65 p/kWh
	1.7 p/kWh
	1.6 p/kWh
	[39]



5. Results
5.1 Facility configurations
In the aspect of facility configuration, once the solar generation system is introduced, the optimal decision is to make full use of all available space in the parking lot, that is, to reach the upper limit of the installable capacity. For example, when the fleet size is 50, the optimal specifications of PV panels in S2 to S4 are all 31.5 kW. Regarding the energy storage, the low price of second-life batteries helps them gain the edge over the new ones, despite their inferior charging and discharging efficiency. Thus, the optimal battery capacity in S4 is usually larger than that in S3. For instance, in the case of 50 vans, they are correspondingly 33 kWh and 99 kWh for S3 and S4 respectively. 
[bookmark: _Hlk48581887]As shown in Figure 9, FCs account for about 62.11%, which is slightly higher than RCs. Besides, for small fleets with less than 50 vans, the optimal balance between FCs and RCs stays the same and simply increases pro-rata with the fleet size. But with larger fleets, the balance becomes more nuanced. Furthermore, the integrated business models make better use of the available space in the parking lot. Taking the case of 80 vehicles as an example, the total charger installations of S3 and S4 increase by 13.33% based on S1.
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Figure 9. Installation number of chargers in different business models

5.2 Investment viability and sensitive analysis of subsidies
The indicator of annual return on investment (ROI) is used to measure the investment viability and expressed as:
	

	(53)


As shown in Figure 10, with the expansion of fleet size, the overall ROI shows benefits of scale. Specifically, with a fleet size of more than 50 vans, all these four business modes can achieve ROI ratios greater than 1 without government subsidies. The benefits of synthesis with PV and batteries are progressive and compared with S1, the ROI of S2, S3, S4 increases by 1.74%, 4.58%, and 5.39% on average. 

[image: ]
Figure 10. ROI of the charging station in different business models

A fleet size of 50 vans is taken as an example here to explore the impact of government subsidies. Currently, the UK grant towards each charger is 350 £ regardless of the charger type [14]. With the general warranty period of 10 years [39], it is annualized as 50 £. A more ambitious financial incentive is studied, which can be interpreted as a decline in market prices due to technological advances. FCs and RCs are assumed to be subsidized in the range of 0-100 £ in steps of 10 £ (see Figure 11). Although the ceiling of the subsidy has been set relatively high, the optimal installation number of chargers remains the same. In other words, the grant can only be reflected as a reduction in the investment cost, rather than any other additional revenue source triggered by the changes in facility deployment. Therefore, the increase in the subsidy amount linearly promotes the growth of ROI. In view of the existing UK subsidy level (50 £ for both FCs and RCs), the basic chargers-only business model S1 is loss-making. However, S1 can achieve ROI>1 under more generous financial support, such as a differentiated subsidy policy of 50 £ for FCs and 100 £ for RCs, or an undifferentiated subsidy policy of 70 £ for both FCs and RCs.

[image: ]
Figure 11. Impact of subsidy amounts on the ROI of different business models

5.3 Energy management strategies
A fleet size of 50 vans is taken as an example for the analysis here. By summarizing the results of each typical day, the box-plot diagram of Figure 12 shows the comparison of the various power flow volumes. And Figure 13 illustrates the differences in the average daily power flow profile. Its positive quadrants are defined as the power flow between various facilities within the charging site, while the negative parts represent the electricity exported to the grid. The charging demands, outlined by the black lines, are filled by three sources: electricity purchased from grid, solar generation, and discharged power from battery system.

[image: ]
Figure 12. Power flow volumes for one day in different business models

[image: ]
Figure 13. Average power flow profiles over one day in different business models

In S1, the completion of charging task completely relies on external power imports. Despite the lack of storage system in this case, the connection with FCs allows excess electricity stored in van batteries to be sold back to the grid. From Figure 12, it can be seen that this export volume is relatively small compared with other integrated business models. On the one hand, the parking time window is generally not long, thus making it difficult to discover the arbitrage opportunities within a given period. On the other hand, the existence of battery degradation cost also weakens the economic attractiveness of V2G activities.
In S2, solar generation emerges as another additional power source, but the electricity imported from the grid still dominates, which is around 1100 kWh in S1 and S2 as shown in Figure 12. Firstly, this is because the area of the parking space is limited and the PV panel capacity that can be installed is not large. Secondly, as the peak of solar radiation appears before the peak of charging demand, a large part of the PV output cannot be consumed nor stored in time. Trading surplus solar power with the grid seems to be the desirable option, accounting for 93.36% of the total generation. Another subtle distinction is that the average power export from the fleet to grid is around 85 kWh, implying a slight increase of 5.72% based on S1. 
In S3 and S4, the utilization of battery system enriches the choice of energy management strategies. As mentioned previously, the optimal battery capacity in S4 is larger than that in S3 due to the lower costs of second-life batteries. Therefore, S4 has greater capacity and time flexibility for purchasing electricity at low prices in advance. From Figure 13, it can be observed that the stored electricity in the battery has become another source for the charging demand. As indicated in Figure 12, there is an obvious drop in the direct import from grid in S3 and S4. Furthermore, the total amount of power exported from the fleet in S3 and S4 is 49.06% and 134.84% higher than that in S1. In addition, almost all solar generation is still sold directly back to the grid instead of being charged into the battery system to extend the holding time. And although the electricity exchange can be realized in both directions, only the power discharged from storage battery to the van battery exists, because the reverse one requires multiple charging and discharging losses, which is uneconomical.

5.4 Carbon intensity
[bookmark: _Hlk81236547]With the hourly carbon intensity data of the British electricity system in each season [57], the carbon emissions over these 12 scenarios can be obtained. Consistent with Figure 13, the positive quadrants in Figure 14 also indicate the carbon emissions caused by the net import power from the grid. The average daily emissions of S1, S2, S3 and S4 are 201.16 kg, 184.79 kg, 187.30 kg and 201.86 kg, respectively. Therefore, the emission factors per unit mileage of electric vans are 39.61g CO2/km, 36.39 gCO2/km, 36.88 gCO2/km, and 39.75 gCO2/km. The emission of newly registered diesel vans in the European Union reached 158.10CO2/km in 2018 [1]. It can be seen that based on the power generation structure of the Britain, the adoption of electric vans is more conducive to achieving emission reduction goals. In particular, the integration with PV system in S2 cuts down the carbon emissions by 8.13% compared with the basic chargers-only business model S1. Considering the actual site area, the upper limit of the PV system is bounded in this research. If this restriction is relaxed, eg with remote connections, the reduction effect could be more significant with a larger installed capacity. S4 does not, however, present better performance on emissions. This is because in addition to the carbon emission intensity, the total emission levels also depend on the net electricity import. In S4, the electricity that export from the van fleets back to the grid actually still needs to be fully charged at the charging station. And there is more charging demand around 20:00 (see Figure 13), which coincides with the period of high carbon emission intensity in the wholesale market. 

[image: ]
Figure 14. Carbon emissions for one day in different business models

5.5 Usage of chargers
In order to further analyze the role played by FCs and RCs in different business models, the V2G or G2V usage patterns adopted over the illustrative day is displayed in Figure 15. 

[image: ]
Figure 15. Average daily usage of chargers in different business models

In S1 and S2, FCs are mainly responsible for one-way electricity exchange from grid to the fleet. And the occurrence frequency of G2V pattern is basically consistent with the trend of the demand curve (see Figure 8). Additionally, the consumption price and export price in Figure 4 are at a relatively high level around 17:00-20:00, which is designed to relieve the intense pressure on electricity supply. This period is also the main parking time window for vans, which provides price arbitrage opportunities for the charging station aggregator. However, V2G pattern is not favored in these two cases with the adoption rate of 13.86% and 14.56%.
[bookmark: _Hlk48582377]In S3, the integration with battery storage system also affects the role of different types of chargers. Regarding the usage of FCs, the adoption rate of V2G pattern has been enhanced to 20.83%. And as indicated in Figure 12, most of the export power comes from the van batteries themselves. This means that the actual charging demand is greater than the amount of power consumed by the fleet before its arrival. In fact, RCs serve as the supplementary infrastructure to V2G activities. The higher power rating enables them to complete the charging task within a specified time. During the period from 20:00 to 24:00, 53.19% of the G2V connection is implemented by RCs, which is 12.16% higher than that in S1.
The introduction of larger capacity of battery storage system in S4 promotes the installation number of FCs to reach 8, 60% more than S2. By storing back-up power purchased at low prices, more power from the van batteries can be sold to the grid, especially when export prices are at their peak. As for the usage of FCs, the proportion of selecting V2G mode reaches 24.83%, which is 79.08% more than S1. Similarly, the advantages of higher charging speed brought by RCs are also substantial. Its usage frequency reaches 18.17%, which shows an increase of 13.77% compared with S1.

6. [bookmark: _Hlk48724119]Conclusions and policy implications
Regarding the public charging stations for electric vans, a basic and three integrated business models are compared, which integrate solar power generation and new/second-life battery storage system with the basic charging facilities. Considering the uncertainties of electricity tariff and solar generation, the optimal infrastructure investment and operational planning has been formulated as a two-stage stochastic optimization model. Based upon a representative case study of a London, the followings results are concluded:
1. The optimal facility configuration for charging is nonadditive in composition and nonlinear in scale. There are additional benefits in integrating chargers with PV and storage. Overall, in the integrated business models, the charger installations could be increased by up to 17.06%, and the carbon intensity could be reduced by up to 8.13%.
1. Without subsidies, the basic business model can offer a positive investment return only with relatively large fleet size. However, in the integrated business models, the breakeven capacity is reduced from 60 to 40. The return on investment and charger installations could be increased by up to 5.39%.
(ii) With the nondiscriminatory grant annualized as 50 £, the public charging station in the basic business model still suffers losses. A differentiated subsidy policy may be more helpful to achieve a transition from negative to positive return on investment, such as 50 £ for fast chargers and 100 £ for rapid chargers.
(iii) The integration with other facilities makes fast chargers undertake more V2G electricity export. Rapid chargers have the advantage of higher charging speed and mainly play a supporting role for fast chargers, ensuring that the charging task is completed in time. Compared with the basic business model, the V2G pattern adoption rate of fast chargers and the usage frequency of rapid chargers could be increased by up to 52.38% and 2.82% in the integrated business models.
Notwithstanding that many of the parametric assumptions made in the model are subject to variations over time and different local contexts, our results provide following general policy implications:
(i) It is evident that the widespread development of basic charging stations is financially challenging without public subsidies. Improved incentives from central and local governments will help, but these resources are quite likely to be constrained. With the substantial potential to reduce the public spending, the integrated business models should be promoted as a preferred policy option.
(ii) Planning consents for the charging facilities should be encouraged. In practice, it is likely that the major fleet operators of delivery services, or the commercial vehicle manufacturers themselves, will become stakeholders to some extent in these charging facilities. Through vertical integration with delivery operations and the supply chain for second-life EV batteries, further improvements in the project returns can be made. 
(iii) V2G is found to be the major contributor of the revenue stream in the integrated business models. Evidently more attractive export electricity prices could improve the profitability. Indeed the modelling proposed here may be conservative in that respect, since an export tariff is assumed to be offered by a local retailer. If the operations of the facility are undertaken by a market-wide aggregator, there may be greater access to other revenue streams such as reserve, balancing and flexibility services.
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