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Abstract

I quantify alternative sources of risk in currency returns. Firstly, in a joint work with

Mikhail Chernov and Jeremy Graveline, we focus on crash risk. We develop and estimate

an empirical model of currency returns that includes normal shocks with stochastic variance,

jumps up and down in the exchange rate, and jumps in the variance. We identify these

components using daily data on exchange rates and at-the-money implied variances. We find

that crash risk is time-varying. The probability of a jump in the exchange rate, associated

with depreciation (appreciation) of the US dollar, is increasing in the domestic (foreign)

interest rate. The probability of a jump in variance is increasing in the variance. Many

of the jumps in exchange rates are associated with macroeconomic and political news, but

jumps in variance are not. On average, jumps account for 25% of total currency risk, as

measured by the entropy of exchange rate changes, over horizons of one to three months.

Preliminary analysis suggests that jump risk is priced.

Secondly, I quantify the risk-return relationship in the foreign exchange market in cross-

section and across investment horizons by focusing on the role of multiple sources of con-

sumption risk. I estimate a flexible structural model of the joint dynamics of aggregate

consumption, inflation, nominal interest rate, and stochastic variance with cross-equation

restrictions implied by recursive preferences. I identify short-run, long-run, variance con-

sumption risks and inflation risk. I find that the long-run consumption risk plays a promi-

nent role: it carries a Sharpe ratio of 0.66 and contributes the most to the level and spread

of excess returns between high and low interest rate currencies at alternative investment

horizons. The short-run consumption risk has an effect at the horizon of one quarter only,

where it explains at least 26% of the corresponding spread in excess returns.
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Chapter 1

Introduction

This thesis systematically studies the risk-return relationship in the foreign exchange mar-

ket. High average profitability of carry trades (manifestation of the violation of the un-

covered interest rate parity) and apparent variation in the currency risk premium have

stimulated a lot of research in the recent past. A large body of theoretical literature is ded-

icated to design realistic equilibrium models rationalising the forward premium anomaly.

Examples include, but not limited to, models with habits (Heyerdahl-Larsen, 2012; Verdel-

han, 2010), long-run risks (Bansal and Shaliastovich, 2013; Colacito, 2009), disasters (Farhi

and Gabaix, 2008; Gourio, Siemer, and Verdelhan, 2012; Guo, 2007), limited market partic-

ipation (Alvarez, Atkeson, and Kehoe, 2009; Bacchetta and Wincoop, 2010), learning (Yu,

2013), and investor sentiment (Burnside, Han, Hirshleifer, and Wang, 2011; Ilut, 2012).

Additionally, researchers empirically evaluate quantitative success of various macro-based

and return-based factors trying to account for the cross-sectional properties of observed

currency returns, thereby providing a risk-based explanation for high average profitability

of carry trades (e.g., Lustig and Verdelhan, 2007; Lettau, Maggiori, and Weber, 2012).

Understanding the nature of risk in the foreign exchange market is instrumental both for the

theoretical general equilibrium literature and empirical studies. On the one hand, structure

of risk, i.e., assumptions about fundamental shocks, is the necessary part of any theoretical

model. Therefore, direct evidence on types of shocks that matter for currency returns can

serve as a first step towards testing any theory of currency risk premium. Alternatively, the

13
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structure of risk in currency markets sheds light on decomposition of currency risk premium

and helps to interpret findings of empirical literature at a fundamental level. Ultimately, in

the world with multiple sources of risk researchers are interested in measuring currency risk

premiums due to different shocks in isolation, for example, (1) real versus nominal shock,

or (2) normal versus crash risk.

Chapter 2, based on joint work with Mikhail Chernov and Jeremy Graveline, quantifies

normal and crash risk in the distribution of exchange rates. Several authors propose to

seek the origins of currency risk premia in the currencies’ exposure to crash risk (e.g.,

Brunnermeier, Nagel, and Pedersen, 2008). The merit of this explanation critically depends

on metrics associated with crashes, i.e., probabilities and magnitudes of crash events. Our

study contributes to the existing literature by estimating the characteristics of crash risk,

describing the determinants of crash events and documenting when these events occurred

historically.

To characterize crash risk, we develop and estimate an empirical model of exchange rate

evolution that allows for normal and jump risk. The model incorporates a stochastic vari-

ance with jumps as well as upward and downward jumps in the currency price. The primer

accommodates an apparently high kurtosis of the FX implied volatility. The latter captures

mild skewness of currency returns along with the presence of dramatic moves in currency

prices in either direction on a distinct day.

We estimate the model on daily data for foreign exchange rates and at-the-money volatilities

for four currency pairs: the Australian dollar, the British pound, the Swiss franc, and the

Japanese yen versus the US dollar. We document a number of interesting findings: (1) jumps

in currency price and its variance are time-varying: the probability of jump up (down) in the

exchange rate, associated with a depreciation (appreciation) of the US dollar, is positively

related to the US (foreign) interest rate, whereas the probability of a jump in currency

variance is positively controlled by variance itself (2) many jumps in currency price can be

linked to specific macro-economic or political events and announcements, whereas jumps in

variance are associated with uncertainty, market anxiety and unrevealed expectations, (3)

jumps are quantitatively important: on average jumps account for 25% (and can be as high

as 40%) of total currency risk, as measured by the entropy of exchange rate changes over
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horizon of one quarter; (4) contribution of jumps in variance to the total risk increases with

the investment horizon.

Additionally, we use our model to perform a back-of-envelope computation that could sug-

gest whether jump risk is priced in currency markets. To this end, we explore the shape

of the volatility smiles derived under the null of the model. Under the assumption of zero

jump risk premia, the model captures the asymmetry of the volatility smile in the data but

cannot replicate its curvature even when we account for statistical uncertainty. We think

this evidence suggests that jump risk may be priced in the foreign exchange market and

leave a careful investigation of the issue for future research.

As it has become evident in Chapter 2, normal or regular risk is the most prominent com-

ponent of total currency risk regardless of investment horizon. In Chapter 3, I thoroughly

study the origins of normal risk in currency markets through the lens of a structural model.

In particular, I investigate the role of multiple sources of US consumption risk in the cross-

section of currency baskets across alternative investment horizons.

The motivation for my study starts from the following two observations. First, Lustig and

Verdelhan (2007) document that (1) sorting currencies based on their respective interest

rates in baskets forms an interesting cross-section of currency returns and (2) variation

in realized consumption growth is responsible for the cross-section of currency returns at

a fixed investment horizon that corresponds to the decision interval of the representative

agent. Second, even though studying the role of multiple sources of consumption risk on the

cross-section of equity returns is a popular area of interest (Bansal, Dittmar, and Lundblad,

2005; Campbell, Giglio, Polk, and Turley, 2012; Hansen, Heaton, and Li, 2008), there has

been no research yet on the cross-section of currency returns. In a nutshell, my contribution

is in expanding analysis of Lustig and Verdelhan (2007) to alternative investment horizons

and characterizing multiple sources of consumption risk.

To identify multiple sources of consumption risk, I estimate a flexible structural model of

the joint dynamics of aggregate consumption, inflation, nominal interest rate, and stochas-

tic variance with cross-equation restrictions implied by recursive preferences. The model

captures the spirit of the long-run risk models. I employ an important innovation – instead
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of writing down a model of consumption growth as an explicit function of latent states

(e.g., as it is done in Bansal and Yaron, 2004), I model consumption growth jointly with

an asset price in a vector autoregression. In particular, I exploit the fact that a theoretical

equilibrium asset price is a function of unobservable factors of consumption growth. As a

result, I gain flexibility and a possibility to estimate expected consumption growth more

precise than it would be possible otherwise. The cost of these improvements is reflected in

the cross-equation and identifying restrictions that I have to impose in order to guarantee

that the model is internally consistent and to meaningfully interpret consumption risks,

respectively.

I gauge the importance of multiple sources of consumption risk by computing term-structure

of marginal prices and quantities of risk associated with the cross-section of currency baskets

(shock-exposure and shock-price elasticity of Borovička and Hansen, 2011). I find that the

risk that exerts the dominant cumulative impact on consumption growth in the long-run

(long-run consumption risk) plays the most prominent role in the FX market. Firstly,

baskets of high and low interest rate currencies have significantly different exposures to the

risk across horizons from one quarter to ten years. Secondly, the multi-period price of the

risk is economically meaningful and statistically significant (e.g., the one-period average

Sharpe ratio is 0.66). Therefore, there is a non-trivial cross-section of currency risk premia

associated with the long-run consumption risk at short and medium-term horizons.

Inflation risk matters both in the cross-section of currencies and across alternative hori-

zons if consumption growth reacts contemporaneously to the inflation shock. However, the

corresponding cross-section of currency risk premia is less pronounced than one associated

with the long-run consumption risk: the multi-period price of the inflation risk is less than

half of that for the long-run consumption risk. Alternatively, the short-run consumption

risk generates the cross-section of currency risk premia only at a single investment horizon

corresponding to the decision interval of the representative agent (i.e., one quarter in my

study). At multiple horizons, the risk is priced in the economy but currencies are immune

to it. Finally, currencies universally exhibit high sensitivity to the variance risk at horizons

longer than three years, however these risk exposures are associated with small prices of

risk.



Chapter 2

Crash risk in currency returns

2.1 Introduction

The time variation and high magnitude of returns to currency speculation have attracted

a lot of recent attention. Much of the literature has focused on measuring risk premiums,

or expected excess returns, in this market (e.g., Lustig and Verdelhan, 2007). However,

expected returns alone do not tell the whole story. Investors also care about the risks that

they must bear to earn these returns. Therefore, the distribution of risks is an important

ingredient in understanding currency premiums.

A number of papers have suggested that investors in currency markets require high returns

on average as a compensation for crash risk. The merit of this explanation hinges on the

magnitude and probability of large moves in currency markets. Our paper is the first empir-

ical study that systematically quantifies crashes, documents when they occurred historically

and what their determinants were.

It is impossible to characterize crash risk without modelling regular, or normal, risk. This

is because one has to be able to establish whether a large move in the exchange rate takes

place because of a crash, or because the conditional variance of a normal shock is high.

Option-implied volatilities are particularly helpful here because they provide information

0This chapter is based on Chernov, Graveline, and Zviadadze (2012).
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about the market’s view on conditional variance. This is why we develop and estimate a

model that incorporates both types of risks and information from both exchange rates and

implied volatilities.

We establish the relative importance of three key modelling elements. First, it is well-

documented that currency returns are heteroscedastic (e.g., Baillie and Bollerslev, 1989;

Engel and Hamilton, 1990; Engle, Ito, and Lin, 1990; Jorion, 1988; Harvey and Huang,

1991). Casual observation of time-series variation in option-implied exchange rate volatility

also confirms this point. We capture this feature of the data with a standard stochastic

volatility component in our model.

Second, there is also strong empirical evidence that daily changes in exchange rates are not

conditionally Gaussian (as would approximately be the case in a model with only stochastic

volatility). To account for this feature of the data, our model includes jump risks in exchange

rates. We allow the probability of these jumps to be time-varying, in order to capture the

variation in conditional skewness that has been previously documented (e.g., Bakshi, Carr,

and Wu, 2008; Brunnermeier, Nagel, and Pedersen, 2008; Carr and Wu, 2007; Johnson,

2002).

Third, changes in the at-the-money implied volatility of a typical exchange rate exhibit

unconditional skewness of 1 and kurtosis of 10 or more. To accommodate this property,

our model allows for jumps in the variance of Gaussian shocks to exchange rates. The

importance of such jumps for modelling equity returns has been emphasized in Broadie,

Chernov, and Johannes (2007); Duffie, Pan, and Singleton (2000); Eraker, Johannes, and

Polson (2003), among others. To our knowledge, our paper is the first to investigate the

role of jumps in the volatility of exchange rates.

A jump in an exchange rate is qualitatively different from a jump in its variance. Almost

by definition, large jumps are rare events. Therefore, when there is a direct jump in the

exchange rate, one doesn’t necessarily expect there to be many subsequent jumps in the

near future. By contrast, when there is a jump in the variance of the Gaussian shock to

an exchange rate, one expects there to be many large subsequent moves in the exchange

rate because of the high new level of variance. We use our model and empirical analysis to

determine whether these qualitative distinctions lead to materially quantitative differences.
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We use daily joint data for exchange rates and implied volatilities from 1986 to 2010 (the

options data start in 1994) on four spot exchange rates: Australian dollar, Swiss franc,

British pound, and Japanese yen. Crashes are rare and volatility is persistent, so it is

important to use a long time span of data. Short samples are likely to either over- or

under-represent jumps and periods of high or low volatility leading to biased estimates of

the required probabilities.

We employ Bayesian MCMC to estimate candidate models. One of the key advantages

of this approach is that it provides estimates of the conditional distribution of currency

returns, as well as estimates of the realized shocks. This feature allows us to link large

shocks, or jumps, to important macro-finance events and thereby illuminate the potential

economic channels that are responsible for crash risk in currencies.

Our statistical tests strongly favour both jumps in exchange rates and in their variances.

This conclusion is similar to the one in the equity literature. However, this is where the

similarity ends. In contrast to equity models that favour one Poisson (counting) process

controlling the arrival rate of all jumps, we find three such processes in FX. The three

types of jumps arise via different mechanisms. The arrival rate of a jump in the variance of

currency returns is positively related to the variance itself. Thus, this component belongs

to the class of self-exciting processes. The probability of a jump up in the exchange rate,

which corresponds to a depreciation of the US dollar, is positively related to the domestic

(US) interest rate. The probability of a jump down, which corresponds to an appreciation

of the US dollar, is positively related to the foreign interest rate.

Although jumps in currencies and in variance are alternative channels for large currency

returns, we find that economically they are quite distinct. We can connect most of the jumps

in FX to important macro or political announcements. In contrast, jumps in variance cluster

at the moments of high uncertainty in the markets, which are captured by comments on

current events, political speculation and overall anxiety about upcoming events.

We use entropy (a generalized measure of variance) of changes in an exchange rate to

measure the amount of risk associated with currency positions and to decompose this risk

into the contributions from different sources of shocks (Alvarez and Jermann, 2005; Backus,
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Chernov, and Martin, 2011). Appropriately scaled entropy is equal to the variance of

an exchange rate return if it is normally distributed, but otherwise includes high-order

cumulants. Therefore, entropy is a convenient measure that captures both normal and tail

risk in one number. We find that, depending on the currency, the time-series average of

the joint contribution of the three types of jumps can be as high as 25% of the total risk

and on individual days this contribution can be up to 40%. Jumps in variance contribute

about a third to the average contribution and can be as high as 15% of the total risk on

individual days. Also, the contribution of jumps in variance to the total risk increases with

investment horizon.

Given the large contribution of jumps to the overall risk, it is natural to ask whether the

jump risk is priced. The full answer to this question requires an explicit model of the pricing

kernel and the use of assets, such as out-of-the-money options, that are particularly sensitive

to jumps for estimation. While such analysis is outside of the scope of this paper, we carry

out a limited option valuation exercise. We select representative implied volatility smiles for

currencies with positive and negative interest rate differential. Such smiles exhibit positive

and negative skewness, respectively, in the data. Our model can replicate the same sign of

skewness even when we assume zero premiums for jump risk. However, these theoretical

smiles cannot match the curvature of the smile observed in the data, even after accounting

for statistical uncertainty. In our view, this initial evidence suggests that jump risk may be

priced.

Related literature

We limit our discussion of related literature to papers that highlight the importance of

jumps for understanding the properties of exchange rate returns. One exception are the

works of Brandt and Santa-Clara (2002) and Graveline (2006). These papers are early

antecedents of our paper in terms of methods and research questions. These authors also

estimate a time-series model of exchange rates using the time-series of FX and implied

variance. However, they do not allow for jumps.

Our paper is related to recent empirical papers that investigate whether the high currency
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returns can be explained as compensation for jump, or crash, risk. Brunnermeier, Nagel,

and Pedersen (2008) provide evidence consistent with a hypothesis that large exchange

rate moves are related to funding constraints of speculators enagaged in carry trades. In

particular, they relate the sign and magnitude of skewness of various exchange rates relative

to the USD to those of the respective interest rate differentials. Jurek (2009) analyzes the

returns on carry trade portfolios in which the exposure to currency crashes is hedged with

options. He concludes that exposure to currency crashes account for 15% to 35% of the

excess returns on unhedged carry trade portfolios. Burnside, Eichenbaum, Kleshchelski,

and Rebelo (2011) investigate whether carry trade returns reflect a “peso problem” (i.e., a

low probability event that did not occur in the sample). They use carry returns hedged with

options to argue that any such peso event must be a modest negative return on the carry

trade combined with an extremely large value of the stochastic discount factor (i.e., the

marginal utility of a representative investor must be very high in the, as yet, unobserved

peso state). Jordà and Taylor (2012) propose to manage the risk of carry positions by

conditioning on macro information instead of options, but the resulting strategy still yields

a very high Sharpe ratio. The common thread in these papers is that they provide indirect

evidence on the magnitude of jump risk. Our paper aims to complement this previous work

with a formal statistical model and analysis.

Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan (2012) use an explicit model of exchange

rates that allows for both normal and jump risks. Under the model assumptions, short-

dated at-the-money options are not exposed to crash risk. Therefore, hedged carry trades

are exposed to normal risk alone. In contrast, carry trades are exposed to both types of

risk. This property allows the authors to quantify the contribution of jump risk by observing

returns on hedged and unhedged portfolios. However, similar to the aforementioned papers,

the authors do not test the assumed model directly.

Our paper is also related to the option pricing literature, which has focused on modeling the

risk-adjusted (risk-neutral) distribution of exchange rates. By construction, these papers

do not consider risk premiums. However, the shock structures under the risk-adjusted

and actual (true) distributions are usually modelled to be similar. Bates (1996) considers

option prices on the Deutsche Mark and is the earliest paper that argues for the inclusion of
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jumps in currencies. He considers a single normally distributed jump in FX with a constant

probability. Carr and Wu (2007) distinguish jumps up and down in FX and also allow

for time-varying jump probabilities controlled by unobservable states. Bakshi, Carr, and

Wu (2008) extend the Carr-Wu model to a triangle of currencies (GBP, JPY, and USD)

and estimate it using 2.25 years of data on exchange rates and option prices. Our analysis

provides additional economic intuition, as time variation in jump probabilities are driven

by observable interest rates. None of these papers consider jumps in variance or estimate

jump times and sizes.

There is also an important literature that attempts to explain the behaviour of exchange

rates in macro-founded equilibrium.1 Our paper is silent about the prices of risk, but it

may have implications for how to best model the fundamentals in an equilibrium setting.

Gourio, Siemer, and Verdelhan (2012) and Guo (2007) propose production-based models

with recursive preferences. Productivity is allowed to experience a disastrous decline with

time-varying probability. Farhi and Gabaix (2008) consider a pure exchange economy with

additive preferences and a similar assumption of time-varying probability of a disaster in

consumption. Disasters are modelled as jumps down, and all three papers allow unobserv-

able processes to drive disaster probabilities. Exchange rates inherit these properties. Our

results suggest that it may also be important to allow for jumps in the volatility of these

processes and for the process driving probability of jumps in consumption to be related to

interest rates in equilibrium.

Our results speak also to the frictions-based equilibrium model of Plantin and Shin (2011).

These authors focus on endogenously generated dynamics of a carry trade. A carry trade

gets started in a high-liquidity environment, such as accommodative monetary policy. It is

self-enforcing because of the speculators’ belief that others will join the trade. The trade

crashes when the speculators hit funding constraints. As a result, extended periods of

slow appreciations of a high interest rate currency are randomly interrupted by endogenous

crashes. Because our analysis is implemented at the daily frequency, we are able to capture,

in reduced form, related phenomena.

1Examples include, but not limited to Bekaert (1996); Backus, Gavazzoni, Telmer, and Zin (2010); Bansal
and Shaliastovich (2013); Colacito (2009); Colacito and Croce (2010).
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2.2 Preliminaries

This section motivates our analysis and highlights properties of the data that our model is

designed to capture.

2.2.1 Excess returns

Let rt be the continuously-compounded domestic (e.g., USD) interest rate, r̃t be the anal-

ogous foreign (e.g., GBP) interest rate, and St be the exchange rate expressed as units

of domestic currency per unit of foreign currency. Then borrowed exp(−rt) units of the

domestic currency buys 1/St · exp(−rt) units of the foreign currency at time t, which grows

at the foreign risk free interest rate to 1/St · exp(r̃t − rt) units at time t + 1, and can be

exchanged for St+1/St · exp(r̃t−rt). Then the amount borrowed in domestic currency (with

interest) can be repaid. Thus, the log excess return to investing in the foreign currency is

yt+1 = (st+1 − st)− (rt − r̃t),

where st = lnSt. In this paper, we will always treat USD as the domestic currency.

Figures 2.1 - 2.4 display the time series of log excess returns, yt+1 (panel (a)), and im-

plied volatilities (panel (b)) for the currencies we consider in this paper. We have selected

four currencies - Australian Dollar (AUD), Swiss Franc (CHF), British Pound (GBP), and

Japanese Yen (JPY) based on the availability of daily data, and cross-sectional and time-

series variation in the interest rate differential. We use one-month LIBOR to proxy for

interest rates. Using one-month rather than overnight rates implicitly assumes a flat term

structure at the very short end of the LIBOR curve and allows us to abstract from potential

high-frequency idiosyncratic effects associated with fixed-income markets. Because we treat

USD as a domestic currency, the movements up correspond to depreciation in the USD.
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2.2.2 Properties of excess returns

We provide summary statistics of daily log excess returns and changes in the one-month

at-the-money implied volatility in Table 2.1. Means are close to zero at daily frequency.

Therefore, these summary statistics inform us primarily about the properties of shocks.

All currencies have volatility of about 10% per year. There is evidence of substantial

kurtosis (AUD and JPY are the most notable in this regard), which is suggestive of non-

normalities. Skewness of all currencies is mild. It turns out that this is a manifestation

of time-varying and sign-switching conditional skewness. We produce a rough estimate of

conditional skewness by computing a six-month rolling window. The time-series of these

estimates are displayed in panels (a) of Figures 2.1 - 2.4. Depending on the currency,

conditional skewness ranges from -2 to 2. Thus, excess returns are not only fat-tailed, but

also asymmetric with the degree of asymmetry changing over time.

The implied volatility is itself quite variable at about 60% per year (the number in the table

multiplied by
√
252) and highly non-normal with skewness and kurtosis much higher than

that of the currency returns themselves. The implied volatility from the short-dated options

should be very close to the true volatility of exchange rates (which is unobservable) and

therefore its properties provide insight into the features that a realistic model of variance

must require.

As a reference, we report the same summary statistics for S&P 500 whose risks were thor-

oughly studied in the literature. The index returns are more volatile and exhibit much

stronger departures from normality as compared to currencies. In particular, negative un-

conditional skewness is evident (in fact, a measure of conditional skewness becomes positive

rarely). In contrast, changes in VIX, a cousin of implied variance, display weaker non-

normalities than currencies. These statistics suggest that a model of currency risks could

be substantively different from that of equity risks even though one clearly has to use similar

building blocks.
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2.2.3 Risks and expected excess returns

We can generically represent excess returns as:

yt+1 = Et(yt+1) + shocks. (2.2.1)

Most of the research is focused on conditional expected excess returns Et(yt+1). For example,

if currencies do not carry a risk premium, then uncovered interest rate parity (UIP) holds

and Et(yt+1) = 0. However, Bilson (1981), Fama (1984), and Tryon (1979) establish that

the regression

st+1 − st = a1 + a2(ft − st) + shocks, (2.2.2)

where ft is is the log of the one-month forward exchange rate, typically yields estimates of

a2 of approximately −2. If covered interest rate parity (i.e., no-arbitrage) holds, then the

log forward exchange rate is given by ft = st+ rt− r̃t, therefore this result is equivalent to:

yt+1 = a1 + (a2 − 1)(rt − r̃t) + shocks, (2.2.3)

with a slope coefficient of about −3. Subsequent research has extended the specification of

risk premiums Et(yt+1) (e.g., Beber, Breedon, and Buraschi, 2010; Bekaert and Hodrick,

1992; Lustig, Roussanov, and Verdelhan, 2011; Menkhoff, Sarno, Schmeling, and Schrimpf,

2011, among others).

Asset pricing theory relates expected excess returns to compensation for bearing risks, that

is, it relates “Et (yt+1)” to the “shocks” in equation (2.2.1). In the language of pricing

kernels, expected excess returns are determined by the covariation of currency risks with a

pricing kernel. We don’t empirically test any specific asset pricing theories (pricing kernels)

in this paper, but a thorough analysis of the shocks is a necessary ingredient for full testing

of any dynamic asset pricing model. To illustrate this point, we provide an example of

two theories that can lead to identical expected excess returns despite the different shock

structures (Appendix A.1.1). In this situation, the distribution of shocks is the only element

that can distinguish one theory from the other.

To measure shocks, we need to model conditional means as well. We use a simple speci-
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fication that encompasses the UIP regressions result by allowing for linear dependence on

the domestic and foreign interest rates, and includes variance of FX returns as an extra

variable.2 Because we are working with daily returns, the magnitude of the drift term is

much smaller than the higher order moments and so any omitted variables that might affect

expected returns are not likely to introduce much bias in our results. Verdelhan (2011) pro-

vides direct evidence supporting this conjecture. As such, to avoid overfitting, we did not

include any other variables in the drift of the exchange rate.3 While our focus is on careful

modelling of risks of currencies themselves, our conclusions should have implications for

modelling of economic channels leading to the observed risk premiums. As highlighted by

our examples in Appendix A.1.1, successful equilibrium models should be able to replicate

not only the measured risk premiums, but the distribution of currency shocks as well. To

this end, our model can be used to construct portfolios that isolate jump risks and serve as

inputs to traditional factor models that examine the pricing of these risks. Moreover, our

extensive analysis of the shocks to currency returns provides useful guidance for specifying

shocks to fundamentals in equilibrium models.

2.3 Empirical model

We start by presenting our empirical model in Section 2.3.1. Section 2.3.2 discusses how we

arrived at the assumed functional forms.

2.3.1 Currency dynamics

In this paper we model each exchange rate in isolation from others. A large fraction of cur-

rency analysis, such as UIP regressions or equilibrium modelling is conducted on a currency-

by-currency basis. This approach is able to identify the normal and non-normal shocks, and

2This addition can be supported in various theoretical settings (Bacchetta and van Wincoop, 2006;
Brennan and Xia, 2006). Empirical work with such a term includes Bekaert and Hodrick (1993), Bekaert
(1995), Brandt and Santa-Clara (2002), Domowitz and Hakkio (1985), Lustig, Roussanov, and Verdelhan
(2011), and Menkhoff, Sarno, Schmeling, and Schrimpf (2011).

3A recent literature suggests improving inference about conditional mean of excess returns by considering
portfolios of currencies (e.g., Barroso and Santa-Clara, 2011; Lustig, Roussanov, and Verdelhan, 2011; Lustig
and Verdelhan, 2007; Menkhoff, Sarno, Schmeling, and Schrimpf, 2011).
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how they should be modelled. However, we cannot say which fraction of shocks can be ex-

plained by common variation in the exchange rates, and which fraction is country-pair

specific. The important question of modelling the joint distribution of currency risks goes

hand-in-hand with modelling of the pricing kernel and we leave this investigation for future

research.4

We model log excess FX returns as

yt+1 ≡ (st+1 − st)− (rt − r̃t) = µt + v
1/2
t wst+1 + zut+1 − zdt+1 , (2.3.1)

where wst+1 is a standard Gaussian shock (i.e., zero mean and unit variance), zut+1 is a jump

up (i.e., depreciation of USD) and the negative of zdt+1 is a jump down (i.e., appreciation

of USD). The conditional spot variance is vt and the jump intensities of zut+1 and zdt+1 are

hut and hdt respectively.5 The discussion of µt is postponed until we have further described

these three shocks.

The conditional spot variance vt is assumed to follow a mean-reverting “square-root” pro-

cess,

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + zvt+1 , (2.3.2)

which itself can jump with intensity hvt .
6 The shocks to excess returns ws and to conditional

spot variance wv have a correlation coefficient corr (ws, wv) = ρ. Finally, to ensure positivity

of the variance when jumps are present, we only allow for upward jumps so that zvt+1 has

non-negative support.

4Lustig, Roussanov, and Verdelhan (2011), Sarno, Schneider, and Wagner (2012) perform such modelling
allowing normal shocks only. Bakshi, Carr, and Wu (2008) model a triangle of currencies (GBP, JPY, and
USD) allowing for jumps in FX.

5This specification can be viewed as a discrete-time model or as a Euler discretization of a continuous-
time model (see, e.g., Platen and Rebolledo, 1985 for semimartingales). In any case, a discrete-time model is
required at the estimation stage, and which is why we omit explicit continuous-time formulation. Formally,
all shocks, even the Gaussian variables, are jumps in discrete time. We model small jumps via Gaussian
shocks and large jumps via the compound Poisson process. We distinguish the small and the large jumps
by imposing the respective priors at the estimation stage. We apply the term jump to the large component
only for the ease of referral.

6In continuous time, the Feller condition σ2
v < 2v(1− ν) ensures that the variance stays positive if there

are no jumps. A formal modelling of this process in discrete time is achieved via a Poisson mixture of
Gamma distributions (e.g., Gourieroux and Jasiak, 2006; Le, Singleton, and Dai, 2010). We use a direct
discretization of the continuous-time counterpart so that the model parameters can be easily interpreted.
We ensure that the variance stays positive at the estimation stage by a careful design of the simulation
strategy.
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The jump arrival rate is controlled by a Poisson distribution. The assumed jump intensities

imply that the number of jumps takes non-negative integer values j with probabilities

Prob(jkt+1 = j) = e−h
k
t (hkt )

j/j! , k = u, d, v . (2.3.3)

We allow all of the jump intensities to depend on the domestic and foreign interest rates,

as well as on the conditional spot variance,

hkt = hk0 + hkrrt + h̃kr r̃t + hkvvt , k = u, d, v . (2.3.4)

For a given number of jumps per period, the magnitude of a jump size is assumed to be

random with a Gamma distribution,

zkt |j ∼ Gamma(j, θk) , k = u, d, v . (2.3.5)

Intuitively, because we consider daily data, a Bernoulli distribution is a very good approxi-

mation to our model as it is reasonable to assume no more than one jump per day. Then, the

probability of a jump is 1− e−h
k
t ≈ hkt and the distribution of the jump size is exponential

with mean parameter θk.
7

We complement our data on exchange rate rates with variances implied from option prices.

In this respect we follow the rich options literature that highlights the importance of us-

ing information in options for model estimation (e.g., see Aı̈t-Sahalia and Kimmel, 2007;

Brandt and Santa-Clara, 2002; Chernov and Ghysels, 2000; Jones, 2003; Pan, 2002; Pas-

torello, Renault, and Touzi, 2000). Many authors use implied variance in empirical work

by interpreting it as a very accurate approximation of the risk-adjusted expectation of the

average future variance realized over an option’s lifetime. This is certainly true for models

with stochastic volatility only. If this is the case, one can derive αiv and βiv as explicit func-

tions of risk-adjusted parameters (e.g., Chernov, 2007, and Jones, 2003). The one-for-one

relationship between implied variance and risk-adjusted expected variance may break down

7Our choice of the variance jump size distribution is frequently used when modelling variance to ensure
its positivity as discussed above. The model of variance is also capable of generating quite rapid variance
declines after jumps. A jump leads to a large deviation from the long-run mean v, and mean-reversion
controlled by parameter ν ensures that the variance is pulled back.



29

in the presence of jumps. For example, Chernov (2007) has to assume that the risk-adjusted

mean of jumps in FX is equal to zero to retain the simple relationship. Importance of care-

ful accounting for jumps is manifested more clearly in the literature on model-free implied

variance, such as VIX for S&P 500, where analytic expressions are feasible. Martin (2011)

shows that, in the presence of jumps, VIX is equal to risk-adjusted expected variance plus

additional terms reflecting the higher order risk-adjusted cumulants of returns.

We treat the Black-Scholes implied variance of a short-term (one-month) at-the-money

option, IVt, as a noisy and biased observation of the conditional spot variance vt. Such

a view allows us to avoid the aforementioned difficulties in explicit connection between

implied variance and risk-adjusted expected future variance. The cost of such approach is

our inability to estimate risk-adjusted parameters of the model. Specifically,

IVt = αiv + βivvt + σivvt
√
λt εt , (2.3.6)

where IVt is expressed in daily terms, εt is N (0, 1) and λt is IG(ν/2, ν/2), so the product
√
λtεt is tν−distributed (Cheung, 2008; Jacquier, Polson, and Rossi, 2004).8 We have

considered a version of (2.3.6) with non-zero loadings on rt and r̃t, but this specification

did not find empirical support.9

The model implies that expected log excess return is equal to

Et [yt+1] = µt + hut θu︸︷︷︸
Et[zut+1]

− hdt θd︸︷︷︸
Et[zdt+1]

. (2.3.7)

As discussed in the previous section, we assume that

µt = µ0 + µrrt + µ̃r r̃t + µvvt. (2.3.8)

8Jones (2003) makes a strong case for heteroscedastic measurement errors in implied variance. His
specification sets λt = 1. Cheung (2008) generalizes the specification to the Student t−error. We tried using
a normal error with volatility σiv, a normal error with volatility σivvt, and the Student t−error described
above. We find that heavy-tailed t3 works very well.

9The error specification in (2.3.6) is very flexible. Therefore, it could be the case that the contribution
of interest rates to the variation in implied variance cannot be empirically distinguished from the error, if
the former is reasonably small.
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The resulting expected excess return is

Et [yt+1] = µ∗0 + µ∗rrt + µ̃∗r r̃t + µ∗vvt (2.3.9)

where

µ∗0 = µ0 + hu0θu − hd0θd , (2.3.10a)

µ∗r = µr + hur θu − hdrθd , (2.3.10b)

µ̃∗r = µ̃r + h̃ur θu − h̃drθd , (2.3.10c)

µ∗v = µv + huvθu − hdvθd . (2.3.10d)

Thus, our risk premium encompasses the UIP regressions which set

µ̃∗r = −µ∗r , (2.3.11)

µ∗v = 0 . (2.3.12)

We conclude with a discussion of our approach to modelling interest rates. We do not

need an explicit model of interest rates to estimate our model of FX excess returns if we

are willing to assume that one-day rt and r̃t can be reasonably proxied with short-term

yields. We view this feature as a strength of our approach because explicitly modelling

the behaviour of spot interest rates entails a massive effort. There is a separate literature

dedicated to this task and the state-of-the-art models rely on five factors for capturing the

interest rate dynamics. These studies are typically conducted with monthly or quarterly

data, so they do not take into account the higher-frequency movements in interest rates

which are susceptible to jumps themselves (e.g., Johannes, 2004; Piazzesi, 2005). Moreover,

interest rates and currencies have low conditional correlation and variability in interest rates

is much smaller than that in currencies. In summary, elaborate modelling and estimation

of interest rates does not appear to be worthwhile in our case.

Nonetheless, we use the estimated model to compute some useful objects (expectations

of future variance, or expected excess returns over multiple horizon) that depend on the

distribution of interest rates. In order to obtain reasonable quantities, we assume the
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simplest possible model for the interest rates:

rt+1 = (1− br)ar + brrt + σrr
1/2
t wrt+1, (2.3.13a)

r̃t+1 = (1− b̃r)ãr + b̃rrt + σ̃rr̃
1/2
t w̃rt+1. (2.3.13b)

As in the case with the variance process, a square root process for interest rates is subject

to caveats in discrete time. We calibrate the models to match the mean, variance and serial

correlation of the respective observed short-term interest rates. Our computations with

reasonable variation in parameters confirm our intuition that they have minimal impact on

the role of normal and non-normal currency risks.

2.3.2 Qualitative features of the model

In this section we explain how we arrived at the specified functional form of the model.

We evaluated too many models to provide a detailed account of our analysis, so we briefly

summarize the results that led us to the above specification. Our initial specifications

were motivated by the well-developed literature on equity returns (Andersen, Benzoni, and

Lund, 2002; Chernov, Gallant, Ghysels, and Tauchen, 2003; Eraker, Johannes, and Polson,

2003; Eraker, 2004; Jones, 2003) and some of the few models of currencies (Bates, 1996;

Johnson, 2002; Jorion, 1988; Maheu and McCurdy, 2008). The salient features of equity

data are presence of substantial moves up and down and a pronounced negative skewness in

the return distribution. Therefore, jumps in equity returns are often modelled via a single

compound Poisson process with a normally distributed size of non-zero mean. However,

in contrast to equity returns, currency returns have very mild skewness over long samples,

which suggests a zero-mean normal distribution for jump sizes.

Further, Bates (1996), Campa, Chang, and Reider (1998), Carr andWu (2007), and Johnson

(2002) emphasize the time-varying and sign-switching nature of the risk-adjusted skewness

of exchange rates. The key to modelling this feature successfully is to allow the conditional

expected jump to vary over time. A single jump process with a zero mean jump size

implies a zero conditional expected jump. Two jump processes have a potential to generate

the requisite variation either via time-varying jump intensities, or time-varying jump size
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distributions, or both. We do not explore time-varying jump means as such specifications do

not allow for tractable option valuation in the affine framework, and we eventually want our

model to be used for option analysis. As can be seen from the expression for the currency

risk premium (2.3.7), the conditional jump expectation is hut θu − hdt θd, and is capable of

producing the needed variation. We have also considered normally distributed jump sizes

in excess returns with means of the jump size distribution having opposing signs. However,

because normal distributions have infinite support, it was hard to distinguish empirically

the down and up components. The exponential distribution does not have this issue because

the support is on the positive line.

Another interesting feature of our specification is that we allow not only for two different

Poisson processes in currency returns, but also for a third one in the variance. Our starting

point was again in the equity literature where all jumps in returns and variance are guided

by the same (or at least correlated) Poisson processes. We found that the model with

correlated Poisson processes fitted the data poorly.

2.4 Empirical approach

We employ the Bayesian MCMC approach to estimate the model. This method was suc-

cessfully implemented in many applications (see Johannes and Polson, 2009 for a review).

For our purposes, the key advantage of this approach over other methodologies is that es-

timation of unobserved variance and jump times and sizes is a natural by-product of the

procedure. Appendix A.1.2 describes all the details of the implementation.

It is worth pointing out how we distinguish jumps and normal shocks in the model. Formally,

all shocks are discontinuous in our discrete-time formulation. We think of jumps as relatively

infrequent events with relatively large variance. We use priors on jump arrival and jump

size parameters to express this view.

It proved to be extremely fruitful to use option implied variances in our estimation. Ignoring

information in option prices made it very hard to settle on a particular model. Parameters

were estimated imprecisely and the algorithm had poor convergence properties – both are
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manifestations of the data being not sufficiently informative about the model. We had a

similar experience when estimating the most general model, even when using the options

data. Complicated dependencies of jump intensities on state variables, and the sheer number

of separate Poisson processes was too much for the available data.

As such, we pursue the following model selection strategy. First, we treat implied vari-

ances as observed spot variances and estimate the model of variance (2.3.2). At this stage

we select the best model by checking the significance of parameters on the basis of both

confidence intervals and Bayes odds ratios. Specifically, the parameters of concern are the

ones controlling the jump intensity in (2.3.4) for k = v. It turns out that, regardless of

the currency, only the loading on variance is significant. In other words, the probability of

jumps in the variance is affected by the variance itself. Thus, jumps in the variance are

self-exciting (Hawkes, 1971).10 Pinning down the model of variance is an extremely useful

step in our estimation procedure.

Second, we use the lessons from the estimation exercise on the basis of implied variance

alone to guide us in a formal search in the context of our full model. That is, we take the

model (2.3.1), (2.3.2) and combine it with equation (2.3.6) that recognizes implied variances

as noisy observations of the spot variance. As a benchmark, we estimate the stochastic

variance model with no jumps. Next, we estimate a model with jumps in variance but no

jumps in exchange rates (hut = hdt = 0). We refer to this model as stochastic variance with

jumps.

Finally, we allow for the full model with jumps in both exchange rates and variance. Here,

we focus on the significance of the parameters controlling the jump intensities in (2.3.4) for

k = u and d. We are not reporting all the details here, but we find that h̃ur , h
u
v , h

d
r and hdv

are insignificant. Thus, the probability of jumps up in the exchange rate is driven by the

domestic rates only, and the probability of jumps down in the exchange rate is driven by the

foreign rate only. We also test if some interesting parameters, or combinations of parameters,

are equal to zero. First, we can test the UIP regression restrictions on the risk premiums

in Eq. (2.3.11) (whether interest rates affect the risk premium as a differential) and Eq.

10The recent literature on equity returns also finds support for self-exciting jumps. See, for example,
Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2011); Carr and Wu (2011); Nowotny (2011); Santa-Clara and Yan
(2010).
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(2.3.12) (whether the variance affects the risk premium). As we noted earlier, the behaviour

of the FX skewness is dramatically affected by expected effect of jumps, which is equal to

hut θu − hdt θd. Here we are interested in testing whether θu = θd = θ, hu0 = hd0 = h0, and

hur = h̃dr = hr. These hypotheses are interesting because if they cannot be jointly rejected

then expected jump would be equal to θhr(rt − r̃t). Thus, the excess return asymmetries

will be directly driven by the interest rate differential as noted in Brunnermeier, Nagel, and

Pedersen (2008). The final version of this model that incorporates all the unrejected null

hypotheses is referred to as the preferred.

We implement a series of informal diagnostics and specification tests to establish the pre-

ferred model. The diagnostics test the null hypothesis that the shocks to the observable

excess return, ws, and implied variance, ε, should be normal under the null of a given

model. We can construct the posterior distribution of these shocks and evaluate how they

change from model to model and whether they are normal. Appendix A.1.3 describes the

procedure.

One has to exhibit caution when interpreting the evidence on normality of ε. The variance

of the error term in the implied variance equation (2.3.6), σ2ivv
2
t λt is very flexible. If a

model is misspecified, λt will adjust so that the ε is close to a normal variable. Therefore,

diagnostics of ε are not enough. We should be tracking the size of the variance of the

error term. A better specified model should have smaller variance. We keep track of the

time-series average of this variance – which we refer to as IVvar – and report its posterior

distribution.

Bayes odds ratios offer a formal specification test of the models. The test produces a number

that measures the relative odds of two models given the data (the posterior distribution of

the null model is in the denominator of the ratio). Following Kass and Raftery (1995), we

interpret a log odds ratio that is greater than 3 as strong evidence against the null. Odds

ratios do not necessarily select more complex models because the ratios contain a penalty

for using more parameters (so-called automatic Occam’s razor). Appendix A.1.4 details the

computations.
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2.5 Results

We start by highlighting statistical properties of the estimated models. Next, we study

economic implications.

2.5.1 Statistical properties of currency risks

Tables 2.2 - 2.5 report the parameter estimates and Tables 2.6 - 2.9 report the corresponding

model diagnostics. Table 2.10 displays the results of specification tests on the basis of Bayes

odds ratios. Table 2.11 summarises parameters of the calibrated interest rate processes.

The results exhibit a lot of similarities across the different currencies. As we move from

models with stochastic variance to stochastic variance with jumps, we observe a change

in two key parameters: both the persistence ν of variance and the long-run mean of its

conditionally normal component v decline. Taking AUD as an example, ν declines from

0.9943 to 0.9855. This seemingly small change translates into drop in the half-life of the

conditionally normal component, log 2/(1 − ν), from 122 to 48 days. The high persistence

of variance in the model without jumps is a sign of misspecification. Variance has to take

high values occasionally to generate the observed exchange rates in the data. In the absence

of jumps, variance builds up to the high values gradually via the high persistent channel.

Additionally, in the case of GBP only, the volatility of variance σv declines significantly

from 0.0321 to 0.0272. High σv helps the misspecified model with stochastic variance in

generating high values of variance. The diagnostics support this interpretation. IV var

drops by 50% across all currencies; this change is statistically significant. As expected,

diagnostics for ε show that it is close to a normal variable for both models because of the

flexibility in λt. Bayes odds ratios strongly favour stochastic variance with jumps.

Continuing with AUD, its volatility (
√
v) declines from 0.70% to 0.53% per day (11.19% to

8.43% per year). This happens because the total variance has contributions from the regular

and jump components in the model with stochastic variance with jumps. When there are

no jumps in FX, the long-run variance is equal to vJ = [(1− ν)v+hv0θv]/[1− ν −hvvθv]. See
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Appendix A.1.5 for more details. This expression produces the average volatility of 0.65%,

much closer to the figure in the model with stochastic variance.

To aid in interpreting the parameters controlling jumps in variance, consider the impact of

a jump in variance. Suppose the current variance is at its long-run mean and the variance

jumps by the average amount θv. Then in the case of AUD, the resulting volatility will

move from 0.65% to (vJ + θv)
1/2 = 0.90%, a nearly 40% increase in volatility (this increase

ranges from 20% to 40% for the different currencies). The average jump intensity is equal

to hv0 + hvvvJ = 0.0053 jumps per day, or 1.34 per year (this number ranges from 1.34 to

2.61 for the the different currencies). Jumps in variance are self-exciting, so that a jump

increases the likelihood of another jump. When the variance jumps by θv, intensity changes

to 1.71 for AUD (the range is from 1.71 to 3.41 for all the currencies).

Also note that ρ, the “leverage effect,” has the same sign as the average interest rate

differential. It is positive for JPY and CHF, and negative for AUD and GBP. This result is

consistent with the analysis in Brunnermeier, Nagel, and Pedersen (2008) and the common

wisdom among market participants that investors who are long carry are essentially short

volatility. For example, consider the position of a carry trade investor who borrows money

in USD and invests in AUD. This investor can loose money when the AUD depreciates

against the USD. We estimate that ρ is negative for this currency pair, so the volatility of

this exchange rate tends to increase during times when the AUD depreciates.

The preferred version of the full model is the one with all of the aforementioned restrictions

imposed (θu = θd = θ, hu0 = hd0 = h0, and h
u
r = h̃dr = hr). That is, the size of the jumps in

FX up and down are symmetric and their intensities have numerically identical functional

form (but they depend on different interest rates). As a result, the overall structure of jump

arrivals differs from the one used in popular models of S&P 500 returns, where jumps in

variance and the index are simultaneous.

Parameters reflecting the average jump size have a different interpretation as compared to

jump in variance. The latter is a jump in the level of the variable, while the former is the

jump in return. Therefore, it is scale-free: it is not daily or annual, it reflects by how much

the return changes at the moment of the jump. Thus, on average, AUD returns increase
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(decline) by 1.69% when there is a jump up (down). Average intensities of down and up

jumps are similar to each other and to those of variances for a given currency: they range

from 0.87 to 3.35 jumps per year (we use sample averages of interest rates to compute

average hut and hdt ).

The diagnostics of residuals ws indicate that the major improvement in moving from

stochastic variance with jumps to the preferred model comes from a statistically signifi-

cant drop in kurtosis from roughly 4 to 3.5 across all currencies. The absolute value of

skewness of w experiences a significant drop for all currencies except for GBP, where it was

insignificantly different from zero in the model with stochastic variance with jumps already.

Serial correlation is slightly negative for all currencies except for GBP (where it is zero in

the model with stochastic variance with jumps already), and the change from one model

to another is insignificant. IV var does not change appreciably because we did not change

our model for variance. Bayes odds ratios strongly favor the preferred model. In summary,

the preferred is clearly a superior model, but there are some residual non-normalities left

in the fitted shocks to exchange rates. We leave improvements to future research.

The expected excess return in (2.3.9) can be simplified for the preferred model to

Et(yt+1) = µ0 + (µr + hrθ)rt + (µ̃r − hrθ)r̃t + µvvt. (2.5.1)

Thus, by testing if µr = −µ̃r and µv = 0, we test the UIP regression specification (2.3.11)

- (2.3.12) of currency excess returns across all three models. For all currency pairs, we

cannot reject that µr = −µ̃r at the conventional significance levels. Moreover, µr ≈ −3

for all currencies that is consistent with our earlier discussion of UIP regression results. In

addition, the loading on the variance µv is significantly negative in all currencies except for

JPY which has a significantly positive estimate. The tiny serial correlation of the residuals

ws suggests that this model is adequate in capturing conditional mean of excess returns

and, therefore, potentially omitted variables cannot affect materially our conclusions about

the structure of currency risks.

The probability of USD depreciation, hut , depends positively on the US interest rate. This

result seems to contradict basic intuition about the relationship between changes in FX
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and interest rates. It is important to note that this connection is applicable to jumps only.

Parameter estimates and expression (2.5.1) imply that, all else equal, the expected excess

return on the USD is higher when the difference between the U.S. and foreign interest rate

is higher. However, when the interest rate differential is positive, our model says that the

probability of a large depreciation in the USD (a jump up) is higher than the probability

of a large appreciation (a jump down).

2.5.2 Jumps and events

In this section we study the economic properties of the documented jumps. We ask basic

questions regarding the structure of the jump components, examine whether jumps can be

related to important economic events, and gauge their impact on the overall risk of currency

trades. Our discussion is based on Figures 2.1 - 2.4 and Table 2.12.

For each exchange rate, the figures display the time series of data (excess returns and

implied volatilities) complemented with the estimated unobservable model components:

spot volatility v
1/2
t and jumps. Regarding the latter, the model produces an estimate of

a jump size and an ex-post probability that a jump actually took place on a specific day.

However, all of this information is not easy to digest as there are a lot of small jumps

and jumps with small ex-post probability of taking place. Thus, to simplify the reporting,

we stratify the jump probabilities by assigning them a value of one if their actual value

is 0.5 or higher, and zero otherwise. Then we plot the estimated jumps sizes on the days

with the assigned value of one. Our strategy yields 219 jumps overall across all currencies.

Approximately 25% of these jumps take place simultaneously in at least two currencies. We

call such jumps international. There are only 8 episodes when FX and variance jumped at

the same time. We overlay the plots of the estimated jumps sizes with the state-dependent

ex-ante jump probabilities hvt , h
u
t , and h

d
t .

To interpret the plots better, we have to reference the jump magnitudes against the summary

statistics available in Table 2.1. Let us use JPY in Figure 2.4 as an example. Table 2.1 tells

us that the volatility of JPY is 0.7% per day and the mean is approximately zero. Thus,

a “regular” excess return can be within the range of ±2% (µ ± 3σ). The upper left panel
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of Figure 2.4 shows that there are quite a few days when excess returns are outside of this

range. In practice, the volatility is time-varying and unobserved. Therefore, the “regular”

range is time-varying also and uncertain. The estimation procedure takes this uncertainty

into account by producing ex-post probability of a jump taking place. We arbitrarily select

the level of uncertainty about jumps that we are comfortable with by discarding the jumps

with such probabilities less than 50%. The bottom left panel confirms this by showing the

estimated jumps in excess returns. Their magnitude ranges from 2% to 6% in absolute

value. Interestingly, the larger jumps coincide with spikes in the moving-window estimates

of skewness across all currencies.

However, not all of the big spikes in excess returns are attributable to jumps in FX. For

example, on October 28, 2008, the plot of excess returns shows a big drop of 5.5%. The

model tells us that there were no jumps on that day. The model is capable of generating such

a big move via a normal component because of the jump in variance. Volatility jumped by

(vt−1+ z
v
t )

1/2− v1/2t−1 = 0.18% (2.9% annualized), on average, on each of three days between

October 22 and 24. Each day the jump in variance was increasing the probability of a jump

the following day. Over these three days volatility moved from 1.35% (21.5% annualized)

to 1.8% (28% annualized). To put this number into a perspective, the long-run volatility

mean is v
1/2
J = 0.66% (10.4% annualized). Thus, the increase in volatility over these three

days was roughly equal to the average level of volatility. Moreover, there is no significant

news associated with either October 22-24 or October 28. Thus, we attribute these events

to pure uncertainty in the markets.

GBP generates large movements via jumps in variance in the most transparent way. The

exchange rate itself exhibits only 11 jumps throughout the sample, none of which take

place after 2000. In fact, even the famous “Black Wednesday” – the GBP devaluation on

September 16, 1992 – is attributed primarily to a jump in variance on September 8. The

volatility moved from 0.93% (14.7% annualised) to 1.13% (17.9% annualised), then it drifted

up to 1.15% (18.3% annualised) on the day of the crash. These values of volatility are high,

as the average volatility of GBP is v
1/2
J = 0.55%. Nonetheless, this level of volatility is

still insufficient to generate the whole drop of -4.10%. Of course, these rough computations

assume that vt is known with certainty. It is not, and a small deviation in the estimate may
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be able to attribute the whole return to a normal shock in FX. This is why the estimated

probability of a jump is only 26% on this day (and the estimated jump size is -0.42%).

As a next step, we check if the jumps we detect are related to economic, political or financial

events. For each day a currency has experienced a jump, we check if there were significant

news. This strategy is effectively opposite to the one employed in studies of the news

impact on financial assets (see, e.g., Andersen, Bollerslev, Diebold, and Vega, 2003 for FX).

Usually one measures news surprise by computing a standardised difference between an

announcement’s expectation and realisation and then checks, usually at intra-day frequency,

if the surprise had an impact on values of financial assets. Our approach does not require

us taking a stand on measuring a surprise. In addition, we are careful in distinguishing

announcements, a clear public release of a fact, from uncertainty: anticipation, comments

on the current economic situation and overall market anxiety that is sometimes evident in

the news. Table 2.12 provides a summary of the types of events associated with jumps.

Appendix A.1.6 provides a jump-by-jump description of all events.

Consistent with Figures 2.1 - 2.4, we see that there are many more jumps in variance than

in the exchange rates. Almost all jumps are associated with important events, however

there is a critical difference between jumps in FX and those in variance. The former are

most commonly associated with announcements and the latter are related to uncertainty.

Interestingly, Harvey and Huang (1991) relate elevated volatility levels to public news an-

nouncements. Our observations focus on jumps rather than regular increases in volatility.

While we do not formally model the joint behaviour of exchange rates, we find a lot of

simultaneous jumps across the currencies, particularly jumps in variance. Therefore, it

appears promising to extend the existing research on common and currency-specific factors

affecting risk premiums (e.g., Lustig, Roussanov, and Verdelhan, 2013) by allowing for

common and currency-specific jump risk.

The plots of jump intensities provide a partial insight into why jumps in variance are so

prominent. Probabilities of jumps in FX are moving together with interest rates, which

experienced secular decline in our sample in all countries. As we highlighted earlier, the

probability of a jump in variance is primarily driven by the variance itself. This probability
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went through a couple of cycles of high and low values as volatility is less persistent than

interest rates.

2.5.3 Decomposing the total risk

Are these risks important quantitatively? Jumps in FX and variance should affect the tail

events the most. The properties of tails are captured by high-order moments or cumulants.

One could report each of these statistics separately and measure how they are affected by

the various shocks present in our model. We choose to summarize all this information by

one number and measure the total risk corresponding to investment horizon n using entropy

of changes in FX:

Lt(St+n/St) = logEt(e
st+n−st)− Et(st+n − st). (2.5.2)

Entropy is a loaded term. Our use of entropy is similar to that of Backus, Chernov, and

Martin (2011) and Backus, Chernov, and Zin (2012), who characterise entropy of the pricing

kernel, and the closest to the way it is used in Martin (2011) who uses entropy of equity

index returns. Entropy’s connection to the cumulants of log FX returns makes it attractive

for our purposes.

Specifically, the definition (2.5.2) implies that

Lt(St+n/St) = kt(1; st+n − st)− κ1t(st+n − st) (2.5.3)

= κ2t(st+n − st)/2! + κ3t(st+n − st)/3! + κ4t(st+n − st)/4! + . . . ,(2.5.4)

where kt(1; st+n− st) is the conditional cumulant-generating function of st+n− st evaluated

at the argument equal to 1, κjt(st+n − st) is the jth conditional cumulant of st+n − st, and

we used the fact that kt(1; st+n − st) is equal to the infinite sum of κjt(st+n − st)/j! over

j starting with j = 1. The significance of the property (2.5.4) is that if currency changes

are normally distributed, then entropy is equal to a half of their variance (the first term in

the sum). All the higher-order terms arise from non-normalities. Thus, entropy captures

tail behaviour of returns in a compact form. As a result, we view entropy as a natural
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generalisation of variance as a risk measure. For this reason, Alvarez and Jermann (2005)

explicitly refer to Lt as generalised variance.

We decompose the total risk of currency returns into the contribution of the jump and

normal components. Appendix A.1.7 explains how we compute the full entropy on the

basis of equation (2.5.3). We can compute the individual components by zeroing out the

rest.11 Figures 2.5 and 2.6 display the contributions of these components for the investment

horizons of 1 months (n = 21) and 3 months (n = 63). We overlay these contributions

with a time-series plot of entropy computed treating USD as a domestic currency. We

scale entropy to ensure that it is equal to variance in the normal case and to adjust for

the horizon. Finally, to make the number easily interpretable, we take the square-root and

express it in percent. Thus, we plot
√

2Lt/n. Finally, Table 2.13 supports the plots by

reporting summary statistics of the relative contributions of the different components.

We start by characterising the contribution of the different components at a given point

in time. We see that the regular, or normal, risk is the most prominent regardless of the

horizon. The average total contribution of jumps at a one-month horizon ranges from 11.03

% for GBP to 20.19% for AUD. The risk of jump in FX (up or down) [the range is between

6.82% and 9.17%] is higher than that of the jump in variance [the range is between 3.76%

and 4.83%] and has higher time-variation at a one-month horizon (GBP is the exception

as jumps in variance contribute 4.37% as compared to 2.98% for jumps up and 3.68% for

jumps down). Therefore, in the short-term the risk of the jump in variance has the smallest

contribution to the overall currency risk. However, this conclusion changes as we extend

the investment horizon to three months. The average total contribution of jumps at this

horizon increases – the range is from 17.71% for GBP to 25.19% for JPY. In this case

individual contribution of jumps in variance [the range is 8.94% to 11.48%] is higher than

those of jumps in FX [the range is 2.78% to 8.57%] (in the case of GBP the contribution of

the jump in variance is greater than the sum of jumps up and down).

11If two variables xs and ys are conditionally independent, then Lt(xsys) = Lt(xs) + Lt(ys). Therefore,
our decomposition approach correctly separates the contributions of the two jumps in currencies. Because
probability of the jump in variance depends on the variance itself, the normal shock to variance and the
jump are conditionally independent only over one period, n = 1. When n > 1 our procedure attributes all
the covariance terms, which are positive because of the estimated functional form of jump probabilities, to
the jump in variance. We think that this approach is sensible because the presence of these covariance terms
is due to jumps.
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The contribution of jumps in FX declines towards the end of our sample thereby making

the contribution of jumps in variance more important. We connect this result to the secular

decline in the probability of FX jumps that we highlighted earlier. This effect diminishes

expected contribution of such jumps to the overall risk. In contrast, the probability of

jumps in variance is less persistent and, therefore, exhibits mean-reversion in our sample.

The time-series variation in total risk resembles the time-series variation in the spot variance

vt. This is not surprising because Lt is a linear function of vt (Appendix A.1.7). Thus,

whenever spot variance moves, especially jumps, we observe a clear move in entropy. We

conclude that the risk of jumps in variance are at least as important as the risk of jumps

in FX, but the two types of jumps serve a different purpose.

2.5.4 Preliminary evidence of priced jump risk

The large amount of jump risk prompts a natural question of whether this risk is priced. An-

swering this question has important implications for the carry trade literature. In particular,

one should be able to attribute a specific fraction of carry risk premium to compensation

for bearing crash risk.

The full answer to this question requires an explicit model of the pricing kernel and the use

of assets that are sensitive to jump risk for estimation of risk premiums. In this regard,

out-of-the-money options are particularly informative about the price of jump risks (i.e.,

the covariance of the pricing kernel with jumps). However, such analysis is outside of the

scope of this paper. Instead, we provide a back-of-the-envelope computation, which we view

as preliminary evidence of priced jump risk.

Our idea is to explore the shape of the implied volatility smile that is derived from our

model. If the jump risk is not priced, then we would be able to replicate the smile without

additional assumptions about risk premiums. To capture the diversity of the smile shapes,

we consider examples of a currency with a positive average interest rate differential (GBP)

and a negative one (JPY). The reason we focus on the interest rate differential is that

our model connects it to asymmetry of the conditional distribution of an exchange rate.
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Indeed, the third conditional cumulant can be obtained by taking the third derivative of

the cumulant-generating function of log currency returns (provided in Appendix A.1.7). For

example,

κ3t(st+1 − st) = 6θ3hr(rt − r̃t)

in the preferred model.

For both currencies we pick a day in which the variance and interest rate differential are

roughly equal to the sample averages: November 12, 2007 (GBP) and April 20, 2004 (JPY).

Figure 2.7 displays the implied volatility smiles observed on these days. Consistent with our

expectations, GBP exhibits positive asymmetry (defined as the difference between implied

volatility corresponding to moneyness less than one and the one with moneyness greater

than one, with moneyness symmetric around at-the-money), and JPY exhibits negative

asymmetry. The solid black lines in Figure 2.7 are the option-implied volatilities that

correspond to our model estimates with no risk premiums. The model can generate both

the smile and the correct direction of asymmetry. However, the level and curvature of the

smile that are implied by the model cannot match those observed in the data. The natural

question is whether the omitted risk premiums are responsible for this disparity.

Before we conclude that the disparity is due to risk premiums, we first evaluate whether sta-

tistical uncertainty about parameter values and the unobserved spot variance could account

for the difference in levels and curvatures. The theoretical implied volatility is a function

of observable states, option contract characteristics (strike and time to maturity), model

parameters, and the unobservable variance: IV
1/2
t = F (St, rt, r̃t,K, T − t,Θ, vt). The solid

black lines in Figure 2.7 display F (St, rt, r̃t,K, T − t, Θ̂, v̂t). We can take the uncertainty

about these estimated values into account by computing confidence bounds. One of the

by-products of our estimation procedure is a set of draws {Θ(g), v
(g)
t }250,000g=1 from the pos-

terior distribution p(Θ, vt|full dataset). We obtain the corresponding set of draws from the

posterior distribution of implied volatilities by evaluating F (St, rt, r̃t,K, T − t,Θ(g), v
(g)
t ).

The blue dashed lines in Figure 2.7 display the (2.5%, 97.5%) posterior coverage interval

for theoretical implied volatilities.
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The only case where the posterior interval covers observed implied volatilities corresponds

to six-month options on GBP. Thus, statistical uncertainty, on its own, cannot explain the

gap between the model and the data. The fact that the curvature is much more pronounced

in the data suggests that jump risk premiums are present (variance risk premiums may be

helpful in adjusting the level of the smile but not its curvature). See, for instance, Backus,

Chernov, and Martin (2011) who provide a detailed discussion of how risk adjustment in the

jump parameters affects the shape of the smile (Figure 3). While by no means conclusive,

this initial evidence warrants further more detailed investigation of the magnitude of jump

risk premiums.

2.6 Conclusion

We explore sources of risk affecting currency returns. We find a large time-varying com-

ponent that is attributable to jump risk. The most interesting part of this finding is that

jumps in currency variance play an important role, especially at long (quarterly) invest-

ment horizons, yet there is no obvious link between macroeconomic fundamentals and these

jumps. We interpret this evidence as a manifestation of economic uncertainty.

We see at least two important directions in which our analysis can be extended. First,

we should use prices of financial assets associated with currencies (e.g., bonds, options) to

estimate the pricing kernel. This would allow us to characterize how the risks documented

in this paper are valued in the marketplace. Second, existing research presents evidence

of common and currency-specific factors affecting risk premiums. Our evidence suggests

informally that common jump risks are shared across the different currencies. It would be

useful to establish a model of joint currency behaviour that explicitly incorporates common

and country-specific jump components and how they contribute to risk premiums.

2.7 Tables and graphs
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Table 2.1: Properties of excess log currency and S&P 500 returns and changes in
implied volatility

Mean Std Dev Skewness Kurtosis Nobs

AUD Excess return 0.0186 0.7435 -0.3870 13.7202 6332

∆
√
IV 0.0109 3.7661 0.9077 9.7290 3933

CHF Excess return 0.0057 0.7232 0.1194 4.7841 6521

∆
√
IV 0.0073 3.8057 0.9966 9.8095 3823

GBP Excess return 0.0096 0.6197 -0.2337 5.6832 6521

∆
√
IV 0.0142 4.0001 1.3884 44.2683 3823

JPY Excess return 0.0003 0.6950 0.3626 8.0878 6393

∆
√
IV -0.0045 4.8277 1.0395 10.7764 3934

S&P 500 Excess return 0.0090 1.1803 -1.3584 32.9968 6521

∆
√
V IX 0.0089 5.8997 0.5096 6.7502 3914

Notes. Descriptive statistics for daily log currency and log S&P 500 excess returns and
changes in implied volatility, in percent, per day: AUD return from September 25, 1986,
to December 31, 2010, and AUD IV from December 6, 1995, to December 31, 2010; CHF
return from January 3, 1986, to December 31, 2010, and CHF IV from May 8, 1996, to
December 31, 2010; GBP return from January 3, 1986, to December 31, 2010, and GBP
IV from May 8, 1996, to December 31, 2010; JPY return from July 2, 1986, to December
31, 2010, and JPY IV from December 5, 1995, to December 31, 2010; S&P 500 return from
January 3, 1986, to December 31, 2010 and VIX from January 2, 1996, to December 31,
2010. The interest rates used to compute returns are one-month LIBOR rates. Source:
Bloomberg.
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Table 2.2: AUD parameter estimates

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

µ0 -0.0004 0.0003 0.0014
(-0.0181,0.0173) (-0.0175, 0.0182) (-0.0166, 0.0194)

µr -2.4893 -2.5200 -2.7643
(-3.5895, -1.3910) (-3.6170, -1.4190) (-3.8613, -1.6801)

µv -0.0150 -0.0152 -0.0147
(-0.0247, -0.0053) (-0.0249, -0.0056) (-0.0244, -0.0051)

v 0.4968 0.2819 0.2819
(0.2903, 0.8984) (0.2101, 0.3728) (0.2110, 0.3734)

ν 0.9943 0.9855 0.9857
(0.9925, 0.9961) (0.9837, 0.9873) (0.9838, 0.9875)

σv 0.0391 0.0343 0.0342
(0.0379, 0.0404) (0.0330, 0.0357) (0.0329, 0.0356)

ρ -0.2924 -0.2770 -0.2839
(-0.3279, -0.2563) (-0.3156, -0.2378) (-0.3237, -0.2435)

θv 0.3864 0.3837
(0.3392, 0.4406) (0.3367, 0.4362)

θ 1.6910
(1.5208, 1.8779)

hv0 0.0037 0.0036
(0.0029, 0.0040) (0.0028, 0.0040)

hv 0.0038 0.0038
(0.0031, 0.0040) (0.0031, 0.0040)

h0 0.0017
(0.0000, 0.0038)

hr 0.1737
(0.1177, 0.1992)

αiv 0.0033 0.0027 0.0033
(0.0009, 0.0064) (-0.0002, 0.0056) (0.0005, 0.0063)

βiv 1.0006 1.0021 1.0022
(0.9958, 1.0054) (0.9983, 1.0059) (0.9984, 1.0061)

Notes. The estimates correspond to daily excess currency returns, in percent. The 95%
confidence intervals are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1 + zut+1 − zdt+1

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + zvt+1

hut = h0 + hrrt, h
d
t = h0 + hrr̃t, h

v
t = hv0 + hvvt

zut |j ∼ Gamma(j, θ), zdt |j ∼ Gamma(j, θ), zvt |j ∼ Gamma(j, θv)
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Table 2.3: CHF parameter estimates

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

µ0 0.0340 0.0353 0.0324
(0.0150, 0.0531) (0.0163, 0.0543) (0.0132, 0.0516)

µr -2.9851 -3.0674 -3.2501
(-4.3345, -1.6354) (-4.4174, -1.7169) (-4.5952, -1.8996)

µv -0.0198 -0.0199 -0.0199
(-0.0333, -0.0064) (-0.0335, -0.0065) (-0.0334, -0.0064)

v 0.5088 0.3502 0.3427
(0.3136, 0.8364) (0.2564, 0.4741) (0.2507, 0.4639)

ν 0.9891 0.9789 0.9785
(0.9863, 0.9919) (0.9758, 0.9818) (0.9755, 0.9815)

σv 0.0388 0.0337 0.0337
(0.0373, 0.0404) (0.0321, 0.0352) (0.0321, 0.0352)

ρ 0.0875 0.0856 0.0856
(0.0480, 0.1271) (0.0439, 0.1273) (0.0416, 0.1298)

θv 0.2205 0.2145
(0.1845, 0.2622) (0.1804, 0.2550)

θ 1.3582
(1.1771, 1.5744)

hv0 0.0037 0.0037
(0.0029, 0.0040) (0.0028, 0.0040)

hv 0.0145 0.0144
(0.0131, 0.0150) (0.0130, 0.0150)

h0 0.0051
(0.0011, 0.0078)

hr 0.2175
(0.0615, 0.2973)

αiv 0.0061 0.0041 0.0056
(0.0009, 0.0113) (-0.0013, 0.0093) (0.0003, 0.0104)

βiv 0.9919 0.9934 0.9946
(0.9753, 1.0091) (0.9795, 1.0071) (0.9802, 1.0096)

Notes. The estimates correspond to daily excess currency returns, in percent. The 95%
confidence intervals are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1 + zut+1 − zdt+1

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + zvt+1

hut = h0 + hrrt, h
d
t = h0 + hrr̃t, h

v
t = hv0 + hvvt

zut |j ∼ Gamma(j, θ), zdt |j ∼ Gamma(j, θ), zvt |j ∼ Gamma(j, θv)
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Table 2.4: GBP parameter estimate

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

µ0 0.0348 0.0360 0.0337
(0.0128, 0.0565) (0.0138, 0.0584) (0.0116, 0.0556)

µr -3.0632 -3.1692 -3.1897
(-4.4127, -1.7209) (-4.5046, -1.8351) (-4.5138, -1.8673)

µv -0.1326 -0.1377 -0.1341
(-0.1928, -0.0720) (-0.1986, -0.0773) (-0.1952, -0.0731)

v 0.3773 0.2227 0.2180
(0.1855, 0.8002) (0.1631, 0.2989) (0.1619, 0.2909)

ν 0.9941 0.9810 0.9809
(0.9919, 0.9963) (0.9786, 0.9834) (0.9786, 0.9833)

σv 0.0321 0.0272 0.0273
(0.0311, 0.0332) (0.0262, 0.0283) (0.0263, 0.0284)

ρ -0.1341 -0.1295 -0.1303
(-0.1713, -0.0965) (-0.1692, -0.0896) (-0.1709, -0.0895)

θv 0.1953 0.1959
(0.1728, 0.2206) (0.1731, 0.2211)

θ 1.1680
(0.9593, 1.4127)

hv0 0.0038 0.0038
(0.0033, 0.0040) (0.0033, 0.0040)

hv 0.0121 0.0121
(0.0110, 0.0125) (0.0110, 0.0125)

h0 0.0012
(0.0001, 0.0020)

hr 0.1223
(0.0634, 0.1491)

αiv 0.0109 0.0063 0.0089
(0.0063, 0.0155) (0.0009, 0.0109) (0.0039, 0.0137)

βiv 0.9905 0.9951 0.9940
(0.9855, 0.9955) (0.9905, 0.9996) (0.9895, 0.9985)

Notes. The estimates correspond to daily excess currency returns, in percent. The 95%
confidence intervals are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1 + zut+1 − zdt+1

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + zvt+1

hut = h0 + hrrt, h
d
t = h0 + hrr̃t, h

v
t = hv0 + hvvt

zut |j ∼ Gamma(j, θ), zdt |j ∼ Gamma(j, θ), zvt |j ∼ Gamma(j, θv)
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Table 2.5: JPY parameter estimates

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

µ0 0.0253 0.0253 0.0203
(0.0064, 0.0441) (0.0062, 0.0443) (0.0018, 0.0389)

µr -3.1861 -3.2046 -3.4590
(-4.4200, -1.9526) (-4.4540, -1.9531) (-4.6992, -2.2266)

µv 0.0151 0.0152 0.0152
(0.0054, 0.0248) (0.0055, 0.0249) (0.0054, 0.0248)

v 0.4816 0.3143 0.3012
(0.2926, 0.8111) (0.2328, 0.4223) (0.2207, 0.4079)

ν 0.9896 0.9762 0.9771
(0.9868, 0.9924) (0.9730, 0.9794) (0.9739, 0.9802)

σv 0.0496 0.0438 0.0436
(0.0476, 0.0516) (0.0419, 0.0458) (0.0417, 0.0455)

ρ 0.3681 0.3505 0.3631
(0.3316, 0.4040) (0.3098, 0.3902) (0.3205, 0.4047)

θv 0.3917 0.3771
(0.3313, 0.4622) (0.3198, 0.4447)

θ 1.2351
(1.0847, 1.4071)

hv0 0.0037 0.0037
(0.0031, 0.0040) (0.0029, 0.0040)

hv 0.0077 0.0076
(0.0068, 0.0080) (0.0067, 0.0080)

h0 0.0052
(0.0034, 0.0060)

hr 0.4447
(0.3133, 0.4984)

αiv 0.0140 0.0116 0.0159
(0.0086, 0.0193) (0.0062, 0.0169) (0.0099, 0.0214)

βiv 1.0052 1.0083 1.0248
(0.9871, 1.0248) (0.9916, 1.0256) (1.0069, 1.0431)

Notes. The estimates correspond to daily excess currency returns, in percent. The 95%
confidence intervals are reported in parentheses. The preferred model is:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1 + zut+1 − zdt+1

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + zvt+1

hut = h0 + hrrt, h
d
t = h0 + hrr̃t, h

v
t = hv0 + hvvt

zut |j ∼ Gamma(j, θ), zdt |j ∼ Gamma(j, θ), zvt |j ∼ Gamma(j, θv)
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Table 2.6: Model diagnostics for AUD

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC -0.3080 -0.3074 -0.2004
(-0.3308, -0.2860) (-0.3304, -0.2855) (-0.2408, -0.1599)

kurtosisC 4.1472 4.0822 3.4892
(4.0677, 4.2366) (4.0006, 4.1810) (3.3802, 3.6055)

autocorrelationC -0.0281 -0.0271 -0.0324
(-0.0311, -0.0252) (-0.0303, -0.0241) (-0.0406, -0.0242)

skewnessIV 0.0402 0.0303 0.0310
(-0.0373, 0.1181) (-0.0466, 0.1070) (-0.0459, 0.1080)

kurtosisIV 3.0618 3.0385 3.0375
(2.9103, 3.2314) (2.8902, 3.2034) (2.8896, 3.2033)

autocorrelationIV 0.1043 0.0634 0.0637
(0.0749, 0.1336) (0.0331, 0.0937) (0.0334, 0.0940)

IV var 0.0064 0.0034 0.0034

(0.0041, 0.0122) (0.0021, 0.0070) (0.0021, 0.0070)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return return and from the IV equations. Superscript C stands
for the residuals from the currency return equation, superscript IV stands for the residuals
from the IV equation.
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Table 2.7: Model diagnostics for CHF

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC 0.1178 0.1282 0.0586
(0.0994, 0.1365) (0.1078, 0.1486) (0.0182, 0.0983)

kurtosisC 3.9497 3.9438 3.4333
(3.8825, 4.0198) (3.8919, 4.0011) (3.3373, 3.5405)

autocorrelationC -0.0203 -0.0198 -0.0272
(-0.0227, -0.0179) (-0.0226, -0.0170) (-0.0352, -0.0192)

skewnessIV 0.0224 0.0201 0.0210
(-0.0574, 0.1022) (-0.0585, 0.0985) (-0.0573, 0.0995)

kurtosisIV 3.0648 3.0399 3.0406
(2.9091, 3.2378) (2.8887, 3.2097) (2.8890, 3.2094)

autocorrelationIV 0.0777 0.0565 0.0564
(0.0459, 0.1094) (0.0247, 0.0883) (0.0246, 0.0881)

IV var 0.0010 0.0006 0.0006

(0.0007, 0.0017) (0.0004, 0.0011) (0.0004, 0.0011)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return and from the IV equations. C stands for the residuals
from the currency return equation, superscript IV stands for the residuals from the IV
equation.
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Table 2.8: Model diagnostics for GBP

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC -0.0407 -0.0211 -0.0232
(-0.0606, -0.0202) (-0.0436, 0.0012) (-0.0609, 0.0143)

kurtosisC 3.9181 3.8540 3.4947
(3.8427, 4.0061) (3.7784, 3.9423) (3.4006, 3.5969)

autocorrelationC 0.0009 0.0006 -0.0027
(-0.0024, 0.0040) (-0.0038, 0.0047) (-0.0094, 0.0037)

skewnessIV 0.0352 0.0212 0.0215
(-0.0443, 0.1146) (-0.0565, 0.0995) (-0.0568, 0.0998)

kurtosisIV 3.0710 3.0293 3.0296
(2.9160, 3.2461) (2.8798, 3.1972) (2.8786, 3.1977)

autocorrelationIV 0.0791 0.0510 0.0510
(0.0483, 0.1096) (0.0204, 0.0814) (0.0204, 0.0815)

IV var 0.0011 0.0004 0.0004

(0.0007, 0.0019) (0.0003, 0.0008) (0.0003, 0.0008)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return and from the IV equations. C stands for the residuals
from the currency return equation, superscript IV stands for the residuals from the IV
equation.
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Table 2.9: Model diagnostics for JPY

SV (θ = 0, θv = 0) SVJ (θ = 0) Preferred

skewnessC 0.3348 0.3360 0.1298
(0.3060, 0.3650) (0.3038, 0.3668) (0.0799, 0.1800)

kurtosisC 4.8254 4.7148 3.6054
(4.7109, 4.9645) (4.5982, 4.8361) (3.4829, 3.7445)

autocorrelationC -0.0146 -0.0140 -0.0221
(-0.0176 -0.0116) (-0.0174, -0.0108) (-0.0312, -0.0131)

skewnessIV 0.0568 0.0278 0.0311
(-0.0210, 0.1349) (-0.0495, 0.1054) (-0.0465, 0.1087)

kurtosisIV 3.0707 3.0430 3.0423
(2.9175, 3.2420) (2.8940, 3.2100) (2.8923, 3.2098)

autocorrelationIV 0.1042 0.0758 0.0768
(0.0733, 0.1349) (0.0443, 0.1070) (0.0453, 0.1083)

IV var 0.0061 0.0029 0.0037

(0.0036, 0.0125) (0.0017, 0.0059) (0.0021, 0.0078)

Notes. Posterior means and 95% confidence intervals (reported in parentheses) for the
residuals from the currency return and from the IV equations. C stands for the residuals
from the currency return equation, superscript IV stands for the residuals from the IV
equation.

Table 2.10: Log-Bayes-Odds Ratios

AUD CHF GBP JPY

SVJ/SV 22.03 52.05 44.50 34.89
Preferred/SVJ 26.36 18.77 13.43 61.22

Notes. Formal model comparison. We compare the SV (θ = 0, θv = 0), SVJ (θ = 0) and
the preferred models pairwise. In the first row, we consider the SV and SVJ models and
quantify evidence against the SV model; in the second row, we consider the SVJ and the
preferred models and quantify evidence against the SVJ model.
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Table 2.11: Calibration of the interest rates

AUD CHF GBP JPY

ar 0.0181 0.0184 0.0184 0.0182
ãr 0.0291 0.0121 0.0269 0.0077

br 0.9999 0.9997 0.9997 0.9998

b̃r 0.9991 0.9995 0.9998 0.9997

σr 0.0012 0.0016 0.0016 0.0014
σ̃r 0.0035 0.0030 0.0018 0.0027

Notes. We calibrate processes for domestic (US)

rt+1 = (1− br)ar + brrt + σrr
1/2
t wrt+1

and foreign interest rates

r̃t+1 = (1− b̃r)ãr + b̃rr̃t + σ̃rr̃
1/2
t w̃rt+1

Parameters correspond to daily interest rates in percent. There are four versions of the
parameters corresponding to the US interest rate. This is because the foreign data have
different starting dates, and we calibrated the US rate in the matching samples.
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Table 2.12: Summary of events associated with jumps

Type of event/uncertainty Jump Up Jump Down Jump in Vol

AUD
Trade 1 1 –
Macro-Economic 2 2 9
Intervention – 4 1
Monetary policy 2 7 10
Spillover from financial markets 1 5 20
Other 1 3 3
Total 6 21 34
International 2 5 17

CHF
Trade 6 – –
Macro-Economic 1 2 11
Intervention 6 2 2
Monetary policy 1 1 10
Spillover from financial markets 4 1 18
Other 2 – 12
Total 17 6 45
International 9 3 23

GBP
Trade – – 1
Macro-economic 1 2 13
Intervention 2 1 3
Monetary policy 2 2 17
Spillover from financial markets 1 – 19
Other – 2 14
Total 5 6 56
International 3 1 25

JPY
Trade 11 3 6
Macro-Economic 4 3 11
Intervention 8 4 4
Monetary policy 2 – 16
Spillover from financial markets 7 1 15
Other 3 3 7
Total 34 13 52
International 12 4 19

Notes: We match each jump in the preferred model with economic, political or financial events. If we cannot attribute

a jump to a specific event then we indicate type of uncertainty dominating FX markets on that date. We compute how

many jumps correspond to every economic source of risk. We distinguish trade, intervention, and monetary policy

events (inflation, interest rate policy, monetary union) from events connected to other macro-economic factors (growth,

employment, sales, payroll, etc.) We group episodes of dramatic movements in stock and commodity markets under

the “Spillover from financial markets.” All remaining episodes fall under rubric “Other”. We report total number

of jumps in prices (up and down) and volatility in the row “Total”. We provide the number of jumps that occur

simultaneously in two or more currencies in the row “International”. Every jump episode can be generated by multiple

sources of economic uncertainty. In such a case, we assign the jump to every important source of risk. Thus in our

table the number in the row “Total” can be lower than the columnwise sum of the inputs.
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Table 2.13: Decomposition of the total risk

Jump Up Jump Down Jump in Vol Normal

n = 21 n = 63 n = 21 n = 63 n = 21 n = 63 n = 21 n = 63
AUD

Mean 6.90 6.37 9.17 8.40 4.12 10.18 79.81 75.05
Std 3.70 2.97 5.22 4.13 1.10 1.99 9.60 8.38
Min 0.31 0.38 0.60 0.74 1.58 4.45 55.17 56.33
Max 15.84 12.41 26.24 21.34 7.14 14.73 97.45 94.32

CHF
Mean 6.82 6.66 5.48 5.37 3.76 8.94 83.94 79.04
Std 2.56 2.03 1.82 1.50 0.27 0.39 4.32 3.34
Min 1.02 1.31 0.98 1.26 3.13 8.01 66.78 69.49
Max 16.34 11.88 12.04 10.55 4.84 9.91 94.87 89.38

GBP
Mean 2.98 2.78 3.68 3.45 4.37 11.48 88.96 82.29
Std 1.51 1.19 1.68 1.38 0.80 1.35 3.73 3.42
Min 0.18 0.23 0.25 0.32 2.64 7.79 74.21 72.60
Max 8.84 5.83 9.87 8.45 7.70 15.48 96.87 91.58

JPY
Mean 9.10 8.57 5.80 5.43 4.83 11.19 80.27 74.82
Std 4.18 3.32 3.53 2.96 0.71 1.08 7.56 6.10
Min 0.93 1.23 0.69 0.91 3.05 7.96 54.70 57.34
Max 22.04 18.05 17.68 13.89 6.82 13.61 65.20 89.67

Notes. We report summary statistics of the percentage contribution of the different risks
to the total risk of currency returns (horizon n = 21 and n = 63 days).
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Figure 2.1: AUD data and estimated states
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Panel (a): thin red line displays observed log currency returns; thick blue line displays the conditional

6-months skewness of the log currency returns. Panel (b): thick red line shows observed one-month

at-the-money implied volatility; thin blue line shows the estimated spot volatility
√
vt. The bottom

panels display estimated jump sizes in returns (c) and volatility (d) with jump intensities. Panel

(c): brown solid line is the intensity of the jump down; the red dashed line is the intensity of the

jump up; blue bars are jumps themselves. Panel (d): the red line is the intensity of the jump in

volatility; blue bars are jumps. We say that there was a jump at time t if the estimated probability

of a jump on that day was above 50%. Gray vertical bars with the dashed border indicate recessions

in Australia; light blue vertical lines with the thin solid border indicate recessions in the US.
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Figure 2.2: CHF data and estimated states
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Notes. Panel (a): thin red line displays observed log currency returns; thick blue line displays the

conditional 6-months skewness of the log currency returns. Panel (b): thick red line shows observed

one-month at-the-money implied volatility; thin blue line shows the estimated spot volatility
√
vt.

The bottom panels display estimated jump sizes in returns (c) and volatility (d) with jump intensities.

Panel (c): brown solid line is the intensity of the jump down; the red dashed line is the intensity of

the jump up; blue bars are jumps themselves. Panel (d): the red line is the intensity of the jump in

volatility; blue bars are jumps. We say that there was a jump at time t if the estimated probability

of a jump on that day was above 50%. Gray vertical bars with the dashed border indicate recessions

in Switzerland; light blue vertical lines with the thin solid border indicate recessions in the US.
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Figure 2.3: GBP data and estimated states
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Notes. Panel (a): thin red line displays observed log currency returns; thick blue line displays the

conditional 6-months skewness of the log currency returns. Panel (b): thick red line shows observed

one-month at-the-money implied volatility; thin blue line shows the estimated spot volatility
√
vt.

The bottom panels display estimated jump sizes in returns (c) and volatility (d) with jump intensities.

Panel (c): brown solid line is the intensity of the jump down; the red dashed line is the intensity of

the jump up; blue bars are jumps themselves. Panel (d): the red line is the intensity of the jump in

volatility; blue bars are jumps. We say that there was a jump at time t if the estimated probability

of a jump on that day was above 50%. Gray vertical bars with the dashed border indicate recessions

in the UK; light blue vertical lines with the thin solid border indicate recessions in the US.
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Figure 2.4: JPY data and estimated states
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Notes. Panel (a): thin red line displays observed log currency returns; thick blue line displays the

conditional 6-months skewness of the log currency returns. Panel (b): thick red line shows observed

one-month at-the-money implied volatility; thin blue line shows the estimated spot volatility
√
vt.

The bottom panels display estimated jump sizes in returns (c) and volatility (d) with jump intensities.

Panel (c): brown solid line is the intensity of the jump down; the red dashed line is the intensity of

the jump up; blue bars are jumps themselves. Panel (d): the red line is the intensity of the jump in

volatility; blue bars are jumps. We say that there was a jump at time t if the estimated probability

of a jump on that day was above 50%. Gray vertical bars with the dashed border indicate recessions

in Japan; light blue vertical lines with the thin solid border indicate recessions in the US.
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Figure 2.5: Conditional decomposition of the total risk for monthly returns
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Notes. We display cumulative contribution of the different risks to the total risk of excess returns
(the left axis). We measure the total amount of risk using entropy

Lt(St+n/St) = κ2t(st+n − st)/2! + κ3t(st+n − st)/3! + κ4t(st+n − st)/4! + . . . ,

where κjt(st+n − st) is the jth cumulant of log FX returns. Investment horizon is n = 21 days. The

contribution of the down jumps in FX is displayed in light blue, contribution of the up jumps in FX

is in brown, and the contribution of the jumps in variance is in red. Gray area is the contribution

of the normal shocks. The blue line shows
√
2Lt/n in percent (the right axis). This quantity has

an interpretation of one-period volatility in the case of normally distributed returns.
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Figure 2.6: Conditional decomposition of the total risk for quarterly returns
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Notes. We display cumulative contribution of the different risks to the total risk of excess returns
(the left axis). We measure the total amount of risk using entropy

Lt(St+n/St) = κ2t(st+n − st)/2! + κ3t(st+n − st)/3! + κ4t(st+n − st)/4! + . . . ,

where κjt(st+n − st) is the jth cumulant of log FX returns. Investment horizon is n = 63 days. The

contribution of the down jumps in FX is displayed in light blue, contribution of the up jumps in FX

is in brown, and the contribution of the jumps in variance is in red. Gray area is the contribution

of the normal shocks. The blue line shows
√
2Lt/n in percent (the right axis). This quantity has

an interpretation of one-period volatility in the case of normally distributed returns.
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Figure 2.7: Implied volatility
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Notes. We check the ability of the model to generate the implied volatility (IV) smiles and varying

IV skewness. We select a currency with a positive average interest rate differential (GBP) and a

negative one (JPY). For both currencies we pick a day with an approximately average variance and

interest rate differential: November 12, 2007 (GBP) and April 20, 2004 (JPY). The asterisks indicate

observed implied volatilities. The solid black lines depict theoretical implied volatilities evaluated

at the estimated parameters and spot variance under the assumption that investors do not demand

compensation for the variance or jump risks. The dashed blue lines show the 95% posterior coverage

intervals for the theoretical smiles.



Chapter 3

Term-structure of consumption risk premia in the

cross-section of currency returns

3.1 Introduction

In this paper, I quantify the risk-return relationship in the foreign exchange market in the

cross-section and across investment horizons. I perform the analysis from the perspective of

a US representative agent with recursive preferences over consumption. As in the long-run

risk literature, I allow for the possibility that there are multiple sources of risk affecting

consumption growth, such as shocks to expected consumption growth, stochastic variance

of consumption growth, and consumption growth itself. My focus is on identifying such

shocks, measuring their impact on currency prices in the cross-section and at different

investment horizons, and understanding their relative importance for multi-period currency

risk premia.

An influential paper by Lustig and Verdelhan (2007) shows that sorting currencies by their

respective interest rates generates baskets with different exposures to realized consumption

growth, which can explain the cross-sectional differences in one-period currency risk premia.

The authors limit their attention to a fixed investment horizon that corresponds to the

decision interval of the representative agent with recursive preferences. My contribution

65
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is in expanding the analysis to alternative horizons and characterizing multiple sources of

consumption risk.

My interest lies in describing empirical properties of consumption risks. Therefore, instead

of taking a stand on a specific process for consumption growth, I estimate a flexible vector

autoregression (VAR) with stochastic variance that captures the spirit of the long-run risk

models. I account for stochastic variance because as it has been widely documented in

the literature (e.g., Bansal, Kiku, Shaliastovich, and Yaron, 2012; Campbell, Giglio, Polk,

and Turley, 2012), the time-variation in the variance of consumption growth has first order

implications for the macro dynamics and properties of asset prices.

An important feature of my approach is that I use additional information about the con-

sumption process contained in macro variables and asset prices. An asset price is an ap-

pealing source of information about consumption because in equilibrium it reflects the

unobservable components of the consumption growth process that are difficult to estimate

on the basis of consumption data alone. Specifically, I learn about the consumption growth

process through the joint dynamics of consumption growth, inflation, and the nominal yield.

I choose nominal bond as an asset because the nominal yield reflects risks relevant for

exchange rates, as the theoretical literature (e.g., Bansal and Shaliastovich, 2013) has em-

phasized. In addition, the use of the yield, as opposed to another asset price, is convenient

because it does not require the modeling of any cash flow dynamics. I incorporate inflation

for two reasons. First, inflation has forecasting ability for future consumption growth (Pi-

azzesi and Schneider, 2006). Second, I need the inflation dynamics to convert the model

implied real risk-free rate to the observed nominal interest rate.

The pricing kernel derived by applying recursive preferences to the consumption growth

process depends on the nominal yield because it is one of the states of the model. On

the other hand, the pricing kernel must value all assets, including the nominal yield. The

twofold role of the nominal yield in the model implies a set of pricing restrictions on the

VAR parameters.

In summary, I specify my model of consumption growth in the form of a vector autoregres-

sion with stochastic variance and structural restrictions derived under recursive preferences.
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This approach is novel, and it adds power to identify expected consumption growth better.

I estimate the model by using quarterly data for US consumption growth, inflation, and a

three-month nominal yield from the second quarter of 1947 until the fourth quarter of 2011.

For estimation, I employ the Bayesian Markov Chain Monte Carlo (MCMC) methods. The

key advantage of this approach is that it allows me imposing the required pricing restrictions

directly; in addition, this approach delivers the estimated time series of stochastic variance.

I identify structural shocks from the estimated reduced-form innovations choosing to work

with globally identified systems. I show that I have a choice of only two systems because of

various restrictions based on economic intuition and regularity conditions (Rubio-Ramirez,

Waggoner, and Zha, 2010). My model features the following four structural shocks to

consumption: (1) the short-run consumption risk, (2) the inflation risk, (3) the long-run

consumption risk, and (4) the variance risk. The only difference between the identification

schemes is in the underlying identifying assumptions about the short-run consumption and

inflation risks. I label the identification schemes “Fast Inflation” and “Fast Consumption”.

Under “Fast Inflation”, inflation reacts to the short-run consumption shock contemporane-

ously, whereas consumption growth reacts to the inflation shock with a one-quarter delay

(inflation is a faster variable). In contrast, under “Fast Consumption”, consumption growth

reacts to the inflation shock contemporaneously, whereas inflation reacts to the consumption

growth shock with a one-quarter delay (consumption growth is a faster variable).

I use data on twelve currencies of developed economies over the period from 1986 to 2011

at a quarterly frequency. The choice of currencies is limited by the availability of the term-

structure data required for the cross-sectional sorting. I sort currencies into three currency

baskets based on the level of the average foreign yield.

I find that the model fits the macroeconomic data and data on asset prices well. First, the

model captures important economic episodes such as the Great Moderation, recessions, and

the recent financial crisis. Second, diagnostics of fitting errors do not exhibit noticeable

misspecification. This provides a realistic setup for examining the model’s asset pricing

implications. I perform such an analysis across forty investment horizons, from one quarter

to ten years. I use the shock-exposure and shock-price elasticities of Borovička, Hansen,

Hendricks, and Scheinkman (2011) and Borovička and Hansen (2011) to characterize the
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term-structure of consumption risks and their prices in the cross-section of currency baskets

at alternative horizons. Shock elasticities measure the sensitivity of expected cash flows and

returns with respect to the change in the amount of the underlying risk and account for the

presence of stochastic variance. The elasticities represent marginal quantities and marginal

prices of risk (marginal Sharpe ratios).

I document the prominent role of the long-run risk for currency pricing in the cross-section

and across multiple horizons. This is the main finding of my paper. First, there is a stable

cross-sectional pattern in the term-structure of quantities of risk. At all horizons, the low

interest rate currencies act as a hedge against the long-run risk, whereas the high interest

rate currencies display a positive exposure to the risk. Differences are statistically significant

and economically meaningful. Second, the long-run risk is associated with the highest risk

compensation: its one-period log Sharpe ratio is 0.66. At the horizon of one quarter, the

long-run risk explains at least 48% of the cross-sectional spread in excess returns.

The other shocks contribute to risk premia less prominently. The short-run consumption

risk is priced in the cross-section of currency baskets at the horizon of one quarter only. This

finding is based on the fact that only the contemporaneous difference in exposures of the

low and the high interest rate currencies to the short-run consumption risk is statistically

significant. At longer horizons, currencies are mostly immune to the short-run consumption

risk or their risk exposures are insignificantly different from each other. The short-run

consumption risk carries a high one-period log Sharpe ratio of 0.58 (0.52) under the “Fast

Inflation” (“Fast Consumption”) identification scheme, and, as a result, it explains at least

26% of the spread in one-period excess returns between the corner baskets.

At most investment horizons, currency baskets have significantly different exposures to the

inflation risk. Similarly to the case of the long-run risk, low interest rate currencies act as a

hedge against the risk, while the high interest rate currencies have a positive exposure to the

risk. However, the price of the inflation risk is statistically significant only if consumption

growth is a fast variable, i.e., reacts contemporaneously to the inflation risk. In this case, the

inflation risk explains 26% of the spread in the one-period excess returns. The contribution

of the inflation risk in explaining the cross-sectional spread in excess returns is smaller than

the contribution of the long-run risk because its Sharpe ratio of 0.26 is almost a half of that
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for the long-run risk.

Finally, the loadings of FX cash flows on the variance risk are not significantly different

in the cross-section at any horizon. The variance risk matters in a different respect. All

currency baskets are highly sensitive to the risk at horizons longer than three years: the

impact of a positive variance shock gradually increases with time and eventually causes

substantial declines in cash flows of all currency baskets. However, the marginal price of

this exposure is small. For example, at a three year horizon the marginal Sharpe ratio

associated with the low interest rate currencies is 0.07, with the intermediate interest rate

currencies is 0.06, and with the high interest rate currencies is 0.08. The marginal prices are

positive suggesting that the currency baskets act as marginal hedges against an unfavorable

variance shock to the representative agent.

Related literature

My paper is related to two strands of international macro-finance literature that examines

time-series and cross-sectional properties of currency risk premia. I limit my discussion

to papers that interpret currency risk premia as compensation for consumption risks. On

the empirical front, Sarkissian (2003) and Lustig and Verdelhan (2007) study the ability of

the consumption growth factor to explain the cross-section of currency returns. Sarkissian

(2003) adapts the framework of Constantinides and Duffie (1996) to a multi-country setting

and documents that the cross-country variance of consumption growth exhibits explanatory

power for cross-sectional differences in returns on individual currencies, whereas the con-

sumption growth itself does not. Lustig and Verdelhan (2007) establish in the framework

of the durable CCAPM of Yogo (2006) that the consumption growth is a priced factor in

the cross-section of returns on currency baskets formed by sorting currencies by respective

interest rates. There are two common features in these papers. First, both studies recognize

the presence of multiple sources of consumption risk but do not describe them explicitly.

Second, both papers do not extend the analysis beyond a fixed horizon which is a decision

interval of the representative agent (one quarter in the case of Sarkissian, 2003, and one

year in the case of Lustig and Verdelhan, 2007).



70

Part of the theoretical literature features different consumption-based models dedicated

to rationalizing the time-series behavior of currency risk premia, e.g., the violation of the

uncovered interest rate parity. Models include but not limited to settings with habits

(Heyerdahl-Larsen, 2012; Verdelhan, 2010), long-run risks (Bansal and Shaliastovich, 2013;

Colacito, 2009; Colacito and Croce, 2013), and disasters (Farhi and Gabaix, 2008). My

paper is closely related to the international long-run risk literature, but my focus is differ-

ent. Theoretical international long-run risk studies model a joint distribution of domestic

and foreign macroeconomic quantities to pin down a theoretical equilibrium exchange rate

consistent with the forward premium anomaly. Instead, I model multiple sources of con-

sumption risk of the US representative agent, estimate them, and establish their relative

importance for currency risk premia in the cross-section of currencies and across alternative

investment horizons.

My paper is also related to Hansen, Heaton, and Li (2008), who provide evidence on the im-

portance of the permanent shock to consumption growth in account for the value premium.

The similarity is in terms of approach, that is establishing the importance of consumption

risks for explaining the cross-section of asset prices by joint modeling the stochastic discount

factor (under the assumption of recursive preferences) and cash flow processes. My study

differs from Hansen, Heaton, and Li (2008) in three principal dimensions. First, I study

the foreign exchange market, which has been less examined than the US equity market.

Second, my model has stochastic variance, so I account for variation in volatility of con-

sumption growth, and therefore, in risk premia. Third, I quantify the relative importance

of consumption risks at short and medium horizons, rather than at infinite horizons.

3.2 The model

Similarly to Lustig and Verdelhan (2007), I study the relative importance of consumption

risks for currency pricing from the viewpoint of the US representative agent. In other words,

I examine how currency cash flows covary with the US consumption risks and how this

covariation is priced. My key modeling ingredients are: (1) the stochastic discount factor

implied by the preferences of the representative agent and the dynamics of the consumption
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growth process and (2) currency cash flow. I proceed by describing each component in turn.

3.2.1 Recursive preferences

I use a standard framework of the representative agent model with recursive preferences.

The recursive utility of Epstein and Zin (1989) and Weil (1989) is designed to account for

the temporal distribution of risks; therefore, it is a natural setting for studying the role of

multiple sources of risk. Notable applications of this framework for understanding the joint

dynamics of exchange rates, macro quantities, and asset prices include but not limited to

Backus, Gavazzoni, Telmer, and Zin (2010), Bansal and Shaliastovich (2013), Colacito and

Croce (2011), Colacito and Croce (2013), Colacito (2009), Tretvoll (2011a), and Tretvoll

(2011b).

The recursive utility is a constant elasticity of substitution recursion,

Ut = [(1− β)cρt + βµt(Ut+1)
ρ]1/ρ, (3.2.1)

with the certainty equivalent function,

µt(Ut+1) = [Et(U
α
t+1)]

1/α, (3.2.2)

where ct is consumption at time t, Ut is utility from time t onwards, (1−α) is the coefficient

of relative risk aversion, 1/(1− ρ) is the elasticity of intertemporal substitution (EIS), and

β is the subjective discount factor.

Under recursive preferences, the stochastic discount factor mt,t+1 has two components,

consumption growth and a forward looking component:

mt,t+1 = β(ct+1/ct)
ρ−1(Ut+1/µt(Ut+1))

α−ρ. (3.2.3)

Appendix A.5 of the NBER version of Backus, Chernov, and Zin (2012) provides the deriva-

tion. There are two alternative ways to consider the component Ut+1/µt(Ut+1) and to fur-

ther derive the pricing kernel. One possibility is to use the connection between Ut and the
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equilibrium value of the aggregate consumption stream. This link would imply that the

log stochastic discount factor is a function of consumption growth, log gt,t+1 = log(ct+1/ct),

and the return to a claim on future wealth, rwt,t+1, (Epstein and Zin, 1991):

logmt,t+1 = α/ρ · log β − α(1− ρ)/ρ · log gt,t+1 − (1− α/ρ) · log rwt,t+1. (3.2.4)

The other possibility is to specify the process for consumption growth explicitly and derive

this component of the pricing kernel as a function of the model’s states and fundamental

shocks (e.g., Backus, Chernov, and Zin, 2012; Hansen, Heaton, and Li, 2008).

The latter approach serves my purpose of describing the relative importance of multiple

sources of consumption risk for currency pricing across multiple horizons. First, under

the null of a structural model, the multi-period objects (consumption growth, stochastic

discount factor, and cash flow) directly follow from the dynamics of the corresponding one-

period objects. Therefore, a multi-period characterization of currency risk exposures and

corresponding prices of risk does not require more data than its one-period counterpart. Sec-

ond, this setting allows the decomposition of the total risk premium into the contributions

of different sources of risk across multiple horizons (Borovička and Hansen, 2011).

3.2.2 Consumption growth process

It is a well known problem in asset pricing that high-quality consumption data are available

at low frequency, and consequently, the identification of multiple sources of consumption

risk is a challenging task. As a result, most studies of the joint behaviour of macro economic

quantities and asset prices are theoretical. Authors calibrate various empirically plausible

processes for consumption growth and study the implications of these models for asset

prices.

The common critique of this approach is that different consumption growth processes are

observationally equivalent given small sample sizes. Nonetheless, they have very different

implications for asset prices. This observation has two implications. On the one hand, an

econometrician working with consumption based models faces a serious challenge. On the
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other hand, this observation suggests that theoretical asset prices are informative about the

consumption growth process. Indeed, in equilibrium asset prices are functions of observ-

able consumption growth and unobservable states. As a result, one can learn about the

data-generating process for consumption growth by observing asset prices. I exploit this

implication to identify consumption growth empirically.

I specify a parsimonious yet flexible model of consumption growth. I posit a vector au-

toregressive process for Yt+1 = (log gt,t+1, log πt,t+1, i
1
t+1, σ

2
t+1)

′ that includes consumption

growth log gt,t+1, inflation log πt,t+1, short-term nominal yield i1t+1, and the stochastic vari-

ance σ2t+1

Yt+1 = F +GYt +Hσtεt+1, (3.2.5)

where F is a four-by-one column-vector, and G and H are four-by-four matrices.1 The

vector εt+1 contains four structural shocks, εt+1 = (εg,t+1, επ,t+1, εi,t+1, εσ,t+1)
′. Shocks

εg,t+1, επ,t+1, and εσ,t+1 are the consumption risk, the inflation risk, and the variance risk,

respectively. I interpret the fourth shock εi,t+1 later, once I have obtained the estimation

results. I impose six parameter restrictions G41 = G42 = G43 = H41 = H42 = H43 = 0

to ensure that the stochastic variance follows the discretized version of the continuous-time

square-root process.2

I select a variable to be included in Yt if the variable has forecasting power for the fu-

ture consumption growth. Hall (1983) and Hansen and Singleton (1983) show that lagged

consumption growth is useful in predicting future US consumption growth. Piazzesi and

Schneider (2006) argue that inflation is a leading recession indicator. Bansal, Kiku, and

Yaron (2012b), Constantinides and Ghosh (2011), and Colacito and Croce (2011) argue

1I use double subscripts for log consumption growth and inflation to indicate the time period of the
corresponding change in consumption or price level. For example, log πt,t+τ is a τ−period inflation from t
to t+ τ . I use superscripts for interest rates to indicate the type of the corresponding yields. For example,
iτt corresponds to the yield of the τ -period nominal bond at time t. σ2

t is a one-period stochastic variance,
σt is a one-period stochastic volatility.

2In continuous time, the Feller condition 2F41 > H2
44 guarantees that the variance stays strictly positive.

A formal modeling of this process in discrete time is achieved via a Poisson mixture of Gamma distributions
(Gourieroux and Jasiak, 2006; Le, Singleton, and Dai, 2010). I use a direct discretization of the continuous-
time square-root process to streamline the estimation of the model: I draw all parameters of the model
together because the vector εt+1 follows the multivariate normal distribution. I ensure that the variance
remains positive by drawing it in logs.
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that the real risk-free rate serves as a direct measure of the predictable component in future

consumption growth. Instead of including the real risk-free rate in Yt, I use a short-term

nominal yield and inflation.3

Among the possible asset prices, I use the nominal yield for a number of reasons. First,

the extant empirical and theoretical literature on the violation of the uncovered interest

rate parity has documented that risks in exchange rates and interest rates are related (e.g.,

Bansal and Shaliastovich, 2013; Heyerdahl-Larsen, 2012; Verdelhan, 2010). At a later stage

in my paper, I project the currency prices on the US stochastic discount factor. Therefore, it

is critical to ensure that important sources of exchange rate risks are captured by the model

of the stochastic discount factor. Second, the use of the yield does not require modeling

of an extra cash flow process, e.g., the dividend process, or taking a stand on whether the

stock market return is a good proxy for the return on the aggregate consumption claim.

I introduce stochastic variance to the model because the time-variation in the volatility of

consumption growth is a salient feature of consumption data, which in its turn serves as

a direct source of time variation in risk premia (Bansal and Shaliastovich, 2013; Drechsler

and Yaron, 2011). Recently, Bansal, Kiku, Shaliastovich, and Yaron (2012) and Campbell,

Giglio, Polk, and Turley (2012) have revisited the importance of the stochastic variance

of consumption growth and emphasized its first-order implications for understanding the

macro dynamics, as well as the time-series and cross-sectional properties of asset prices. In

general, it is a challenging task to identify the stochastic variance in consumption data. My

strategy of using a multi-variate system of consumption growth, inflation, and nominal yield

to do so has a higher power because several variables have a stronger information content

regarding the common unobserved variance.4

The pricing kernel derived by applying preferences (3.2.1)-(3.2.2) to the consumption growth

3Price-dividend ratio and default premia are other variables used in consumption growth predictive
regressions. See Colacito and Croce (2011) for details. I do not use these variables because connecting them
to the pricing kernel requires an additional modeling effort. For example, the use of the price-dividend ratio
must be accompanied by the model of the dividend growth process.

4Carriero, Clark, and Marcellino (2012) document that a vector autoregression with common stochastic
volatility factor efficiently summarizes the information content of several macroeconomic variables, such as
GDP growth, consumption growth, growth of payroll employment, the unemployment rate, GDP inflation,
the 10-year Treasury bond yield, the federal funds rate, and growth of business fixed investment. The
authors justify this modeling approach using the observation that the pattern of estimated volatilities is
often similar across variables.
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process (3.2.5) is

logmt,t+1 = logm+ η′Yt + q′σtεt+1, (3.2.6)

where η = (ηg, ηπ, ηi, ησ)
′ and q = (qg, qπ, qi, qσ)

′. The parameters of the vectors η and

q are functions of the structural parameters of the model (Appendix A.2.1). Note that the

pricing kernel naturally depends on all the states Yt, but one of the states i
1
t is a transformed

asset price. Because the pricing kernel must value all assets in the economy, including

the nominal bond, I impose a number of cross-equation restrictions on the VAR (3.2.5).

As a result, the requirement of internal consistency of my model leads to a constrained

vector autoregression. Except for these restrictions, I do not impose any other parameter

constraints.

The equilibrium nominal yield is an affine function of all the model’s states,

i1t = A log gt−1,t +B log πt−1,t + Ci1t +Dσ2t + E,

where A, B, C, D, and E are the functions of the structural parameters describing the

dynamics of the consumption growth and the preference parameters. I provide the full

derivation of the equilibrium nominal yield in the Appendix A.2.1. To ensure that the price

of the nominal bond is internally consistent, I require

A = B = D = E = 0, (3.2.7)

C = 1. (3.2.8)

The restrictions A = B = E = 0 and C = 1 are linear

G21

G11
=
G22

G12
=
G23 − 1

G13
=
F2 − log β

F1
= ρ− 1, (3.2.9)
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whereas the restriction D = 0 is nonlinear

α(α− ρ)(P + e1)
′HH ′(P + e1)/2 + e′2Ge4 − e′2HH

′e2/2

−[(α− ρ)P + e1(α− 1)]′HH ′[(α− ρ)P + e1(α− 1)]/2

+e′2HH
′[(α− ρ)P + e1(α− 1)]− (ρ− 1)e′1Ge4 = 0, (3.2.10)

and depends on the endogenous parameters P = (pg, pπ, pi, pσ)
′ that show up in the

solution of the value function

log ut = log (Ut/ct) = log u+ pg log gt−1,t + pπ log πt−1,t + pii
1
t + pσσ

2
t . (3.2.11)

The parameters of the vector P are functions of the preference parameters and the param-

eters governing the dynamics of consumption growth. Vectors ei that enter the nonlinear

restriction (3.2.10) are the corresponding coordinate vectors in a four-dimensional space.

The nonlinear nature of the restriction (3.2.10), combined with the presence of the endoge-

nous parameters, represents a serious challenge for the estimation. See Appendix A.2.1 for

the model’s solution and further details.

In summary, I model consumption growth via its joint dynamics with inflation and nominal

interest rate. I allow for common stochastic variance and impose restrictions required for

internal pricing consistency. This process for consumption growth, combined with recursive

preferences, leads me to a fully articulated model of the pricing kernel.

3.2.3 Foreign exchange cash flow

To illustrate the basic risk-return relationship in the foreign exchange market, I consider the

following investment strategy. At time t, the US representative investor buys a zero-coupon

foreign bond of maturity τ and pays exp (−ĩτt )st/pt US dollars (USD) in real terms. At a

future date t+τ , the foreign bond pays back one unit of the foreign currency, i.e., st+τ/pt+τ

USD in real terms. The excess τ - period log real return on this strategy,

log rxt,t+τ = [log st+τ − log st + ĩτt − iτt − log πt,t+τ ]/τ,
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is called a currency return because the currency price is a risky part of the strategy.5 I use

the following notation: exchange rate st is the price of one unit of foreign currency in terms

of USD; iτt (̃iτt ) is the US (foreign) nominal yield of maturity τ ; pt is the US price index.

Next, I introduce the notion of the FX cash flow: δt,t+τ = st+τ/[stπt,t+τ ]. Strictly speaking,

it is the real normalized cash flow of a foreign bond, or cash flow growth. I prefer to

work with δt,t+τ rather that with the original cash flow st+τ/pt+τ because the primer is

stationary. The law of one price shows that the price of the foreign bond of maturity τ

reflects the future currency risk at the horizon τ :

e−ĩ
τ
t = Et[mt,t+τst+τ/[stπt,t+τ ]] = Et[mt,t+τδt,t+τ ], (3.2.12)

where mt,t+τ is the τ -period US (domestic) stochastic discount factor.

Since the study by Lustig and Verdelhan (2007), it is a standard practice in the literature

to sort currencies into baskets depending on the level of the respective short interest rates

(equivalently, on interest rate differentials) and to examine the covariance of the baskets’

returns with some macroeconomic variables or return-based factors.6 According to the law

of one price (3.2.12), this sorting assigns currencies into baskets based on the price of the

future currency exposure to risks at a fixed horizon τ . Equivalently, the existing literature

has focused on understanding the nature of the risk-return relationship in the cross-section

of currency baskets at a fixed horizon.

In contrast, I aim to understanding how the exposure of FX cash flows to the multiple

sources of risk is priced at alternative horizons. Instead of sorting FX cash flows multiple

times by the corresponding yields of maturity τ , I sort currencies into baskets based on the

average yield in the corresponding foreign term-structures

ỹt =
T∑
τ=1

ĩτt .

5I assume that the investor holds foreign bond until maturity.
6Examples include but not limited to Burnside (2011), Burnside, Eichenbaum, Kleshchelski, and Re-

belo (2011), Della Corte, Riddiough, and Sarno (2012), Lustig, Roussanov, and Verdelhan (2011), Lettau,
Maggiori, and Weber (2012), Menkhoff, Sarno, Schmeling, and Schrimpf (2011), Mueller, Stathopoulos, and
Vedolin (2012).
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Thus, I build a cross-section of currencies with different exposure to the risks across multiple

horizons. Other sorting strategies are possible. My view is that the average yield is a good

proxy for the price of the multi-period exposure of FX cash flow to the risks. I perform

robustness check and sort currencies into baskets based on the respective short interest rates

as in the rest of the literature. My results remain similar.7

To characterize the risk-return relationship in the foreign exchange market at alternative

horizons, I need the model of the joint dynamics of the pricing kernel and FX cash flows.

Under the null of the model, I can perform analysis at any horizon without requiring more

data at longer horizons, and, more importantly, I can deduce the role of every specific con-

sumption risk for currency pricing. I augment the dynamics of the pricing kernel described

in the previous section with the law of motion of the FX cash flow. To do so, I project the

FX cash flow on the information set of the representative agent and the structural shocks

and omit the orthogonal component:

log δt,t+1 = log δ + µ′Yt + ξ′σtεt+1 + ξvσtvt+1, (3.2.13)

where µ = (µg, µπ, µi, µσ)
′, ξ = (ξg, ξπ, ξi, ξσ)

′ and vt+1 is an idiosyncratic shock. The

omitted orthogonal component is irrelevant for the US pricing and does not affect statistical

inference. The latter acts similarly to a linear regression, with an omitted variable that is

orthogonal to regressors. By using the process (3.2.13), I make an additional assumption

that world economies share the same volatility factor. Having a separate volatility factor for

a foreign economy is appealing; however, at the estimation stage the FX data at a quarterly

frequency are not informative enough about it.

3.3 Data

3.3.1 Macro data

I use quarterly data on consumption growth, inflation, and three-month nominal yield

from the second quarter of 1947 to the fourth quarter of 2011. In total, there are 259

7Appendix A.2.2 provides these results.
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observations. I collect consumption and price data from the NIPA tables of the Bureau of

Economic Analysis. The nominal yield comes from CRSP. Appendix A.2.3 contains detailed

data description.

Table 3.1 provides basic descriptive statistics. The unconditional standard deviation of

consumption growth is slightly higher than 1% annualized. This value is at least twice as

low as the value over a longer time interval, including the Great Depression. Panels (a)-

(c) of Figure 3.1 displays the dynamics of these variables. It is clear from Panels (b) and

(c) that inflation and nominal rate tend to decrease during recessions. This observation is

useful for the interpretation of empirical evidence later in the paper.

3.3.2 Currency and interest rate data

I collect daily data on twelve spot exchange rates from Thomson Reuters provided by

Datastream. The sample contains the price of the Australian dollar, the British pound, the

Canadian dollar, the Danish krone, the Euro, the Deutsche mark, the Japanese yen, the

New Zealand dollar, the Norwegian krone, the South African rand, the Swedish krone, and

the Swiss frank in terms of USD. The sample runs from the beginning of 1986 until the

end of 2011. According to the latest report of the Bank of International Settlements, these

currencies are among the twenty two currencies with the highest daily turnover, as of April

2010.

I use fixed income data from Datastream, Bloomberg and the dataset of Wright (2011).

Wright (2011) provides detailed term-structure data for Australia, Canada, Germany, Japan,

New Zealand, Norway, Sweden, Switzerland, and the UK until the first quarter of 2009.

From the first quarter of 2009 until the last quarter of 2011, I compute swap implied inter-

est rates for all of these countries but Germany. For Denmark, the Euro area, and South

Africa, I compute the swap implied interest rates for the entire time interval. The term-

structure data contain yields of forty maturities, from one quarter to ten years. Appendix

A.2.3 (Table A.6) describes data availability and sources of data for every country.

I choose currencies of developed countries that are used elsewhere in the literature.8 Because

8See Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), Lustig, Roussanov, and Verdelhan (2011),
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of data availability on the term-structure of interest rates, my sample contains a smaller

number of currencies. I work with quarterly currency quotes sampled at the end of the

corresponding quarter. The choice of the data frequency corresponds to the frequency of

consumption growth data.9

At the end of each quarter, I sort currencies into three baskets by the average yield in

the foreign term-structure ỹt. Because the number of currencies is small, I use only three

portfolios. Basket “Low” contains the low interest rates currencies, basket “Intermediate”

contains the intermediate interest rate currencies, and basket “High” contains the high

interest rate currencies. Table 3.2 provides descriptive statistics of currency portfolio re-

turns. The average return is monotonically increasing from basket “Low” to basket “High”.

Similar to Lustig and Verdelhan (2007), I find a spread in excess returns between basket

“High” and basket “Low” of approximately 4.5% per year. Table 3.3 displays the dynamic

composition of the baskets. Evidently, some currencies, e.g., the Japanese yen or the Swiss

franc, remain in the same basket during the entire time period, so the basket re-balancing

does not affect them. Other currencies, for example, the Canadian dollar or the Swedish

krone, belong to each basket for several quarters.

3.4 Methodology

In this section, I describe my estimation approach. My ultimate goal is to estimate the

joint dynamics of the stochastic discount factor and the FX cash flow. It suffices, however,

to estimate the joint process for consumption growth and the FX cash flow. Recursive

preferences applied to the dynamics of consumption growth pin down the dynamics of the

stochastic discount factor. I assume that the idiosyncratic foreign exchange shock does not

affect the dynamics of consumption growth; therefore, the estimation of the joint process

is equivalent to a three-stage procedure: (1) estimation of the consumption growth process

(3.2.5) with pricing restrictions (3.2.9) and (3.2.10), (2) identification of the structural

Lustig and Verdelhan (2007), Menkhoff, Sarno, Schmeling, and Schrimpf (2011), Rafferty (2011) among
others.

9US consumption data are available at monthly, quarterly, and annual frequencies. It is well known that
annual data are preferable but there are few observations to carry empirical work. I choose consumption
data at a quarterly frequency as a compromise of quality and the number of available observations.
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shocks εt+1 from the estimated reduced-form innovations in the vector autoregression, and

(3) estimation of the cash flow process, taking into account identified structural shocks εt+1.

My approach is free of the generated regressors’ problem and provides the full distribution

for all parameter estimates, stochastic variance, and structural shocks because I use the

Bayesian methods. Below, I explain every stage in detail.

3.4.1 Estimation of the consumption growth process

I employ the Bayesian MCMC methods to estimate a vector autoregressive model of con-

sumption growth,

Yt+1 = F +GYt +Σ1/2σtwt+1, (3.4.14)

with restrictions (3.2.9) and (3.2.10) and stochastic variance, where wt+1 are reduced-form

innovations that are unknown linear functions of structural shocks: Hεt+1 = Σ1/2wt+1.

Matrix Σ1/2 is the Cholesky lower triangular matrix and vectors of shocks wt+1 ∼ N (0, I)

and εt+1 ∼ N (0, I) follow the multivariate normal distribution.

The key advantage of this estimation approach is that it allows to impose the required

pricing restrictions (3.2.9) and (3.2.10) directly and delivers the estimated time-series of

stochastic variance as a byproduct of the estimation routine. I carefully design the simula-

tion method for the stochastic variance. In particular, I draw the log of variance; therefore,

the variance itself never becomes negative or zero. My approach to estimating a vector

autoregression with stochastic variance is different from standard methods used in applied

macroeconomics.10 In particular, I draw all the parameters of the vector autoregression

jointly because the stochastic variance is a part of the vector of state variables.

The pricing consistency restrictions (3.2.9) and (3.2.10) are functions of the structural pa-

rameters governing the dynamics of consumption growth (3.2.5) and the preference param-

eters α, β, and ρ. Therefore, in addition to the twenty two parameters of the consumption

10See, for example, Cogley and Sargent (2005), Justiniano and Primiceri (2008), Primiceri (2005), Sargent
and Surico (2010).
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growth process, there are three more preference parameters to estimate. This is a very chal-

lenging task, considering that the restriction (3.2.10) is nonlinear and requires a solution to

the fixed point problem. I discuss the nature of the fixed point problem in Appendix A.2.4.

Parameters ρ and β appear in the linear restrictions (3.2.9) so that if I estimate F1, F2,

G11, G12, G13, and ρ (and this is a straightforward procedure), I can pin down log β, G21,

G22, and G23. Instead, the parameter α enters only the nonlinear restriction (3.2.10). For

this reason, it is not clear how to set up a prior for α and how to characterize its posterior

distribution. Therefore, in this study I follow an easier yet still challenging route; that

is, I assume the preference parameters and estimate the remaining twenty two parameters

of the dynamics of consumption growth.11 I account for the linear restrictions (3.2.9) by

incorporating them directly in the parameter posterior distribution. I reject all the MCMC

draws that violate the nonlinear restriction (3.2.10). To evaluate the nonlinear restriction,

I solve the fixed-point problem at each draw; this process makes the estimation problem

very time-consuming. If I had to estimate the preference parameters as well, in particular,

α, the problem would be even more complicated.

I assume the following values for the preference parameters: α = −9, β = 0.9924, and

ρ = 1/3. The parameters α and ρ imply the preference for early resolution of uncertainty and

have been extensively used in the literature to address a number of asset pricing puzzles. For

example, by utilizing these preference parameters, Bansal and Yaron (2004) explain salient

features of the equity market in an equilibrium framework of endowment economy; Hansen,

Heaton, and Li (2008) empirically explain the value premium puzzle; whereas Bansal and

Shaliastovich (2013) rationalize properties of the term-structure of nominal interest rates

and the violation of the uncovered interest rate parity. In addition, in the international

setting Colacito and Croce (2013) advocate EIS=3/2 (ρ = 1/3) as a value supported by

empirical evidence gained through the lens of their structural model. Finally, I borrow the

value of the subjective discount factor β from Hansen, Heaton, and Li (2008).

11I leave estimation of the preference parameters for the future research.
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3.4.2 Identification

To recover structural shocks εt+1 from the reduced-form innovations wt+1, I augment the

model with a number of economically motivated identifying restrictions as is usually done in

structural vector autoregressions in applied macroeconomics.12 The natural question is the

number and the type of restrictions that should be imposed. Rothenberg (1971) provides a

necessary condition, also known as the order condition, which says that to identify a system

of n equations there must be at least n(n−1)/2 restrictions imposed. I have a system of four

equations. Therefore, to identify the structural shocks εt+1, it is necessary to impose six

restrictions. Theorem 1 in Rubio-Ramirez, Waggoner, and Zha (2010) provides a sufficient

condition, also known as the rank condition, stating that the location of restrictions in the

matrix H matters.

I choose to work with zero restrictions. The necessary and sufficient conditions together

with several additional considerations guide me towards particular identification schemes.

Firstly, the stochastic variance σ2t follows the square root process, meaning that three

restrictions on matrix H have been imposed from the beginning: H41 = H42 = H43 = 0.

Next, economically, there must be no zero restrictions on the elements of the third row of

the matrix H. The third variable in the system is the nominal rate. It is an equilibrium

outcome, and hence, an affine function of the model’s states. In principle, the nominal rate

might not load materially on one state or another, but a priori, it would be unreasonable to

restrict the model in any possible way. Finally, two equations and three more restrictions

remain. Here, I follow Theorem 1 from Rubio-Ramirez, Waggoner, and Zha (2010) and find

that the only two combinations of three zero restrictions (1) H12 = H13 = H23 = 0 and (2)

H13 = H21 = H23 = 0 guarantee that the model is globally identified.

Identification H12 = H13 = H23 = 0 is labeled “Fast Inflation” because inflation reacts

contemporaneously to a direct consumption shock, whereas consumption growth reacts to

a current inflation shock with a one-quarter delay. Table 3.4 displays the corresponding

location of zero restrictions. Identification H13 = H21 = H23 = 0 is labeled “Fast Con-

12See Blanchard and Quah (1989), Cochrane (1994), Christiano, Eichenbaum, and Evans (1999), Eichen-
baum and Evans (1995), Leeper, Sims, Zha, Hall, and Bernanke (1996), Stock and Watson (2012), Uhlig
(2005) among others.
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sumption” because consumption reacts contemporaneously to an inflation shock, whereas

inflation reacts to a direct consumption growth shock with a one-quarter delay. Table 3.5

displays the corresponding location of zero restrictions. I borrow the terminology from

structural VARs in applied macroeconomics.

I name the direct consumption shock εg,t+1 the short-run consumption shock and the shock

εi,t+1 the long-run risk shock, based on their estimated properties. In particular, the impact

of the shock εg,t+1 on consumption growth is concentrated in the short-run, whereas the

cumulative impact of the shock εi,t+1 on consumption growth dominates at long horizons.

The identification of the long-run risk shock εi,t+1 and the variance shock εσ,t+1 is exactly

the same in both identification schemes. The shock εi,t+1 is identified in the spirit of Bansal

and Yaron (2004), i.e., the long-run risk shock affects expected consumption growth but not

consumption growth itself, and does not feed into the variance process. The identification of

the variance shock εσ,t+1 has a flavor of the structural assumptions of Colacito (2009) who

allows for non-zero conditional correlations between consumption growth and stochastic

variance and expected consumption growth and stochastic variance. Identification of the

short-run consumption shock εg,t+1 and the inflation shock επ,t+1 is different across the

identification schemes, as discussed above.

3.4.3 Estimation of the FX cash flow process

The estimation of the FX cash flow process (3.2.13) becomes straightforward once the

structural shocks εt+1 from the VAR (3.2.5) are identified. Intuitively, the cash flow process

is a part of the vector autoregression that also includes the dynamics of consumption growth,

inflation, nominal yield, and stochastic variance. The FX cash flow does not Granger-cause

the economic states, whereas the economic states do cause the FX cash flow. In other words,

there is nothing new to learn about the economy from the dynamics of foreign exchange cash

flow that is not already contained in the dynamics of economic states. Given this property,

the estimation of the joint distribution of the economic states and foreign exchange cash

flow can be performed in two steps, as follows: (1) estimate the model of consumption

growth (3.2.5) and (2) use the results from (1) to estimate the foreign exchange cash flow,
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i.e., measure the loadings of the corresponding cash flow on economic states and structural

shocks. Because a two-stage estimation is equivalent to the estimation of the joint process,

the problem of generated regressors does not arise.

Effectively, estimating the FX cash flow process is almost identical to running a linear

regression because the full distribution of the stochastic variance σ2t and structural shocks

εt+1 are already known, as a byproduct of the Bayesian MCMC approach. Components

such as σtεg,t+1 in the process (3.2.13) act as additional regressors to the economic states.

I use the Bayesian MCMC methods to estimate the FX cash flow process. I provide the

details of the estimation algorithm and discuss my choice of priors in Appendix A.2.5.

3.4.4 Shock elasticity

In this section, I describe how I quantify prices and quantities of consumption risks in

the cross-section of currency baskets at alternative horizons. I follow the idea of dynamic

value decomposition of Hansen (2012) and, in particular, I use shock-exposure and shock-

price elasticities of Borovička and Hansen (2011) and Borovička, Hansen, Hendricks, and

Scheinkman (2011). Shock-exposure elasticity and shock-price elasticity are marginal met-

rics of quantity and price of risk, respectively.

The importance of a distinct source of risk for a cash flow is measured by the magnitude

of the risk premium earned because of the cash flow’s exposure to the risk. Two metrics

matter: quantity of risk (exposure) and price of risk (compensation per unit of exposure).

In a dynamic world with multiple sources of risk, the total risk premium associated with

a cash flow is a compensation for exposure to all the sources of risk at many horizons.

Thus, to shed light on the relative importance of one source of risk, it is necessary to isolate

one shock of that type and study its pricing implications for cash flow δt,t+τ across different

horizons τ . In this case, the quantity and price of risk depend on the time gap τ−1 between

the moment when the shock is realized and the moment when the shock impacts the cash

flow. This dependence on time creates a term-structure of risks and their prices.

Borovička and Hansen (2011) describe in detail how to characterize the term-structure of

risks and their prices in a structural model with stochastic variance in discrete time. I
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illustrate their approach in a simple example by examining the role of the variance risk.

Appendix A.2.6 provides the formal derivation of shock elasticities in the context of my

model.

To characterize the role of the variance risk εσ, Borovička and Hansen (2011) propose to

undertake the following steps. First, they change the exposure of the cash flow log δt,t+τ to

the risk σtεσ,t+1.
13 To do so, they introduce a perturbation

log h(v) = γ(v, σt) + vσtεσ,t+1,

where the functional form of γ(v, σt) is not important and v is a scalar, and add this

perturbation to the original multi-period cash flow δt,t+τ :

log δ̄t,t+τ = log δt,t+τ + log h(v).

As a result, they change the amount of the variance risk in the cashflow by the value v

at time t + 1. Next, the authors study how the log of the expected cash flow changes in

response to a change in the amount of risk, when the change is marginal, i.e., they compute

the following derivative

ℓδ(Yt, τ) =
d logEt[δt,t+τ ]

d log h(v)

∣∣∣∣
v=0

=
d logEt[δ̄t,t+τ ]

dv

∣∣∣∣
v=0

(3.4.15)

and call the result the shock-exposure elasticity. Similarly, they study how the log risk

premium changes in response to a change in the amount of risk, when the change is marginal,

i.e., they compute the following derivative

ℓp(Yt, τ) =
d logEt[rxt,t+τ ]

d log h(v)

∣∣∣∣
v=0

=
d logEt[δ̄t,t+τ ]

dv

∣∣∣∣
v=0

− d logEt[δ̄t,t+τmt,t+τ ]

dv

∣∣∣∣
v=0

(3.4.16)

and call this object the shock-price elasticity. The derivative with respect to log h(v) is

effectively a derivative with respect to the random variable vσtεσ,t+1. In continuous time,

such a derivative is known as the Malliavin derivative. Borovička, Hansen, Hendricks, and

Scheinkman (2011) show that it is equal to the directional derivative in the right-hand side

13Without loss of generality, assume that σtεσ,t+1 has a unit standard deviation.
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of (3.4.15) or (3.4.16) in continuous time. Borovička and Hansen (2011) simply adopt the

directional derivative as a definition of the shock elasticity in discrete time.

The shock-exposure elasticity ℓδ(Yt, τ) is marginal quantity of risk, whereas the shock-prices

elasticity ℓp(Yt, τ) is marginal price of risk, or the marginal Sharpe ratio. The elasticities

depend on the time elapsed since the shock has been realized until it impacts the cash

flow and on the information set Yt. These marginal metrics can be viewed as asset pricing

counterparts to cumulative impulse response functions. Shock elasticities are specifically

designed to study asset pricing implications of structural models with stochastic variance

(or other types of nonlinearity).

In a linear model, marginal metrics of quantity and price of risk correspond to their average

counterparts. Therefore, the shock-exposure elasticity is the cumulative impulse response

function of the multi-period log cash flow (multi-period quantity of risk), whereas the shock-

price elasticity is the cumulative impulse response function of the negative of the multi-

period log stochastic discount factor (average multi-period Sharpe ratio). Section 2.2 of

Borovička and Hansen (2011) illustrates this equivalence.14 However, in a model with

stochastic variance (or other types of nonlinearities), shock elasticities do not coincide with

cumulative impulse response functions, and have a different interpretation. This difference

is critical because only shock elasticities can describe risks in isolations in the presence of

nonlinearities.

My model contains three types of risk, namely, the short-run consumption risk, the inflation

risk, and the long-run consumption risk, which enter the model linearly. Therefore, the

shock-exposure and shock-price elasticity for these risks have a standard interpretation of

average quantity and price of risk. Shock elasticities for the variance risk has interpretation

of marginal quantity and price of risk. In this case, prices of risk associated with different

currency baskets are different, i.e., they are basket specific. This is a direct manifestation

of nonlinearity.

14Intuitively, the equivalence holds because the nonlinearities, for which shock elasticities additionally
account, are absent. Roughly speaking, the cumulative impulse response function requires computing the
expectation of the log, whereas the shock elasticity requires computing the opposite, i.e., the log of the
expectation. In a linear model the order does not matter.
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3.5 Results

I present my findings in the following order. I start with a discussion of the estimated dy-

namics of the structural VAR. Next, I analyze how foreign exchange cash flows are sensitive

to the four identified sources of consumption risk at alternative horizons. Finally, I examine

how these risk exposures are priced at alternative horizons.

3.5.1 Macro dynamics

I use the data displayed in panels (a)-(c) of Figure 3.1 to estimate the model (3.4.14) with the

consistency restrictions (3.2.9) and (3.2.10). Appendix A.2.7 summarizes the diagnostics of

fitting errors based on which I conclude that the model has a good fit. One of the outputs of

the estimation procedure is the estimated path of the unobservable stochastic variance σ2t ,

another output of the estimation procedure is the expected consumption growth Et log gt,t+1

displayed in panel (a) of Figure 3.1.

I take the square root of σ2t and scale it appropriately, so that the series represents the

stochastic volatility of consumption growth. I display this series in panel (d) of Figure 3.1.

The annualized volatility of consumption growth varies from 0.6% to 2.12%. It captures

the important economic periods: the volatility is high after the Second World War, during

the oil crises, the monetary experiment, and the recent financial crisis, and volatility is low

during the Great Moderation.

Table 3.6 reports the parameter estimates for the elements of the matrices F , G, and

Σ. The element G44 is of special interest because it characterizes the persistence of the

stochastic variance. The estimated half-life of the variance component is log 2/(1−G44) = 13

quarters. It is particularly interesting to compare the estimate ofG44 with the corresponding

values used in calibrations elsewhere in the literature. Similar to the specification of the

consumption growth process in Bansal and Yaron (2004), my model has only one stochastic

variance factor.15 I proceed by comparing the estimate of G44 with the corresponding

15In contrast to the theoretical long-run risk literature, I specify the stochastic variance not as an autore-
gressive process but as a discretized version of the square-root process.
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parameter values used in different calibrations of the Bansal and Yaron (2004) model, e.g.,

in Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2012a) and Bansal, Kiku, and Yaron

(2012b). These values are 0.9615, 0.9949, and 0.997 on a quarterly basis, respectively;

they are higher than my point estimate of G44 which is 0.9476. However, the persistence

parameter used by Bansal and Yaron (2004) is within the confidence interval of the estimated

parameter G44.

The estimated persistence of the expected consumption growth is 0.81 with the 95% confi-

dence interval from 0.71 to 0.90.16 These magnitudes are somewhat smaller than the values

used in standard calibrations of the long-run risk models.17 The expected consumption

growth loads significantly on all the observables used in the estimation with the largest in

absolute terms loading on the nominal yield (G13 = 0.38).18 Because of the dominant role

of the nominal yield, the cyclical properties of the expected growth and the nominal yield

are similar. Occasionally, however, the expected consumption growth mirrors the dynam-

ics of other variables. For example, during the recent financial crisis the dynamics of the

expected consumption growth is mostly related to the dynamics of inflation with a nega-

tive sign, whereas during the economic downturn of 1958 the expected consumption growth

closely tracks the evolution of the realized consumption growth.

Table 3.7 contains the estimates for the parameters of the matrix H. Under both identifica-

tion schemes, I find that a positive variance shock leads to a positive contemporaneous move

in inflation, whereas a positive short-run consumption shock leads to a positive contempo-

raneous move in the nominal yield. Additionally, under “Fast Inflation” a positive short-run

consumption shock leads to an increase in inflation, whereas under “Fast Consumption”, a

positive inflation shock increases consumption growth. This impact of the structural shocks

on the states of the model affects the one-period prices of risks attached to them.

16I compute the persistence parameter as an autocorrelation of the expected consumption growth
corr(Et log gt,t+1, Et−1 log gt−1,t).

17For example, Bansal and Yaron (2004) use the autoregressive parameter of 0.94, whereas Bansal, Kiku,
and Yaron (2012a) use the value of 0.93. I refer to the parameter values corresponding to the consumption
dynamics at a quarterly frequency.

18The loading of the expected consumption growth on realized consumption growth is G11 = 0.2, the
loading on inflation is G12 = −0.2, and the loading on consumption variance is G13/Σ11 =5.7. Note that
the consumption variance is several order lower than consumption growth or inflation.
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3.5.2 Term-structure of exposures of FX cash flows to the multiple sources

of consumption risk

Table 3.8 and Table 3.9 describe the distribution of the parameters of the cash flow process

estimated for all currency baskets under both identification schemes. For the one-period

exposures, the parameters ξg, ξπ, ξi, and ξσ are of central interest. These parameters are the

loadings on the vector of structural shocks σtεt+1 in the cash flow process, and, therefore,

can be interpreted as the quantity of the short-run risk, inflation risk, long-run risk, and

variance risk, respectively. Under both identification schemes, the cash flow of basket “Low”

loads negatively on the long-run risk shock, the cash flow of basket “Intermediate” loads

positively on the short-run consumption shock and inflation shock and negatively on the

long-run risk shock, and the cash flow of basket “High” loads positively on the short-

run consumption shock, inflation shock, and long-run risk shock. Thus, at horizon of one

quarter, the cash flows of basket “Low” and basket “Intermediate” serve as hedges against

the long-run risk shock; in other words, cash flows increase after a negative long-run risk

shock.

For multi-period horizons, the parameters µg, µπ, µi, and µσ become important. In conjunc-

tion with the parameters of the matrices G and H, they determine how shocks propagate

across time in the cross-section of FX cash flows. Under both identification schemes, cash

flows are predictable. Consumption growth, inflation and stochastic variance have forecast-

ing power for basket “Low”; inflation and nominal rate have forecasting power for basket

“Intermediate”; and consumption growth, inflation and nominal rate have forecasting power

for basket “High”.

In many cases, the contemporaneous and future effects of the same shock are opposite. For

example, a positive short-run consumption shock εg,t+1 contemporaneously decreases the

cash flow of basket “Low” (ξg < 0) but increases the corresponding future one-period cash

flow (µg > 0). Therefore, it is hard to gauge whether the cumulative effect of εg,t+1 on the

multi-period cash flow of basket “Low” is positive or negative on the basis of the estimated

parameters alone. Shock-exposure elasticities are helpful in this regard.

Figure 3.2 and Figure 3.3 display the shock-exposure elasticity under the “Fast Inflation”
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identification and the “Fast Consumption” identification, respectively. To plot the graphs, I

set the stochastic variance σ2t to be equal to 1, i.e., to its long-run mean.19 Shock-exposure

elasticities for short-run consumption shock, inflation shock, and long-run risk shock can

be interpreted as quantities of risk in a standard sense (for example, ξgσt is a one-period

quantity of the short-run risk associated with some FX cash flow). These shocks do not feed

into the stochastic variance process; therefore, the average metrics of price and quantity of

risk coincide with their marginal counterparts. In contrast, shock exposure elasticity for

the variance shock has an interpretation of the marginal quantity of risk: marginal change

in the expected cash flow due to a marginal change in the volatility of the underlying shock.

To highlight the difference between average and marginal quantity of risk, I interpret a

currency with a negative exposure elasticity to the short-run consumption shock, inflation

shock, or long-run risk shock as an average hedge against the corresponding shock, whereas

a currency with a negative cash flow exposure elasticity to the variance shock as a marginal

hedge against the shock. Bearing this in mind, I proceed by looking at the cross-sectional

implications of the exposure elasticities.

Under both identification schemes, there is significant cross-sectional heterogeneity of the

currency exposure elasticities to the long-run risk shock and inflation shock across all hori-

zons from one quarter to ten years. The sensitivity to the long-run risk shock is lowest

for basket “Low” and highest for basket “High”, whereas the sensitivity to the inflation

shock is lowest for basket “Intermediate” and highest for basket “High”. Differences in the

exposure elasticities of basket “Low” and basket “Intermediate” to the long-run risk and

inflation shocks are not statistically significant for multi-period horizons, although the dif-

ferences are economically meaningful in case of the elasticity exposure to the long-run risk

shock. Pair-wise differences in the exposure elasticities of basket “Low” and basket “High”

and basket “Intermediate” and “basket High” to the long-run risk and inflation shocks are

economically and statistically significant at all horizons.20 Thus, the low and intermediate

interest rate currencies are average hedges against the long-run and inflation risks.

19The shock-exposure elasticities scale up and down depending on the magnitude of the stochastic variance.
20Under the “Fast Consumption” identification, the differences in the exposure elasticities of basket “Low”

and basket “High” to the inflation risk are significant only at horizons from three quarters to five years. To
avoid overcrowding the figures, I do not display the confidence bounds for shocks elasticities. Results are
available upon request.
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Differences in the shock-exposure elasticities for the short-run consumption shock across

currency baskets are not statistically significant. However, one observation is worth men-

tioning. Under the “Fast Consumption” identification, the exposure elasticities of the cash

flows of basket “Low” and basket “High” are economically different from each other. The

quantity of risk associated with the low interest rate currencies is higher than the quantity

of risk associated with the high interest rate currencies.

The loadings of FX cash flows on the variance risk are not significantly different in the

cross-section. The variance risk matters in a different respect. Under both identification

schemes at horizons longer than three years, FX cash flows are the most sensitive to the

variance shock. To gauge the cumulative impact of the variance shock on the cash flows, it

is helpful to consider an example. A sensitivity of the high interest rate currencies to the

variance risk at horizon of ten years is -0.034 (a sensitivity to the long-run risk is 0.026,

to the inflation shock – 0.015, to the short-run consumption shock – 0.02), whereas the

corresponding metric on a one-period horizon is ξσ = 0.005. The variance shock has a

long-lasting impact on FX cash flows. At long horizons, all currency baskets are marginal

hedges against the variance shock; that is, FX cash flow marginally decreases as a result of

a marginal increase in the exposure to the variance shock.

3.5.3 Term-structure of prices of the multiple sources of consumption

risk

In the previous section, I have documented the following findings: (1) there are economically

and statistically significant differences in exposures of currencies to the inflation and long-

run risks at multiple horizons and to the short-run consumption risk at a one-period horizon

only and (2) the sensitivity of currency baskets to the variance shock is large in absolute

value and negative at long horizons without cross-sectional differences among the baskets.

The next natural question concerns how the currency exposure to the consumption risks

is priced at different horizons. Namely, it is important to understand if the cross-sectional

differences in quantity of short-run consumption risk, long-run risk, or inflation risk across

the currency baskets lead to a material difference in risk premia in the cross-section at

different horizons.
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I start characterizing the prices of risks from a one-period perspective. Table 3.10 describes

the distribution of pg, pπ, pi, and pσ that are the parameters of the value function (3.2.11).

Parameters pg and pi are positive and statistically significant, whereas the confidence in-

tervals for the parameters pπ and pσ include zero. Standard calibrations of the long-run

risk models (see, for example, Bansal and Yaron, 2004; Bansal, Kiku, and Yaron, 2012a;

Drechsler and Yaron, 2011) produce a negative value for pσ and a positive loading on the

σtεσ,t+1 in the stochastic discount factor (negative price of the variance risk).

At this stage, it is important to make three remarks. First, the preference parameters

and the parameters pg, pπ, pi, and pσ are not the only determinants of the signs of the

prices of risk. The negative of the vector of the one-period prices of risks, q, depends on

H: q = H ′[(α − ρ)P + e1(α − 1)] (see Appendix A.2.1). The matrix H is not diagonal,

and therefore, the interaction between H and P matters. Second, in my model σ2t can

play the following two roles: (1) the variance factor and (2) the predictability factor of the

future consumption growth (similar to Backus, Routledge, and Zin, 2010). Higher variance

today could be associated with higher expected consumption growth in the future, so in

general, the sign of pσ is undetermined on the basis of economic intuition alone. Finally,

as Appendix A.2.8 shows for the Bansal and Yaron (2004) model, it could be difficult to

precisely identify the parameter pσ from the data.

Table 3.11 describes the distribution of qg, qπ, qi, and qσ (elements of the vector q) under

both identification schemes. The absolute value of the price of the short-run consumption

shock is higher under the “Fast Inflation” identification. The inflation shock carries a

statistically significant price of risk only under the “Fast Consumption” identification. The

distribution of qi and qσ is identical across the schemes because these risks are identified in

exactly the same manner. The long-run risk shock carries a statistically significant positive

price of risk (−qσ). The confidence interval for the price of the variance risk includes zero.

High uncertainty about pσ leads to a high uncertainty about the price of the variance risk.

I take into account the properties of the prices of risks and one-period exposures of FX cash

flows to the risks and analyze the model implications for the cross-section of one-period

risk premia in Table 3.12 and Table 3.13. Basket “Low” is associated with a negative

risk premium (approximately -2% annualized) because it pays well in bad states of the
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world when a negative long-run risk shock is realized. The average historical return on

basket “Low” is -2.52% which falls within the confidence interval of the one-period total

risk premium attached to this basket. Basket “High” is associated with a positive risk

premium (approximately 3.2% annualized) because its cash flow is positively exposed to

all the risks which carry positive prices. The average historical return on basket “High”

is 2%, within the confidence interval of the one-period total risk premium attached to this

basket. Finally, basket “Intermediate” earns a negative risk premium of approximately

-0.35% annualized because its cash flow is more sensitive to the long-run risk shock, and

this sensitivity is negative. Similar to the other baskets, the historical average return on

basket “Intermediate” (-0.71%) is within the model implied 95% confidence interval of the

one-period total risk premium.

To summarize, the level and the spread of the excess returns in the cross-section of currencies

is fully explained by the exposure of currencies to the priced sources of consumption risk.

Under the “Fast Inflation” identification, exposure to the long-run risk shock accounts for

52% of the one-period spread of excess returns between the high and low interest rate

currencies, whereas the remaining 48% are due to the different exposure of the currency

baskets to the short-run consumption shock. Under the “Fast Consumption” identification,

exposure to the long-run risk shock, the short-run consumption shock, and the inflation

shock contribute 48%, 26%, and 26%, respectively, to the spread of real excess returns.

I analyze the multi-period prices of risks by examining the shock price elasticities displayed

in Figure 3.4 and Figure 3.5.21 The price elasticity of the short-run consumption shock, the

inflation shock and the long-run risk shock corresponds to the negative of the cumulative

impulse response function of the multi-period log stochastic discount. This works similarly

to a linear model without stochastic variance because these shocks do not feed into the

process for stochastic variance. Therefore, the marginal price of risk associated with these

shocks is also the average price of risk, or average Sharpe ratio for log returns.

Such an interpretation is not appropriate for the price elasticity for the variance shock. The

variance shock feeds into the variance process, and therefore, it is associated with important

nonlinearities in the model. The price elasticity of the variance shock is a marginal change

21As in the case of exposure elasticity, I plot price elasticity by setting σ2
t = 1.
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in the risk premium caused by the marginal change in the exposure to the source of risk,

i.e., a marginal Sharpe ratio for log returns. The price elasticity for the variance shock is

cash flow dependent because its marginal price of risk is not equal to its average price of

risk.

To put the magnitudes displayed in Figure 3.4 and Figure 3.5 into perspective, I refer to

a number of studies that report Sharpe ratios for different currency strategies. Table 3 in

Ang and Chen (2010) reports an annualized Sharpe ratio of 0.64 for a currency portfolio

based on the level of the yield curve and 0.81 for a currency portfolio based on the slope

of the yield curve; Table 1 in Burnside (2011) reports an annualized Sharpe ratio of 0.90

for the equally-weighted carry trade and 0.63 for the HML carry trade; Table 1 in Lustig,

Roussanov, and Verdelhan (2013) documents an annualized Sharpe ratio of 0.66 for the

dollar carry trade.22

These numbers are not exact counterparts to the prices of risk that I document in the paper.

In particular, I report Sharpe ratios for log returns, consider different strategies, and use

different data. However, I believe these numbers are still informative and could be used

as a rough benchmark. The one period log Sharpe ratios for the short-run consumption

shock and long-run risk shock are smaller than their multi-period counterparts but already

substantial enough against the numbers quoted for currency strategies elsewhere in the

literature (see above). For example, the annualized Sharpe ratio due to the short-run

consumption shock is approximately 0.52 or 0.58 (depending on the identification strategy)

and due to the predictability shock is 0.66.

The risk premium of all currency baskets at all investment horizons is especially sensitive

to the long-run risk under both identification schemes. This funding, in conjunction with

the substantial spread in quantity of the long-run risk across currency baskets, is the main

result of the paper. Currency baskets carry significantly different compensation for the

long-run risk at all horizons from one quarter to ten years. The spread in compensation

22Ang and Chen (2010) describe a currency strategy based on the level (slope) of the yield curve as one
that entails going long in a currency with a high level factor (low term spread) and short in a currency with a
low level factor (high term spread); Burnside (2011) defines the equally weighted carry trade as the average
of up to twenty individual currency carry trades against the US dollar; Lustig, Roussanov, and Verdelhan
(2013) determine dollar carry trade as a strategy of going long in all available one-month currency forward
contracts when the average forward discount of developed countries is positive and short otherwise.
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decreases with the investment horizon: basket “Low” acts as a weaker hedge, whereas basket

“Intermediate” loses its hedging capability completely. Nonetheless, the spread between the

corner baskets remains statistically significant.

The price of inflation risk is statistically significant at all horizons under the “Fast Con-

sumption” identification only. In this case, the significant difference in exposure to inflation

risk between basket “Low” and basket “High” (basket “Intermediate” and basket “High”)

leads to a significant spread of excess returns at all horizons (at horizons shorter than five

years). The cross-sectional spread of the inflation risk premia is smaller than the cross-

sectional spread of the long-run risk premia because the price of the long-run risk is more

than double that of the inflation risk.

Finally, the sensitivity of the currency risk premia to the variance risk is relatively small at

all investment horizons. This finding demonstrates that a high sensitivity of a cash flow to

a specific source of risk does not necessarily lead to a high risk compensation. Moreover,

the positive marginal price of the variance risk, suggests that all currency baskets act as a

marginal hedge against the unfavorable variance shock.

3.6 Conclusion

In this paper, I provide novel evidence of how multiple sources of consumption risk are priced

in the foreign exchange market at short and medium horizons, from one quarter to ten years.

I accomplish the task by examining the role of the consumption risks through the lens of the

vector autoregressive process of the joint dynamics of consumption growth, inflation, and

a three-month nominal yield with stochastic variance and structural restrictions derived

under recursive preferences.

I establish four structural consumption shocks, including the short-run consumption risk,

the inflation risk, the long-run consumption risk, and the variance risk. I find that the

compensation for currency exposure to these risks at the horizon of one quarter matches

both the level and the cross-sectional spread of currency risk premia. I document the

prominent role of the long-run consumption risk: (1) it carries the highest price of risk
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(annualized average log Sharpe ratio is 0.66 at the horizon of one quarter and higher at

longer horizons), and (2) it contributes the most to the level and to the spread of excess

returns between baskets of high and low interest rate currencies at short and medium

horizons (at the horizon of one quarter, this risk explains at least 42% of the spread).

The role of other sources of risk is limited. The short-run consumption risk is priced in

the cross-section of currency returns at the horizon of one quarter only, where it explains

at least 26% of the corresponding spread of excess returns between high and low interest

rate currencies. The inflation risk matters at multiple horizons if consumption growth is

a faster variable than inflation (consumption growth reacts to the inflation shock within a

quarter whereas inflation reacts to the short-run consumption shock with a delay of one

quarter). This risk explains a lower fraction of the spread in excess returns in comparison

with the long-run risk because its price of risk is less than a half of that for the long-run risk

(annualized average log Sharpe ratio of the inflation risk at the horizon of one quarter is

0.26). Finally, I find that all currency baskets are uniformly highly sensitive to the variance

risk at horizons longer than three years, although the compensation for this exposure is

small.

I leave at least two interesting avenues for the future research. The first question is the es-

timation of the preference parameters, perhaps starting with the parameter of the elasticity

of intertemporal substitution and the subjective discount factor. The second direction of

research is further exploration of the role of the variance risk in macroeconomy and asset

markets by utilizing assets that are informative about this type of risk at the estimation

stage.
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3.7 Tables and figures

Table 3.1: Properties of macro economic variables

Mean Std Dev Skewness Kurtosis N observations

log gt,t+1 0.0048 0.0052 -0.45 4.04 259
log πt,t+1 0.0083 0.0076 0.81 5.30 259
i1t 0.0113 0.0076 0.93 4.13 259

Notes. Descriptive statistics for consumption growth, inflation, and nominal yield. Sample
period: second quarter of 1947 – fourth quarter of 2011. Quarterly.

Table 3.2: Properties of real log excess returns

Mean Std Dev Skewness Kurtosis Autocorrelation

Basket “Low” -0.0063 0.0517 0.38 3.07 0.01
Basket “Intermediate” -0.0018 0.0432 0.09 3.81 0.15
Basket “High” 0.0050 0.0502 0.03 3.62 0.12

Notes. The three currency baskets are formed by sorting currencies by their corresponding
average yields at a quarterly basis. Average yields are computed for each currency’s term-
structure at each point of time. Sample period: 1986 – 2011. Quarterly.
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Table 3.3: Composition of currency baskets

Currency Basket “Low” Basket “Intermediate” Basket “High”

Australia 0 23 76
Canada 20 75 8
Denmark 11 70 12
Germany 34 16 2
Euro area 17 12 0
Japan 103 0 0
Norway 1 24 30
New Zealand 4 10 73
Sweden 32 29 15
Switzerland 95 0 0
UK 5 50 48
South Africa 0 0 58

Notes. Table entry shows the number of periods each currency belongs to each basket.
Sample period: 1986 – 2011, at a quarterly frequency.



100

Table 3.4: Identification “Fast Inflation”

εg,t+1 επ,t+1 εi,t+1 εσ,t+1

Consumption eq H11 0 0 H14

Inflation eq H21 H22 0 H24

Interest rate eq H31 H32 H33 H34

Variance eq 0 0 0 H44

Notes. A globally identified system. Inflation reacts to a consumption shock εg contempo-
raneously, whereas consumption growth reacts to an inflation shock επ with a delay of one
period.

Table 3.5: Identification “Fast Consumption”

εg,t+1 επ,t+1 εi,t+1 εσ,t+1

Consumption eq H11 H12 0 H14

Inflation eq 0 H22 0 H24

Interest rate eq H31 H32 H33 H34

Variance eq 0 0 0 H44

Notes. A globally identified system. Consumption growth reacts to an inflation shock επ
contemporaneously, whereas inflation reacts to a consumption shock εg with a delay of one
period.
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Table 3.6: The model of consumption growth. Parameter estimates

Parameter Estimate Confidence interval, 95%

F1 -0.0004 (-0.0019, 0.0011)
F2 -0.0074 (-0.0008, 0.0013)
F3 -0.0002 (-0.0006, 0.0002)
F4 0.0525 (0.0229, 0.0843)
G11 0.2009 (0.1051, 0.3029)
G12 -0.2000 (-0.2827, -0.1204)
G13 0.3792 (0.2896, 0.4654)
G14 0.0017 (0.0009, 0.0026)
G21 -0.1339 (-0.2019, -0.0701)
G22 0.1333 (0.0803, 0.1885)
G23 0.7472 (0.6897, 0.8069)
G24 0.0046 (0.0036, 0.0057)
G31 0.0721 (0.0378, 0.1060)
G32 0.0183 (-0.0061, 0.0422)
G33 0.9635 (0.9425, 0.9845)
G34 0.0003 (3.66e-5, 0.0006)
G44 0.9476 (0.9156, 0.9771)
Σ11 3.10e-5 (2.15e-5, 4.53e-5)
Σ12 8.85e-6 (3.06e-6, 1.60e-5)
Σ13 2.68e-6 (1.07e-6, 5.05e-6)
Σ14 -0.0002 (-0.0004, 2.51e-5)
Σ22 3.87e-5 (2.80e-5, 5.35e-6)
Σ23 2.90e-6 (9.22e-7, 5.85e-6)
Σ24 0.0003 (4.80e-5, 0.0005)
Σ33 2.71e-6 (1.92e-6, 3.87e-6)
Σ32 3.73e-5 (-3.01e-5, 0.0001)
Σ44 0.0310 (0.0175, 0.0499)

Notes. I estimate a vector autoregression with stochastic variance

Yt+1 = F +GYt + σtΣ
1/2wt+1

and restrictions: (1) G21/G11 = G22/G12 = (G23 − 1)/G13 = (F2 − log β)/F1 = ρ − 1 and
(2) α(α− ρ)(P + e1)

′Σ(P + e1)/2+ e′2Ge4 − e′2Σe2/2− [(α− ρ)P + e1(α− 1)]′Σ[(α− ρ)P +
e1(α − 1)]/2 + e′2Σ[(α − ρ)P + e1(α − 1)] − (ρ − 1)e′1Ge4 = 0. Note that Σ = HH ′, where
H is from (2.5).
Vector Yt = (log gt−1,t, log πt−1,t, i

1
t , σ

2
t )

′ includes US consumption growth, inflation, one-
period nominal yield, and stochastic variance.
To save space, I do not duplicate the symmetric entries of the matrix Σ. Sample period:
second quarter of 1947 – fourth quarter of 2011. Quarterly.
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Table 3.7: Global identification

Identification ”Fast Inflation” Identification ”Fast Consumption”
Parameter Estimate Confidence interval, Parameter Estimate Confidence interval,

95% 95%

H11 0.0054 (0.0045, 0.0065) H11 0.0051 (0.0043, 0.0061)
H14 -0.0011 (-0.0024, 0.0002) H12 0.0017 (0.0007, 0.0028)
H21 0.0019 (0.0009, 0.0030) H14 -0.0011 (-0.0024, 0.0002)
H22 0.0057 (0.0047, 0.0069) H22 0.0060 (0.0050, 0.0072)
H24 0.0014 (0.0003, 0.0025) H24 0.0014 (0.0003, 0.0025)
H31 0.0005 (0.0002, 0.0009) H31 0.0004 (0.0002, 0.0007)
H32 0.0003 (-4.8e-5, 0.0007) H32 0.0004 (9.3e-5, 0.0008)
H33 0.0015 (0.0012, 0.0017) H33 0.0015 (0.0012, 0.0017)
H34 0.0002 (-0.0002, 0.0006) H34 0.0002 (-0.0002, 0.0006)
H44 0.1747 (0.1324, 0.2233) H44 0.1747 (0.1324, 0.2233)

Notes. I identify structural shocks εt+1 from the reduced form innovations wt+1: Σ
1/2wt+1 =

Hεt+1. I consider two globally exactly identified models. Identification “Fast Inflation” is
determined by the following zero restrictions: H12 = H13 = H23 = H41 = H42 = H43 = 0.
Identification “Fast Consumption” is determined by the following zero restrictions: H13 =
H21 = H23 = H41 = H42 = H43 = 0. Quarterly.



103

Table 3.8: Estimated FX cash flow process (identification “Fast Inflation”)

Parameter Basket “Low” Basket “Intermediate” Basket “High”

log δ -0.0011 -0.0176 -0.0077
(-0.0161, 0.0144 ) (-0.0355, -0.0038) (-0.0289, 0.0080)

µg 1.6033 -0.1360 -1.4884
(0.9346, 2.2631) (-0.7566, 0.4897) (-2.2656, -0.7477)

µπ -0.5243 -2.7934 -1.9153
(-0.9637, -0.1050) (-3.2375, -2.3639) (-2.4630, -1.3713)

µi 0.0698 2.4242 2.0582
(-0.3352, 0.4634) (2.0549, 2.8050) (1.5984, 2.5358)

µσ -0.0110 0.0012 -0.0020
(-0.0207, -0.0017) (-0.0099, 0.0090) (-0.0185, 0.0081)

ξg -0.0034 0.0072 0.0163
(-0.0074, 0.0003) (0.0036, 0.0110) (0.0106, 0.0222)

ξπ -0.0030 0.0070 0.0157
(-0.0086, 0.0023) (0.0020, 0.0121) (0.0101, 0.0217)

ξi -0.0120 -0.0100 0.0064
(-0.0152, -0.0089) (-0.0128, -0.0072) (0.0036, 0.0091)

ξσ −7.18 · 10−5 0.0003 0.0055
(-0.0099, 0.0104) (-0.0085, 0.0088) (-0.0053, 0.0169)

Notes. For each currency basket, I estimate the FX cash flow process:

log δt,t+1 = log δ + µ′Yt + σtξ
′εt+1 + ξvσtvt+1,

where µ = (µg, µπ, µi, µσ)
′ and ξ = (ξg, ξπ, ξi, ξσ)

′. Quarterly. There are 95% confidence
intervals in the brackets.
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Table 3.9: Estimated FX cash flow process (identification “Fast Consumption”)

Parameter Basket “Low” Basket “Intermediate” Basket “High”

log δ -0.0007 -0.0173 -0.0082
(-0.0152, 0.0149) (-0.0363, -0.0035) (-0.0305, 0.0076)

µg 1.6081 -0.1311 -1.4615
(0.9475, 2.2560) (-0.7724, 0.5232) (-2.2080, -0.6957)

µπ -0.5177 -2.8045 -1.9180
(-0.9744, -0.0887) (-3.2364, -2.3927) (-2.4375, -1.4041)

µi 0.0632 2.4308 2.0496
(-0.3225, 0.4349) (2.0674, 2.7973) (1.5791, 2.5139)

µσ -0.0109 0.0010 -0.0020
(-0.0202, -0.0025) (-0.0106, 0.0088) (-0.0195, 0.0078)

ξg -0.0022 0.0047 0.0106
(-0.0068, 0.0023) (0.0005, 0.0086) (0.0054, 0.0157)

ξπ -0.0041 0.0088 0.0202
(-0.0089, 0.0008) (0.0043, 0.0136) (0.0146, 0.0263)

ξi -0.0120 -0.0100 0.0064
(-0.0151, -0.0088) (-0.0126, -0.0073) (0.0036, 0.0091)

ξσ −1.6 · 10−5 0.0003 0.0053
(-0.0106, 0.0102) (-0.0087, 0.0093) (-0.0054, 0.0171)

Notes. For each currency basket, I estimate the FX cash flow process:

log δt,t+1 = log δ + µ′Yt + σtξ
′εt+1 + ξvσtvt+1,

where µ = (µg, µπ, µi, µσ)
′ and ξ = (ξg, ξπ, ξi, ξσ)

′. Quarterly. There are 95% confidence
intervals in the brackets.
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Table 3.10: Parameters of the fixed point problem

Parameter pg pπ pi pσ b0 b1

Estimate 2.46 -0.29 24.26 0.01 -4e-4 0.9912
Conf inter (1.34, 3.68) (-1.12, 0.48) (18.17, 30.60) (-0.11, 0.13) (-1e-3, 0) (0.9901, 0.9933)

Notes. I solve the approximate equation:

log ut ≈ b0 + b1 logµt(ut+1gt+1)

The value function is log ut = log u+ pg log gt−1,t + pπ log πt−1,t + pii
1
t + pσσ

2
t,1. Quarterly.

Table 3.11: Parameters q

Identification “Fast Inflation” Identification “Fast Consumption”

Parameter Estimate Confidence interval, 95% Estimate Confidence interval, 95%
qg -0.29 (-0.36, -0.22) -0.26 (-0.34, -0.18)
qπ -0.04 (-0.14, 0.04) -0.13 (-0.22, -0.04)
qi -0.33 (-0.43, -0.25) -0.33 (-0.43, -0.25)
qσ -0.03 (-0.23, 0.19) -0.03 (-0.23, 0.19)

Notes. Vector q is the vector of loadings on the structural shocks σtεt+1 in the pricing kernel
logmt,t+1:

logmt,t+1 = logm+ η′Yt + q′σtεt+1, (2.6)

where q = H ′((α− ρ)P + e1(α− 1)), q = (qg, qπ, qi, qσ)
′. Preference parameters: α = −9,

ρ = 1/3, β = 0.9924. Quarterly.
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Table 3.12: One-period risk premia (identification “Fast Inflation”)

Basket “Low” Basket “Intermediate” Basket “High”

Short-run risk -0.0010 0.0021 0.0048
(-0.0026, 0.0001) (0.0008, 0.0042) (0.0021, 0.0087)

Inflation risk -0.0001 0.0003 0.0007
(-0.0008, 0.0002) (-0.0003, 0.0012) (-0.0006, 0.0024)

Long-run risk -0.0040 -0.0034 0.0022
(-0.0072, -0.0019) (-0.0061, -0.0016) (0.0009, 0.0041)

Variance risk 5.3 · 10−5 6.3 · 10−5 0.0003
(-0.0015, 0.0017) (-0.0011, 0.0014) (-0.0016, 0.0027)

Total -0.0052 -0.0009 0.0079
[0.23] [0.19] [0.2]

Data -0.0063 -0.0018 0.0050

Notes: One period risk premia associated with multiple sources of risk. Stochastic variance
σ2t is set to be equal 1. Quarterly. I report p-values in the square brackets and 95%
confidence intervals in the round brackets. The last row “Data” reports the level of the
observed average excess returns.
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Table 3.13: One-period risk premia (identification “Fast Consumption”)

Basket “Low” Basket “Intermediate” Basket “High”

Short-run risk -0.0006 0.0012 0.0028
(-0.0020, 0.0006) (0.0001, 0.0028) (0.0010, 0.0055)

Inflation risk -0.0006 0.0012 0.0028
(-0.0017, 0.0001) (0.0003, 0.0027) (0.0008, 0.0057)

Long-run risk -0.0040 -0.0034 0.0022
(-0.0069, -0.0019) (-0.0060, -0.0016) (0.0008, 0.0041)

Variance risk 4.8 · 10−5 4.3 · 10−5 0.0003
(-0.0014, 0.0016) (-0.0010, 0.0012) (-0.0014, 0.0026)

Total -0.0051 -0.0009 0.0080
[0.22] [0.19] [0.11]

Data -0.0063 -0.0018 0.0050

Notes: One period risk premia associated with multiple sources of risk. Stochastic variance
σ2t is set to be equal 1. Quarterly. I report p-values in the square brackets and 95%
confidence intervals in the round brackets. The last row “Data” reports the level of the
observed average excess returns.
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Figure 3.1: Dynamics of the model’s states
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Panel (a) displays quarterly log consumption growth (thick blue line) and estimated expected con-

sumption growth (thin red line). Panel (b) displays quarterly inflation. Panel (c) displays the

3-month nominal yield, quarterly. Panel (d) displays consumption volatility
√
Σ11σt, quarterly.

Blue line is the mean path of volatility, red lines correspond to the 95% confidence bounds. Grey

bars are the NBER recessions.
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Figure 3.2: Shock-exposure elasticity (identification “Fast Inflation”)
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Panel (a) displays shock-exposure elasticity for the short-run consumption risk. Panel (b) displays

shock-exposure elasticity for the inflation risk. Panel (c) displays shock-exposure elasticity for the

long-run risk. Panel (d) displays shock-exposure elasticity for the variance risk. Identification “Fast

Inflation”. Quarterly. The magenta dashed line is for the basket “Low”, the blue solid line is for

the basket “Intermediate”, the red marked line is for the basket “High”. The horizontal axes: from

1 quarter to 10 years.
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Figure 3.3: Shock-exposure elasticity (identification “Fast consumption”)
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Panel (a) displays shock-exposure elasticity for the short-run consumption risk. Panel (b) displays

shock-exposure elasticity for the inflation risk. Panel (c) displays shock-exposure elasticity for the

long-run risk. Panel (d) displays shock-exposure elasticity for the variance risk. Identification “Fast

Consumption”. Quarterly. The magenta dashed line is for the basket “Low”, the blue solid line is

for the basket “Intermediate”, the red marked line is for the basket “High”. The horizontal axes:

from 1 quarter to 10 years.
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Figure 3.4: Shock-price elasticity (identification “Fast Inflation”)
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Panel (a) displays shock-price elasticity for the short-run consumption risk. Panel (b) displays

shock-price elasticity for the inflation risk. Panel (c) displays shock-price elasticity for the long-run

risk. Panel (d) displays shock-price elasticity for the variance risk. The magenta dashed line is for

the basket “Low”, the blue solid line is for the basket “Intermediate”, the red marked line is for the

basket “High”. The horizontal axes: from 1 quarter to 10 years. Identification “Fast Consumption”.

Quarterly.
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Figure 3.5: Shock-price elasticity (identification “Fast Consumption”)

1 10 20 30 40
0.275

0.325

0.375
(a) Short−run consumption risk

1 10 20 30 40
0.125

0.15

0.175
(b) Inflation risk

1 10 20 30 40
0.3

0.35

0.4

0.45
(c) Long−run consumption risk

1 10 20 30 40
0.02

0.03

0.04

0.05
(d) Variance risk

Panel (a) displays shock-price elasticity for the short-run consumption shock. Panel (b) displays

shock-price elasticity for the inflation shock. Panel (c) displays shock-price elasticity for the long-

run risk shock. Panel (d) displays shock-price elasticity for the variance shock. The magenta dashed

line is for the basket “Low”, the blue solid line is for the basket “Intermediate”, the red marked line

is for the basket “High”. Identification “Fast Inflation”. Quarterly.



Chapter 4

Conclusion

This thesis studies the risk-return relationship in the foreign exchange market. Chapter 2

develops a statistical model of currency price evolution with the purpose of quantifying the

relative importance of crash risk versus normal risk and the metrics associated with crash

risk (probabilities and sizes of crash events and their determinants). Chapter 3 investigates

the sources of normal risk in currency markets and asks if the multiple sources of the

US consumption risk are reflected in the cross-section of currencies at different investment

horizons.

The main findings of the monograph can be summarized as follows: (1) crash risk in currency

markets is quantitatively important, (2) there are three distinct sources of time-varying

crash risk – upward and downward jumps in foreign exchange rates and jumps in the variance

of currency returns, (3) normal risk is quantitatively the largest chunk of risk regardless

of the investment horizons but the importance of jumps in volatility increases with the

investment horizon, (4) many jump events in currency price are associated with important

macroeconomic and political news, whereas jumps in variance are not, (5) probability of

jumps in currency prices is driven by the interest rate differential, whereas the probability of

jumps in variance is controlled by the variance itself, (6) multiple sources of US consumption

risk matter in the foreign exchange market, (7) the long-run consumption risk is the most

prominent source of risk – it matters both in the cross-section of currency returns and

across alternative investment horizons, (8) the short-run consumption risk is priced in the

113
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cross-section of currency returns only at the one-period investment horizon.
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Appendix A

Appendix

A.1 Supplementary material for Chapter 2

A.1.1 Long-run risk models

In this section we provide two examples of models with critically different shocks to the

respective endowment processes that, nonetheless, yield the same functional dependence of

currency excess returns on observable variables. We rely on the Long-Run Risk framework

of Bansal and Yaron (2004) and use various modelling elements inspired by Bansal and

Shaliastovich (2013); Benzoni, Collin-Dufresne, and Goldstein (2011); Drechsler and Yaron

(2011); Wachter (2013).

We neither make any claims about realism of these models nor attempt to distinguish them

empirically. In fact, we try to construct the simplest models possible that deliver risk

premiums dependent on the interest rate differential and the variance of changes in the

exchange rate. Moreover, the models have implications for real exchange rates while we are

studying the empirical behaviour of nominal exchange rates. Thus, these models serve for

pure illustrative purposes. We use recursive preferences and define utility from date t on

Ut = [(1− β)cρt + βµt(Ut+1)
ρ]
1/ρ

, (A.1.1)
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and certainty equivalent function,

µt(Ut+1) =
[
Et(U

α
t+1)

]1/α
.

In standard terminology, ρ < 1 captures time preference (with intertemporal elasticity

of substitution 1/(1 − ρ)) and α < 1 captures risk aversion (with coefficient of relative

risk aversion 1 − α). The time aggregator and certainty equivalent functions are both

homogeneous of degree one, which allows us to scale everything by current consumption. If

we define scaled utility ut = Ut/ct, equation (A.1.1) becomes

ut = [(1− β) + βµt(gt+1ut+1)
ρ]1/ρ , (A.1.2)

where gt+1 = ct+1/ct is consumption growth. The pricing kernel is

mt+1 = β(ct+1/ct)
ρ−1 [Ut+1/µt(Ut+1)]

α−ρ

= βgρ−1
t+1 [gt+1ut+1/µt(gt+1ut+1)]

α−ρ .

The relationship (A.1.2) serves, essentially, as a Bellman equation. Its loglinear approxima-

tion

log ut = ρ−1 log [(1− β) + βµt(gt+1ut+1)
ρ]

= ρ−1 log
[
(1− β) + βeρ log µt(gt+1ut+1)

]
≈ b0 + b1 logµt(gt+1ut+1) (A.1.3)

gives us transparent closed-form expressions for pricing kernels (Hansen, Heaton, and Li,

2008). The last line is a first-order approximation of log ut in logµt around the point

logµt = logµ, with

b1 = βeρ log µ/[(1− β) + βeρ log µ]

b0 = ρ−1 log[(1− β) + βeρ log µ]− b1 logµ.

The equation is exact when ρ = 0, in which case b0 = 0 and b1 = β. We focus on this case for



129

the simplicity sake and to avoid the debate on the accuracy of the log-linear approximation

as this subject is not the focus of our paper.

We extend this setting to two countries that we refer to as home (US) and foreign. The

representative agents in each country have different risk aversion: 1− α and 1− α̃, respec-

tively. Similarly, all other foreign-country-specific objects, such as consumption growth, or

pricing kernel are denoted by tilde .̃

Model 1: Stochastic Variance

The domestic consumption growth is

log gt+1 = log g + xt + kσg,tηt+1,

xt+1 = γxt + σx,tet+1,

σ2g,t+1 = (1− νg)vg + νgσ
2
g,t + σgwσg,twg,t+1,

σ2x,t+1 = (1− νx)vx + νxσ
2
x,t + σxwσx,twx,t+1.

The foreign consumption growth is similar, except for the loading of the variance of con-

sumption growth on σ2g,t:

log g̃t+1 = log g + xt + k̃σg,tη̃t+1,

xt+1 = γxt + σx,tet+1,

σ2g,t+1 = (1− νg)vg + νgσ
2
g,t + σgwσg,twg,t+1,

σ2x,t+1 = (1− νx)vx + νxσ
2
x,t + σxwσx,twx,t+1.

For simplicity, we assume that all the shocks, ηt, η̃t, et, wg,t, and wx,t, are independent.

To solve the model, guess the domestic value function:

log ut = log u+ pxxt + pσgσ
2
g,t + pσxσ

2
x,t.
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Compute:

log (ut+1gt+1) = log ug + xt + kσg,tηt+1 + pxxt+1 + pσgσ
2
g,t+1 + pσxσ

2
x,t+1

= log ug + pσg(1− νg)vg + pσx(1− νx)vx + (1 + pxγ)xt + pσgνgσ
2
g,t + pσxνxσ

2
x,t

+ kσg,tηt+1 + pxσx,tet+1 + pσgσgwσg,twg,t+1 + pσxσxwσx,twx,t+1,

logµt(ut+1gt+1) = [log ug + pσg(1− νg)vg + pσx(1− νx)vx] + (1 + pxγ)xt

+ (pσgνg + αk2/2 + αp2σgσ
2
gw/2)σ

2
g,t + (pσxνx + αp2x/2 + αp2σxσ

2
xw/2)σ

2
x,t.

Plug logµt(ut+1gt+1) into the Bellman equation (A.1.3) and match coefficients:

constant : log u = β(log ug + pσg(1− νg)vg + pσx(1− νx)vx)

xt : px = β(1 + pxγ)

σ2g,t : pσg = β(pσgνg + αk2/2 + αp2σgσ
2
gw/2)

σ2x,t : pσx = β(pσxνx + αp2x/2 + αp2σxσ
2
xw/2)

These equations imply that

log u = β(log g + pσg(1− νg)vg + pσx(1− νx)vx)/(1− β)

px = β/(1− βγ)

and pσg and pσx are the smallest roots of the following quadratic equations:

αβσ2gwp
2
σg + 2(βνg − 1)pσg + αβk2 = 0

αβσ2xwp
2
σx + 2(βνx − 1)pσx + αβp2x = 0.

We select the smallest roots because they ensure that the corresponding risk premium is

zero when variance is zero. The foreign value function is computed following identical steps.

The log pricing kernel at home is
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logmt+1 = log β − log gt+1 + α[log gt+1ut+1 − logµt(gt+1ut+1)]

= log β − log g − xt − α2(k2 + p2σgσ
2
gw)σ

2
g,t/2− α2(p2x + p2σxσ

2
xw)σ

2
x,t/2

+ (α− 1)kσg,tηt+1 + αpxσx,tet+1 + αpσgσgwσg,twg,t+1 + αpσxσxwσx,twx,t+1.

The log pricing kernel abroad m̃t has a similar expression.

Domestic and foreign interest rates are:

rt = − log β + log g + xt + (2α− 1)k2σ2g,t/2,

r̃t = − log β + log g + xt + (2α̃− 1)k̃2σ2g,t/2.

Interest rate differential is

rt − r̃t = [(2α− 1)k2 − (2α̃− 1)k̃2]σ2g,t/2. (A.1.4)

By no-arbitrage:

st+1 − st = log m̃t+1 − logmt+1. (A.1.5)

Thus, exchange rate growth process is

st+1 − st = [α2(k2 + σ2gwp
2
σg)− α̃2(k̃2 + σ2gwp̃

2
σg)]σ

2
g,t/2

+ [α2(p2x + p2σxσ
2
xw)− α̃2(p2x + p̃2σxσ

2
xw)]σ

2
x,t/2

+ [(α̃− 1)k̃η̃t+1 − (α− 1)kηt+1]σg,t + px(α̃− α)σx,tet+1

+ (α̃p̃σg − αpσg)σgwσg,twg,t+1 + (α̃p̃σx − αpσx)σxwσx,twx,t+1.

and we can compute expected excess returns Et(st+1−st−(rt−r̃t)) and conditional variance

of the exchange rate changes vart(st+1 − st).
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The conditional variance of the exchange rate growth is

vart(st+1 − st) = [(α̃− 1)2k̃2 + (α− 1)2k2 + (α̃p̃σg − αpσg)
2σ2gw]σ

2
g,t

+ [p2x(α̃− α)2 + (α̃p̃σx − αpσx)
2σ2xw]σ

2
x,t. (A.1.6)

The expected excess log currency return is

Et(st+1 − st − (rt − r̃t)) = (vart(logmt+1)− vart(log m̃t+1))/2

= [(α− 1)2k2 − (α̃− 1)2k̃2 + α2p2σgσ
2
gw − α̃2p̃2σgσ

2
gw]σ

2
g,t/2

+ [p2x(α
2 − α̃2) + α2p2σxσ

2
xw − α̃2p̃2σxσ

2
xw]σ

2
x,t/2. (A.1.7)

Interest rate differential and conditional variance of the exchange rate changes depend on

σ2g,t and σ
2
x,t. Therefore, one can express the dependence of expected excess returns on σ2g,t

and σ2x,t as a dependence on the interest rate differential and conditional variance of the

exchange rate changes.

Solve the system of equations (A.1.4-A.1.6) for the stochastic variances:

σ2g,t =
Bv(rt − r̃t)−Brvart(st+1 − st)

ArBv
, (A.1.8)

σ2x,t =
−Av(rt − r̃t) +Arvart(st+1 − st)

ArBv
, (A.1.9)

where

Ar = [(2α− 1)k2 − (2α̃− 1)k̃2]/2

Av = (α̃− 1)2k̃2 + (α− 1)2k2 + (α̃p̃σg − αpσg)
2σ2gw,

Bv = p2x(α̃− α)2 + (α̃p̃σx − αpσx)
2σ2xw.

Expressions (A.1.7)-(A.1.9) imply that the log expected excess currency return is a linear

function of interest rate differential and the variance of exchange rate growth:

Etyt+1 = Et(st+1 − st − (rt − r̃t)) = δr(rt − r̃t) + δvvart(st+1 − st),
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where

δr = (Bvsg −Avsx)/(ArBv),

δv = sx/Bv,

sg = [(α− 1)2k2 − (α̃− 1)2k̃2 + α2p2σgσ
2
gw − α̃2p̃2σgσ

2
gw]/2,

sx = [p2x(α
2 − α̃2) + α2p2σxσ

2
xw − α̃2p̃2σxσ

2
xw]/2.

Model 2: Disasters

The domestic and foreign consumption growths are

log gt+1 = log g + xt + σgηt+1 + zg,t+1,

log g̃t+1 = log g + xt + σgη̃t+1 + zg,t+1,

xt+1 = γxt + σxet+1 + zx,t+1,

where the jump sizes are drawn from the normal distributions

zg,t+1|j ∼ N (jµg, jσ
2
g),

zx,t+1|j ∼ N (jµx, jσ
2
x),

and the jump arrival rate is controlled by a Poisson distribution

Prob(jt+1 = j) = exp (−hk,t)hjk,t/j!, k = g, x.

The jump intensities hg,t and hx,t are time-varying:

hg,t+1 = (1− νhg)vhg + νhghg,t + σhgh
1/2
g,t εhg,t+1,

hx,t+1 = (1− νhx)vhx + νhxhx,t + σhxh
1/2
x,t εhx,t+1.

The model is solved by guessing the value function for each country. For example, guess

the domestic value function:
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log ut = log u+ pxxt + phghg,t + phxhx,t.

Compute

log ut+1gt+1 = [log ug + phg(1− νhg)vhg + phx(1− νhx)vhx] + (pxγ + 1)xt + phgνhghg,t

+ phxνhxhx,t + σgηt+1 + pxσxet+1 + phgσhgh
1/2
g,t εhg,t+1 + phxσhxh

1/2
x,t εhx,t+1,

+ pxzx,t+1 + zg,t+1,

logµt(ut+1gt+1) = [log ug + phg(1− νhg)vhg + phx(1− νhx)vhx] + (pxγ + 1)xt + phgνhghg,t

+ phxνhxhx,t + ασ2g/2 + αp2xσ
2
x/2 + αp2hgσ

2
hghg,t/2 + αp2hxσ

2
hxhx,t/2

+ (eαpxµx+(αpxσx)2/2 − 1)hx,t/α+ (eαµg+(ασg)2/2 − 1)hg,t/α.

Plug logµt(ut+1gt+1) into the Bellman equation (A.1.3) and match coefficients:

constant : log u = β(log ug + phg(1− νhg)vhg + phx(1− νhx)vhx + ασ2g/2 + αp2xσ
2
x/2)

xt : px = β(1 + pxγ)

hg,t : phg = β(phgνhg + αp2hgσ
2
hg/2 + (eαµg+(ασg)2/2 − 1)/α)

hx,t : phx = β(phxνhx + αp2hxσ
2
hx/2 + (eαpxµx+(αpxσx)2/2 − 1)/α)

These equations imply that

log u = β(log g + phg(1− νhg)vhg + phx(1− νhx)vhx + ασ2g/2 + αp2xσ
2
x/2)/(1− β)

px = β/(1− βγ)

and phg and phx are the smallest roots of the following quadratic equations:

α2σ2hgβp
2
hg + 2α(βνhg − 1)phg + 2β(eαµg+(ασg)2/2 − 1) = 0,

α2σ2hxβp
2
hx + 2α(βνhx − 1)phx + 2β(eαpxµx+(αpxσx)2/2 − 1) = 0.

We select the smallest roots because they ensure that the corresponding risk premium is
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zero when variance is zero. The foreign value function is computed following identical steps.

The log pricing kernel at home is

logmt+1 = [log β − log g − α2σ2g/2− α2p2xσ
2
x/2]− xt − α2p2hgσ

2
hghg,t/2− α2p2hxσ

2
hxhx,t/2

− (eαµg+(ασg)2/2 − 1)hg,t − (eαpxµx+(αpxσx)2/2 − 1)hx,t + (α− 1)σgηt+1 + αpxσxet+1

+ αphgσhgh
1/2
g,t εhg,t+1 + αphxσhxh

1/2
xt εhx,t+1 + (α− 1)zg,t+1 + αpxzx,t+1.

The log pricing kernel abroad has a similar expression.

We can compute domestic interest rate rt = − logEt(mt+1), a similar expression applies to

the foreign interest rate r̃t:

rt = − logEtmt+1 = [− log β + log g + α2σ2g/2− (α− 1)2σ2g/2] + xt

+ (eαµg+(ασg)2/2 − e(α−1)µg+((α−1)σg)2/2)hg,t,

r̃t = − logEtm̃t+1 = [− log β + log g + α̃2σ2g/2− (α̃− 1)2σ2g/2] + xt

+ (eα̃µg+(α̃σg)2/2 − e(α̃−1)µg+((α̃−1)σg)2/2)hg,t. (A.1.10)

Thus, the interest rate differential is

rt − r̃t = r0 + [eαµg+(ασg)2/2 − eα̃µg+(α̃σg)2/2]hg,t

+ (e(α̃−1)µg+((α̃−1)σg)2/2 − e(α−1)µg+((α−1)σg)2/2)hg,t, (A.1.11)

where

r0 = (α− α̃)σ2g .

By no-arbitrage:

st+1 − st = log m̃t+1 − logmt+1, (A.1.12)

so that the exchange rate growth process:
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st+1 − st = (α2 − α̃2)σ2g/2 + p2x(α
2 − α̃2)σ2x/2 + (α2p2hg − α̃2p̃2hg)σ

2
hghg,t/2

+ (α2p2hx − α̃2p̃2hx)σ
2
hxhx,t/2 + (eαµg+(ασg)2/2 − eα̃µg+(α̃σg)2/2)hg,t

+ (eαpxµx+(αpxσx)2/2 − eα̃pxµx+(α̃pxσx)2/2)hx,t + (α̃− 1)σgη̃t+1 − (α− 1)σgηt+1

+ px(α̃− α)σxet+1 + (α̃p̃hg − αphg)σhgh
1/2
g,t εhg,t+1

+ (α̃p̃hx − αphx)σhxh
1/2
x,t εhx,t+1 + (α̃− α)zg,t+1 + px(α̃− α)zx,t+1.

Therefore, we can compute expected excess returns Et(st+1− st− (rt− r̃t)) and conditional

variance of the exchange rate changes vart(st+1−st). All of these objects depend on hg,t and

hx,t. Therefore, one can express the dependence of expected excess returns on hg,t and hx,t

as a dependence on the interest rate differential and conditional variance of the exchange

rate changes.

The conditional variance of the exchange rate growth is

vart(st+1 − st) = v0 + (α̃p̃hg − αphg)
2σ2hghg,t + (α̃p̃hx − αphx)

2σ2hxhx,t

+ ((α̃− α)2µ2g + σ2g)hg,t + ((α̃p̃x − αpx)
2µ2x + σ2x)hx,t. (A.1.13)

where

v0 = (α̃− 1)2σ2g + (α− 1)2σ2g + p2x(α̃− α)2σ2x.

The expected log excess currency return is

Et(st+1 − st − (rt − r̃t)) = rx0 + (α2p2hg − α̃2p̃2hg)σ
2
hghg,t/2 + (α2p2hx − α̃2p̃2hx)σ

2
hxhx,t/2

+ µg(α̃− α)hg,t + µxpx(α̃− α)hx,t

+ (e(α−1)µg+((α−1)σg)2/2 − e(α̃−1)µg+((α̃−1)σg)2/2)hg,t

+ (eαpxµx+(αpxσx)2/2 − eα̃pxµx+(α̃pxσx)2/2)hx,t, (A.1.14)
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where

rx0 = ((α− 1)2 − (α̃− 1)2)σ2g/2 + p2x(α
2 − α̃2)σ2x/2.

Solve the system of equations (A.1.11)-(A.1.13) for the jump intensities:

hg,t =
Bv(rt − r̃t)−Brvart(st+1 − st) +Brv0 −Bvr0

ArBv
, (A.1.15)

hx,t =
−Av(rt − r̃t) +Arvart(st+1 − st) +Avr0 −Arv0

ArBv
, (A.1.16)

where

Ar = eαµg+(ασg)2/2 − eα̃µg+(α̃σg)2/2 + e(α̃−1)µg+((α̃−1)σg)2/2 − e(α−1)µg+((α−1)σg)2/2

Av = (α̃p̃hg − αphg)
2σ2hg + (α̃− α)2µ2g + σ2g ,

Bv = (α̃p̃hx − αphx)
2σ2hx + p2x(α̃− α)2µ2x + σ2x.

Expressions (A.1.14)-(A.1.16) imply that the log expected excess currency return is a linear

function of interest rate differential and the variance of exchange rate growth:

Etyt+1 = Et(st+1 − st − (rt − r̃t)) = δ0 + δr(rt − r̃t) + δvvart(st+1 − st),

where

δ0 = rx0 − sgr0/Ar − sx(Arv0 −Avr0)/(ArBv),

δr = (−Avsx +Bvsg)/(ArBv),

δv = sx/Bv,

sg = (α2p2hg − α̃2p̃2hg)σ
2
hg/2 + (eµg(α−1)+((α−1)σg)2/2 − e(α̃−1)µg+((α̃−1)σg)2/2) + µg(α̃− α),

sx = (α2p2hx − α̃2p̃2hx)σ
2
hx/2 + eαpxµx+(αpxσx)2/2 − eα̃pxµx+(α̃pxσx)2/2 + µxpx(α̃− α).
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A.1.2 The estimation algorithm

In this section we outline the estimation algorithm for the Preferred model. We estimate the

discrete time model on the basis of daily data. We assume that there is no more than one

jump per day. We re-write our model using notation that is more convenient for estimation

purposes:

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1 + z̄ut+1j̄

u
t+1 − z̄dt+1j̄

d
t+1, (A.1.17)

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + z̄vt+1j̄

v
t+1, (A.1.18)

IVt = αiv + βivvt + σivvt
√
λtεt. (A.1.19)

Indicator j̄kt , k = {u, d, v}, is equal to one if there is a jump at t, and zero otherwise.

Correspondingly, z̄kt is a jump size:

z̄ut ∼ Exp(θ), (A.1.20)

z̄dt ∼ Exp(θ), (A.1.21)

z̄vt ∼ Exp(θv). (A.1.22)

Introduce new notations: ψ = ρσv, η = σ2v(1 − ρ2), α = (1 − ν)v, β = ν, and Θ is the

collection of all parameters. Denote the full history of excess returns, variance, implied

variance, domestic and foreign interest rates, jump times and sizes by Y , V , IV , R, R̃, J̄k,

Z̄k (k = {u, d, v}), respectively. All the data are available on the interval t ∈ [1, T ], except

for the implied variance which is available on the interval t ∈ [T2 + 1, T ], T2 > 0.

Posterior distributions for the parameters

• Assume a normal prior for µ0: µ0 ∼ N(a,A).

Posterior distribution is

p(µ0|Y, V, Z̄u, Z̄d, Z̄v, J̄u, J̄d, J̄v, R, R̃,Θ{−µ0}) ∝ N(â, Â),

where
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Â =

(
1

A
+

(
ψ2

η
+ 1

) T−1∑
t=0

1

vt

)−1

,

â = Â

(
a

A
+

(
ψ2

η
+ 1

) T−1∑
t=0

yt+1 − µr(rt − r̃t)− µvvt − z̄ut+1j̄
u
t+1 + z̄dt+1j̄

d
t+1

vt

)
−

−Â

(
ψ

η

T−1∑
t=0

(vt+1 − α− βvt − z̄vt+1j̄
v
t+1)

vt

)
.

• Assume a normal prior for µv: µv ∼ N(a,A).

Posterior distribution is

p(µv|Y, V, Z̄u, Z̄d, Z̄v, J̄u, J̄d, J̄v, R, R̃,Θ{−µv}) ∝ N(â, Â),

where

Â =

(
1

A
+

(
ψ2

η
+ 1

) T−1∑
t=0

vt

)−1

,

â = Â

(
a

A
+

(
ψ2

η
+ 1

) T−1∑
t=0

(yt+1 − µ0 − µr(rt − r̃t)− z̄ut+1j̄
u
t+1 + z̄dt+1j̄

d
t+1)

)
−

−Â

(
ψ

η

T−1∑
t=0

(vt+1 − α− βvt − z̄vt+1j̄
v
t+1)

)
.

• Assume a normal prior for µr: µr ∼ N(a,A).

Posterior distribution is

p(µr|Y, V, Z̄u, Z̄d, Z̄v, J̄u, J̄d, J̄v, R, R̃,Θ{−µr}) ∝ N(â, Â)
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where

Â =

(
1

A
+

(
ψ2

η
+ 1

) T−1∑
t=0

(rt − r̃t)
2

vt

)−1

,

â = Â

(
a

A
+

(
ψ2

η
+ 1

) T−1∑
t=0

(yt+1 − µ0 − µvvt − z̄ut+1j̄
u
t+1 + z̄dt+1j̄

d
t+1)(rt − r̃t)

vt

)
−

−Â

(
ψ

η

T−1∑
t=0

(rt − r̃t)(vt+1 − α− βvt − z̄vt+1j̄
v
t+1)

vt

)
.

• Assume a normal prior for α: α ∼ N(a,A).

Posterior distribution is

p(α|Y, V, Z̄u, Z̄d, Z̄v, J̄u, J̄d, J̄v,Θ{−α}) ∝ N(â, Â),

where

Â =

(
1

A
+

1

η

T−1∑
t=0

1

vt

)−1

,

â = Â

(
a

A
+

1

η

T−1∑
t=0

vt+1 − βvt − j̄vt+1z̄
v
t+1

vt

)
−

−Â

(
ψ

η

T−1∑
t=0

(yt+1 − µ0 − µr(rt − r̃t)− µvvt − j̄ut+1z̄
u
t+1 + j̄dt+1z̄

d
t+1)

vt

)
.

• Assume a normal prior for β: β ∼ N(a,A).

Posterior distribution is

p(β|Y, V, Z̄u, Z̄d, Z̄v, J̄u, J̄d, J̄v,Θ{−β}) ∝ N(â, Â),
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where

Â =

(
1

A
+

1

η

T−1∑
t=0

vt

)−1

,

â = Â

(
a

A
+

T−1∑
t=0

vt+1 − α− j̄vt+1z̄
v
t+1

η

)
−

−Â

(
ψ

η

T−1∑
t=0

(yt+1 − µ0 − µr(rt − r̃t)− µvvt − j̄ut+1z̄
u
t+1 + j̄dt+1z̄

d
t+1)

)
.

• Assume dependent normal-inverse gamma priors for ψ and η:

ψ|η ∼ N(a,Aη),

η ∼ IG(b,B).

Posterior distributions are

p(ψ|Y, V, Z̄u, Z̄d, Z̄v, J̄u, J̄d, J̄v, R, R̃,Θ{−ψ}) ∝ N(â, Âη),

p(η|Y, V, Z̄v, J̄v, R, R̃,Θ{−η}) ∝ IG(b̂, B̂),

where

Â =

(
T−1∑
t=0

(wst+1)
2 +

1

A

)−1

,

â = Â

(
a

A
+

T−1∑
t=0

ξt+1w
s
t+1

)
,

b̂ = b+
T

2
,

B̂ = B +
1

2

T−1∑
t=0

ξ2t+1 +
a2

2A
− â2

2Â
,

ξt+1 =
vt+1 − α− βvt − j̄vt+1z̄

v
t+1√

vt
.

• Assume a normal prior for αiv: αiv ∼ N(a,A).
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Posterior distribution is

p(αiv|βiv, σiv, IV, {λt}Tt=T2+1, {vt}Tt=T2+1) ∝ N(â, Â),

where

Â =

 1

A
+

T∑
t=T2+1

1

σ2ivv
2
t λt

−1

,

â = Â

 1

σ2iv

T∑
t=T2+1

IVt − βivvt
v2t λt

+
a

A

 .

• Assume a normal prior for βiv: βiv ∼ N(a,A).

Posterior distribution is

p(βiv|αiv, σiv, IV, {λt}Tt=T2+1, {vt}Tt=T2+1) ∝ N(â, Â),

where

Â =

 1

A
+

T∑
t=T2+1

1

σ2ivλt

−1

,

â = Â

 1

σ2iv

T∑
t=T2+1

IVt − αiv
vtλt

+
a

A

 .

• Assume an inverse-gamma prior for σ2iv: σ
2
iv ∼ IG(b,B).

Posterior distribution is

p(σ2iv|αiv, βiv, {vt}Tt=T2+1, IV, {λt}Tt=T2+1) ∝ IG(b̂, B̂),

where
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b̂ = b+
T − T2

2
,

B̂ = B +

T∑
t=T2+1

(IVt − αiv − βivvt)
2

2λtv2t
.

• Assume an inverse-gamma prior for θv: θv ∼ IG(b,B).

Posterior distribution is

p(θv|Z̄v) ∝ p(Z̄v|θv)p(θv) ∝ IG(b̂, B̂),

where

b̂ = b+ T,

B̂ = B +

T∑
t=1

z̄vt .

• Assume an inverse-gamma prior for θ: θ ∼ IG(b,B).

Posterior distribution is

p(θ|Z̄u, Z̄d) ∝ p(Z̄u, Z̄d|θ)p(θ) ∝ IG(b̂, B̂),

where

b̂ = b+ 2T,

B̂ = B +
T∑
t=1

(z̄ut − z̄dt ).

• We use the Metropolis-Hastings Random Walk algorithm to estimate the parameters

of the jump intensities. In particular, we draw parameters in pairs – hv0 and hv; h0

and hr. Also, we draw these parameters in logs to guarantee that jump intensities

stay strictly positive.
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Posterior distributions for the latent variables

We have eight unobservable objects in the model: variance, three paths of the jump times,

three paths of the jump sizes, and λt.

For each t ∈ [T2 + 1, T ] :

• Prior distribution for λt is IG(
ν
2 ,

ν
2 ).

The posterior distribution is

p(λt|IVt, vt, αiv, βiv, σiv, ν) ∝ IG

(
ν

2
+

1

2
,
ν

2
+

(IVt − αiv − βivvt)
2

2σ2ivv
2
t

)
.

For each t ∈ [1, T ]:

• Jumps in variance arrive with a time-varying intensity hvt = hv0 + hvvt, i.e., p(j̄
v
t+1 =

1) = hvt . The posterior distribution for the jump in variance is the Bernoulli distribu-

tion with the success probability equal to bv = p
p+q , where

p = hvt exp

(
−
X

′
t+1Σ

−1Xt+1

2

)
,

q = (1− hvt ) exp

(
−
Y

′
t+1Σ

−1Yt+1

2

)
,

X1,t+1 = Y1,t+1 =
yt+1 − µ0 − µr(rt − r̃t)− µvvt − j̄ut+1z̄

u
t+1 + j̄dt+1z̄

d
t+1√

vt
,

X2,t+1 =
vt+1 − α− βvt − z̄vt+1√

vt
,

Y2,t+1 =
vt+1 − α− βvt√

vt
.

and Σ denotes the variance-covariance matrix of Xt+1 = (X1,t+1, X2,t+1)
′
and Yt+1 =

(Y1,t+1, Y2,t+1)
′
.
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• The prior distribution for the size of the jump in variance z̄vt+1 is the exponential

distribution with mean θv. Note that:

p(z̄vt+1|yt+1, vt+1, vt, z̄
u
t+1, z̄

d
t+1, j̄

u
t+1, j̄

d
t+1, j̄

v
t+1 = 1, rt, r̃t,Θ)

∝ p(yt+1, vt+1|vt, z̄ut+1, z̄
d
t+1, z̄

v
t+1, j̄

u
t+1, j̄

d
t+1, j̄

v
t+1 = 1, rt, r̃t,Θ)p(z̄vt+1)

∝ exp

(
−
X

′
t+1Σ

−1Xt+1

2

)
1

θv
exp

(
−
z̄vt+1

θv

)
I(z̄vt+1>0)

∝ exp

(
ψ

η
X1,t+1X2,t+1 −

1

2η
X2

2,t+1

)
exp

(
−
z̄vt+1

θv

)
I(z̄vt+1>0)

∝ exp

(
−
(z̄vt+1 −mt+1)

2

2Mt+1

)
I(z̄vt+1>0),

where

X1,t+1 =
yt+1 − µ0 − µr(rt − r̃t)− µvvt − j̄ut+1z̄

u
t+1 + j̄dt+1z̄

d
t+1√

vt
,

X2,t+1 =
vt+1 − α− βvt − z̄vt+1√

vt
.

Thus, the posterior distribution for z̄vt+1 is the truncated normal distribution with the

parameters mt+1 (mean) and Mt+1 (variance):

Mt+1 = ηvt,

mt+1 = −ψ(yt+1 − µ0 − µr(rt − r̃t)− µvvt − j̄ut+1z̄
u
t+1 + j̄dt+1z̄

d
t+1)

+vt+1 − α− βvt −
Mt+1

µz
.

Correspondingly, p(z̄vt+1|j̄vt+1 = 0, θv) ∼ Exp(θv).

• Upward jumps in excess returns arrive with a time-varying intensity hut = h0 + hrrt,

i.e., p(j̄ut+1 = 1) = hut . The posterior distribution for the upward jump in excess

returns is the Bernoulli distribution with the success probability bu = p
p+q , where
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p = hut exp

(
−
X

′
t+1Σ

−1Xt+1

2

)
,

q = (1− hut ) exp

(
−
Y

′
t+1Σ

−1Yt+1

2

)
,

X1,t+1 =
yt+1 − µ0 − µr(rt − r̃t)− µvvt − z̄ut+1 + j̄dt+1z̄

d
t+1√

vt
,

Y1,t+1 =
yt+1 − µ0 − µr(rt − r̃t)− µvvt + j̄dt+1z̄

d
t+1√

vt
,

X2,t+1 = Y2,t+1 =
vt+1 − α− βvt − j̄vt+1z̄

v
t+1√

vt
,

and Σ denotes the variance-covariance matrix of Xt+1 = (X1,t+1, X2,t+1)
′
and Yt+1 =

(Y1,t+1, Y2,t+1)
′
.

• The prior distribution for the size of the upward jump in excess returns z̄ut+1 is the

exponential distribution with the mean θ. Note that:

p(z̄ut+1|yt+1, vt+1, vt, z̄
d
t+1, z̄

v
t+1, j̄

u
t+1 = 1, j̄dt+1, j̄

v
t+1, rt, r̃t,Θ)

∝ p(yt+1, vt+1|z̄ut+1, z̄
d
t+1, z̄

v
t+1, j̄

u
t+1 = 1, j̄dt+1, j̄

v
t+1, vt, rt, r̃t,Θ)p(z̄ut+1)

∝ exp

(
−
X

′
t+1Σ

−1Xt+1

2

)
1

θ
exp

(
−
z̄ut+1

θ

)
I(z̄ut+1>0)

∝ exp

(
−1

2

(
1 +

ψ2

η

)
X2

1,t+1 +
ψ

η
X1,t+1X2,t+1

)
exp

(
−
z̄ut+1

θ

)
I(z̄ut+1>0)

∝ exp

(
−
(z̄ut+1 −mt+1)

2

2Mt+1

)
I(z̄ut+1>0),

where

X1,t+1 =
yt+1 − µ0 − µr(rt − r̃t)− µvvt − z̄ut+1 + j̄dt+1z̄

d
t+1√

vt
,

X2,t+1 =
vt+1 − α− βvt − j̄vt+1z̄

v
t+1√

vt
.
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Thus, the posterior distribution for z̄ut+1 is the truncated normal distribution with the

parameters mt+1 (mean) and Mt+1 (variance):

Mt+1 =
vt(

1 + ψ2

η

) ,
mt+1 = (yt+1 − µ0 − µr(rt − r̃t)− µvvt + j̄dt+1z̄

d
t+1)

− ψ

(η + ψ2)
(vt+1 − α− βvt − j̄vt+1z̄

v
t+1)−

Mt+1

θ
.

Correspondingly, p(z̄ut+1|j̄ut+1 = 0, θ) ∼ Exp(θ).

• Downward jumps in excess returns arrive with a time-varying intensity hdt = h0+hrr̃t,

i.e., p(j̄dt+1 = 1) = hdt . The posterior distribution for the downward jump in excess

returns is the Bernoulli distribution with the success probability bd = p
p+q , where

p = hdt exp

(
−
X

′
t+1Σ

−1Xt+1

2

)
,

q = (1− hdt ) exp

(
−
Y

′
t+1Σ

−1Yt+1

2

)
,

X1,t+1 =
yt+1 − µ0 − µr(rt − r̃t)− µvvt + z̄dt+1 − j̄ut+1z̄

u
t+1√

vt
,

Y1,t+1 =
yt+1 − µ0 − µr(rt − r̃t)− µvvt − j̄ut+1z̄

u
t+1√

vt
,

X2,t+1 = Y2,t+1 =
vt+1 − α− βvt − j̄vt+1z̄

v
t+1√

vt
,

and Σ denotes the variance-covariance matrix of Xt+1 = (X1,t+1, X2,t+1)
′
and Yt+1 =

(Y1,t+1, Y2,t+1)
′
.

• The prior distribution for the the size of the downward jump in excess returns is the

exponential distribution with mean θ.

Note that
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p(zdt+1|yt+1, vt+1, vt, z̄
u
t+1, z̄

v
t+1, j̄

u
t+1, j̄

d
t+1 = 1, j̄vt+1, rt, r̃t,Θ)

∝ p(yt+1, vt+1|z̄ut+1, z
d
t+1, z̄

v
t+1, j̄

u
t+1, j̄

d
t+1 = 1, j̄vt+1, vt, rt, r̃t,Θ)p(zdt+1)

∝ exp

(
−
X

′
t+1Σ

−1Xt+1

2

)
1

θ
exp

(
−
zdt+1

θ

)
I(zdt+1>0)

∝ exp

(
−1

2

(
1 +

ψ2

η

)
X2

1,t+1 +
ψ

η
X1,t+1X2,t+1

)
exp

(
−
zdt+1

θ

)
I(zdt+1>0)

∝ exp

(
−
(zdt+1 −mt+1)

2

2Mt+1

)
I(zdt+1>0),

where

X1,t+1 =
yt+1 − µ0 − µr(rt − r̃t)− µvvt + z̄dt+1 − j̄ut+1z̄

u
t+1√

vt
,

X2,t+1 =
vt+1 − α− βvt − j̄vt+1z̄

v
t+1√

vt
.

Thus, the posterior distribution for z̄dt+1 is the truncated normal distribution with the

parameters mt+1 (mean) and Mt+1 (variance):

Mt+1 =
vt(

1 + ψ2

η

) ,
mt+1 = −(yt+1 − µ0 − µr(rt − r̃t)− µvvt − j̄ut+1z̄

u
t+1)

+
ψ

(η + ψ2)
(vt+1 − α− βvt − j̄vt+1z̄

v
t+1)−

Mt+1

θ
.

Correspondingly, p(z̄dt+1|j̄dt+1 = 0, θ) ∼ Exp(θ).

• To guarantee that the estimated variance is strictly positive, we draw it in logs.

The posterior distribution for the variance differs depending on whether IV data are

available (t > T2) or not (t ≤ T2).
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If IV is not available, the posterior distribution for the spot variance is

p(log vt|vt−1, vt+1, j̄
u
t , j̄

u
t+1, j̄

d
t , j̄

d
t+1, j̄

v
t , j̄

v
t+1, z̄

u
t , z̄

u
t+1, z̄

d
t , z̄

d
t+1, z̄

v
t , z̄

v
t+1, rt−1, rt, r̃t−1, r̃t,Θ)

∝ exp

(
−1

2

(
ψ2

η
+ 1

)(
(yt+1 − µ0 − µr(rt − r̃t)− j̄ut+1z̄

u
t+1 + j̄dt+1z̄

d
t+1)

2

vt
+ µ2vvt

))

× exp

(
ψ

η

(
µvβvt +

(yt+1 − µ0 − µr(rt − r̃t)− j̄ut+1z̄
u
t+1 + j̄dt+1z̄

d
t+1)(vt+1 − α− j̄vt+1z̄

v
t+1)

vt

))

× exp

(
ψ

η

(yt − µ0 − µr(rt−1 − r̃t−1)− µvvt−1 − j̄ut z̄
u
t + j̄dt z̄

d
t )vt

vt−1

)
× exp

(
− 1

2η

(
(vt+1 − α− j̄vt+1z̄

v
t+1)

2

vt
+ β2vt +

v2t − 2vt(α+ βvt−1 + j̄vt z̄
v
t )

vt−1

))
.

If IV is available, the posterior distribution for the spot variance is

∝ exp

(
−1

2

(
ψ2

η
+ 1

)(
(yt+1 − µ0 − µr(rt − r̃t)− j̄ut+1z̄

u
t+1 + j̄dt+1z̄

d
t+1)

2

vt
+ µ2vvt

))

× exp

(
ψ

η

(
µvβvt +

(yt+1 − µ0 − µr(rt − r̃t)− j̄ut+1z̄
u
t+1 + j̄dt+1z̄

d
t+1)(vt+1 − α− j̄vt+1z̄

v
t+1)

vt

))

× exp

(
ψ

η

(yt − µ0 − µr(rt−1 − r̃t−1)− µvvt−1 − j̄ut z̄
u
t + j̄dt z̄

d
t )vt

vt−1

)
× exp

(
− 1

2η

(
(vt+1 − α− j̄vt+1z̄

v
t+1)

2

vt
+ β2vt +

v2t − 2vt(α+ βvt−1 + j̄vt z̄
v
t )

vt−1

))
× 1

vt
exp

(
−(IVt − αiv − βivvt)

2

2σ2ivλtv
2
t

)
.

Thus, if implied variance is observed, the posterior distribution for the spot variance

has one additional component (the last multiplier).
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A.1.3 Model diagnostics

The Bayesian MCMC approach provides output that is useful for the model diagnostics

purposes. In particular, we estimate a system

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1 + z̄ut+1j̄

u
t+1 − z̄dt+1j̄

d
t+1, (A.1.23)

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + z̄vt+1j̄

v
t+1,

IVt = αiv + βivvt + σivvt
√
λtεt. (A.1.24)

and construct distributions for the residuals {ws,gt } and {εgt } (the superscript g stands for

a simulation path). Our model implies that the residuals from equations (A.1.23) and

(A.1.24), wst and εt, are iid standard normal, i.e., skewness=0, kurtosis=3, and no serial

correlation.

For each g, we construct fitted residuals,

ŵs,gt+1 =
yt+1 − µ̂g0 − µ̂gr(rt − r̃t)− µ̂gvv̂t

g − ˆ̄zu,gt+1
ˆ̄ju,gt+1 + ˆ̄zd,gt+1

ˆ̄jd,gt+1√
v̂it

,

ε̂gt+1 =
IVt − α̂giv − β̂givv̂

g
t

σ̂givv̂
g
t

√
λ̂gt

,

and we compute their third and fourth moments, and autocorrelations: skew(ŵs,g), skew(ε̂g),

kurt(ŵs,g), kurt(ε̂g), autocorr(ŵs,g), and autocorr(ε̂g). Therefore, as a natural by-product

of our estimation, we have distributions of skewness, kurtosis, and autocorrelation for {ws}

and {ε}:

M = {skew(ws,g), kurt(ws,g), autocorr(ws,g), skew(εg), kurt(εg), autocorr(εg)}Gg=1,

where G is the number of executed simulations. Hence, we can easily construct confidence

intervals for these six components of M and check whether they contain skewness of zero,

kurtosis of 3, and serial correlation of zero. We report the corresponding model diagnostics

tables in the main text of the paper.

Additionally, we keep track of the variance of the innovations from equation (A.1.19),
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σ2ivv
2
t λt. A better fitting model should have a lower variance. Similar to other diagnostics,

we store the whole distribution of {σ2,giv v
2,g
t λgt }Gg=1 and report its mean and 95% confidence

bound in the main text of the paper.

A.1.4 Bayes odds ratios

In Bayesian statistics, a common formal approach to model selection is a comparison of the

posterior model probabilities. If the prior model probabilities are uniformly distributed,

the posterior model probabilities collapse to the Bayes factor (for a detailed discussion, see

Gamerman and Lopes, 2006). The Bayes factor simplifies in the case of nested models with

similar priors for common parameters. It equals to the ratio of the posterior and the prior

under the encompassing model. This ratio is known as the Savage-Dickey density ratio

(Verdinelli and Wasserman, 1995).

SV versus SVJ

In this section, we are evaluating two models: stochastic volatility model (SV)

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1, (A.1.25)

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1, (A.1.26)

IVt = αiv + βivvt + σivvt
√
λtεt (A.1.27)

and stochastic volatility model with jumps in variance (SVJ)

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1, (A.1.28)

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + z̄vt+1j̄

v
t+1, (A.1.29)

IVt = αiv + βivvt + σivvt
√
λtεt. (A.1.30)

Let Ω denote the collection of the latent variables and parameters of the models, i.e.,

Ω = {Θ, J̄v, Z̄v,Λ} (Λ = {λt}Tt=T2+1). We treat variance as observable in this case (this
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subsection only). First, variance in the model with jumps in variance has an unknown

unconditional distribution. Second, in our model the intensity of the jumps in variance is

governed by the variance itself. These two observations mean that evaluation of the Bayes

factor would involve the use of an intractable distribution if variance is latent. We view

this simplification as reasonable because in order to estimate variance we use information

embedded in ATM options, i.e., implied variance tells us very accurately what the spot

variance is.

We compare two nested models; if j̄vt = 0 for any t ∈ [1, T ] then the SVJ model is equivalent

to the SV model. Therefore, we have the following identity for predictive densities:

p(Y, IV |Ω, R, R̃, V,SV) = p(Y, IV |Ω, R, R̃, J̄v = 0, V, SVJ) (A.1.31)

We make an additional assumption that models share the same prior distributions for the

common parameters, i.e, p(Ω|SV) = p(Ω|J̄v = 0,SVJ). Thereby, we work with the Bayes

factor in the form of the Savage-Dickey density ratio. We follow Eraker, Johannes, and

Polson (2003) to show this.

Start with the predictive density for the SV model and use two facts: (1) the SV model is

nested in the SVJ model, and (2) models have identical priors for the common parameters:

p(Y, IV |R, R̃, V, SV) =
∫
p(Y, IV |Ω, R, R̃, V, SV)p(Ω|SV )dΩ

=

∫
p(Y, IV |Ω, R, R̃, V, J̄v = 0,SVJ)p(Ω|SV)dΩ

=

∫
p(Y, IV |Ω, R, R̃, V, J̄v = 0,SVJ)p(Ω|J̄v = 0,SVJ)dΩ = p(Y, IV |J̄v = 0, R, R̃, V, SVJ).

The posterior odds ratio of the model SV to the model SVJ is

Odds(SV,SVJ) =
Pr(SV|Y, IV, V,R, R̃)
Pr(SVJ|Y, IV, V,R, R̃)

=
p(Y, IV |R, R̃, V, SV)

p(Y, IV |R, R̃, V, SVJ)

=
p(Y, IV |J̄v = 0, R, R̃, V, SVJ)

p(Y, IV |R, R̃, V, SVJ)
=
Pr(J̄v = 0|Y, IV,R, R̃, V, SVJ)

Pr(J̄v = 0|R, R̃, V, SVJ)
.
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Consider the denominator. Let x = {hv0, hv} and X to be the domain of x.

Pr(J̄v = 0|R, R̃, V, SVJ) =
∫

x∈X

Pr(J̄v = 0|hv0, hv, V, SVJ)p(hv0, hv|SVJ)dx

=

∫
x∈X

T∏
t=1

(1− hv0 − hvvt−1)p(h
v
0, hv|SVJ)dx =

∫
x∈X

T∏
t=1

(1− hv0 − hvvt−1)p(h
v
0)p(hv)dx

=
1

K

K∑
k=1

(
T∏
t=1

(1− hv,k0 − hkvvt−1)

)
. (A.1.32)

Thereby, we evaluate a prior ordinate numerically by fixing a large number K, drawing

independently {hv,k0 }Kk=1 and {hkv}Kk=1 from the uniform distributions with domains [hv0, h
v
0]

and [hv, hv], respectively, and approximating the integral by a sum.

Consider the numerator

Pr(J̄v = 0|Y, IV,R, R̃, V, SVJ)

=

∫
x∈X

Pr(J̄v = 0|hv0, hv, V, Y, IV,SVJ)p(hv0, hv|Y, IV, V,SVJ)dx. (A.1.33)

Work with the second component in (A.1.33):

p(hv0, hv|Y, IV, V,SVJ) =
∫
J̄v

p(hv0, hv|J̄v, V, SVJ)p(J̄v|Y, IV )dJ̄v

=

∫
j̄v

(
T∏
t=1

(hv0 + hvvt−1)
j̄vt (1− hv0 − hvvt−1)

1−j̄vt /Cm

)
p(J̄v|Y, IV )dJ̄v.(A.1.34)

Cm is a normalization constant which guarantees that the first multiplier under the integral

in (A.1.32) is a density function:

Cm =

∫
x∈X

T∏
t=1

(hv0 + hvvt−1)
j̄vt (1− hv0 − hvvt−1)

1−j̄vt dx

≈ 1

K

K∑
k=1

T∏
t=1

(hv,k0 + hkvvt−1)
j̄vt (1− hv,k0 − hkvvt−1)

1−j̄vt .
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Component (A.1.34) becomes

p(hv0, hv|Y, IV, V,SVJ) =
1

M

M∑
m=1

T∏
t=1

(hv0 + hvvt−1)
j̄v,mt (1− hv0 − hvvt−1)

1−j̄v,mt /Cm

Finally, we compute the posterior ordinate (A.1.33):

Pr(J̄v = 0|Y, IV,R, R̃, V, SVJ)

≈ 1

KM

K∑
k=1

(
T∏
t=1

(1− hv,k0 − hkvvt−1)

)
M∑
m=1

T∏
t=1

(hv,k0 + hkvvt−1)
j̄v,mt (1− hv,k0 − hkvvt−1)

1−j̄v,mt /Cm.

SVJ versus Preferred

In this section, we are working with the SVJ model (A.1.28-A.1.30) and our preferred model

given by

yt+1 = µ0 + µr(rt − r̃t) + µvvt + v
1/2
t wst+1 + z̄ut+1j̄

u
t+1 − z̄dt+1j̄

d
t+1, (A.1.35)

vt+1 = (1− ν)v + νvt + σvv
1/2
t wvt+1 + z̄vt+1j̄

v
t+1, (A.1.36)

IVt = αiv + βivvt + σivvt
√
λtεt. (A.1.37)

Similar arguments tell us that the Bayes factor takes the form of the Savage-Dickey density

ratio if we assume identical priors for common parameters, i.e., p(Ω|SVJ) = p(Ω|J̄u =

0, J̄d = 0,Preferred). Note that Ω includes latent variables corresponding to jump times and

jump sizes in currency returns. Here we do not have to assume that variance is observable

because it cancels out in the final expression (see below). The posterior odds ratio of the

model SVJ to the model Preferred is

Odds(SVJ,Preferred) =
Pr(SVJ|Y, IV, V,R, R̃)

Pr(Preferred|Y, IV, V,R, R̃)

=
Pr(J̄u = 0, J̄d = 0|Y, IV,R, R̃, V,Preferred)

Pr(J̄u = 0, J̄d = 0|R, R̃, V,Preferred)
. (A.1.38)
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We start with the denominator:

Pr(J̄u = 0, J̄d = 0|R, R̃, V,Preferred)

=

∫
x∈X

Pr(J̄u = 0, J̄d = 0|h0, hr, R, R̃,Preferred)p(h0, hr)dx

≈ 1

K

K∑
k=1

T∏
t=1

(1− hk0 − hkrrt−1)(1− hk0 − hkr r̃t−1). (A.1.39)

We denote x = (h0, hr) and X is the domain of x.

For the numerator, we have

Pr(J̄u = 0, J̄d = 0|R, R̃, Y, IV, V,Preferred) (A.1.40)∫
x∈X

Pr(J̄u = 0, J̄d = 0|h0, hr, R, R̃)p(h0, hr|Y, IV,R, R̃, V,Preferred)dx.

Work with the second component of (A.1.40):

p(h0, hr|Y, IV,R, R̃, V,Preferred)

=

∫
J̄u, J̄d

p(h0, hr|J̄u, J̄d, R, R̃,Preferred)p(J̄u, J̄d|Y, IV,Preferred)dJ̄udJ̄d

=

∫
J̄u, J̄d

p(h0, hr|J̄u, J̄d, R, R̃,Preferred)p(J̄u|Y )p(J̄d|Y )dJ̄udJ̄d.

We approximate p(J̄u|Y ) and p(J̄d|Y ) by using the MCMC draws for the jump times.

Therefore, to complete our derivation all we need is to evaluate the conditional joint density

function of the parameters of the jumps’ intensities:

p(h0, hr|J̄u, J̄d, R, R̃,Preferred)

=
T∏
t=1

(h0 + hrrt−1)
j̄ut (h0 + hrr̃t−1)

j̄dt (1− h0 − hrrt−1)
1−j̄ut (1− h0 − hr r̃t−1)

1−j̄dt /Cm,

where
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Cm =

∫
x∈X

T∏
t=1

(h0 + hrrt−1)
j̄ut (h0 + hr r̃t−1)

j̄dt (1− h0 − hrrt−1)
1−j̄ut (1− h0 − hrr̃t−1)

1−j̄dt dx

=
1

K

K∑
k=1

T∏
t=1

(hk0 + hkrrt−1)
j̄ut (hk0 + hkr r̃t−1)

j̄dt (1− hk0 − hkrrt−1)
1−j̄ut (1− hk0 − hkr r̃t−1)

1−j̄dt .

Thereby,

p(h0, hr|Y, IV,R, R̃, V,Preferred)

≈ 1

M

M∑
m=1

T∏
t=1

(h0 + hrrt−1)
j̄u,mt (h0 + hrr̃t−1)

j̄d,mt (1− h0 − hrrt−1)
1−j̄u,mt (1− h0 − hr r̃t−1)

1−j̄d,mt /Cm.

The numerator in (A.1.38) is as follows

Pr(J̄u = 0, J̄d = 0|R, R̃, Y, IV, V,Preferred)

≈ 1

KM

K∑
k=1

T∏
t=1

(1− hk0 − hkrrt−1)(1− hk0 − hkr r̃t−1)

=

M∑
m=1

T∏
t=1

(hk0 + hkrrt−1)
j̄u,mt (hk0 + hkr r̃t−1)

j̄d,mt (1− hk0 − hkrrt−1)
1−j̄u,mt (1− hk0 − hkr r̃t−1)

1−j̄d,mt /Cm.

This completes our derivation.

A.1.5 Expected future variance

We do not consider the most general model to streamline the presentation. We focus on

the empirically relevant case where intensity of jumps in variance depends on variance

only, and jumps up (down) in FX depend on domestic (foreign) interest rate only. We

start by computing expectation of the variance process in (2.3.2). Conditional expectation

Et(vt+i) ≡ vt,i can be computed via a recursion. Note that vt,0 = vt. Suppose we know

vt,i−1. Then
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vt,i = (1− ν)v + νvt,i−1 + σvEt(Et+i−1(v
1/2
t+i−1w

v
t+i)) + Et(Et+i−1z

v
t+i)

= (1− ν)v + νvt,i−1 + θvh
v
0 + θvh

v
vvt,i−1 = (1− ν)v + θvh

v
0 + (ν + θvh

v
v)vt,i−1.

We can solve this recursion analytically:

vt,i = [(1− ν)v + θvh
v
0](1 + (ν + θvh

v
v)) + (ν + θvh

v
v)

2vt,i−2

= [(1− ν)v + θvh
v
0](1− (ν + θvh

v
v)
i)/(1− (ν + θvh

v
v)) + (ν + θvh

v
v)
ivt.

Next, we can compute expectation of average future v :

Et

(
n∑
i=1

vt+i

)
/n = 1/n

n∑
i=1

Etvt+i = 1/n

n∑
i=1

vt,i

= 1/n
n∑
i=1

[(1− ν)v + θvh
v
0](1− (ν + θvh

v
v)
i)/(1− (ν + θvh

v
v)) + 1/n

n∑
i=1

(ν + θvh
v
v)
ivt

=
(1− ν)v + θvh

v
0

1− (ν + θvhvv)

[
1− ν + θvh

v
v

n

1− (ν + θvh
v
v)
n

1− (ν + θvhvv)

]
+
ν + θvh

v
v

n

1− (ν + θvh
v
v)
n

1− (ν + θvhvv)
vt

≡ (1− ν)v + θvh
v
0

1− (ν + θvhvv)
[1− βn]︸ ︷︷ ︸

αn

+βnvt.

Similarly, we can obtain conditional expectations of future interest rates:

rt,i ≡ Et(rt+i) = ar(1− bir) + birrt,

and the expectations of average future interest rates:

Et

(
n∑
i=1

rt+i

)
/n = 1/n

n∑
i=1

Etrt+i = 1/n

n∑
i=1

rt,i

= ar

[
1− br

n

1− bnr
1− br

]
+
br
n

1− bnr
1− br

rt

and the similar expression holds for expectations associated with r̃t.
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Now, we can characterize the variance of excess returns:

vyt ≡ vart(yt+1) = vt + 2hut θ
2
u + 2hdt θ

2
d.

Therefore, the conditional expectation of this variance can be computed on the basis of our

results for the variance of the normal component vt and the expectations of interest rates:

vyt,i ≡ Et(v
y
t+i) = vt,i + 2θ2uh

u
0 + 2θ2uh

u
rEt(rt+i) + 2θ2dh

d
0 + 2θ2dh̃

d
rEt(r̃t+i).

This expression implies that the unconditional expectation, or long-run mean, of the vari-

ance is:

vJ = lim
i→∞

vyt,i = [(1− ν)v + θvh
v
0]/(1− (ν + θvh

v
v))

+ 2θ2uh
u
0 + 2θ2uh

u
rar + 2θ2dh

d
0 + 2θ2dh̃

d
r ãr.

When there are no jumps, that is, θv = 0, θu = 0, and θd = 0, then vJ = v.

Next, we compute Et(
∑n

i=1 v
y
t+i)/n

Et

(
n∑
i=1

vyt+i

)
/n = 1/n

n∑
i=1

Etv
y
t+i = 1/n

n∑
i=1

vyt,i

= αn + 2θ2uh
u
0 + 2θ2uh

u
rar

[
1− br

n

1− bnr
1− br

]
+ 2θ2dh

d
0 + 2θ2dh̃

d
r ãr

[
1− b̃r

n

1− b̃nr

1− b̃r

]

+ βnvt + 2θ2uh
u
r

br
n

1− bnr
1− br

rt + 2θ2dh̃
d
r

b̃r
n

1− b̃nr

1− b̃r
r̃t.

A.1.6 Jumps and news

For each day a currency has experienced a jump according to our model, we search Factiva

if there were significant news. Table A.1 displays a detailed account of this news.
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A.1.7 Computing entropy

Entropy of currency changes over a horizon of n days is equal to:

Lt(St+n/St) = logEt(e
xt,n)− Et(xt,n) = kt(1;xt,n)− κ1t(xt,n),

where xt,n = log(St+n/St) =
∑t+n

i=t (si+1 − si), kt(s;xt,n) is a cumulant-generating function

of xt,n, and κ1t(xt,n) is the first cumulant of xt,n. Thus, we need to compute the cumulant-

generating function of xt,n :

kt(s;xt,n) = logEte
sxt,n .

The first cumulant can be recovered as ∂kt(s;xt,n)/∂s at s = 0. Denote the the drift of log

currency changes by µ̄t = µt + (rt − r̃t).

Guess

kt(s;xt,n) = A(n) +Bv(n)vt +Br(n)rt + B̃r(n)r̃t.

Then

A(n) +Bv(n)vt +Br(n)rt + B̃r(n)r̃t

= k(s;xt,n) = logEt[e
sxt,1Et+1e

sxt+1,n−1 ]

= logEt[e
sxt,1eA(n−1)+Bv(n−1)vt+1+Br(n−1)rt+1+B̃r(n−1)r̃t+1 ]

= A(n− 1) + logEte
sxt,1+Bv(n−1)vt+1 + logEte

Br(n−1)rt+1+B̃r(n−1)r̃t+1

= A(n− 1) + sµ̄t +Bv(n− 1)((1− ν)v + νvt)

+ Br(n− 1)((1− br)ar + brrt) + B̃r(n− 1)((1− b̃r)ãr + b̃r r̃t)

+ logEte
s(1−ρ2)1/2v1/2t ws

t+1+sρv
1/2
t wv

t+1+sz
u
t+1+sz

d
t+1+Bv(n−1)σvv

1/2
t wv

t+1+Bv(n−1)zvt+1

+ logEte
Br(n−1)r

1/2
t σrwr

t+1+B̃r(n−1)r̃
1/2
t σ̃rw̃r

t+1

= A(n− 1) + sµ̄t +Bv(n− 1)((1− ν)v + νvt)

+ Br(n− 1)((1− br)ar + brrt) + B̃r(n− 1)((1− b̃r)ãr + b̃r r̃t)
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+ s2vt/2 + vtsρσvBv(n− 1) +B2
v(n− 1)σ2vvt/2 + hut ((1− sθu)

−1 − 1) + hdt ((1 + sθd)
−1 − 1)

+ hvt ((1−Bv(n− 1)θv)
−1 − 1) +B2

r (n− 1)σ2rrt/2 + B̃2
r (n− 1)σ̃2r r̃t/2

= A(n− 1) + s(µ+ (µr + 1)(rt − r̃t) + µvvt) +Bv(n− 1)((1− ν)v + νvt)

+ Br(n− 1)((1− br)ar + brrt) + B̃r(n− 1)((1− b̃r)ãr + b̃r r̃t)

+ s2vt/2 + vtsρσvBv(n− 1) +B2
v(n− 1)σ2vvt/2 + sθu(h

u
0 + hur rt)/(1− sθu)

− sθd(h
d
0 + h̃dr r̃t)/(1 + sθd) + (hv0 + hvvvt)Bv(n− 1)θv/(1−Bv(n− 1)θv)

+ B2
r (n− 1)σ2rrt/2 + B̃2

r (n− 1)σ̃2r r̃t/2.

Collect terms, match them with the corresponding terms in the first line, solve for the

coefficients:

A(n) = A(n− 1) + sµ+Bv(n− 1)(1− ν)v + sθuh
u
0/(1− sθu)− sθdh

d
0/(1 + sθd)

+ hv0Bv(n− 1)θv/(1− θvBv(n− 1)) +Br(n− 1)(1− br)ar + B̃r(n− 1)(1− b̃r)ãr

Bv(n) = sµv +Bv(n− 1)ν + s2/2 + sρσvBv(n− 1) +B2
v(n− 1)σ2v/2

+ hvvBv(n− 1)θv/(1−Bv(n− 1)θv),

Br(n) = s(µr + 1) +Br(n− 1)br + sθuh
u
r/(1− sθu) +B2

r (n− 1)σ2r/2,

B̃r(n) = −s(µr + 1) + B̃r(n− 1)b̃r − sθdh̃
d
r/(1 + sθd) + B̃2

r (n− 1)σ̃2r/2.

To compute initial conditions for the above recursion, write down the cumulant generating

function of a one-period return:

kt(s;xt,1) = sµ̄t + s2vt/2 + (hu0 + hur rt)
sθu

1− sθu
− (hd0 + h̃dr r̃t)

sθd
1 + sθd

.

Therefore,

A(1) = sµ+ hu0
sθu

1− sθu
− hd0

sθd
1 + sθd

,

Bv(1) = sµv + s2/2,

Br(1) = s(µr + 1) + sθuh
u
r/(1− sθu),

B̃r(1) = −s(µr + 1)− sθdh̃
d
r/(1 + sθd).
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A.2 Supplementary material for Chapter 3

A.2.1 Model’s solution and pricing restrictions

In this Appendix, I derive the solution to my model. I briefly repeat the main building

blocks for the ease of explicating.

The representative agent has recursive preferences

Ut = [(1− β)cρt + βµt(Ut+1)
ρ]1/ρ (A.2.41)

with the certainty equivalent function

µt(Ut+1) = [Et(U
α
t+1)]

1/α, (A.2.42)

and preference parameters α (risk aversion is 1− α), β (subjective discount factor), and ρ

(1/(1− ρ) is the elasticity of intertemporal substitution).

The consumption growth process is described by a vector autoregressive system

Yt+1 = F +GYt +Hσtεt+1, (A.2.43)

where Yt+1 = (log gt,t+1, log πt,t+1, i
1
t+1, σ

2
t+1)

′.

To solve the model, I follow closely the solution method of Backus, Chernov, and Zin (2012).

Since the utility Ut is determined by a constant elasticity of substitution recursion (A.2.41)

and the certainty equivalent function is also homogenous of degree one, I scale (A.2.41) by

consumption ct:

ut = [(1− β) + βµt(ut+1gt,t+1)
ρ]1/ρ, (A.2.44)

where ut = Ut/ct, and gt,t+1 = ct+1/ct.
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The log pricing kernel under the recursive utility is

logmt,t+1 = log β + (ρ− 1) log gt,t+1 + (α− ρ)(log (ut+1gt,t+1)− logµt(ut+1gt,t+1))

(A.2.45)

Appendix A.5 of the NBER version of Backus, Chernov, and Zin (2012) provides the cor-

responding derivation.

To derive the pricing kernel, I need to solve the equation (A.2.44). I use a log-linear

approximation of (A.2.44) to obtain a closed-form solution to the value function log ut and

to the pricing kernel:

log ut ≈ b0 + b1 logµt(gt,t+1ut+1), (A.2.46)

where

b1 = βeρ log µ/[(1− β) + βeρ log µ], (A.2.47)

b0 = ρ−1 log [(1− β) + βeρ log µ]− b1 logµ. (A.2.48)

The equation is exact if the elasticity of intertemporal substitution is equal to one. In such

a case b0 = 0 and b1 = β. See Section III in Hansen, Heaton, and Li (2008) and Appendix

A.7 in Backus, Chernov, and Zin (2012) for details about the log-linear approximation and

its accuracy.

I guess that the solution to the equation (A.2.46) is an affine function of the four model’s

states:

log ut = log u+ P ′Yt, (A.2.49)

where P is a vector of loadings P = (pg, pπ, pi, pσ)
′.
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Next, I verify my guess. I compute the log of the certainty equivalent function

logµt(ut+1gt,t+1) = [log u+ e′1F + P ′F ]︸ ︷︷ ︸
log µ

+[P ′G+ e′1G]Yt + α[P + e1]
′Σ[P + e1]σ

2
t /2,

(A.2.50)

where Σ = HH ′ and e1 is a coordinate vector with the first element equal to 1. Then

I substitute (A.2.49) and (A.2.50) to the equation (A.2.46) and collect and match the

corresponding terms. The equation (A.2.46) has a constant term and four variables, hence

I obtain the system of five equations:

log u = b0 + b1 log u+ b1e
′
1F + b1P

′F, (A.2.51)

pg = b1(P + e1)
′Ge1 (A.2.52)

pπ = b1(P + e1)
′Ge2, (A.2.53)

pi = b1(P + e1)
′Ge3, (A.2.54)

pσ = b1(P + e1)
′Ge4 + αb1(P + e1)

′Σ(P + e1)/2, (A.2.55)

where ei are the corresponding coordinate vectors.

Equations for pg, pπ, and pi are linear and therefore they result in unique solutions:

pg = Ag/Bg,

pπ = Aπ/Bπ,

pi = Ai/Bi,
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where

Ag = −(G11b1 −G11G22b1
2 +G12G21b

2
1 −G11G33b

2
1 +G13G31b

2
1 +G11G22G33b

3
1

− G11G23G32b
3
1 −G12G21G33b

3
1 +G12G23G31b

3
1 +G13G21G32b

3
1 −G13G22G31b

2
1),

Aπ = −(G13b1 +G12G23b
2
1 −G13G22b

2
1),

Ai = −(G12b1 +G13G32b
2
1 −G12G33b

2
1),

Bg = Bπ = Bi

= G11b1 +G22b1 +G33b1 −G11G22b
2
1 +G12G21b

2
1 −G11G33b

2
1 +G13G31b

2
1

− G22G33b
2
1 +G23G32b

2
1 +G11G22G33b

3
1 −G11G23G32b

3
1 −G12G21G33b

3
1

+ G12G23G31b
3
1 +G13G21G32b

3
1 −G13G22G31b

3
1 − 1

The equation for pσ is quadratic:

Aσp
2
σ +Bσpσ + Cσ = 0,

where

Aσ = αb1Σ44/2,

Bσ = αb1(Σ34pi +Σ24pπ +Σ14(pg + 1)) + b1G44 − 1,

Cσ = αb1((pg + 1)(Σ13pi +Σ12pπ +Σ11(pg + 1)) + pi(Σ33pi +Σ23pπ +Σ13(pg + 1))

+ pπ(Σ23pi +Σ22pπ +Σ12(pg + 1)))/2 + (b1pgG14 + b1pπG24 + b1piG34 + b1G14).

This equation has two real roots if its discriminant Discr = (B2
σ − 4AσCσ) is positive. Only

one real root is good, however. It has to be selected based on the property of stochastic

stability (Hansen (2012)),

pσ =
−Bσ + sign(Bσ)Discr1/2

2Aσ
.

Finally, log u follows as

log u = [b0 + b1e
′
1F + b1P

′F ]/[1− b1].
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I plug the solution log ut into (A.2.45) and obtain the final expression for the pricing kernel

logmt,t+1 = [log β + (ρ− 1)e′1F ] + (ρ− 1)e′1GYt − α(α− ρ)(P + e1)
′Σ(P + e1)σ

2
t /2

+ [(α− ρ)P + e1(α− 1)]′Hσtεt+1 (A.2.56)

or

logmt,t+1 = logm+ η′Yt + q′σtεt+1,

where

η = (ρ− 1)G′e1 − α(α− ρ)e4(P + e1)
′Σ(P + e1)/2,

q = H ′[(α− ρ)P + e1(α− 1)].

Next, I derive a one-period real risk-free rate

r1f,t = −Et(logmt,t+1)− V art(logmt,t+1)/2

= − log β − (ρ− 1)e′1F − (ρ− 1)e′1GYt + α(α− ρ)(P + e1)
′Σ(P + e1)σ

2
t /2

− [(α− ρ)P + e1(α− 1)]′Σ[(α− ρ)P + e1(α− 1)]σ2t /2. (A.2.57)

Finally, the nominal one-period rate is

i1t = r1f,t + Et(log πt,t+1)− V art(log πt,t+1)/2 + covt(logmt,t+1, log πt,t+1)

= − log β − (ρ− 1)e′1F + e′2F − (ρ− 1)e′1GYt + e′2GYt + α(α− ρ)(P + e1)
′Σ(P + e1)σ

2
t /2

− [(α− ρ)P + e1(α− 1)]′Σ[(α− ρ)P + e1(α− 1)]σ2t /2− e′2Σe2σ
2
t /2

+ e′2Σ[(α− ρ)P + e1(α− 1)]σ2t . (A.2.58)

Note that i1t enters both the left-hand side and the right-hand side of (A.2.58), because the

nominal yield i1t is a part of the state-vector Yt.

i1t = A log gt−1,t +B log πt−1,t + Ci1t +Dσ2t + E,
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where

A = − log β − (ρ− 1)e′1F + e′2F,

B = −(ρ− 1)e′1Ge1 + e′2Ge1

C = −(ρ− 1)e′1Ge2 + e′2Ge2,

D = −(ρ− 1)e′1Ge3 + e′2Ge3,

E = −[(α− ρ)P + e1(α− 1)]′Σ[(α− ρ)P + e1(α− 1)]/2− e′2Σe2/2 + e′2Ge4

+e′2Σ[(α− ρ)P + e1(α− 1)] + α(α− ρ)(P + e1)
′Σ(P + e1)/2

−(ρ− 1)e′1Ge4.

The expression (A.2.58) is not an equation which nails down the nominal rate, it is an

identity. Therefore, to guarantee consistent pricing of the nominal yield, the following five

restrictions must be satisfied:

A = 0, B = 0, C = 1, D = 0, E = 0.

Four restrictions A = B = E = 0, C = 1 are linear and can be written as

G21

G11
=
G22

G12
=
G23 − 1

G13
=
F2 − log β

F1
= ρ− 1.

The other restriction is nonlinear and it involves the endogenous parameters pg, pπ, pi, and

pσ:

−[(α− ρ)P + e1(α− 1)]′Σ[(α− ρ)P + e1(α− 1)]/2− e′2Σe2/2 + e′2Ge4

+e′2Σ[(α− ρ)P + e1(α− 1)] + α(α− ρ)(P + e1)
′Σ(P + e1)/2

−(ρ− 1)e′1Ge4 = 0. (A.2.59)

A.2.2 Estimation results. Different cross-section of currencies

In this section, I analyze how multiple sources of consumption risk are reflected in multi-

period log excess returns on currency baskets, formed by sorting currencies by their respec-
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tive nominal short interest rates.

I use the same sample of twelve currencies. At the end of each period (quarter), I sort

currencies by their respective short yields into “Low”, “Intermediate”, and “High” currency

baskets. Table A.2 provides some basic descriptive statistics for the cross-section of log

excess returns. Average spread in returns between the high and low interest currencies

exceeds 4% per year. Table A.3 shows the dynamic decomposition of the three currency

baskets.

Table A.4 and Table A.5 provide the parameter estimates together with the correspond-

ing 95% confidence intervals for the FX cash flow processes for “Low”, “Intermediate, and

“High” currency baskets under both identification schemes. I find that sources of con-

sumption risk matter at least at a one period horizon. For example, under identification

“Fast Inflation”, all currency baskets load significantly on the long-run risk, whereas “In-

termediate” and “High” currency baskets in addition significantly load on the short-run

consumption and inflation risks. Shock elasticities provide additional evidence of how cur-

rency baskets are sensitive to the underlying risks and how corresponding exposures are

priced at multiple investment horizons.

Figure A.1 and Figure A.2 display the shock-exposure elasticity under the “Fast Inflation”

identification and “Fast Consumption” identification, respectively. Figure A.3 and Figure

A.4 display the shock-price elasticity under the “Fast Inflation” identification and “Fast

Consumption” identification, respectively.

The long-run consumption risk plays the most prominent role under both identification

schemes. Firstly, it carries the highest price of risk across all investment horizons from one

quarter to ten years. Secondly, currencies exhibit significantly different sensitivity to the

risk: the high interest rate currencies have positive exposure, whereas the low interest rate

currencies have negative exposure to the risk at all investment horizons.

The other sources of risk play less important role. The short-run risk matters only at a one-

period horizon and only under the “Fast Inflation” identification scheme. The inflation risk

is priced only under the ”Fast Consumption” identification scheme. In this case, “Low” and

“High” currency baskets have significantly different exposure to the risk at most investment
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horizons but the price of inflation risk is less than a half of that for the long-run consumption

risk. For the latter reason, a larger fraction of spread in excess returns between baskets

of high and low interest rate currencies can be attributed to the currencies’ exposure to

the long-run consumption risk rather than to the inflation risk. Finally, all currencies are

highly sensitive to the variance risk at long horizons, however the compensation for this risk

exposure is small.

A.2.3 Data description

Macro data come from the NIPA tables of the Bureau of Economic Analysis and CRSP.

I use Table 2.1 (Personal income and its disposition), Table 2.3.4 (Personal indexes for

personal consumption expenditures by major type of product) and Table 2.3.5 (Personal

consumption expenditures by major type of product). I measure real consumption as per

capita expenditure on non-durable goods and services. Non-durables and services is the

sum of entries of the row 8 from Table 2.3.5 divided by entries of the row 8 from Table 2.3.4

and components of row 13 from Table 2.3.5 divided by components of row 13 from Table

2.3.4. I construct price index associated with personal consumption expenditures. Row 40

of the Table 2.3.1 provides population data.

Table A.6 describes sources and availability of currency and fixed income data.
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A.2.4 Fixed point problem

In this Appendix, I sketch the fixed point problem embedded in the equation (A.2.46).

1. I guess b0 and b1 and solve equations (A.2.51)-(A.2.55).

2. I compute log µ from (A.2.50). Next, I evaluate (A.2.47) and (A.2.48) to obtain b
′
0

and b
′
1:

b
′
1 = βeρ log µ/[(1− β) + βeρ log µ],

b
′
0 = ρ−1 log [(1− β) + βeρ log µ]− b1 logµ.

3. If b
′
0 and b

′
1 are not close enough to the initial values of b0 and b1, I set b0 = b

′
0 and

b1 = b
′
1 and return to Stage 2.

I iterate until I achieve convergence. I set the following convergence criterion: (b0 − b
′
0)

2 +

(b1 − b
′
1)

2 < 10−18.

A.2.5 Estimation algorithm and choice of priors

VAR with cross-equation restrictions

This section provides details of the estimation algorithm for the VAR with stochastic vari-

ance and cross-equation restrictions.

I estimate a vector autoregression for Yt+1 = (log gt,t+1, log πt,t+1, i
1
t+1, σ

2
t+1)

′

Yt+1 = F +GYt +Σ1/2σtwt+1, (A.2.60)
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with restrictions

G21

G11
=
G22

G12
=
G23 − 1

G13
=
F2 − log β

F1
= ρ− 1, (A.2.61)

α(α− ρ)(P + e1)
′HH ′(P + e1)/2 + e′2Ge4 − e′2HH

′e2/2

−[(α− ρ)P + e1(α− 1)]′HH ′[(α− ρ)P + e1(α− 1)]/2

+e′2HH
′[(α− ρ)P + e1(α− 1)]− (ρ− 1)e′1Ge4 = 0, (A.2.62)

where ei are the coordinate vectors in a four-dimensional space with a unit element in the

i-th position and P is a vector of state loadings of the value function.

I impose the linear restrictions (A.2.61) directly in the estimation algorithm, whereas I

check whether the restriction (A.2.62) is satisfied after every MCMC draw. I discard draws

if the restriction (A.2.62) is violated and keep draws if the restriction is satisfied.1 I assume

preference parameters: α = −9 (risk aversion is 10), ρ = 1/3 (EIS=3/2), and β = 0.9924

(subjective discount factor); and estimate the twenty two parameters of F , G, and Σ that

describe the dynamics of the macroeconomic system.

To account for the linear restriction (A.2.61), it is more convenient to work with the model

re-written in the following form:

Ȳt+1 = F +GYt +Σ1/2σtwt+1, (A.2.63)

where Ȳt+1 = (log gt,t+1, log πt,t+1−i1t−log β, i1t+1, σ
2
t+1−(1−G44))

′. Note that I normalize

the stochastic variance σ2t to have the unit mean, so that F4 = 1 −G44. I denote a vector

1It is a very time consuming procedure to draw many MCMC simulations and evaluate the nonlinear
restriction (A.2.62) in each of them. The need to solve a fixed point problem makes the problem com-
putationally intense. I overcome some of the difficulties by implementing the following short cut. I draw
M = 2500K simulations, evaluate the nonlinear restriction (A.2.62) in each of them and select J = 10K
simulations that deliver the minimal value to r(F,G,Σ, α, ρ, β) = (−[(α − ρ)P + e1(α − 1)]′Σ[(α − ρ)P +
e1(α−1)]/2− e′2Σe2/2+ e′2Ge4+ e′2Σ[(α−ρ)P + e1(α−1)]+α(α−ρ)(P + e1)

′Σ(P + e1)/2− (ρ−1)e′1Ge4)
2.

Next, I perform a low scale optimization: minimize r(F,G,Σ, α, ρ, β) with respect to F , G, Σ starting from
each of J simulations. I limit the number of iterations by K = 300 so that the solution to the optimization
problem is very close to the starting MCMC parameter set for each simulation. The proximity of initial and
final parameter sets are evaluated in terms of the difference in the variances of the pricing kernel evaluated
in both sets. If the difference in the variance is less than 0.25% of the initial variance of the pricing kernel
then the final parameter set is feasible. Additionally, I consider that the nonlinear restriction (A.2.62) is
satisfied if r(F,G,Σ, α, ρ, β) < r̄ = 10−8. I set r̄ such that the maximal mispricing of the nominal yield is
negligible – it is less than 0.1 basis point annualized.
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of the unknown parameters of matrices F and G by Θ = (θ1, θ2, ..., θ12)
′:

Θ =
(
F1, G11, G12, G13, G14, G24, F3, G31, G32, G33, G34, G44

)′
.

For the stochastic variance, I use the discretized version of the square root model. Therefore,

I set G41 = G42 = G43 = 0.

Posterior distributions for Θ and Σ follow immediately after I re-write the vector autore-

gression as a linear regression with 4(T − 1) observations

ȳ = yΘ+ w

by stacking vectors Ȳt+1 into a large column-vector ȳ and forming the matrix y.2

Vector of disturbances w has 4(T − 1) elements and follows the multivariate normal distri-

bution N (0,Ω). The variance-covariance matrix Ω has a block-diagonal structure:

Ω =


Σ1 0 ... 0

0 Σ2 0 ...
...

...
...

...

0 0 ... ΣT−1

 ,

where Σt = σ2tΣ.

I assume a multivariate normal prior for Θ: Θ ∼ N (a,A); and an inverse Wishart prior for

Σ: Σ ∼ IW(b,B). The posterior distributions for Θ and Σ follow

2The component of the matrix y that corresponds to the dynamics of the system at time t is yt =
1 log gt−1,t log πt−1,t i1t σ2

t 0 0 0 0 0 0 0
(ρ− 1) (ρ− 1) log gt−1,t (ρ− 1) log πt−1,t (ρ− 1)i1t 0 σ2

t 0 0 0 0 0 0
0 0 0 0 0 0 1 log gt−1,t log πt−1,t it σ2

t 0
0 0 0 0 0 0 0 0 0 0 0 σ2

t .
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p(Θ|ȳ, y, α, β, ρ,Σ)

= p(ȳ|y, α, β, ρ,Σ,Θ)p(Θ) ∝ exp (−(ȳ − yΘ)′Ω−1(ȳ − yΘ)/2) exp (−(Θ− a)′A−1(Θ− a)/2)

∝ exp (−(Θ− â)′Â−1(Θ− â)/2) ∝ N (â, Â),

p(Σ|ȳ, y, α, β, ρ,Θ) = p(ȳ|y, α, β, ρ,Θ,Σ)p(Σ)

∝ |Ω|−(T−1)/2 exp (−(ȳ − yΘ)′Ω−1(ȳ − yΘ)/2)|Σ|−(B+p+1)/2 exp (−tr(bΣ−1)/2)

∝ |Σ|−(B̂+p+1)/2 exp (−tr(b̂Σ−1)/2) ∝ IW(b̂, B̂),

where

Â =

(
T∑
t=2

y′t−1Σ
−1yt−1/σ

2
t−1 +A−1

)−1

,

â = Â

(
T∑
t=2

y′t−1Σ
−1ȳt/σ

2
t−1 +A−1a

)
,

b̂ = b+
1

2

T∑
t=2

(ȳt − yt−1Θ)(ȳt − yt−1Θ)′

σ2t−1

,

B̂ = B + T − 1.

I factorize the posterior distribution for the stochastic variance as follows:

p(σ2t |Ȳt+1, Yt{−σ2
t }, Yt−1, α, ρ, β,Θ,Σ) ∝ p(Ȳt+1|Yt, α, ρ, β,Θ,Σ)p(Ȳt|Yt−1, α, ρ, β,Θ,Σ).

I employ the Metropolis-Hastings RandomWalk algorithm to draw the logarithm of stochas-

tic variance log σ2t . Transformation to logs guarantees the positivity of the stochastic vari-

ance.

I draw log σ2t (if 1 < t < T ) from the following posterior distribution

p(log σ2t |Ȳt+1, Yt{−σ2
t }, Yt−1, α, ρ, β,Θ,Σ) ∝ 1

σ2t
exp

(
−(Ȳt+1 − F −GYt)

′Σ−1(Ȳt+1 − F −GYt)

2σ2t

)
exp

(
−(Ȳt − F −GYt−1)

′Σ−1(Ȳt − F −GYt−1)

2σ2t−1

)
.
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I adjust the posterior distributions for log σ21 and log σ2T accordingly:

p(log σ2T |ȲT{−σ2
T }, YT−1, α, ρ, β,Θ,Σ) ∝ σ2T exp

(
−(YT − F −GYT−1)

′Σ−1(ȲT − F −GYT−1)

2σ2T−1

)
,

p(log σ21|Ȳ2, Y1{−σ2
1}, α, ρ, β,Θ,Σ) ∝ 1

σ21
exp

(
−(Ȳ2 − F −GY1)

′Σ−1(Ȳ2 − F −GY1)

2σ21

)
.

FX cash flow process

The cash-flow process is

log δt,t+1 = log st+1 − log st − log πt,t+1 = log δ + µ′Yt + ξ′σtεt+1 + ξvσtvt+1

= log δ + µg log gt−1,t + µπ log πt−1,t + µii
1
t + µσσ

2
t + ξgσtεg,t+1 + ξπσtεπ,t+1

+ ξiσtεi,t+1 + ξσσtεσ,t+1 + ξvσtvt+1. (A.2.64)

For each currency basket, I estimate nine parameters µg, µπ, µi, µσ, ξg, ξπ, ξi, ξσ, ξv.

Denote

ζt = log δ + µg log gt−1,t + µπ log πt−1,t + µii
1
t + µσσ

2
t + ξgσtεg,t+1 + ξπσtεπ,t+1

+ ξiσtεi,t+1 + ξσσtεσ,t+1.

I use conjugate priors: I assume normal independent priors for parameters log δ, µg, µπ, µi,

and µσ; I assume inverse gamma priors for ξ2g , ξ
2
π, ξ

2
i , ξ

2
σ, and ξ

2
v . The posterior distributions

follow immediately.

• If log δ has a normal prior N (a,A), then the posterior distribution is N (â, Â), where

Â =

(
1

A
+

T−1∑
t=1

1

σ2t ξ
2
v

)−1

,

â = Â

(
a

A
+
T−1∑
t=1

(log δt,t+1 − ζt + log δ)

σ2t ξ
2
v

)
.
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• If µg has a normal prior N (a,A), then the posterior distribution is N (â, Â), where

Â =

(
1

A
+
T−1∑
t=1

(log gt−1,t)
2

σ2t ξ
2
v

)−1

,

â = Â

(
a

A
+

T−1∑
t=1

log gt−1,t(log δt,t+1 − ζt + µg log gt−1,t)

σ2t ξ
2
v

)
.

• If µπ has a normal prior N (a,A), then the posterior distribution is N (â, Â), where

Â =

(
1

A
+

T−1∑
t=0

(log πt−1,t)
2

σ2t ξ
2
v

)−1

,

â = Â

(
a

A
+
T−1∑
t=1

log πt−1,t(log δt,t+1 − ζt + µπ log πt−1,t)

σ2t ξ
2
v

)
.

• If µi has a normal prior N (a,A), then the posterior distribution is N (â, Â), where

Â =

(
1

A
+
T−1∑
t=1

(i1t )
2

σ2t ξ
2
v

)−1

,

â = Â

(
a

A
+

T−1∑
t=1

i1t (log δt,t+1 − ζt + µii
1
t )

σ2t ξ
2
v

)
.

• If µσ has a normal prior N (a,A), then the posterior distribution is N (â, Â), where

Â =

(
1

A
+

T−1∑
t=1

σ2t
ξ2v

)−1

,

â = Â

(
a

A
+
T−1∑
t=1

(log δt,t+1 − ζt + µσσ
2
t )

ξ2v

)
.

• If ξg has a normal prior N (a,A), then the posterior distribution is N (â, Â), where
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Â =

(
1

A
+

T−1∑
t=1

(εg,t+1)
2

ξ2v

)−1

,

â = Â

(
a

A
+

T−1∑
t=1

εg,t+1(log δt,t+1 − ζt + ξgσtεg,t+1)

σtξ2v

)
.

• If ξπ has a normal prior N (a,A), then the posterior distribution is N (â, Â), where

Â =

(
1

A
+

T−1∑
t=1

(επ,t+1)
2

ξ2v

)−1

,

â = Â

(
a

A
+

T−1∑
t=1

επ,t+1(log δt,t+1 − ζt + ξπσtεπ,t+1)

σtξ2v

)
.

• If ξi has a normal prior N (a,A), then the posterior distribution is N (â, Â), where

Â =

(
1

A
+
T−1∑
t=1

(εi,t+1)
2

ξ2v

)−1

,

â = Â

(
a

A
+

T−1∑
t=1

εi,t+1(log δt+1 − ζt + ξiσtεi,t+1)

σtξ2v

)
.

• If ξσ has a normal prior N (a,A), then the posterior distribution is N (â, Â), where

Â =

(
1

A
+
T−1∑
t=1

(εσ,t+1)
2

ξ2v

)−1

,

â = Â

(
a

A
+

T−1∑
t=1

εσ,t+1(log δt,t+1 − ζt + ξσσtεσ,t+1)

σtξ2v

)
.

• If ξv has an inverse gamma prior IG(b,B), then the posterior distribution is IG(b̂, B̂),

where

b̂ = (T − 1)/2 + b,

B̂ = B +

T−1∑
t=0

(log δt,t+1 − ζt)
2

2σ2t
.
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Choice of priors

Table A.7 lists the prior distributions for the parameters of the vector-autoregression (A.2.63)

with cross-equation restrictions (A.2.61) and (A.2.62). Table A.8 lists the prior distribu-

tions for the parameters of the FX cash flow process for the “Low”, “Intermediate”, and

“High” baskets (here I consider the cross section of currency returns as defined in the main

body of the paper). To set up these priors, I run P regressions

log δt,t+1 = log δ + µ′Yt + σtξ
′εt+1 + ξvvt+1,

for each currency basket. P is the number of paths of the stochastic variance σ2t and

shocks εt+1 in their estimated posterior distributions. I take one path of σ2t and εt+1 at a

time and estimate parameters log δ and ξv and the elements of the vectors µ and ξ. For

each parameter, I use the average and standard deviation computed across all parameter

estimates of the P− regressions as the mean and standard deviation of the corresponding

prior distribution.

A.2.6 Shock elasticity

In this section, I follow lead of Borovička and Hansen (2011) and derive the shock-exposure

and the shock-price elasticity for the four sources of consumption risk εt+1.

Shock-exposure elasticity

The shock-exposure elasticity quantifies the term-structure of marginal quantities of risk.

It depends on the functional form of the cash flow process and the evolution of the model’s

states.

The cash flow process is

log δt,t+1 = log δ + µ′Yt + ξ′σtεt+1,

where without loss of generality, I omit the idiosyncratic shock vt+1.



177

The dynamics of the model’s states is summarized in the vector autoregression:

Yt+1 = F +GYt +Hσtεt+1.

The shock-exposure elasticity has the following mathematical representation

ℓδ(Yt, τ) =
d logE[δ̃t,t+τ |Yt]

dv

∣∣∣∣
v=0

= αh(Yt) · Ẽδ(εt+1|Yt),

where αh(Yt) is a vector which selects one source of risk (αh(Yt) · εt+1 has a unit standard

deviation) and Ẽδ is an operator of the mathematical expectation under the change of

measure represented by the random variable3

Lδt,τ =
δt,t+1E(δt,t+τ/δt,t+1|Yt+1)

E(δt,t+1E(δt,t+τ/δt,t+1|Yt+1)|Yt)
.

I derive the shock exposure elasticity by using the multiplicative factorization of the multi-

period cash flow and applying the law of iterated expectations a number of times.

First, I compute Lδt,1:

Lδt,1 =
δt,t+1

E(δt,t+1|Yt)
=

exp (ξ′εt+1σt)

exp (ξ′ξσ2t /2)
=

exp (ẽ
′
δ(0, Yt)εt+1)

exp (ẽ
′
δ(0, Yt)ẽδ(0, Yt)/2)

,

where Ẽδ(εt+1|Yt) = ẽδ(0, Yt) and note that

ℓδ(Yt, 1) = αh(Yt) · ξσt.

Next, I use the law of iterated expectations

E(δt,t+τ |Yt) = E(δt,t+1δt+1,t+2 · · · δt+τ−1,t+τ |Yt)

= E(δt,t+1E(δt+1,t+2 · · ·E(δt+τ−1,t+τ |Yt+τ−1)| · · · |Yt+1)|Yt)

and compute E(δt,t+τ |Yt) recursively.
3For example, αh(Yt) = (1, 0, 0, 0)′σt, where E(σ2

t ) = 1, or αh(Yt) = (1, 0, 0, 0)′ selects the short-run
consumption shock. Other specifications of αh(Yt) are possible.
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I start with

E(δt+τ−1,t+τ |Yt+τ−1) = exp (log δ + µ′Yt+τ−1 + ξ′ξσ2t+τ−1/2)

= exp (A0(1) +Ag(1) log gt+τ−2,t+τ−1 +Aπ(1) log πt+τ−2,t+τ−1 +Ai(1)i
1
t+τ−1 +Aσ(1)σ

2
t+τ−1),

where

A0(1) = log δ,

Ag(1) = µg,

Aπ(1) = µπ,

Ai(1) = µi,

Aσ(1) = µσ + ξ′ξ/2.

Next, I compute

E(δt+τ−2,t+τ−1E(δt+τ−1,t+τ |Yt+τ−1)|Yt+τ−2) =

= exp (A0(2) +Ag(2) log gt+τ−3,t+τ−2 +Aπ(2) log πt+τ−3,t+τ−2 +Ai(2)i
1
t+τ−2 +Aσ(2)σ

2
t+τ−2),

where

A0(2) = log δ +A0(1) + [Ag(1), Aπ(1), Ai(1), Aσ(1)]F

= log δ +A0(1) +Ag(1)F1 +Aπ(1)F2 +Ai(1)F3 +Aσ(1)F4,

Ag(2) = µg +Ag(1)G11 +Aπ(1)G21 +Ai(1)G31 +Aσ(1)G41,

Aπ(2) = µπ +Ag(1)G12 +Aπ(1)G22 +Ai(1)G32 +Aσ(1)G42,

Ai(2) = µi +Ag(1)G13 +Aπ(1)G23 +Ai(1)G33 +Aσ(1)G43,

Aσ(2) = µσ +Ag(1)G14 +Aπ(1)G24 +Ai(1)G34 +Aσ(1)G44

+ 0.5([Ag(1), Aπ(1), Ai(1), Aσ(1)]H + ξ′)([Ag(1), Aπ(1), Ai(1), Aσ(1)]H + ξ′)′/2.

Finally, for a generic τ ,

E(δt,t+τ |Yt) = exp (A0(τ) +Ag(τ) log gt−1,t +Aπ(τ) log πt−1,t +Ai(τ)i
1
t +Aσ(τ)σ

2
t ),
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where the parameters of the conditional expectation are determined by the system of dif-

ference equations:

A0(τ) = log δ +A0(τ − 1) + [Ag(τ − 1), Aπ(τ − 1), Ai(τ − 1), Aσ(τ − 1)]F,

Ag(τ) = µg +Ag(τ − 1)G11 +Aπ(τ − 1)G21 +Ai(τ − 1)G31 +Aσ(τ − 1)G41,

Aπ(τ) = µπ +Ag(τ − 1)G12 +Aπ(τ − 1)G22 +Ai(τ − 1)G32 +Aσ(τ − 1)G42,

Ai(τ) = µi +Ag(τ − 1)G13 +Aπ(τ − 1)G23 +Ai(τ − 1)G33 +Aσ(τ − 1)G43,

Aσ(τ) = µσ +Ag(τ − 1)G14 +Aπ(τ − 1)G24 +Ai(τ − 1)G34 +Aσ(τ − 1)G44

+ 0.5([Ag(τ − 1), Aπ(τ − 1), Ai(τ − 1), Aσ(τ − 1)]H + ξ′)

([Ag(τ − 1), Aπ(τ − 1), Ai(τ − 1), Aσ(τ − 1)]H + ξ′)′/2.

In this case, the random variable associated with the change of measure is

Lδt,τ =
exp (ẽ

′
δ(τ − 1, Yt)εt+1)

exp (0.5(ẽ
′
δ(τ − 1, Yt)ẽδ(τ − 1, Yt))′)

,

where

ẽδ(τ − 1, Yt) = ([Ag(τ − 1), Aπ(τ − 1), Ai(τ − 1), Aσ(τ − 1)]H + ξ′)′σt.

The shock-exposure elasticity immediately follows

ℓδ(Yt, τ) = αh(Yt) · ẽδ(τ − 1, Yt)

= αh(Yt) · ([Ag(τ − 1), Aπ(τ − 1), Ai(τ − 1), Aσ(τ − 1)]H + ξ′)′σt.

Shock-price elasticity

To compute the shock-price elasticity (3.4.16), I need to evaluate the following object

ℓv(Yt, τ) =
d logE[δ̃t,t+τmt,t+τ |Yt]

dv

∣∣∣∣
v=0

which has a similar mathematical structure to the shock-exposure elasticity. Borovička and

Hansen (2011) call this object the shock-value elasticity. The shock-price elasticity, ℓp(Yt, τ),
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follows by means of subtracting the shock-value elasticity from the shock-exposure elasticity:

ℓp(Yt, τ) = ℓδ(Yt, τ)− ℓv(Yt, τ).

The derivation of the shock-value elasticity mirrors one of the shock-exposure elasticity.

Therefore, the solution has a similar mathematical representation:

ℓv(Yt, τ) = αv(Yt) · ([Bg(τ − 1), Bπ(τ − 1), Bi(τ − 1), Bσ(τ − 1)]H + ξ′ + q′)′σt,

where Bg, Bπ, Bi, and Bσ solve the system of difference equations:

B0(τ) = log δ + logm+ B0(τ − 1) + [Bg(τ − 1), Bπ(τ − 1), Bi(τ − 1), Bσ(τ − 1)]F,

Bg(τ) = µg + ηg + Bg(τ − 1)G11 + Bπ(τ − 1)G21 + Bi(τ − 1)G31 + Bσ(τ − 1)G41,

Bπ(τ) = µπ + ηπ + Bg(τ − 1)G12 + Bπ(τ − 1)G22 + Bi(τ − 1)G32 + Bσ(τ − 1)G42,

Bi(τ) = µi + ηi + Bg(τ − 1)G13 + Bπ(τ − 1)G23 + Bi(τ − 1)G33 + Bσ(τ − 1)G43,

Bσ(τ) = µσ + ησ + Bg(τ − 1)G14 + Bπ(τ − 1)G24 + Bi(τ − 1)G34 + Bσ(τ − 1)G44

+ 0.5(q′ + ξ′ + [Bg(τ − 1), Bπ(τ − 1), Bi(τ − 1), Bσ(t− 1)]H)

(q′ + ξ′ + [Bg(τ − 1), Bπ(τ − 1), Bi(τ − 1), Bσ(τ − 1)]H)′.

with the following initial conditions

B0(1) = logm+ log δ,

Bg(1) = µg + ηg,

Bπ(1) = µπ + ηπ,

Bi(1) = µi + ηi,

Bσ(1) = µσ + ησ + (ξ + q)′(ξ + q)/2

and

ℓv(Yt, 1) = αh(Yt) · (ξ + q)σt.
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A.2.7 Model diagnostics

Table A.9 provides diagnostics of the fitted residuals of the vector autoregression, Table A.10

and Table A.11 provide diagnostics of the fitted residuals of the FX cash flow process under

the “Fast Inflation” and “Fast Consumption” identification schemes, respectively (here I

consider the cross section of currency returns as defined in the main body of the paper).

The diagnostics evaluate whether the shocks to consumption growth, inflation, nominal

rate, stochastic variance, and FX cash flow are from the standard normal distribution. I

construct the posterior distribution of these shocks and assess three summary statistics –

skewness, kurtosis, and autocorrelation.

I find that the model fits data well. There are only slight signs of non-normalities in the

fitted residuals of the FX cash flows: mild excess kurtosis for cash flows of “Low” and “Inter-

mediate” baskets and mild excess skewness for the cash flow of “High” basket. Additionally,

I find positive autocorrelation for the inflation innovations and signs of non-normalities for

the innovations to the nominal rate. The primer can be attributed to the effect of cross-

equation restrictions. One way to improve the fit is to estimate the preference parameters.

The latter is the standard problem of fitting nominal interest rate data that exhibit dra-

matic behaviour during the Monetary Experiment of 1979–1982. I leave improvements to

future research.

A.2.8 Simulation exercise. Bansal and Yaron (2004) economy

Economy

Consider the model of Bansal and Yaron (2004) with one modification, that is replace

the autoregressive process for the stochastic variance with the discretized version of the

square-root process.

A representative agent has recursive utility of Epstein and Zin (1989) and Weil (1989)

Ut = [(1− β)cρt + βµt(Ut+1)
ρ]1/ρ (A.2.65)
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with the certainty equivalent function

µt(Ut+1) = [Et(U
α
t+1)]

1/α, (A.2.66)

where (1 − α) is the coefficient of relative risk aversion, 1/(1 − ρ) is the elasticity of in-

tertemporal substitution (EIS) and β is the subjective discount factor. The consumption

growth process is specified in terms of two latent states xt and σ
2
t :

log gt,t+1 = log g + xt + σgσtεg,t+1, (A.2.67)

xt+1 = ρxxt + ψxσtεx,t+1, (A.2.68)

σ2t+1 = (1− v) + vσ2t + σwσtεσ,t+1. (A.2.69)

To solve the model, work with with an approximate Bellman equation

log ut ≈ b0 + b1 logµt(ut+1gt,t+1),

where

b1 = βeρ log µ/[1− β + βeρ log µ], (A.2.70)

b0 = ρ−1 log (1− β + βeρ log µ)− b1 logµ. (A.2.71)

See Backus, Chernov, and Zin (2012) for the details of the solution method.

I guess that the value function is an affine function of the states

log ut = log u+ pxxt + pσσ
2
t

and subsequently verify my guess.
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Firstly, I compute

log ut+1gt,t+1 = [log ug + pσ(1− v)] + (pxρx + 1)xt + pσvσ
2
t + σgσtεg,t+1 + pxψxσtεx,t+1

+ pσσwσtεσ,t+1

logµt(ut+1gt,t+1) = [log ug + pσ(1− v)] + (pxρx + 1)xt

+ [pσv + ασ2g/2 + αp2xψ
2
x/2 + αp2σσ

2
w/2]σ

2
t .

The parameters of the value function log u, px, and pσ are solutions to the following three

equations:

log u = b0 + b1(log ug + pσ(1− v)),

px = b1(pxρx + 1),

pσ = b1(pσv + αp2xψ
2
x/2 + αp2σσ

2
w/2 + ασ2g/2).

Hence,

log u = [b0 + b1 log g + b1pσ(1− v)]/(1− b1), (A.2.72)

px = b1/[1− b1ρx]. (A.2.73)

Equation for pσ is quadratic

αb1σ
2
wp

2
σ/2 + pσ(b1v − 1) + b1(αp

2
xψ

2
x/2 + ασ2g/2) = 0

and has a real solution if

D = (b1v − 1)2 − α2b21(p
2
xψ

2
x + σ2g)σ

2
w ≥ 0.

If the discriminant is positive and b1v−1 < 0, I choose the minus root to guarantee stochastic

stability:

pσ = [−b1v + 1−D1/2]/[αb1σ
2
w] (A.2.74)
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Expressions (A.2.70)–(A.2.74) form the fixed point problem.

Calibration

For numerical evaluation of the model, I use calibration of Borovička, Hansen, Hendricks,

and Scheinkman (2011). On a monthly frequency, the consumption growth process is

log gt+1 = 0.0015 + xt + 0.0078σtεg,t+1,

xt+1 = 0.979xt + 0.00034σtεx,t+1,

σ2t+1 = 0.013 + 0.987σ2t + 0.038σtεσ,t+1.

I assume the following preference parameters: β = 0.999 (subjective discount factor), γ =

1− α = 10 (risk aversion) and ψ = 1/(1− ρ) = 3/2 (EIS).

I solve the fixed point problem on a two-dimensional grid. I find: b0 = −10−5, b1 = 0.999,

px = 45.5354, pσ = −0.1017, log u = 0.1749.

Asset prices

The pricing kernel in this economy is

logmt,t+1 = log β + (ρ− 1) log gt,t+1 + (α− ρ)(log gt,t+1ut+1 − logµt(gt,t+1ut+1))

= [log β + (ρ− 1) log g] + (ρ− 1)xt − α(α− ρ)p2xψ
2
xσ

2
t /2− α(α− ρ)p2σσ

2
wσ

2
t /2

− α(α− ρ)σ2gσ
2
t /2 + (α− 1)σgσtεg,t+1 + (α− ρ)pxψxσtεx,t+1

+ (α− ρ)pσσwσtεσ,t+1.

The equilibrium one-period real risk-free rate is

r1t,f = [− log β − (ρ− 1) log g]− (ρ− 1)xt + [α(α− ρ)/2− (α− 1)2/2]σ2gσ
2
t

+ (α− ρ)ρ[p2xψ
2
x + p2σσ

2
w]σ

2
t /2 = [− log β − (ρ− 1) log g]− (ρ− 1)xt

+ (α− ρ)ρ[p2xψ
2
x + p2σσ

2
w]σ

2
t /2 + (2α− ρα− 1)σ2gσ

2
t /2.
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Introduce new notations

B0 = − log β − (ρ− 1) log g, (A.2.75)

B1 = −(ρ− 1), (A.2.76)

B2 = [α(α− ρ)/2− (α− 1)2/2]σ2g + ρ(α− ρ)[p2xψ
2
x + p2σσ

2
w]/2 (A.2.77)

and re-write subsequently the real risk-free rate as

r1t,f = B0 +B1xt +B2σ
2
t , (A.2.78)

For the calibration used: B0 = 0.002, B1 = 0.6667, and B2 = −8.828 · 10−4.

Solve equation (A.2.78) for xt in terms of the real rate r1t,f and stochastic variance σ2t :

xt = r1t,f/B1 −B0/B1 −B2σ
2
t /B1.

Equivalent model

Next, I re-write the model (A.2.67)-(A.2.69) in terms of the real risk-free rate and stochastic

variance that play the role of the model’s states:

log gt,t+1 = [log g −B0/B1] + r1t,f/B1 −B2σ
2
t /B1 + σgσtεg,t+1, (A.2.79)

r1t+1,f = [B0 −B0ρx +B2(1− v)] + ρxr
1
t,f +B2(v − ρx)σ

2
t +B1ψxσtεx,t+1

+ B2σwσtεσ,t+1, (A.2.80)

σ2t+1 = (1− v) + vσ2t + σwσtεσ,t+1. (A.2.81)

I denote a vector of variables Yt: Yt = (log gt−1,t, r
1
t,f , σ

2
t )

′ and re-write the evolution

(A.2.79-A.2.81) in a more compact form:

Yt+1 = F +GYt +Hσtεt+1. (A.2.82)
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Mapping between the two models

Intuitively, there is a one-to-one mapping between the model specified in terms of latent

states xt and σ2t and the model written down in terms of the real risk-free rate r1t,f and

stochastic variance σ2t . The equivalence is reflected in the functional form of the parameters

of the matrices F , G, and H that are the functions of the structural parameters of the

original model of consumption growth and preference parameters. Below I illustrate that if

the real risk-free rate is priced internally consistently under the model determined by the

preferences (A.2.65)-(A.2.66) and consumption growth process (A.2.82) then the equivalence

of the two specifications holds.

I solve an approximate Bellman equation

log ut ≈ b0 + b1 logµt(ut+1gt,t+1).

I guess that the value function is the affine function of the model’s states:

log ut = log u+ P ′Yt = pg log gt−1,t + prr
1
f,t + pσσ

2
t ,

where the vector P is P = (pg, pr, pσ)
′. Here I allow consumption growth to be a model’s

state. Later I will compute pg and show that in fact consumption growth is not a state

(pg = 0).

Compute

log ut+1gt,t+1 = [e′1F + log u+ P ′F ] + [P ′G+ e′1G]Yt + [P + e1]
′σtwt+1.

logµt(ut+1gt,t+1) = [e′1F + log u+ P ′F ] + (P ′G+ e′1G)Yt + α(P + e1)
′Σ(P + e1)σ

2
t /2,

where e1 = (1, 0, 0)′.
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Parameters log u, pg, pr, and pσ are solutions to the following four equations:

log u = b0 + b1(e
′
1F + log u+ P ′F ), (A.2.83)

pg = b1(pg + 1)G11 + b1prG21 + b1pσG31, (A.2.84)

pr = b1(pgG12 + prG22 +G12) + b1pσG32, (A.2.85)

pσ = b1(pgG13 + prG23 + pσG33 +G13 + α(P + e1)
′Σ(P + e1)/2). (A.2.86)

Because the stochastic variance follows the discretized version of the square-root process,

G31 = G32 = 0. Equations (A.2.84) and (A.2.85) are linear in pg and pr, and therefore,

there are unique parameters pg and pr satisfying both. Equation (A.2.86) is quadratic in

pσ. If the discriminant is positive, I choose the root that guarantees stochastic stability.

Finally, parameter log u is uniquely determined as follows

log u = [b0 + b1(PF + F11)]/[1− b1]

The log pricing kernel is

logmt,t+1 = log β + (ρ− 1) log gt,t+1 + (α− ρ)[log gt,t+1ut+1 − logµt(ut+1gt,t+1)]

= [log β + (ρ− 1)e′1F ] + (ρ− 1)e′1GYt − α(α− ρ)(P + e1)
′Σ(P + e1)

′σ2t /2

+ [(α− 1)e1 + (α− ρ)P ]′σtwt+1.

The one-period real risk-free rate is

rt−1,t = − log β − (ρ− 1)e′1F − (ρ− 1)e′1GYt

+ (ρ(α− ρ)P ′ΣP/2 + (2α− αρ− 1)e′1Σe1/2 + (α− ρ)P ′Σe1)σ
2
t . (A.2.87)

The real risk-free rate plays twofold role in the model: it is an equilibrium outcome of the

model and one of the states of the model. To guarantee the internal consistency of the

model, I have to make sure that the left-hand side and the right-hand side of the equation

(A.2.87) coincide.
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The latter holds if the following four parameter restrictions are satisfied:

log β + (ρ− 1)e′1F = 0, (A.2.88)

(ρ− 1)e′1Ge1 = 0, (A.2.89)

1 + (ρ− 1)e′1Ge2 = 0, (A.2.90)

(ρ− 1)e′1Ge3 − (ρ(α− ρ)P ′ΣP/2 + (2α− αρ− 1)e′1Σe1/2

+(α− ρ)P ′Σe1) = 0, (A.2.91)

where e3 = (0, 0, 1)′.

Restrictions (A.2.88) and (A.2.90) deliver unique solutionsB0 given in (A.2.75) and B1 given

in (A.2.76). Restriction (A.2.89) suggests that the consumption growth is not a state of the

model. Restriction (A.2.91) delivers the expression for B2 given in (A.2.77). Therefore, the

pricing restrictions provide the unique mapping between the original model of consumption

growth written down in terms of unobservable states and the model represented in terms

of the real risk-free rate and stochastic variance.

Implied consumption growth process. Calibration

The implied consumption growth process in terms of the real risk-free rate and stochastic

variance is

log gt,t+1 = −0.0015 + 1.5r1t,f + 0.001324σ2t + 0.0078σtεg,t+1,

r1t+1,f = 3.1 · 10−5 + 0.979r1t,f − 7.06 · 10−6σ2t + 0.0227σtεx,t+1 − 3.35 · 10−5σtεσ,t+1,

σ2t+1 = 0.013 + 0.987σ2t + 0.038σtεσ,t+1.

I solve the fixed-point problem on a two-dimensional grid. I find b0 = 10−5, b1 = 0.999,

log u = 0.1958, pg = 0, pr = 68.3031, and pσ = −0.0414. Additionally, I compute the

approximation error involved while solving the fixed point problem. I find that expression

(A.2.91) is equal to 5.4 · 10−20. This is negligibly different from zero because the maximal

in absolute terms deviation of the equilibrium interest rate from the interest rate simulated

under the null of the model is 5.2 · 10−16.
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Estimation

I use parameter values from Borovička, Hansen, Hendricks, and Scheinkman (2011) to

simulate N = 260 observations of consumption growth and states xt and σ
2
t under the null

of the model (A.2.67)-(A.2.69).4 Next, I compute the time-series of the real risk-free rate

as in (A.2.78). I use consumption growth and interest rate data to estimate the model

(A.2.79)-(A.2.81) with pricing restrictions (A.2.88)-(A.2.91).

Table A.12 shows the parameter estimates for the free elements of the vector autoregression

(A.2.82) with cross-equation restrictions (A.2.88)-(A.2.91), together with their 95% confi-

dence intervals and true values. Figure A.5 displays the true stochastic variance and the

95% confidence interval for the estimated stochastic variance.

In the estimation exercise, my main interest lies into identifying parameters pg, pr, and pσ.

These parameters are loadings on the economic states in the value function and important

ingredients of the prices of risk represented by the vector −[(α− 1)e1 +(α− ρ)P ]′H. Table

A.13 contains the estimates of the parameters pg, pr, and pσ together with their confidence

intervals and true values. Evidently, the parameter pσ is estimated with high uncertainty.

Consequently, the estimate for the price of variance risk is associated with high uncertainty

too.

4I choose N = 260 observations to have a comparable length of the dataset with one I use in Chapter 3.
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A.3 Tables and figures
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Table A.2: Properties of real log excess returns. Sorting currencies by one-period
yields

Mean Std Dev Skewness Kurtosis Autocorrelation

Basket “Low” -0.0056 0.0544 0.46 3.38 0.06
Basket “Intermediate” -0.0025 0.0431 -0.33 3.33 0.13
Basket “High” 0.0046 0.0532 -0.03 3.44 0.14

Notes. Currency baskets are formed by sorting currencies by their corresponding short
yields at a quarterly basis. Sample period: 1986 – 2011. Quarterly.

Table A.3: Composition of currency baskets. Sorting currencies by one-period yields

Currency Basket “Low” Basket “Intermediate” Basket “High”

Australia 6 29 64
Canada 26 71 6
Denmark 8 70 15
Germany 34 8 10
Euro area 18 11 0
Japan 98 5 0
Norway 7 18 30
New Zealand 4 15 68
Sweden 28 34 14
Switzerland 87 8 0
UK 6 41 56
South Africa 0 0 58

Notes. At the end of each period (quarter), currencies are sorted by their respective short
interest rates. Table entry shows the number of periods each currency belongs to each
basket. Sample period: 1986 – 2011, at a quarterly frequency.



208

Table A.4: Estimated FX cash flow process (identification “Fast Inflation”). Sorting
currencies by one-period yields

Parameter Basket “Low” Basket “Intermediate” Basket “High”

log δ -0.0028 -0.0131 -0.0063
(-0.0183, 0.0154 ) (-0.0290, -0.0003) (-0.0279, 0.0100)

µg 1.0241 0.5541 -1.2649
(0.3843, 1.7303) (-0.0510, 1.1418) (-2.0504, -0.4687)

µπ -0.7762 -2.8042 -1.7922
(-1.2466, -0.3394) (-3.1966, -2.3946) (-2.3308, -1.2560)

µi 0.4351 2.2262 1.9015
(0.0317, 0.8669) (1.8530, 2.5869) (1.4407, 2.3758)

µσ -0.0082 0.0008 -0.0044
(-0.0176, 0.0241) (-0.0129, 0.0090) (-0.0227, 0.0058)

ξg 0.0010 0.0042 0.0135
(-0.0036, 0.0052) (0.0005, 0.0076) (0.0081, 0.0189)

ξπ -0.0040 0.0093 0.0142
(-0.0099, 0.0013) (0.0048, 0.0136) (0.0090, 0.0197)

ξi -0.0138 -0.0031 0.0027
(-0.0172, -0.0104) (-0.0052, -0.0010) (7.86 · 10−5, 0.0053)

ξσ −0.0020 0.0029 0.0046
(-0.0126, 0.0088) (-0.0061, 0.0117) (-0.0069, 0.0158)

Notes: At the end of each quarter, I sort currencies into three currency baskets based on
their short interest rates. For each currency basket, I estimate the FX cash flow process:

log δt,t+1 = log δ + µ′Yt + σtξ
′εt+1 + ξvσtvt+1,

where µ = (µg µπ µi µσ)
′ and ξ = (ξg ξπ ξi ξσ)

′. Quarterly. There are 95% confidence
intervals in the brackets.
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Table A.5: Estimated FX cash flow process (identification “Fast Consumption”). Sort-
ing currencies by one-period yields

Parameter Basket “Low” Basket “Intermediate” Basket “High”

log δ -0.0029 -0.0130 -0.0065
(-0.0196, 0.0139 ) (-0.0288, -0.0003) (-0.0288, 0.0098)

µg 1.0261 0.5603 -1.2489
(0.2442, 1.7742) (-0.0154, 1.1356) (-2.0605, -0.4486)

µπ -0.7688 -2.8020 -1.7887
(-1.2167, -0.3003) (-3.2413, -2.3854) (-2.3078, -1.2601)

µi 0.4296 2.2240 1.8913
(-0.0292, 0.8529) (1.8474, 2.6096) (1.4129, 2.3742)

µσ -0.0086 0.0009 -0.0045
(-0.0187, 0.0231) (-0.0121, 0.0090) (-0.0219, 0.0060)

ξg 0.0022 0.0009 0.0084
(-0.0026, 0.0071) (-0.0028, 0.0045) (0.0032, 0.0133)

ξπ -0.0037 0.0101 0.0180
(-0.0091, 0.0020) (0.0064, 0.0139) (0.0126, 0.0233)

ξi -0.0137 -0.0031 0.0027
(-0.0175, -0.0103) (-0.0053, -0.0009) (0.0002, 0.0054)

ξσ −0.0021 0.0031 0.0044
(-0.0139, 0.0078) (-0.0057, 0.0120) (-0.0069, 0.0160)

Notes: At the end of each quarter, I sort currencies into three currency baskets based on
their short interest rates. For each currency basket, I estimate the FX cash flow process:

log δt,t+1 = log δ + µ′Yt + σtξ
′εt+1 + ξvσtvt+1,

where µ = (µg µπ µi µσ)
′ and ξ = (ξg ξπ ξi ξσ)

′. Quarterly. There are 95% confidence
intervals in the brackets.
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Table A.7: Priors for the parameters of the vector-autoregression

Parameter Prior

Θ1 = F1 N (0.0010, 0.00152)
Θ2 = G11 N (0.30, 0.102)
Θ3 = G12 N (−0.20, 0.062)
Θ4 = G13 N (0.15, 0.152)
Θ5 = G14 N (0.00, 0.00102)
Θ6 = G24 N (0.00, 0.00102)
Θ7 = F3 N (0.00, 0.00052)
Θ8 = G31 N (0.00, 0.052)
Θ9 = G32 N (0.00, 0.052)
Θ10 = G33 N (0.95, 0.0152)
Θ11 = G34 N (0.00, 0.00102)
Θ12 = G44 N (0.95, 0.0152)
Σ IW(b,B)

Notes. Prior distributions for the twenty two parameters of the matrices F , G, and Σ. The
hyperparameters of the inverse Wishart distribution for Σ are such that

b =


0.69 −0.03 0.06 −0.03
−0.03 0.96 0.06 −0.03
0.06 0.06 0.3 −0.03
−0.03 −0.03 −0.03 0.015


and B = 8.
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Table A.8: Priors for the parameters of the FX cash flow process

Parameter “Low” “Intermediate” “High”

log δ N (−0.0027, 0.01102) N (−0.0205, 0.01142) N (−0.0114, 0.01352)
µg N (1.3585, 0.35602) N (−0.0856, 0.35822) N (−1.3681, 0.41742)
µπ N (−0.8053, 0.26502) N (−2.7442, 0.27762) N (−1.8320, 0.33782)
µi N (0.7241, 0.39662) N (2.4383, 0.40522) N (−2.1729, 0.52712)
µσ N (0.0068, 0.01042) N (0.0164, 0.01092) N (0.0090, 0.01252)
ξg N (−0.0021, 0.00232) N (0.0053, 0.00212) N (0.0115, 0.00262)
ξπ N (−0.0047, 0.00262) N (0.0081, 0.00252) N (0.0199, 0.00302)
ξi N (−0.0123, 0.00162) N (−0.0102, 0.00142) N (0.0063, 0.00142)
ξσ N (−0.0010, 0.00592) N (−0.0002, 0.00532) N (0.0052, 0.00682)
ξv IG(2, 0.0025) IG(2, 0.0025) IG(2, 0.0025)

Notes. Prior distributions for the parameters of the FX cash flow process for the “Low”,
“Intermediate”, and “High” baskets.

Table A.9: Model diagnostics for the macro VAR

Parameter Skewness Kurtosis Autocorrelation

Fitted residuals of consumption growth
Percentile 2.5% -0.25 3.22 0.10
Mean -0.04 3.66 0.25
Percentile 97.5% 0.18 4.32 0.38

Fitted residuals of inflation
Percentile 2.5% -0.44 3.04 0.71
Mean -0.21 3.38 0.74
Percentile 97.5% 0.03 3.78 0.77

Fitted residuals of nominal rate
Percentile 2.5% -0.98 5.06 0.18
Mean -0.71 5.96 0.22
Percentile 97.5% -0.43 7.03 0.26

Fitted residuals of stochastic variance
Percentile 2.5% -0.24 2.50 -0.06
Mean 0.05 2.98 0.07
Percentile 97.5% 0.34 3.65 0.19

Notes. Posterior means and 2.5 and 97.5 percentiles are reported for the fitted residuals of
the four equations of the vector autoregression (A.2.63).
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Table A.10: Model diagnostics for the FX cash flow process. “Fast Inflation” identifi-
cation

Parameter Skewness Kurtosis Autocorrelation

“Low” basket
Percentile 2.5% -0.17 3.14 -0.04
Mean 0.23 3.97 0.04
Percentile 97.5% 0.63 5.44 0.12

“Intermediate” basket
Percentile 2.5% -0.29 3.15 0.01
Mean 0.05 3.98 0.07
Percentile 97.5% 0.42 5.40 0.14

“High” basket
Percentile 2.5% -0.82 2.94 -0.10
Mean -0.36 3.84 -0.04
Percentile 97.5% -0.04 5.77 0.03

Notes. Posterior means and 2.5 and 97.5 percentiles are reported for the fitted residuals
of the FX cash flow for the three currency baskets. I use the identification strategy “Fast
Inflation”.
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Table A.11: Model diagnostics for the FX cash flow process. “Fast Consumption”
identification

Parameter Skewness Kurtosis Autocorrelation

“Low” basket
Percentile 2.5% -0.15 3.15 -0.03
Mean 0.22 3.95 0.04
Percentile 97.5% 0.62 5.35 0.12

“Intermediate” basket
Percentile 2.5% -0.30 3.17 0.01
Mean 0.05 3.97 0.07
Percentile 97.5% 0.42 5.40 0.14

“High” basket
Percentile 2.5% -0.82 2.94 -0.10
Mean -0.36 3.84 -0.04
Percentile 97.5% -0.04 5.77 0.03

Notes. Posterior means and 2.5 and 97.5 percentiles are reported for the fitted residuals
of the FX cash flow for the three currency baskets. I use the identification strategy “Fast
Consumption”.
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Table A.12: Parameter estimates. Simulated economy

Parameter Estimate Confidence interval True value

G13 0.0021 (0.0014, 0.0029) 0.0013
F2 2.2 · 10−5 (−2.13 · 10−5, 6.2 · 10−5) 3 · 10−5

G21 0.0014 (-0.0025, 0.0049) 0
G22 0.9735 (0.9671, 0.9817) 0.979
G23 6.05 · 10−6 (−2.34 · 10−5, 3.81 · 10−5) −7.06 · 10−6

G33 0.9807 (0.9415, 0.9955) 0.987
Σ11 4.68 · 10−5 (2.83 · 10−5, 7.84 · 10−5) 6.08 · 10−5

Σ12 −8.26 · 10−6 (−2.6 · 10−5, 1.04 · 10−5) 0
Σ13 −4.23 · 10−5 (−1.82 · 10−5, 6.78 · 10−5) 0
Σ22 4.86 · 10−4 (3.04 · 10−4, 8.07 · 10−4) 5.27 · 10−4

Σ23 1.22 · 10−6 (−1.06 · 10−4, 4.20 · 10−4) −1.29 · 10−4

Σ33 0.0017 (0.0005, 0.0041) 0.0014

Notes. Estimates of the free parameters of the vector autoregression

Yt+1 = F +GYt +Σ1/2σtεt+1, (A.23)

with cross-equation restrictions

log β + (ρ− 1)e′1F = 0, (A.29)

(ρ− 1)e′1Ge1 = 0, (A.30)

1 + (ρ− 1)e′1Ge2 = 0 (A.31),

(ρ− 1)e′1Ge3 − (ρ(α− ρ)P ′ΣP/2 + (2α− αρ− 1)e′1Σe1/2

+(α− ρ)P ′Σe1) = 0, (A.32)
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Table A.13: State loadings in the value function. Simulated economy

Parameter Estimate Confidence interval True value

pg 0.0938 (-0.0967, 0.2947) 0
pr 60.4933 (48.9624, 76.8279) 68.3031
pσ 0.0388 (-0.0476, 0.1718) -0.0414

Notes. Loadings on the states log gt−1,t, r
1
t,f and σ2t in the value function

log ut = log u+ pg log gt−1,t + prr
1
t,f + pσσ

2
t .
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Figure A.1: Shock-exposure elasticity (identification “Fast Inflation”). Sorting cur-
rencies by one-period yields
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Panel (a) displays shock-exposure elasticity for the short-run risk. Panel (b) displays shock-exposure

elasticity for the inflation risk. Panel (c) displays shock-exposure elasticity for the long-run risk.

Panel (d) displays shock-exposure elasticity for the variance risk. Identification “Fast Inflation”.

Quarterly. The magenta dashed line is for the basket “Low”, the blue solid line is for the basket

“Intermediate”, the red marked line is for the basket “High”. The horizontal axes: from 1 quarter

to 10 years.
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Figure A.2: Shock-exposure elasticity (identification “Fast Consumption”). Sorting
currencies by one-period yields
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Panel (a) displays shock-exposure elasticity for the short-run risk. Panel (b) displays shock-exposure

elasticity for the inflation risk. Panel (c) displays shock-exposure elasticity for the long-run risk.

Panel (d) displays shock-exposure elasticity for the variance risk. Identification “Fast Consumption”.

Quarterly. The magenta dashed line is for the basket “Low”, the blue solid line is for the basket

“Intermediate”, the red marked line is for the basket “High”. The horizontal axes: from 1 quarter

to 10 years.
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Figure A.3: Shock-price elasticity (identification “Fast Inflation”). Sorting currencies
by one-period yields
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Panel (a) displays shock-price elasticity for the short-run risk. Panel (b) displays shock-price elas-

ticity for the inflation risk. Panel (c) displays shock-price elasticity for the long-run risk. Panel

(d) displays shock-price elasticity for the variance risk. The magenta dashed line is for the basket

“Low”, the blue solid line is for the basket “Intermediate”, the red marked line is for the basket

“High”. The horizontal axes: from 1 quarter to 10 years. Identification “Fast Inflation”. Quarterly.
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Figure A.4: Shock-price elasticity (identification “Fast Consumption”). Sorting cur-
rencies by one-period yields
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Panel (a) displays shock-price elasticity for the short-run risk. Panel (b) displays shock-price elas-

ticity for the inflation risk. Panel (c) displays shock-price elasticity for the long-run risk. Panel (d)

displays shock-price elasticity for the variance risk. Identification “Fast Consumption”. Quarterly.

The magenta dashed line is for the basket “Low”, the blue solid line is for the basket “Intermediate”,

the red marked line is for the basket “High”. The horizontal axes: from 1 quarter to 10 years.
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Figure A.5: Stochastic variance of consumption growth. Simulated economy
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The blue lines depict the simulated stochastic variance of consumption growth σ2
gσ
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t . The red line

delineates the 95% confidence interval for the estimated stochastic variance.


