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Abstract

This thesis is structured around two main chapters, which analyze the impact of market

imperfections on financial markets in the presence of strategic behavior.

An economic relevant friction I concentrate my research on regards default external-

ities and systemic risk. In particular, I study the strategic risk taking of highly-levered

financial institutions within a structural model of credit risk, where I consider a context

in which systemic default induces externalities that amplify the cost of financial distress.

This represents a source of strategic interaction and mandates an analysis of financial

institutions’ asset allocations in coalescence. I derive a unique strategic equilibrium in

which two heterogenous institutions adopt polarized and stochastic risk exposures, with-

out sacrificing full diversification. In the presence of systemic externalities, both financial

firms are concerned with maintaining sufficient wealth in adverse states. To this purpose,

the conservative institution reduces its risk exposure, whereas the aggressive institution

optimally gambles on positive and negative outcomes by taking long and short positions

in risky securities over time. This equilibrium mechanism increases the likelihood of a

systemic crisis.

In the second part of the thesis I explore the role of disclosure regulation in the pres-

ence of asymmetric information, as an institutional way to improve the efficiency and

liquidity of the market. Is a more transparent market also more efficient and liquid? I

address this question by analyzing the impact of mandatory ex-post disclosure of corpo-

rate insider trades (as in Section 16(a) of the U.S. Securities Exchange Act) in a dynamic

model of strategic risk averse insider trading. I show that trade disclosure reduces infor-

mational efficiency of prices, may cause the market to be less liquid, and may increase

insider’s expected utility. In my model, the informed trader uses a less aggressive trading

strategy in a more transparent market (i.e. with trade disclosure) in order to prevent

the market maker from inferring perfectly the private information from public records,

and to maintain her informational advantage over time. My result then questions the

effectiveness of such securities regulation.
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Chapter 1

Introduction

This thesis is structured around two main chapters, which analyze the impact of market

imperfections on financial markets in the presence of strategic behavior. In the second

chapter, entitled “Strategic Risk Taking with Systemic Externalities”, I study the invest-

ment decisions of highly-levered financial institutions within a structural model of credit

risk with default externalities. In the third chapter, entitled “Insider Trade Disclosure”, I

explore the impact of corporate insider’s trade behavior when an ex-post trade disclosure

regulation is enforced. A brief overview of the two next chapters is provided in what

follows.

Chapter 2: Strategic Risk Taking with Systemic Externalities. In this chapter

I study the optimal risk taking behavior of levered financial institutions in a scenario in

which the cost of default of one institution depends on whether or not other institutions

are defaulting as well. This systemic externality makes the institutions behave strategi-

cally. Hence, I consider a strategic game between two financial firms in a continuous-time

structural model of credit risk. The financial institutions have some debt in place and

choose portfolio allocations as the optimal combination of risky and riskless securities

that will constitute the asset side of their balance sheet. This implies that the asset

dynamics of these firms are endogenously determined by the outcome of the game. If the

debt promises can not be repaid at maturity, default occurs and the associated costs get

amplified if the two institutions are defaulting together.
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In the strategic equilibrium the two institutions are characterized by a very polarized

risk taking behavior; indeed, in order to reduce the cost of joint default they hold dif-

ferent portfolios. However, a reduced portfolio correlation is not obtained by tilting the

composition of risky securities they are holding, but rather by taking different exposures

to the same tangency portfolio. So, “diversity” between these institutions is in the rela-

tive weights of the tangency portfolio and the risk-free asset, and this is true regardless

of whether the firms are ex-ante identical or characterized by some degree of heterogene-

ity. For the case of heterogenous institutions, we always find two types: a conservative

institution, with a low risk profile, and an aggressive one, with a high risk profile. A

reduced risk correlation is obtained in equilibrium because the institutions’ exposures to

the same portfolio are stochastic and optimally set to have a lower correlation. When

one invests a lot, the other invests a little and vice versa. This highlights how in our

model there is no trade-off between diversity and diversification.

Furthermore, I show how the most aggressive of the two institutions holds extreme

positions which can switch between long and short over time. This trading strategy

effectively generates an insurance contract against joint default. However, as any insur-

ance policy, it requires a premium which in this case is financed by higher shortfall if an

idiosyncratic default occurs. The short position generates the payout of the insurance,

the long position the premium.

Despite the attempt to avoid the higher cost of joint default, in equilibrium the

probability of joint default may actually increase. This somehow surprising result is due

to a substitution and an income effect, generated by the amplified cost of joint default.

The substitution effect means that institutions want to the transfer wealth from good to

bad states. And this per se would reduce the probability of joint default. However, an

income effect is also present: the higher cost of joint default hits the budget constraints

of the two institutions, and hence increases the probability of joint default. In the paper

I show that when leverage is high the income effect dominates.

Finally, financial institutions’ debt inherits the endogenously determined risk-profile

of their assets. Losses given joint default are reduced in equilibrium because of the pay-

out of the implicit insurance contract. This makes the debt in bad states of the world

less risky. On the other hand, the higher shortfall associated with idiosyncratic default

makes the debt in good states of the world more risky.

Overall, my results unveil some of the underlying mechanisms that drive financial

institutions’ strategic risk taking when credit risk matters, Moreover, since any recent

proposal for macro-prudential regulation effectively tries to render joint default more

costly, the results in this chapter shed some light on how financial institutions would

change their investment behavior in the presence of such regulation.
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Chapter 3: Insider Trade Disclosure. In this chapter I study whether a more

transparent market is also more efficient and liquid. Specifically, I analyze this question

by studying the impact of mandatory ex-post disclosure of corporate insider trades in a

dynamic model of insider trading. In an opaque market, that is without any disclosure

regulation, a risk-averse insider trader would trade on his own information very aggres-

sively because of future price risk induced by noise traders. In other words, he is afraid

that noise traders will move the price against his own trade. By being so aggressive, most

of the private information is revealed in early trading rounds, thus making the market

very efficient in the sense that the price would reflect the fundamentals quickly. Along the

same lines, once most of the information is revealed in the market, the adverse selection

is severely reduced and hence market liquidity becomes very high.

The introduction of an ex-post disclosure regulation forces the insider to behave less

aggressive. In order to exploit his information over time, he adopts a mixed strategy

whereby he adds a noise component to his trade. The equilibrium reveals that the private

information is incorporated into prices at a slower pace, which implies a lower market

efficiency and liquidity. In the continuous time limit the risk averse insider behaves

as if he was risk-neutral, thus minimizing the leakage of private information through

prices. In essence, this regulation has both a positive-direct and a negative-indirect

effect. The positive effect reduces the asymmetric information in the market, because

of the information disclosed by the insider trader. The negative effect increases the

asymmetric information because of the change in the insider trading strategy. In this

paper, I show that this indirect exists and dominates the direct one. The introduction

of such securities regulation can be considered as an institutional friction that prevents

prices to convey relevant information to market participants.



Chapter 2

Strategic Risk Taking with

Systemic Externalities

Over the past two decades, the financial system has evolved to be dominated by a small

number of highly levered financial institutions.1 Given the degree of interconnectedness

between them and the sheer scale at which they operate, the decision making of each

institution individually affects, and is affected by, the decisions of the others. Hence,

their behavior should not be studied in isolation. This paper analyzes the risk taking

of financial institutions in the presence of costly default and systemic externalities. We

consider a context in which systemic default induces externalities that amplify the cost

of default. This represents a source of strategic interaction.

The recent financial crisis has highlighted the costliness of systemic default. When

Lehman Brothers filed for Chapter 11 protection in September 2008, a few months after

the collapse of Bear Sterns, not only were its assets subjected to an emergency liquidation

at discount prices, it also set in motion what is described in the final report of the

Financial Crisis Inquiry Commission as “[...] one of the largest, most complex, multi-

faceted and far-reaching bankruptcy procedures ever filed in the United States. The

costs of the bankruptcy administration are approaching one billion USD” (Financial

Crisis Inquiry Commission, 2011). There is a vast literature detailing such direct costs of

1In 2008, US commercial banks had leverage ratios (Total Assets/Total Equity) of roughly 15, while
those of US investment banks were in the range of 20-30 (see www.bis.org ).
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default, with an emphasis on the costs of legal settlement. The case of Lehman Brothers

illustrates that when default is systemic, the increased complexity of the settlement

process between different claimholders only amplifies these costs. The same applies for

indirect costs of default, encompassing reputational damage, loss of trading opportunities

and the liquidation of assets at fire-sales prices. The systemic nature of losses due to

fire-sales is equally well-documented (Schleifer and Vishny, 1992; Acharya, Bharath and

Srinivasan, 2007). However, the strategic behavior of financial institutions in the presence

of such systemic externalities of default requires more understanding. Hence, we believe

a comprehensive analysis of financial institutions’ strategic risk taking in a dynamic asset

allocation framework is needed.

The challenge to better understand the strategic interactions at play, has recently been

invigorated by policymakers’ efforts to design and reinforce macro-prudential regulation.

By virtue of modeling the systemic externalities in a reduced form, our set-up easily ex-

tends to an analysis of macro-prudential policies. Several proposals have been circulated,

ranging from Pigouvian taxes over systemic capital requirements and risk-surcharges to

capital insurance (Acharya, Pedersen, Philippon and Richardson, 2010; Hart and Zin-

gales, 2010; Hansen, Kayshap and Stein, 2011; Webber and Willison, 2011). All these

initiatives share the objective of making the most global and systemically important in-

stitutions internalize the negative externalities they impose on the non-financial sector.

While choosing among the proposed regulations is beyond the scope of this paper, we do

contribute to the debate with a positive analysis of banks’ risk taking under incentives

to avoid a systemic crisis.

We consider two highly levered financial institutions (the banks) within a structural

model of credit risk. As in Merton (1974), Black and Cox (1976) and Longstaff and

Schwartz (1995), we take the capital structure of the two institutions as given, with debt

already in place. To maintain as simple a setting as possible, and following Carlson and

Lazrak (2010) among others, we assert that default may occur only upon maturity of the

debt contracts, when the banks fail to repay the debt obligations. Each bank is run by

a manager whose incentives are aligned with those of the equityholders. Both managers

have access to a complete financial market and their task consists of selecting a portfolio

of risky and riskless securities which endogenously determines the asset side of the banks’

balance sheet.

Default induces pecuniary costs affecting the banks’ budget constraint. Specifically,

we adopt a cost function that is linear in the shortfall of the debt repayments, where

the slope parameter identifies the cost per unit of default. In order to capture the

presence of default externalities beyond the costs of idiosyncratic failure, we attribute a

higher slope parameter to a systemic crisis, which is defined by the joint default of the

institutions under consideration. In characterizing the banks’ optimal asset allocations,
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we appeal to the pure-strategy Nash equilibrium concept, in which each bank strategically

accounts for the dynamic investment policies of the other bank, and the equilibrium

policies of the two institutions are mutually consistent. As in Basak and Makarov (2011),

by virtue of dynamically complete markets, the horizon equity is enough to characterize

each bank’s strategy. This means that both managers optimally select an equity profile,

which prescribes the value of their bank’s equity for any state of the world at maturity,

given any possible equity profile of the other bank. Thus, we pin down the best response

strategies.

For the case of heterogenous banks, we derive a unique equilibrium. The strategic

interaction between financial institutions, captured by the interplay of their best response

strategies, produces two distinct equilibrium equity profiles at maturity. The equilibrium

has the following properties. First, in good states of the world both banks have optimal

equity levels at least as high as their default boundaries, hence neither of them defaults.

Second, in intermediate states wealth becomes expensive and only one bank can afford

to maintain the level of the equity value higher or equal to the default boundary. This

implies that intermediate states give rise to an idiosyncratic default regime. Finally, in

the worst states of the world resisting default is too costly for both institutions, thus

triggering a systemic crisis. Under these circumstances banks’ equilibrium equities are

strictly below their respective default boundaries. For expositional convenience, we label

the bank prone to idiosyncratic default as “early-defaulter” and the other one as “late-

defaulter”.2

When banks are sufficiently homogenous, we show that multiple equilibria arise. This

means that there are states of the world in which more than one pair of (mutually

consistent) strategies can be part of an equilibrium. Specifically, this is the case when

both banks agree on the fact that only one bank should default but they can not agree

on which one. While selecting among the multiple equilibria is beyond the scope of this

paper, we do establish the result that even in the extreme case of perfectly homogenous

banks the equilibrium investment strategies are indeed heterogeneous. This confirms that

in the case of the unique equilibrium, our results are effectively driven by the presence

of the strategic interaction, and not by the ex-ante heterogeneity between the banks.

We acknowledge that the existence of multiple equilibria creates scope for regulatory

intervention.

When the equilibrium is unique, we provide a full characterization of the equilibrium

investment policies under an isoelastic objective function and lognormal security prices.

Our paper presents a tractable framework to study the dynamics of banks’ strategic ex-

2Note that early and late refer to the state space dimension, not the time dimension, as default may
only occur at maturity. In Section 3 we show that our results are qualitatively robust to varying the
source of heterogeneity. Any unique equilibrium features an early- and a late-defaulter.
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posure to risky securities. In particular, we focus on the level of each bank’s risk exposure

(risk taking) and on their correlation (diversity) in the presence of strategic interactions.

We evaluate our findings against a benchmark of no systemic default externalities on the

one hand, and one of entirely costless default on the other hand.

While the banks’ efforts to internalize the systemic externalities induce them to im-

plement less correlated asset allocations vis-à-vis the benchmarks (higher diversity), both

banks attain full diversification by investing in the (same) mean-variance tangency port-

folio. Thus, reduced correlation is not achieved by altering the composition of their

portfolios, but rather by stochastically varying their exposure to the tangency portfolio.

This means that at any point in time, conditional on the realization of a state of the

world, the correlation between the banks’ portfolios is indeed equal to one. Uncondition-

ally however, this correlation is less than one because the banks select optimal stochastic

exposures that are not perfectly correlated. This set of results is at odds with the findings

in Wagner (2011), where systemic liquidation costs lead agents to sacrifice diversifica-

tion for diversity. In our model, full diversification is not compromised in the presence

of negative systemic externalities because both banks can move along the efficient fron-

tier by altering the fraction invested in the riskless bond. Furthermore, because of the

stochastic nature of the banks’ investment policies, we ascertain that their correlation

exhibits some interesting patterns. Diversity tends to increase upon the realization of

intermediate states of the world, especially when time approaches maturity. These are

precisely the circumstances under which banks are most concerned with systemic default

and hence value diversity most.

Regarding the risk taking dynamics of the two financial institutions, we establish the

novel result that strategic interaction drives a wedge in the equilibrium level of risk desired

by the early- and the late-defaulter. While both banks aim at transferring horizon equity

from good/intermediate states of the world to those characterized by (very costly) sys-

temic default, in equilibrium they choose polarized strategies. The late-defaulter adopts

a conservative strategy. By implementing a low-risk investment policy, it generates suffi-

ciently high wealth to finance an optimal equity profile where wealth is maintained above

and at the default boundary in good and intermediate states, respectively. In contrast,

the early-defaulter displays a more aggressive strategy. Close to maturity, in states of

the world where both idiosyncratic and systemic default are likely to occur (intermediate

states), the early-defaulter ’s risk taking exhibits two radically opposite behaviors. Al-

though defaulting at maturity is very likely, it either invests a high fraction of the assets

in risky securities, or, at the other extreme, takes a short position in the tangency port-

folio. Effectively, the only way the early-defaulter can allocate more wealth to systemic

states at maturity is by accepting idiosyncratic default in intermediate states. Thus, in

these states the bank allows its asset value to be very sensitive and positively correlated
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to economic fluctuations by investing heavily in the market for risky securities close to

maturity. This high risk taking allows the bank to take away wealth from the states

with idiosyncratic default and finance an asset value that is less sensitive to the severity

of the systemic crisis. In the event of such a crisis, the early-defaulter also wants to

increase the asset value in order to minimize the shortfall in the debt repayments. The

only way it can deliver an asset profile that will jump upwards in case of joint default, is

by investing in a portfolio that is negatively correlated with the economic fluctuations.

This rationalizes the desire to short the market close to maturity.

Summarizing, we find that in the presence of systemic externalities, both banks are

concerned with maintaining sufficient wealth in adverse states. However, while the con-

servative bank reduces its risk exposure, the radical bank optimally gambles on positive

and negative outcomes, by taking either a large long or a short position in risky securities.

We believe these results on banks’ strategic risk taking are new.

Given that the equilibrium equity profiles of the two financial institutions endoge-

nously determine in which states idiosyncratic and systemic default occurs, they also

carry implications for the probabilities of default. To appreciate the effect of negative

systemic externalities (e.g., macro-prudential regulation) on the occurrence and the mag-

nitude of systemic crises, we compare the equilibrium default probabilities and expected

shortfalls in the strategic model to those in the benchmarks. Most notable, we find that

in the presence of negative systemic externalities, both banks are more likely to default.

This immediately implies that a systemic crisis becomes more likely.

This finding does not easily reconcile with the ex-ante objective of macro-prudential

regulation to reduce the likelihood of a systemic event. We rationalize this outcome by

recognizing that the systemic externalities implicitly generate what we term as a substitu-

tion and an income effect. The former captures the wealth transfer from idiosyncratic to

systemic states which decreases the probability of a systemic crisis. The latter, instead,

increases the probability of joint default since it reflects the asset value reduction caused

by the negative externalities. The equilibrium outcome, being the net of these two forces,

shows that the income effect dominates for financial institutions with realistic leverage

ratios. We complete this analysis by examining the expected shortfalls. We ascertain

that, under extremely adverse economic conditions, the expected losses given default are

lower in the presence of strategic interactions, by virtue of the banks’ wealth transfers

into these states. In all, we believe these results are indicative of a friction between

systemic default probabilities on the one hand and systemic losses on the other hand.

Hence, this should not be overlooked in the design of a macro-prudential framework.

A last set of implications of our paper examines the pricing of credit spreads and credit

default swap premiums for the two financial institutions. Since debt is a straightforward
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claim on the value of the assets, its equilibrium price is also endogenously determined

by the strategic risk taking of the banks. Indeed, we find that the credit spreads in-

herit the distinctive features of banks’ risk exposures. This is especially clear for the

early-defaulter whose radical risk taking behavior, translates into non-monotonic credit

spreads. This means that lower credit spreads can be associated with worse states when

time to maturity is low. More generally, we document a decrease in credit spreads for

the most adverse states and an increase of the spreads for the more favorable ones. Once

more, this reflects the banks’ wealth transfers from good to systemic states, in a bid

to internalize the negative externalities associated with joint default. With respect to

the CDS spreads, which are positively related to both the probability of default and the

credit spread, we document that the price to pay for protection against default is higher

in the strategic model than in the benchmarks. This is also true for the systemic states,

where the credit spreads of the banks are markedly lower than for the benchmark mod-

els. Hence, we acknowledge the dominance of default probabilities on equilibrium CDS

prices.

This paper relates to several strands of literature. We build on the literature of struc-

tural credit risk models. We employ the modeling approach presented by Basak and

Shapiro (2005), allowing the asset-value dynamics to be endogenously determined. In

this paper, we deviate from the standard structural contingent-claim approach, with ex-

ogenous asset-value dynamics, as first employed by Merton (1974) and extended, among

others by Leland (1994), Longstaff and Schwarz (1995) and Anderson and Sundaresan

(1996). By virtue of endogenizing the asset-values, this paper allows for an analysis of

portfolio choice effects under strategic interactions. In this regard, our work is most

closely related to Basak and Makarov (2011) who analyze dynamic portfolio strategies

of money managers, in the presence of strategic interactions arising from relative perfor-

mance concerns.

Notwithstanding a literature on banks’ portfolio choice in the presence of systemic

externalities (Gorton and Huang, 2004; Wagner, 2011), our paper contributes by explic-

itly considering such externalities as a source of strategic interaction. This most clearly

differentiates our paper from Wagner (2011). In a set-up with systemic liquidation costs,

he considers atomistic agents’ investment in risky securities only and establishes that

agents optimally sacrifice diversification for the sake of avoiding systemic failure. In our

model, because both banks can move along the efficient frontier by altering the fraction

invested in the riskless bond, full diversification is not compromised.

In relating our paper to a more general literature on strategic behavior among banks,

we acknowledge recent contributions by Perotti and Suarez (2002), Acharya (2009). Both

works consider banks’ strategic portfolio decisions, in related yet different contexts of

systemic default. While these papers consider potential gains from the acquisition of
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failed bank assets as a source of strategic interaction among financial institutions, we

restrict our attention to amplified costs of joint default. With this, we touch upon the

vast literature on costly default (Altman, 1984; Weiss, 1990; Andrade and Kaplan, 1998)

and fire-sales (Schleifer and Vischny, 1992; Acharya, Bharath and Srinivasan, 2007).

These papers extensively document how a systemic crisis exacerbates the costs of default,

emphasizing the economic relevance of the systemic externalities considered in our model.

A set of recent papers analyzes the optimal resolution of bank failures (Acharya and

Yorulmazer, 2007, 2008; Farhi and Tirole, 2011). These articles show how systemic bail-

outs distort the incentives for banks to correlate the risk in their investment choices. Our

results on risk correlation in a context of negative systemic externalities complement their

findings, by showing how banks’ preference for diversity evolves dynamically. Moreover,

our full characterization of strategic risk taking adds a further layer of analysis to this

literature.

Finally, and perhaps most importantly, we also add to the rapidly growing literature

on systemic risk. Seminal contributions on the measurement of systemic risk include

Adrian and Brunnermeier (2011) and Acharya, Pedersen, Philippon and Richardson

(2010) among others. Much work in this field is motivated by the view that regula-

tion should be designed in a way that financial institutions are penalized based on their

contribution to systemic risk. By interpreting the systemic externalities in our model as

any generic systemic policy, we are able to draw conclusions on financial institutions’ re-

sponsiveness to potential regulatory changes of this nature. We believe that our analysis

of systemic crises, both in terms of likelihood and expected shortfall, within a workhorse

dynamic asset allocation framework is new and delivers a rich set of implications regard-

ing financial institutions’ strategic risk taking.

The remainder of the paper is organized as follows. Section 2 presents the eco-

nomic set-up and lays out the micro-foundations for the strategic game in the presence

of systemic externalities of default. Section 3 solves for the best-response strategies and

characterizes the unique equilibrium for the case of heterogenous banks. Section 4 inves-

tigates the properties of the unique equilibrium. We analyze optimal risk taking, default

probabilities and shortfalls, and debt pricing. Section 5 concludes. Proofs and minor

results are derived in the Appendix A.
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2.1 The Model

2.1.1 The Economic Setting

We consider a continuous-time, finite horizon economy, t ∈ [0, T ], in which the uncertainty

is represented by a filtered probability space (Ω,F , {Ft},P) on which an N -dimensional

standard Brownian motion, wt = (w1t, · · · , wNt)′, is defined. We assume that all stochas-

tic processes are adapted to the augmented filtration {Ft} generated by w, and that

regularity conditions that make the processes well-defined (Karatzas and Shreve, 1998)

are satisfied.

Financial market. Financial investment opportunities are given by N + 1 assets: an

instantaneously riskless bond and N risky securities, whose prices evolve according to

the following dynamics

dBt = Btrdt (2.1)

dSt = Stµdt+ Stσdwt. (2.2)

The bond provides a continuously compounded constant interest rate of r, whereas µ and

σ represent the N -dimensional vector of mean returns and the N × N non-degenerate

volatility matrix of the risky securities, respectively. Markets are dynamically complete,

implying the existence of a unique state price density process ξ such that

dξt = −ξtrdt− ξtκ′dwt (2.3)

where κ ≡ σ−1[µ− r1] is the N -dimensional market price of risk, 1 is the N -dimensional

vector (1, · · · , 1)′, and ξ0 is set to 1.

Agents. Our economy is populated by two financial institutions, which for simplicity

we will refer to as banks hereafter. If we let Vit denote the value of the assets of bank i

at time t, and Wit and Dit the value of the equity and of the debt, respectively, then the

following accounting identity must hold,

Vit = Wit +Dit. (2.4)

Each bank i ∈ {1, 2} is run by a manager whose incentives are aligned with equityholders’

interests. The manager is guided by an isoelastic objective function defined over the
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terminal value of the equity (the bank’s net wealth),

ui(WiT ) =
W 1−γi
iT − 1

1− γi
, γi > 0. (2.5)

It is important to stress that the interpretation of the aforementioned objective function

is broader than a standard concave utility function. Indeed, it could capture managerial

self interest, compensation structures, concave non-stochastic investment opportunities

beyond the terminal date, and, more in general, market frictions (Allen and Santomero,

1998; John and John, 1993; John, Saunders and Senbet, 2000; Froot, Scharfstein and

Stein, 1993; Froot and Stein, 1998).

The manager of bank i maximizes the expected value of (2.5) by dynamically choosing

an investment policy πit, which denotes the (N -dimensional) vector of fractions of bank

i’s assets invested in each risky security, given an initial capital of Wi0. We refer to πit

as the risk taking of bank i. Clearly, (1− π′it1) pins down the fraction of bank i’s assets

invested in the riskless bond. Hence, the optimization problem faced by the manager of

bank i is subject to the dynamics of the value of the assets:

dVit = Vit[r + π′it(µ− r1)]dt+ Vitπ
′
itσdwt. (2.6)

2.1.2 Leverage, Default and Externalities

As in many structural models of credit risk (Merton, 1974; Leland, 1994; Longstaff

and Schwarz, 1995), we do not derive the optimal capital structure of the two financial

institutions, but rather we take it as given and study the implications of their strategic

interaction on optimal investment decisions and systemic risk.3 Therefore, we assume

that both banks are levered; specifically, they are bound by a zero-coupon debt contract

with face value of Fi and price Di0 at the initial date, where the latter will be determined

endogenously by the optimal asset choice of bank i. The presence of debt in the banks’

balance sheets captures the possibility of these institutions defaulting.

Debt contract. Financial distress may occur at the terminal date T and it is triggered

if bank i fails to repay its debt obligation, equal to the face value Fi. In such a case,

debtholders can force liquidation or reorganization and can seize only a fraction of the

bank’s total assets, (1−βi)ViT , while the remaining βiViT is retained by the equityholders.

By assuming βi greater than zero, we capture violations of the Absolute Priority Rule

(APR), a fact which is extensively documented in the empirical literature (Franks and

3Optimal capital structure within a credit risk model is studied in Leland (1994), Leland and Toft
(1996). This papers assume exogenous asset value processes.
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Torous, 1989, 1994; Eberhart, Moore, and Roenfeldt, 1990; Weiss, 1990; Betker, 1995).

Departures from APR can be rationalized as the optimal outcome of a bargaining game

among corporate claimants after time T (Anderson and Sundaresan, 1996; Mella-Barral

and Perraudin, 1997, Fan Sundaresan, 2000; Acharya, Huang, Subrahmanyam and Sun-

daram, 2006; Garlappi, Shu and Yan, 2008).4 Hence, the payoff of the debt contract is

given by:

DiT = min{(1− βi)ViT , Fi} (2.7)

where βi ∈ [0, 1]. Bank i enters financial distress when ViT < Fi/(1 − βi). It is worth

clarifying that in this model there is no formal distinction between default and distress:

what really matters is that in both cases the bank can not repay the face value of the

debt. In what follows, we make use of both terms interchangeably.

Cost of default and systemic externalities. Default is costly. An extensive liter-

ature has documented the nature and severity of (direct and indirect) costs of financial

distress. Guided by these insights, and following Basak and Shapiro (2005), we model

cost of default by adopting the following reduced form:

CiT =


0 if DiT = Fi

φ+ λ(Fi −DiT ) if DiT < Fi ∧ DjT = Fj

φ+ (λ+ ηi)(Fi −DiT ) if DiT < Fi ∧ DjT < Fj ,

(2.8)

for any i ∈ {1, 2} and j 6= i. Upon default, DiT < Fi, bank i incurs a fixed and a

proportional costs, (φ, λ) > 0, where the latter is proportional to the extent of default

(Fi−DiT ). When financial distress is systemic, that is when both banks default on their

debt, the proportional cost become equal to (λ+ηi). If ηi > 0 we have a negative systemic

externality ; if −λ < ηi < 0 we have a positive systemic externality. Hence, systemic

defaults can be more or less costly than idiosyncratic defaults depending on whether the

systemic externality is negative or positive. We allow the systemic components of the

cost to be heterogeneous among banks.

Besides the advantage of tractability, this parsimonious yet flexible specification al-

lows us to capture, within the same theoretical framework, different economic scenarios:

• Direct financial distress costs. Direct costs of default encompass the costs of

lawyers, accountants, and other professionals involved in the bankruptcy filling,

including the value of managerial time spent to this purpose (Warner, 1977; Weiss,

1990; Andrade and Kaplan, 1998). These costs are both fixed and proportional,

4As a complementary interpretation, we can view βiViT as bank i’s intangible assets, which can not
be collateralized and hence transferred to the debtholders.
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and it is reasonable to assume that in the event of a systemic crisis they would rise

because of the increased complexity of negotiating the disputes between claimhold-

ers.

• Indirect financial distress costs. Impaired business reputation, loss of trading op-

portunities (Dow and Rossiensky, 2001), loss of market share (Opler and Titman,

1994), liquidation of assets at fire-sales prices (Allen and Gale, 1994, 1998; Acharya

and Yorulmazer, 2007; Wagner, 2011) represent the large part of indirect costs of

default. ÊSince such opportunity costs depend on the market setting, they become

more severe during a systemic crisis. For instance, it is more likely that some of

the assets of the distressed institutions are acquired by investors who are not the

most efficient user of these assets, thus valuing them below their fundamental value

(Williamson, 1988; Shleifer and Vishny, 1992).

• Macro-prudential/systemic regulation. Inspired by the events of the recent financial

crisis, several proposals to contain systemic risk have been advocated (Acharya,

Pedersen, Philippon and Richardson, 2010; Hart and Zingales, 2010; Hansen,

Kayshap and Stein, 2011; Webber and Willison, 2011). A general consensus seems

to highlight the inability of micro-prudential regulations to prevent the collapse of

the financial system as a whole, and the urgent need for macro-prudential regula-

tions. Of these kind, among others, are Pigouvian taxes, systemic capital require-

ments, systemic-based risk constraints, capital insurance, systemic risk surcharges,

all tailored to induce systemic financial institutions to internalize their externalities

on the entire economy. In other words, they are designed to induce the financial sec-

tor to bear some of the social costs that they would generate in the event of a crisis.

Discussing different aspects of the Dodd-Frank Act, Acharya, Cooley, Richardson

and Walter (2010) concisely summarizes this view:

“The basic idea is that, to the extent these stricter standards impose costs

on financial firms, these firms will have an incentive to avoid them and

therefore be less systemically risky.”

Therefore, we can deem our postulated cost function as capturing (in reduced form)

the implementation of such systemic regulations through the (positive) coefficient

ηi.
5

5As an example, consider the optimal (Pigouvian) tax system obtained in Acharya, Pedersen, Philip-
pon and Richardson (2010): each financial institution is taxed based on: (i) the expected shortfall in case
of default, and (ii) the expected shortfall in case of a systemic crisis. Therefore, the expected default cost
that the banks face in our model can be easily interpreted as a systemic tax:

E[ξTCT ] = + λE[ξT (Fi −DiT )|single distress]P(single distress)

+ ηiE[ξT (Fi −DiT )|systemic distress]P(systemic distress) +K

where the event {systemic distress} ⊂ {single distress} and K captures the expected fixed costs which
do not depend on the banks’ shortfall.
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• Systemic bail-out. While the previous scenarios represent negative systemic exter-

nalities, our framework can also accommodate positive systemic externalities such

as explicit and implicit promises and transfers from the rest of the economy to the

financial sector. Moral hazard problems related to the resolution of bank failures

(Acharya and Yorulmazer, 2007, 2008; Panageas, 2010; Farhi and Tirole, 2011) can

make the cost of distress in the event of a financial crisis lower than the one in the

event of a single default. In our model, this corresponds to negative values of ηi.

Therefore, the coefficients in our cost specification are meant to capture the net effect

of all the potential determinants of the aforementioned distress costs. Note that when ηi

is equal to zero, systemic externalities are absent and the two banks are not connected

with each other, thus behaving as the single borrower in Basak and Shapiro (2005). This

implies that their optimal investment problems can be solved independently. In contrast,

when externalities are present, bank i acts strategically by taking into account the effect

that bank j has on bank i’s cost function, knowing that bank j takes into account the

effect that bank i has on bank j’s cost function, and so on. Hence, the optimal investment

policies of the two banks are the equilibrium outcome of a strategic game.

2.1.3 Default Regions

Before formally defining the strategic game between the two financial institutions, let us

determine the banks’ equity and total asset value in all the possible regions of default.

At the terminal date T , taking into account of the default cost, the accounting identity

in (2.4) becomes equal to

ViT − CiT = WiT +DiT (2.9)

so that the value of the equity of bank i at time T is given generically by

WiT = ViT −min{(1− βi)ViT , Fi} −
(
φ+ λ(Fi −min{(1− βi)ViT , Fi})

+ ηi(Fi −min{(1− βi)ViT , Fi})1{(1−βj)VjT<Fj}
)
1{(1−βi)ViT<Fi}. (2.10)

Based on this we can consider the following sub-cases:

No-default region. None of the two banks are in financial distress: (1−β1)V1T > F1

and (1− β2)V2T > F2.

WiT = ViT − Fi ⇒ ViT = WiT + Fi (2.11)
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for i ∈ {1, 2}.

Single default region. Only bank i is in financial distress: (1 − βi)ViT < Fi and

(1− βj)VjT > Fj .

WiT = ViT [βi + λi(1− βi)]− [φ+ λFi] ⇒ ViT =
WiT + [φ+ λFi]

βi + λ(1− βi)
(2.12)

WjT = VjT − Fj ⇒ VjT = WjT + Fj (2.13)

Systemic default region. Both banks are in financial distress: (1−β1)V1T < F1 and

(1− β2)V2T < F2.

WiT = ViT [βi + (λ+ ηi)(1− βi)]− [φ+ (λ+ ηi)Fi] ⇒ ViT =
WiT + [φ+ (λ+ ηi)Fi]

βi + (λ+ ηi)(1− βi)
(2.14)

for i ∈ {1, 2}.

In order to express the default boundary in terms of the value of the equity, let Wi

denote the lower-bound value of WiT in the no-default region:

Wi : (1− βi)(Wi + Fi) = Fi ⇒ Wi ≡
βiFi

1− βi
, (2.15)

for i ∈ {1, 2}. When bank i’s equity at maturity is greater than or equal to the threshold

Wi, the bank does not default. Note, however, that the upper-bound value of WiT in the

default regions is given by Wi − φ. Therefore, the fixed cost creates a discontinuity such

that the value of the equity at maturity can not take values in the interval [Wi−φ, Wi).

In the next section, we verify that the optimal policies of the two banks satisfy this

condition. To avoid abuse of notation, throughout this paper we refer to the event

{WiT < Wi} as default. Since there is a one-to-one mapping between equity and asset

values in all the default regions, we can express all the relevant quantities as a function of

the horizon equities (WiT ,WjT ). In the following Lemma we do this for the cost function.

Lemma 1. Bank i’s cost of default can be written as

CiT (WiT ,WjT ) =


0 if WiT >Wi

xiφ+ (1− xi) (Wi −WiT ) if WiT < Wi ∧ WjT >Wj

ziφ+ (1− zi) (Wi −WiT ) if WiT < Wi ∧ WjT < Wj ,

(2.16)
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for j 6= i, where

xi ≡
1

1 + λ̂i
, zi ≡

1

1 + (λ̂i + η̂i)
, λ̂i ≡ λ

(
1− βi
βi

)
, η̂i ≡ η

(
1− βi
βi

)
. (2.17)

If the systemic externality is negative (positive), then xi > zi (xi < zi).

Proof. See the Appendix A.

2.1.4 Martingale Representation and The Strategic Game

The manager of bank i maximizes the expected value of the objective function over the

value of the final horizon equity, subject to the dynamic budget constraint in (2.6), and

the default cost in (2.8). Under the assumption of dynamically complete markets, we can

solve the dynamic optimization problem of bank i using the martingale representation

approach (Karatzas, Lehoczky and Shreve, 1987; Cox and Huang, 1989). This entails

solving the following static problem:

max
WiT

E[ui(WiT )] s.t. E[ξTViT ] 6 Vi0 (2.18)

where Vi0 = Wi0 + Di0 and ViT = WiT + DiT + CiT . Since markets are dynamically

complete, the debt contract is fairly priced, Di0 = E[ξTDiT ], and the bank’s problem can

be restated as

max
WiT

E[ui(WiT )] s.t. E[ξT (WiT + CiT )] 6Wi0 (2.19)

where, by Lemma 1, CiT = CiT (WiT ,WjT ).

The two banks are interconnected through the (systemic) cost of default: the choice

of one bank to default affects and is affected by the choice of the other. Hence, they play

a strategic dynamic game. The strategy of each bank consists of a non-negative horizon

equity WiT and a sequence of fractions of bank’s assets to invest in the risky financial

securities {πit}t∈[0,T ]. By virtue of dynamically complete markets, (i) the horizon equity

WiT is enough to characterize each bank’s strategy, and (ii) the dynamic game can be

viewed as a game played only at time 0, where each bank decides its strategic actions

for the whole time period [0, T ]. Note that this is equivalent to solving for an open-

loop equilibrium.6 The two banks play such game under the assumption of complete

6We refer to Basar and Olsder (1982, 1995) for an exhaustive discussion on open and closed-loop
equilibria of dynamic games. As highlighted by Back and Paulsen (2009), there are some issues in defining
closed-loop equilibria for dynamic games in continuous-time and continuous-action; for this reason we
leave the investigation of such equilibria for future research.
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information, given that the set {Wi0, Fi, ui(·), βi, φ, λ, ηi}, for any i ∈ {1, 2}, is common

knowledge.

The game. Let 〈I,Ω,P, (Si), (vi)〉 denote the strategic game, where I refers to the

set of players; P denotes a probability measure defined over the set of states Ω; Si
represents the nonempty set of strategies si available to bank i, and vi its payoff function.

Specifically,

• I = {1, 2};

• Ω = R++;

• P : log(ξT ) = −
(
r + κ2/2

)
T − κwT ;

• Si = {WiT (ξT ) : Ω→ R++ : E[ξT (WiT + CiT )] 6Wi0}

• vi : (Si × Sj)→ R is such that vi(WiT ,WjT ) = maxWiT∈Si E[ui(WiT )]

Definition 1 (Best Response Strategies). Consider the strategic game 〈I,Ω,P, (Si), (vi)〉.
For any WjT (ξT ) ∈ Sj, let Bi(WjT ) define the set of bank i’s best response strategies given

WjT :

Bi(WjT ) =
{
WiT (ξT ) ∈ Si : vi(WiT ,WjT ) > vi(W

′
iT ,WjT ) for all W ′iT (ξT ) ∈ Si

}
.

(2.20)

Then, ŴiT (WjT ) denotes an element of Bi(WjT ).

Definition 2 (Pure-Strategy Nash Equilibrium). A pure-strategy Nash equilibrium

of the strategic game 〈I,Ω,P, (Si), (vi)〉 is a profile of strategies (W ∗iT ,W
∗
jT ) ∈ (Si,Sj) for

which

W ∗iT ∈ Bi(W ∗jT ) for all i ∈ I. (2.21)

2.2 Strategic Equilibrium with Negative Externalities

In the current section we solve for the strategic game played by the two levered financial

institutions subject to default costs, as described in the earlier section. First we derive

each bank’s best response strategy, then we characterize the strategic equilibrium by

selecting those strategies that are mutual consistent.
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2.2.1 Best Response Strategies

The manager of bank i faces the optimization problem in (2.19): he maximizes the

expected value of the objective function defined over the equity value at the terminal

date, subject to the static budget constraint. The budget constraint states that that

expected discounted value of the sum of the horizon equity plus potential default costs

(discounted with the pricing kernel of the economy, ξT ) can not be higher than the value

of the initial capital. In simpler terms, the implemented policy must be affordable.

As equation (2.16) highlights, the cost of default of bank i is affected by the policy

adopted by bank j. Depending on whether bank j is solvent or not at maturity, bank

i’s cost function would exhibit low or high proportional costs, respectively. The best

response strategy of bank i prescribes the optimal level of equity at time T for any

possible realization of the uncertainty, WiT (ξT ), conditional on the strategy of bank j.

In other words, bank i takes WjT as given and solves the optimization problem in (2.19)

for all possible values of WjT . However, since the cost function of bank i is not affected

by the level of WjT per se, but rather by whether WjT is above or below the default

boundary Wj , the bank needs to solve only two optimization problems. Each problem is

conditional to one of the two collectively exhaustive and mutually exclusive events,

{WjT >Wj} and {WjT < Wj}.

Because of the nonlinearity and discontinuity in the default cost functions, the banks’

optimization problems are non-standard as they are not globally concave. In fact, they

exhibit local convexity around the default boundaries Wi, for i ∈ {1, 2}. To tackle this

issue, we adapt the common convex-duality approach (e.g., Karatzas and Shreve, 1998)

to incorporate kinks and discontinuities in the objective and in the budget constraint.7

In the following Proposition we characterize the banks’ best response strategies explicitly

in closed-form.

Proposition 1. The best response function of bank i with respect to bank j, for any

i 6= j, is given by

ŴiT (WjT ) =


(yiξT )

− 1
γi if ξT 6 ξ

i

Wi if ξ
i
< ξT 6 ξ̄i

(yixiξT )
− 1
γi +

[
Wi − (yixiξT )

− 1
γi

]
1{WjT<Wj} if ξ̄i < ξT 6 ¯̄ξi

(yixiξT )
− 1
γi +

[
(yiziξT )

− 1
γi − (yixiξT )

− 1
γi

]
1{WjT<Wj} if ξT >

¯̄ξi.

(2.22)

7Examples of non-standard optimization problems include Carpenter (2000); Basak and Shapiro (2001,
2005); Basak, Pavlova and Shapiro (2007); Carlson and Lazrak (2010); Basak and Makarov (2011).
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The thresholds (ξ
i
, ξ̄i,

¯̄ξi) are given by

ξ
i
≡ (Wi)

−γi

yi
, ξ̄i ≡

αi
yixi

, ¯̄ξi ≡
αi
yizi

, (2.23)

where αi > (Wi)
−γi is the solution to the following equation

W 1−γi
i − γiα

1− 1
γi

i − αi (Wi − φ) (1− γi) = 0, (2.24)

The Lagrange multiplier yi is set such that

E
[
ξT ŴiT (WjT , ξT ; yi) + ξTCiT (ŴiT (WjT , ξT ; yi))

]
−Wi0 = 0. (2.25)

If the systemic externality is negative, ηi > 0, then the following ordering holds: ξ
i
<

ξ̄i <
¯̄ξi.

Proof. See the Appendix A.

The best response strategy of bank i in equation (2.22) is characterized by three

different thresholds that originate four distinct regions spanning the entire state space at

time T . Before describing the best response behavior adopted in each of these regions,

recall that the objective of the manager of the bank is to choose the optimal equity profile

to implement at maturity. Such profile, which must be affordable, prescribes the how

much net wealth (equity) to have at maturity for all possible economic scenarios.

For a graphical representation of the best response strategy, Panel A in Figure 2.1

plots the optimal equity profile of bank i at time T as a function of the realizations of

the economic uncertainty (the state price density ξT ). In Panel A1 the equity profile is

conditional on bank j not defaulting; in Panel A2 it is conditional on bank j being in

distress; the graph in Panel A3 combines the previous two. Panel B, on the contrary,

provides a more commonly used representation of the best response strategy by plotting

the optimal equity of bank i at time T as a function of the equity of bank j. Panel B1-B4

correspond to different economic scenarios.

The economic intuition underlying the optimal equity profile is as follows. When

economic conditions are good (ξT 6 ξ
i
), the price (per unit of probability P) of one unit

of wealth (that is ξT ) is low. Since wealth in these states of the world is “cheap” it is

optimal for the manager of bank i to have high equity. High equity means that the firms

do not default. Moreover, this holds whether or not bank j is in distress. When economic

prospects deteriorate (ξ
i
< ξT 6 ξ̄i), the price of wealth become more expensive and bank

i would default if there were no costs associated to this choice. However, to avoid distress

costs, it is optimal to “buy” the minimum amount of wealth that allows the bank to be
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BEST RESPONSE STRATEGY WITH NEGATIVE SYSTEMIC EXTERNALITIES

Panel A: ŴiT (ξT ) for a given WjT

A1: {WjT > Wj} A2: {WjT < Wj} A3: Combined

Ξ
i Ξ i

W i

Ξ
i Ξ i

W i

Ξ
i Ξ i Ξ i

W i

Panel B: ŴiT (WjT ) for a given ξT

B1: ξT 6 ξ
i

B2: ξ
i
< ξT 6 ξ̄i B3: ξ̄i < ξT 6 ¯̄ξi B4: ξT > ¯̄ξi

W j

W i

W j

W i

W j

W i

W j

W i

Figure 2.1 Bank i’s best response strategy

solvent. This corresponds to an equity value equal to the (constant) default boundary

Wi, as shown by the black flat line in Panel A3. Even in this case the financial soundness

of bank j does not affect the decision of bank i to resist default.

If economic conditions get worse (ξ̄i < ξT 6 ¯̄ξi), then the trade-off between paying

default costs if defaulting and paying expensive wealth (at the expenses of wealth in other

states of the world) if resisting default becomes dependent on the equity choice of bank

j. Indeed, if bank j does not default, it is optimal for bank i to do so because distress

costs (per unit of default) are, in relative terms, low. In contrast, if bank j is in distress,

it is optimal for bank i to resist default in order to avoid high systemic costs. Finally,

in the very bad states of the world (ξT >
¯̄ξi), the price of wealth is so high that makes

default the optimal choice for bank i. Note that, in these states, the financial condition

of bank j does not affect the bank i’s decision to default but rather the level of default.

In fact, if bank j is in distress, the loss given default of bank i is lower, thus implying

a higher equity value. This is explained by the attempt of bank i to at least reduce the
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unavoidable systemic costs, as captured by the gap between the red and the black lines

in Panel A3, or by the jump in correspondence to Wj in Panel B4.

Note that in an economic environment without externalities (ηi = 0, in our model),

the optimal policy of bank i would coincide with its best response strategy since condi-

tioning on any policy adopted by bank j has no impact on bank i’s decision. However, in

a strategic setting (ηi > 0), the optimal policies of the two institutions are given by the

interaction of their best response strategies. Such “interaction” pins down those strate-

gies that are mutually consistent with each other, and it is formally characterized in the

next section.

2.2.2 Equilibrium Strategies

In the current section, we show that the strategic interaction between financial institu-

tions can generate both unique and multiple equilibria. We establish the conditions for

these two possible outcomes, and we provide the economic intuition of the underlying

mechanism.

Since each bank’s best response strategy is characterized by three different thresholds,

the entire state space can be generically divided into seven partitions. Definition 2 implies

that an equilibrium of the strategic game exists provided that: (i) a Nash equilibrium

exists for any ξT in the seven partitions; (ii) each bank’s budget constraint is satisfied.

In particular, following the characterization in Basak and Makarov (2011), a Nash equi-

librium is unique if for any ξT there is one and only one strategy-pair (W ∗1T ,W
∗
2T ) both

banks agree on and have no incentive to deviate from:

W ∗1T = Ŵ1T (W ∗2T , ξT ) and W ∗2T = Ŵ2T (W ∗1T , ξT ) ∀ ξT .

Multiple equilibria, instead, occur if for each ξT the banks agree on at least one strategy-

pair (W ∗1T ,W
∗
2T ) and for some states ξT they agree on more than one. The following

Proposition provides the condition for uniqueness of a pure-strategy equilibrium, and, in

such case, characterizes the banks’ equilibrium strategies.

Proposition 2. Consider two heterogeneous banks. If the initial capital of one, and only

one, of the two banks is below some threshold, Wj0 6 W̄j0, then the Nash Equilibrium is

unique, otherwise multiple equilibria occur. When unique, the equilibrium is characterized
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by

W ∗iT =


(y∗i ξT )

− 1
γi if ξT 6 ξ

i

Wi if ξ
i
< ξT 6 ¯̄ξi

(y∗i ziξT )
− 1
γi if ξT >

¯̄ξi,

W ∗jT =



(y∗j ξT )
− 1
γj if ξT 6 ξ

j

Wj if ξ
j
< ξT 6 ξ̄j

(y∗jxjξT )
− 1
γj if ξ̄j < ξT 6 ¯̄ξi

(y∗j zjξT )
− 1
γj if ξT >

¯̄ξi,

(2.26)

where y∗i and y∗j are such that

E [ξT (W ∗iT (y∗i ) + CiT (W ∗iT (y∗i )))] = Wi0 (2.27)

E
[
ξT (W ∗jT (y∗j , y

∗
i ) + CjT (W ∗jT (y∗j , y

∗
i )))

]
= Wj0. (2.28)

The thresholds W̄j0 for j ∈ {1, 2} are defined in the Appendix A.

Proof. See the Appendix A.

Remark 1. To highlight the generality of our result, the equilibrium is solved in the

Appendix A for a generic objective function ui(·) that satisfies the usual assumptions: it

is strictly increasing, strictly concave, twice continuously differentiable, and it satisfies

the Inada conditions.

Proposition 2 reveals that, if there is some degree of heterogeneity among banks, the

equilibrium of the strategic game is unique. The intuition is that sufficient heterogeneity

guarantees that in equilibrium there are no states of the world (at time T ) in which both

banks want to default but only one can. This would be the case when the two regions

ξ̄1 < ξT 6 ¯̄ξ1 and ξ̄2 < ξT 6 ¯̄ξ2 (2.29)

overlap. The existence of such set of states,

ξ̄i < ξT 6 ¯̄ξj , (2.30)

creates multiple equilibria since there is no rule/mechanism to select which bank should

default for each state in that set. The banks agree on the fact that only one bank should

default but they can not agree on which one. For instance, suppose that ξ̄1 < ξT 6 ¯̄ξ2.

According to (2.22), bank 1 wants to default if bank 2 is solvent, and resist default

otherwise. At the same time, bank 2 wants to default only if bank 1 is solvent. Therefore,

for any state of the world in that interval, two possible strategy-pairs can be part of an
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equilibrium:

(W ∗1T < W1,W
∗
2T = W2) or (W ∗1T = W1,W

∗
2T < W2). (2.31)

We can conclude that the condition for uniqueness requires that the two regions defined

in (2.29) do not overlap:

¯̄ξ2 < ξ̄1 or ¯̄ξ1 < ξ̄2. (2.32)

In the Appendix A, we show that (2.32) translates into a simple threshold condition on

the initial capital of each of two banks, Wi0 6 W̄i0 for i ∈ {1, 2}. When one, and at most

one, of these conditions is satisfied, the equilibrium is unique. While selecting among

multiple equilibria is beyond the scope of this paper, we do establish the result that also

homogenous banks adopt heterogenous investment strategies, in an attempt to minimize

the systemic externality.8

Corollary 1. Consider two homogeneous banks. Then:

(i) There are Multiple Nash Equilibra.

(ii) A symmetric equilibrium, W ∗1T = W ∗2T , does not exists.

Proof. See the Appendix A.

Let us now focus on the unique equilibrium. Proposition 2 unveils the distinct equi-

librium strategies of the two institutions. In particular, the unique equilibrium is such

that the two banks can be classified based on their default behavior. If Wj0 6 W̄j0, we

label bank j as early-defaulter, and bank i as late-defaulter, because in equilibrium the

former will default “earlier” in the state-space dimension (and not in the time-dimension

since default can happen only at the final horizon T ). Indeed, the early-defaulter bank

will enter financial distress if ξT > ξ̄j , whereas the late-defaulter if ξT >
¯̄ξi. Given (2.32),

it is straightforward to show that ξ̄j <
¯̄ξi.

We now describe the unique equilibrium strategies. Without loss of generality, let

bank 1 be the late-defaulter. Equation (2.26) highlights how in equilibrium bank 1 can

afford resisting default in a larger set of states, and hence its equity profile exhibits

a wider region in which the optimal equity levels at the default boundary W1. When

extremely poor economic conditions materialize (ξT > ¯̄ξ1), default occurs. Despite the

discontinuity at ¯̄ξ1 caused by the fixed cost of default, the equity profile of bank 1 is

monotonic in the state price density.

8Appendix A.3 presents an example of multiple equilibria with homogeneous banks.
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In contrast, bank 2, the early-defaulter, finds it very expensive to maintain its equity

value to a level (W2) that is insensitive to economic fluctuation, especially considering

that bank 1 does not default for any ξT < ξ̄1, as established in the previous section.

Therefore, since W20 6 W̄20 implies that ¯̄ξ2 < ξ̄1, it is optimal for bank 2 to enter financial

distress for any realizations of the state price density in the interval ξ̄2 < ξT 6 ξ̄1. When

ξ̄1 < ξT 6 ¯̄ξ1, bank 1 finds it optimal to resist default since bank 2 has no incentive to

do so. This explains the extended region in which the equity of bank 2 sharply decreases

below the default threshold (idiosyncratic default). Effectively, this sharp decrease, allows

bank 2 to finance an increase in the default level once also bank 1 becomes insolvent

(systemic default). The transfer of wealth from the idiosyncratic default states to the

systemic default states makes the equity profile of bank 2 non-monotonic in the state

price density. Indeed, at ¯̄ξ1, the value of the equity of bank 2 exhibits a upward jump

equal to (y∗2z2
¯̄ξ1)−1/γ2−(y∗2x2

¯̄ξ1)−1/γ2 . Moreover, in the systemic default region (ξT >
¯̄ξ1),

the curvature of the equity profile becomes flatter, highlighting bank 2’s desire to reduce

its exposure to economic fluctuations. These unique features are brought about by the

strategic interaction between the financial institutions. They would be absent in an

economy without systemic externalities.

For completeness, in the following Corollary we show how to recover the equilibrium

value of the assets and the debt at maturity from the equilibrium value of the equity.

Corollary 2. The optimal value of the assets and the optimal value of the debt of bank

i at time T are given by

V ∗iT =
1

βi

[
(W ∗iT + C∗iT ) + (1− βi) (W −W ∗iT )1{ξT6ξi}

]
(2.33)

D∗iT =
1− βi
βi

[
(W ∗iT + C∗iT ) + (W −W ∗iT )1{ξT6ξi}

]
(2.34)

respectively, where C∗iT ≡ CiT (W ∗iT ).

Proof. See the Appendix A.

We conclude this section by presenting some economically relevant examples of sources

of heterogeneity among banks that lead to a unique equilibrium.

Example 1: Heterogeneity in leverage. Consider bank 2 as more levered in the

sense that (F2/W20) − (F1/W10) > 0. Bank 2 is the early-defaulter because its default

boundary is higher. This case is illustrated in Panel A and Panel B, Figure 2.2.

Example 2: Heterogeneity in the objective function. Consider bank 2 as the

one with a higher curvature in the objective function (more risk averse if ui(·) represents
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HETEROGENEOUS BANKS: UNIQUE NASH EQUILIBRIUM

solid line: W∗
1T (ξT ); dashed line: W∗

2T (ξT ); green line: pdf(ξT |F0)

Panel A: F2 > F1 Panel B: W20 < W10 Panel C: η2 > η1 > 0, high leverage

Ξ2 Ξ1

W1

W2

Ξ2 Ξ1

W

Ξ2 Ξ1

W

Panel D: β2 > β1 Panel E: γ2 > γ1, high leverage Panel F: γ2 > γ1, low leverage

Ξ2 Ξ1

W1

W2

Ξ2 Ξ1

W

Ξ2 Ξ1

W

Parameter values. Financial market (monthly): r = 0.005, ||κ|| = 0.2. Horizon (years): T = 5. Banks: W10 = W20 = 1, F1 = F2 = 7, β1 = β2 = 0.2, γ1 = γ2 = 2, φ = 1.5%Wi0, λ = 5%,
η1 = η2 = 15%. Each panel contains a specific source of heterogeneity. Panel A: F2 = 9. Panel B: W20 = 0.778, Panel C: η1 = 5%, η2 = 25%. Panel D: β2 = 0.25. Panel E: γ2 = 4. Panel F: γ2 = 4,
F1 = F2 = 3.5.

Figure 2.2 Equilibrium horizon equity with heterogeneous banks
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a utility function), γ2 > γ1. Then, bank 2 is the early-defaulter if the level of leverage

is high, whereas it becomes the late-defaulter if leverage is low. The intuition is the

following: being more averse to the bad states of the world, bank 2 wants to transfer

wealth from the good states to the bad states. If leverage is high, it means that default

can occur in relatively good states; hence, by removing wealth from those states, bank

2 will increase the probability of default thus becoming the early-defaulter. If instead,

leverage is low, default occurs only in very bad states of the world, exactly those states

that bank 2 has “insured” by transferring wealth to. Therefore, it will decrease the

probability of default, thus becoming the late-defaulter. These two case are illustrated

in Panel E and Panel F, Figure 2.2.

Example 3: Heterogeneity in systemic costs. Consider bank 2 as to be more

affected by systemic externalities, η2 > η1. If leverage is high, systemic costs become

relevant and induce bank 2 to transfer wealth from the good states to the bad states.

When leverage is high, bank 2 increases the probability of default because it transfers

wealth away from those states in which default gets triggered. Hence, bank 2 is the

early-defaulter. This case is illustrated in Panel C, Figure 2.2.

Example 4: Heterogeneity in intangible assets/bargaining power (APR vio-

lations). Consider the case in which bank 2 has a higher fraction of intangible assets

or its equityholders have a higher bargaining power, β2 > β1. Since debtholders of bank

2 are going to seize a lower fraction of the assets in case of default, then the default

boundary must increase, making bank 2 the early-defaulter. This case is illustrated in

Panel D, Figure 2.2.

2.3 Unique Equilibrium Properties

In the current section we analyze properties and implications of the unique strategic

equilibrium derived in Section 2.2. Since different sources of heterogeneity lead to very

similar (unique) equilibrium profiles, as shown in Figure 2.2, we concentrate, for the sake

of clarity, on only one. Specifically, we consider heterogeneity in leverage in the form of

different face values of debt (Fj > Fi).
9

Moreover, we highlight the relevance of these results by comparing them with those de-

rived from two benchmark models: (a) no cost of default ; (b) no systemic cost of default.

Both benchmarks are special cases of our model where banks behave non-strategically.

Benchmark (a) represents a frictionless economy where there are no costs associated to

financial distress, φ = λ = χi = ηi = 0, for any i. In benchmark (b), instead, default

9Equilibrium properties relevant to other source of heterogeneity are very similar to the one presented
in this section, and are available from the author upon request.
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is costly but systemic externalities are absent, χi = ηi = 0, for any i. We refer to Ap-

pendix A.2 for the solution of the two benchmark models. In what follows, we adopt the

upscripts ∗, a and b as notational convention for any equilibrium quantity related to the

strategic model, benchmark (a) and benchmark (b), respectively.

2.3.1 Risk Taking Behavior: Optimal Asset Allocation

How are the banks’ risk exposures affected by the attempt to internalize (negative) sys-

temic externalities? We provide an answer to this question by analyzing the optimal

investment of the banks’ assets in risky securities. The next Proposition formally states

the closed-form solution for the optimal asset allocation of the two financial institutions.

Proposition 3. The fractions of bank i’s assets invested in risky securities at time t is

given by

π∗it = π̂∗it · (σ′)−1κ where π̂∗it = − ξt
Vit

∂Vit
∂ξt

. (2.35)

W.l.o.g., let bank 1 be the late-defaulter and bank 2 the early-defaulter. Then,

π̂∗1t =
1

γ1
+

1

V ∗1t

[
e−A1(T−t)(y∗1ξt)

− 1
γ1

β1||κ||
√
T − t

(
β1n(−d̂1t(ξ1

))− z
1− 1

γ1
1 n(−d̂1t(

¯̄ξ1))

)
− e−r(T−t)

β1γ1

(
W1

[
1− β1N (−d̄t(ξ1

))
]
− z1(W1 − φ)

[
1−N (−d̄t( ¯̄ξ1))

])
− e−r(T−t)

β1||κ||
√
T − t

(
β1W1n(−d̄t(ξ1

)) + z1(W1 − φ)n(−d̄t( ¯̄ξ1))

)]
, (2.36)

π̂∗2t =
1

γ2
+

1

V ∗2t

[
e−A2(T−t)(y∗2ξt)

− 1
γ2

β2||κ||
√
T − t

(
β2n(−d̂2t(ξ2

))+x
1− 1

γ2
2 [n(−d̂2t(

¯̄ξ1))−n(−d̂2t(ξ̄2))]−z
1− 1

γ2
2 n(−d̂2t(

¯̄ξ1))

)
− e−r(T−t)

β2γ2

(
W2[1−β2N (−d̄t(ξ2

))]−x2(W2−φ)[N (−d̄t( ¯̄ξ1))−N (−d̄t(ξ̄2))]−z2(W2−φ)[1−N (−d̄t( ¯̄ξ1))]

)
− e−r(T−t)

β2||κ||
√
T − t

(
β2W2n(−d̄t(ξ2

))+x2(W2−φ)[n(−d̄t( ¯̄ξ1))−n(−d̄t(ξ̄2))]−z2(W2−φ)n(−d̄t( ¯̄ξ1))

)]
,

(2.37)

where N (·) and n(·) are the cumulative distribution function and the probability density

function of a standard-normal distribution, respectively. V ∗it , Ai, d̂it(·), d̄t(·) are reported

in the Appendix A.

Proof. See the Appendix A.
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Table 2.1 Unconditional portfolio moments

Parameter values. Financial market (monthly): r = 0.005, ||κ|| = 0.2. Horizon (years): T = 5. Banks:
W10 = W20 = 1, β1 = β2 = 0.2, γ1 = γ2 = 2, φ = 1.5%Wi0, λ = 5%, η1 = η2 = 15%. Source of heterogeneity:
F1 = 7, F2 = 9.

Fraction of time: t/T

0.05 0.25 0.5 0.75 0.95

Panel A: Correlation

ρ0(π̂∗1t, π̂
∗
2t) 0.794 -0.044 -0.394 -0.463 -0.480

ρ0(π̂a1t, π̂
a
2t) 0.999 0.990 0.970 0.930 0.845

ρ0(π̂b1t, π̂
b
2t) 0.903 0.887 0.845 0.757 0.575

Panel B: Variance

Var0(π̂∗1t)/Var0(π̂a1t) 0.013 0.012 0.034 0.118 0.276
Var0(π̂∗2t)/Var0(π̂a2t) 0.135 0.187 0.253 0.381 1.147

Var0(π̂∗1t)/Var0(π̂b1t) 0.079 0.051 0.116 0.301 0.521
Var0(π̂∗2t)/Var0(π̂b2t) 3.013 1.338 1.050 1.100 2.388

Panel C: Mean

E0(π̂∗1t)/E0(π̂a1t) 0.252 0.301 0.382 0.481 0.567
E0(π̂∗2t)/E0(π̂a2t) 0.439 0.476 0.520 0.563 0.598

E0(π̂∗1t)/E0(π̂b1t) 0.344 0.395 0.482 0.588 0.680
E0(π̂∗2t)/E0(π̂b2t) 0.573 0.605 0.643 0.678 0.705

Proposition 3 immediately reveals that the optimal asset allocation of the two banks

satisfies the two-fund separation theorem: both banks in equilibrium attain full diver-

sification. Indeed, they invest in the same portfolio of risky assets, the mean-variance

tangency portfolio (MVTP hereafter), with an exposure to it proportional to the elasticity

of the equilibrium value of the assets with respect to economic fluctuations (represented

by realizations of the state price density). This result highlights how the banks’ attempt

to minimize systemic default costs does not distort the optimality of full diversification.

This is, for instance, in contrast to the findings in Wagner (2011), where joint liquidation

costs make (atomistic) agents prefer diversity at the expense of diversification. In our

model full diversification is not compromised because both banks can move along the

efficient frontier by altering (in a state-contingent manner) the fraction invested in the

riskless bond, (1 − π̂it((σ′)−1κ)′1). By moving in different directions along the frontier,

they attain diversity and preserve diversification.10

10We conjecture that in the absence of a riskless asset (hence incomplete markets) banks would choose
two distinct risky portfolios. The analysis of such case is beyond the scope of this paper and it is left for
future research.
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The fact that both institutions invest in the (same) MVTP entails that at any point

in time, conditional on the realization of a state of the world, the correlation between

their portfolios is indeed perfect,

ρt(π
∗
1t, π

∗
2t) = ±1 (2.38)

for t ∈ (0, T ). Unconditionally however, this correlation is less than one because the

banks select optimal stochastic exposures that are not perfectly correlated. Equations

(2.36) and (2.37) unveil the stochastic nature of the banks’ exposures as the source of

heterogeneity in their trading strategies. Table 2.1 helps us to address the question of

whether systemic costs of default reduce the (unconditional) correlation between these

strategies. The answer is yes. Panel A presents the correlation coefficient as of time 0

between banks’ optimal time t risk exposure, for our strategic model and for the two

benchmarks. A clear ranking appears:

ρ0(π̂∗1t, π̂
∗
2t) < ρ0(π̂b1t, π̂

b
2t) < ρ0(π̂a1t, π̂

a
2t) (2.39)

for t ∈ (0, T ). The attempt to internalize systemic externalities, and hence to reduce

systemic costs of joint default, induces the two banks to become more diverse. Table 2.1

also shows that the unconditional correlation decreases in all three models when maturity

gets closer, becoming even negative in the strategic one. These results are qualitatively

robust to different parameter values.

Figure 2.3 provides a graphical illustration of the investment behavior of the two

financial institutions. In the top panels, exposures π̂∗it to the MVTP are plotted against

realizations of the state price density for different points in time. In the bottom panels,

instead, we plot the ratio between time t exposures coming from the strategic model

and the two benchmarks (red line for benchmark (a), blue line for benchmark (b)). The

following results emerge.

First, as shown in Table 2.1, the banks’ investment strategies become more uncorre-

lated as time to maturity decreases, and this is especially true for realizations of the state

price density around the default thresholds (Panel A-C, Figure 2.3). The intuition is the

following. Banks find it optimal to adopt diverse investment strategies if they reduce the

likelihood of a systemic default. When t is close to T and economic conditions are very

good (low values of ξt), it is very likely that at maturity such conditions will remain good;

therefore, there is no need for diversity since any default is very unlikely. Analogously,

when economic conditions are extremely bad (high values of ξt), it is very likely that at

maturity bad conditions will persist: in this case, it would be too costly for both banks

to avoid joint default, thus making diversity unnecessary. If instead, economic conditions

are not so extreme (values of ξt around the default thresholds ξ̄2 and ¯̄ξ1), then diversity

pays off. Trying to avoid joint default is not too costly and can be done by adopting
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RISK TAKING BEHAVIOR

solid line: Bank 1; dashed line: Bank 2; black line: Strategic Model; red line: Benchmark Model (a); blue line: Benchmark Model (b)

t = 0.05× T t = 0.50× T t = 0.95× T

Panel A: π̂∗
it(ξt) Panel B: π̂∗

it(ξt) Panel C: π̂∗
it(ξt)

Ξ 2 Ξ 1
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Ξ 2 Ξ 1
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Panel D: Panel E: Panel F:

π̂∗
it(ξt)/π̂

a
it(ξt), π̂

∗
it(ξt)/π̂

b
it(ξt) π̂∗

it(ξt)/π̂
a
it(ξt), π̂

∗
it(ξt)/π̂

b
it(ξt) π̂∗

it(ξt)/π̂
a
it(ξt), π̂

∗
it(ξt)/π̂

b
it(ξt)

Ξ 2 Ξ 1
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Figure 2.3 Banks’ optimal asset allocation
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UNIQUE EQUILIBRIUM: VALUE OF BANKS’ ASSETS

solid line: Bank 1; dashed line: Bank 2;
black line: Strategic Model; red line: Benchmark Model (a); blue line: Benchmark Model (b)

Panel A: V ∗
iT (ξT ) Panel B: V ∗

iT (ξT ), V aiT (ξT ) Panel C: V ∗
iT (ξT ), V biT (ξT )
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Parameter values. Financial market (monthly): r = 0.005, ||κ|| = 0.2. Horizon (years): T = 5. Banks: W10 = W20 = 1,
β1 = β2 = 0.2, γ1 = γ2 = 2, φ = 1.5%Wi0, λ = 5%, η1 = η2 = 15%. Source of heterogeneity: F1 = 7, F2 = 9.

Figure 2.4 Horizon value of banks’ assets

negatively correlated investment strategies. Panel C in Figure 2.3 clearly highlights how

diversity (correlation between investment strategies) changes with economic fluctuations,

where the shaded areas correspond to extremely good (left area) and extremely bad (right

area) economic conditions. Instead, when time to maturity is high (low t as in Panel A),

current economic conditions are not representative of the economic outlook at time T ;

therefore, it is optimal to wait before becoming diverse.

Second, conditional on becoming diverse (“medium” economic conditions and t close

to maturity), we observe interesting patterns in the risk taking decision. Consider bank

2, the early-defaulter. Panel C in Figure 2.3 shows that when both idiosyncratic default

and systemic default are likely to occur (i.e., the intermediate unshaded area), bank 2’s

risk taking at time t exhibits two radically opposite behaviors. Indeed, it can be either

very high, or negative. So, although defaulting is very likely, bank 2 could either invest

a high fraction of the assets in risky securities, or, at the other extreme, take a short

position in the MVTP.

To help explain the intuition behind this somehow surprising result, let us consider

the equilibrium value of banks’ assets at time T plotted in Figure 2.4, and recall that the

optimal trading strategies are implemented to “deliver” those equilibrium asset values

in each possible state of the world. Panel A of Figure 2.4 shows how the time T value

of the assets inherits all the properties of the equilibrium equity, described in details in

Section 2.2. Because joint default is more costly (the negative externality), bank 2 wants

to transfer wealth to the states that correspond to a systemic crisis (ξT >
¯̄ξ1), in order to
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reduce the shortfall and hence the associated costs. This is attained by removing wealth

from the most valuable states before ¯̄ξ1. Therefore, this underlying mechanism produces

two key properties of the model: (i) the sharp decrease in asset value in the idiosyncratic

default region (ξ̄2 < ξT 6 ¯̄ξ1), and (ii) the positive jump in correspondence to the

threshold ¯̄ξ1. Property (i) implies that the asset value is very sensitive and positively

correlated to economic fluctuations, whereas property (ii) implies that it is negatively

correlated.

Returning to the risk taking behavior at time t (close to maturity), suppose T is 5

years and we are 3 months away from maturity (as in Panel C, Figure 2.3). If economic

prospects are not very good today, say ξt just above ξ̄2, then, most likely (since we

are close to maturity) such prospects will not change much in 3 months and bank 2

will optimally enter (idiosyncratic) financial distress. The only way it can “deliver” an

asset profile very correlated with the underlying uncertainty is by investing extensively

in the market for risky securities today. To attain full diversification, a positive exposure

to the MVTP is the optimal strategy. This explains the high risk taking. If, instead,

economic conditions are worse today, say ξt just below ¯̄ξ1, then the economy will face

a systemic crisis with both banks defaulting if economic prospects slightly deteriorates.

The only way bank 2 can “deliver” an asset profile that will jump upwards in such a case

is by investing in financial securities that are negatively correlated with the economic

fluctuations. To attain full diversification, a negative exposure to the MVTP is the

optimal strategy. This explains the shorting behavior. The investment decisions of bank

1 can be explained in a similar fashion. However, high risk taking and short positions

are absent since both idiosyncratic default and non-monotonic behavior (upward jump)

are not part of the equilibrium value of the assets of bank 1. In summary, the banks

adopt polarized and stochastic risk exposure. The early-defaulter is the radical bank.

The late-defaulter is the conservative one.

Moreover, banks’ risk exposures when time to maturity is high are less volatile and

some of the properties discussed above may not be present. For instance, the short

position of bank 2 is absent in Panel B (Figure 2.3) because it would be too costly to

short the MVTP two years and half before maturity. In other words, Panel B reveals

that it is optimal to wait before taking extreme positions.

Third, compared to the non-strategic benchmarks, the unconditional mean of both

banks’ risk exposure decreases, as reported in Panel C, Table 2.1. This is not surpris-

ing since the systemic externality considered in this paper imposes an extra burden to

financial institutions. However, once we condition on time to maturity and economic

conditions, we obtain the following. While bank 1’s risk taking is lower in the strategic

model in (almost) all periods and states, bank 2’s behavior exhibits significantly more
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risk taking when time to maturity is low.11 Not surprisingly, the need to finance the steep

reduction in asset value in the idiosyncratic default region, absent in the two benchmark

models, is the cause of the high exposure to the MVTP. Indeed, Panel F in Figure 2.3

shows how that the risk exposures in the strategic model can be around 2.5 and 3 times

larger than in benchmark (a) and (b), respectively. Another feature that differentiates

the strategic model from the benchmarks is the aforementioned shorting behavior. Since

in both non-strategic models the optimal value of the assets at maturity is monotonic

in the state price density (see Panel B and C in Figure 2.4), there is no need to take a

(costly) short position in the MVTP. This explains the difference in the variability of the

asset allocation of bank 2, between the strategic model and the two benchmark models.

The unconditional variance reported in Panel B, Table 2.1 confirms these findings.

2.3.2 Default Probabilities and Expected Shortfalls

In this section we study another set of important implications of the model. We analyze

how internalizing systemic externalities affects the likelihood of idiosyncratic defaults

and systemic crises. We then complement these findings with results on the expected

shortfalls.

The equilibrium equity profiles of the two financial institutions, derived in Section

2.2, endogenously determine the banks’ optimal default thresholds in the state-space.

For ξT 6 ξ̄2 neither of the banks default; for ξ̄2 < ξT 6 ¯̄ξ1 bank 2 (the early-defaulter)

is insolvent; for ξT > ¯̄ξ1 both banks default. The equilibrium default probabilities are

defined only by the (absolute) positioning of the default thresholds in the state-space

domain, as presented in the next Proposition.

Proposition 4. Let Di denote the financial distress event of bank i, and D̄i its com-

plement. W.l.o.g., let bank 1 be the late-defaulter and bank 2 the early-defaulter. The

strategic model produces the following time-t probabilities:

(i) Marginal probability of default:

Pt(D1) = N (dt(
¯̄ξ1)) and Pt(D2) = N (dt(ξ̄2)) (2.40)

(ii) Probability of systemic default:

Pt(D1 ∩ D2) = N (dt(
¯̄ξ1)) (2.41)

11Panel F in Figure 2.3 shows that when t is close to T and ξt is close to ¯̄ξ1, bank 1 can in fact take
slightly more risk than in benchmark (b). This is driven by the need to finance a slightly bigger fall in
asset value, should a systemic distress occur. This effect, though, is quantitatively small, if compared to
the risk taking of bank 2.
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(iii) Probability of idiosyncratic default:

Pt(∪j 6=i∈{1,2}Di ∩ D̄j) = N (dt(ξ̄2))−N (dt(
¯̄ξ1)) (2.42)

(iv) Conditional probability of default:

Pt(D1|D2) = N (dt(
¯̄ξ1))/N (dt(ξ̄2)) and Pt(D2|D1) = 1 (2.43)

where N (·) represents the standard-normal cumulative distribution function. The func-

tion dt(·) and the thresholds ξ̄2 and ¯̄ξ1 are reported in the Appendix A.

Proof. See the Appendix A.

To appreciate the effect of the strategic interactions between the two financial insti-

tutions on the idiosyncratic and systemic default probabilities, we compare those of the

strategic model with those of the two benchmarks. Similarly, we compare the expected

shortfalls across the three models. A key question is: Are incentives to internalize sys-

temic externalities effective in reducing the occurrence and the magnitude of systemic

crises? The answer to this question is particularly relevant from a regulator’s viewpoint.

Thanks to our flexible specification, the systemic costs of default can be readily inter-

preted as a macro-prudential regulation, allowing us to provide an answer.

Regarding default probabilities, we exploit the graphs in Figure 2.5 to highlight our

findings. The following results emerge. Relative to the benchmarks, both banks are more

likely to default, as illustrated in Panel A, where the black lines (the strategic model)

are substantially higher than the corresponding colored lines (the benchmarks). This is

true regardless of the time t and state ξt in which we evaluate these probabilities. An

immediate implication of this result is that systemic default becomes more likely, since

the event of a systemic crisis coincides with the default of bank 1 (Panel B).

Panel C reveals that, compared to the benchmarks, also the probability of an id-

iosyncratic default rises substantially. When close to maturity (Panel C3), however, this

probability may become lower if the current economic conditions are particularly poor.

If this is the case, an idiosyncratic default is less likely because the probability of sys-

temic default is particularly high. Hence, the positioning of the black line to the left of

benchmarks’ curves and its steeper profile confirms how the idiosyncratic default interval

shifts to the left in the presence of negative systemic externalities.

Panel D considers the (non-degenerate) conditional probability of default defined in

(2.43). Such a probability can be interpreted as the relative importance (in probabilistic
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DEFAULT PROBABILITIES

solid line: Bank 1; dashed line: Bank 2; black line: Strategic Model; red line: Benchmark Model (a); blue line: Benchmark Model (b)

Panel A: P(Di|ξt) Panel B: P(D1 ∩ D2|ξt) Panel C: P(single Di|ξt) Panel D: P(Di|Dj , ξt) Panel E: ρ(D1,D2|ξt)
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Parameter values. Financial market (monthly): r = 0.005, ||κ|| = 0.2. Horizon (years): T = 5. Banks: W10 = W20 = 1, β1 = β2 = 0.2, γ1 = γ2 = 2, φ = 1.5%Wi0, λ = 5%, η1 = η2 = 15%. Source of
heterogeneity: F1 = 7, F2 = 9.

Figure 2.5 Banks’ default probabilities
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terms) of a systemic crisis with respect to an idiosyncratic default:

Pt(D1|D2) =
Pt(systemic Default)

Pt(idiosyncratic Default) + Pt(systemic Default)
. (2.44)

Panels D1-D2 show that, away from maturity, systemic externalities and strategic inter-

action lower the relative importance of a systemic crisis. However, close to maturity, the

opposite holds.

Finally, Panel E considers the default correlation, defined as

ρt(D1,D2) ≡ Pt(D1 ∩ D2)− Pt(D1)Pt(D2)√
Pt(D1)[1− Pt(D1)]

√
Pt(D2)[1− Pt(D2)]

. (2.45)

In line with the results on the optimal asset allocation, the default correlation in the

strategic model lower for any time to maturity and current state of the economy.

This set of findings does not easily reconcile with the ex-ante objective of macro-

prudential regulation to reduce the likelihood of a systemic event. We provide next a

simple explanation for these results. We argue that, compared to the benchmarks, default

thresholds and hence default probabilities, are affected by the net result of a substitution

and an income effect. The substitution effect captures the banks’ desire to transfer

wealth from the good states to the bad states in order to reduce the potential exposure

to high cost of systemic default. Therefore, the substitution effect translates into a lower

probability of joint default, since banks attempt to internalize systemic externalities.

However, although it incentivizes a transfer of wealth across states, a high cost of systemic

default also represents a burden to the banks’ budget constraint. Equivalent to an overall

drop in the banks’ capital, the income effect causes a higher probability of joint default.

The equilibrium outcome is thus the net of these two opposing effects. The two competing

effects are “extracted” from the ratio of systemic default thresholds across models:

¯̄ξ1/ξ
a
1

=

(
α1

W−γ1
1 z1

)
︸ ︷︷ ︸

substitution effect

/ (
y∗1
ya1

)
︸ ︷︷ ︸

income effect

, (2.46)

¯̄ξ1/ξ̄
b
1 =

(
x1

z1

)
︸ ︷︷ ︸

substitution effect

/ (
y∗1
yb1

)
︸ ︷︷ ︸

income effect

. (2.47)

Hence, we define the substitution and income effects as follows,

ςa ≡ α1/(W
−γ1
1 z1), ιa ≡ y∗1/ya1 , ςb ≡ x1/z1, ιb ≡ y∗1/yb1, (2.48)

where α1 solves equation (2.24). The substitution effect, with respect to benchmark k,
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dominates if ςk > ιk for k ∈ {a, b}. The income effect dominates otherwise.

Our model predicts that for financial institutions with moderate and high leverage

ratios, the income effect always dominates, regardless of the magnitude of the default

externalities. These dynamics lead to the documented increase in probabilities of id-

iosyncratic and systemic default. We assess this effect to be economically significant,

considering the prevalence of extremely high leverage ratios among financial institutions.

Figure 2.6 illustrates this result. Each bar-chart plots the pair of substitution (bright

bar) and income (dark bar) effect for different leverage ratios. In Panel B and Panel

C default costs are lower and higher than in Panel A, respectively. Compared to both

benchmarks (top panels refers to benchmark (a), bottom panels to benchmark (b)), we

confirm that: (i) the income effect dominates the substitution effect for medium-high

leverage ratios; (ii) this relationship is not affected by the magnitude of default costs.

Default probabilities describe the likelihood of a default, but they are not informative

on the extent of default. For this reason, we complete our analysis by examining expected

shortfalls. Specifically, we consider those arising from an idiosyncratic and a systemic

default.

Proposition 5. W.l.o.g., let bank 1 be the late-defaulter and bank 2 the early-defaulter.

The idiosyncratic and systemic expected shortfalls at time t are given by

IESt = Et
[
ξT
ξt

(F2 −D2T )1{ξ̄2<ξT6 ¯̄ξ1}

]
=

(
1− β2

β2

)[
x2(W2 − φ)e−r(T−t)

{
N (−d̄t( ¯̄ξ1))−N (d̄t(ξ̄2))

}
−x2(y∗2x2ξt)

− 1
γ2 e−A2(T−t)

{
N (−d̂2t(

¯̄ξ1))−N (d̂2t(ξ̄2))
}]

, (2.49)

SESt = Et
[
ξT
ξt

{
(F1 −D1T ) + (F2 −D2T )

}
1{ξT> ¯̄ξ1}

]
=
∑
i=1,2

(
Fie
−r(T−t) −Dit

)
− IESt, (2.50)

respectively, where

D1t =

(
1− β1

β1

)[
e−A1(T−t)(y∗1ξt)

− 1
γ1

(
z

1− 1
γ1

1

[
1−N (−d̂1t(

¯̄ξ1))
])

+ e−r(T−t)
(
W1 − z1(W1 − φ)

[
1−N (−d̄t( ¯̄ξ1))

])]
, (2.51)

D2t =

(
1− β2

β2

)[
e−A2(T−t)(y∗2ξt)

− 1
γ2

(
x

1− 1
γ2

2 [N (−d̂2t(
¯̄ξ1))−N (−d̂2t(ξ̄2))]+z

1− 1
γ2

2 [1−N (−d̂2t(
¯̄ξ1))]

)
+ e−r(T−t)

(
W2−x2(W2−φ)[N (−d̄t( ¯̄ξ1))−N (−d̄t(ξ̄2))]−z2(W2−φ)[1−N (−d̄t( ¯̄ξ1))]

)]
. (2.52)
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SYSTEMIC DEFAULT THRESHOLD: SUBSTITUTION AND INCOME EFFECTS

light bars: Substitution Effect; dark bars: Income Effect; top panels (red): Strategic Model vs Benchmark (a); bottom panels (blue): Strategic Model vs Benchmark (b)

Panel A: (φ, λ, ηi) Panel B: 0.5× (φ, λ, ηi) Panel C: 1.2× (φ, λ, ηi)

A1: ςa(F1), ιa(F1) B1: ςa(F1), ιa(F1) C1: ςa(F1), ιa(F1)
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Parameter values. Financial market (monthly): r = 0.005, ||κ|| = 0.2. Horizon (years): T = 5. Banks: W10 = W20 = 1, β1 = β2 = 0.2, γ1 = γ2 = 2, φ = 1.5%Wi0, λ = 5%, η1 = η2 = 15%. Source of
heterogeneity: F2 = 9/7× F1.

Figure 2.6 Substitution and income effects
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IDIOSYNCRATIC and SYSTEMIC EXPECTED SHORTFALL

black line: Strategic Model; red line: Benchmark Model (a); blue line: Benchmark Model (b)

t = 0.05× T t = 0.5× T t = 0.95× T

Panel A: IESt(ξt) Panel B: IESt(ξt) Panel C: IESt(ξt)
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Parameter values. Financial market (monthly): r = 0.005, ||κ|| = 0.2. Horizon (years): T = 5. Banks: W10 = W20 = 1,
β1 = β2 = 0.2, γ1 = γ2 = 2, φ = 1.5%Wi0, λ = 5%, η1 = η2 = 15%. Source of heterogeneity: F1 = 7, F2 = 9.

Figure 2.7 Expected shortfall

N (·) represents the standard-normal cumulative distribution function. Ai, d̂it(·), d̄t(·)
are reported in the Appendix A.

Proof. See the Appendix A.

By means of Figure 2.7, we highlight the following results. Idiosyncratic expected

shortfall are significantly higher in the strategic model than in the benchmarks. This

precisely reflects the transfer of wealth that the early-defaulter engages in. However, when

time to maturity is low (Panel C), the expected shortfall may become lower if the current

economic conditions are particularly poor. This is justified by the fact that, as reported in

Figure 2.5 (Panel C3), the probability of an idiosyncratic default becomes very low. While

we have shown that the probabilities of systemic default are unambiguously higher for the
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strategic model, the same does not apply to the systemic expected shortfall. Indeed, as

shown in Panel D-F, by internalizing the externalities of default, the expected shortfall

is always below the expected shortfall of the benchmarks in the most adverse states.

Thus, we can conclude that also the expected losses given default must be lower under

extremely adverse economic conditions, considering that systemic default probabilities

are higher overall. We still find though that around the default thresholds, the expected

systemic shortfall may become higher then in the benchmark cases.

We believe the results presented in this section are indicative of a friction between sys-

temic default probabilities on one hand and systemic losses on the other hand, important

to a regulator concerned with the design of a macro-prudential framework.

2.3.3 Debt Pricing: Credit Spreads and CDS

Since Merton (1974), structural models of credit risk have been developed with the scope

of deriving the value of debt issued by a firm, by means of a contingent claim (no-

arbitrage) analysis. In this section, we discuss the strategic equilibrium implications on

the value of credit spreads and credit default swap premiums for the two banks and

relate them to the results presented in the previous sections. Proposition 6 presents the

closed-form equilibrium values.

Proposition 6. W.l.o.g., let bank 1 be the late-defaulter and bank 2 the early-defaulter.

The credit spreads and the credit default swap premium written on the bond of bank i are

given by

CSit =
1

T − t
ln

(
Fi
Dit

)
− r (2.53)

CDSit =
Et[(ξT /ξt)(Fi −DiT )1{Di}]

Et[(ξT /ξt)1{D̄i}]
(2.54)

respectively, where Dit is provided in equations (2.51) and (2.52). Hence,

CDS1t

F1
=

1− e−CS1t(T−t)

N (−d̄t( ¯̄ξ1))
,

CDS2t

F2
=

1− e−CS2t(T−t)

N (−d̄t(ξ̄2))
. (2.55)

Proof. See the Appendix A.

Debt is a claim on the value of the assets, which in the equilibrium of our model are

determined endogenously by the strategic risk taking of the banks. Therefore the value

of the debt is directly linked to the primitives of the strategic interactions, as is clear

from (2.51) and (2.52). This facilitates the interpretation of the credit spread dynamics.
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CREDIT SPREADS AND CREDIT DEFAULT SWAPS

solid line: Bank 1; dashed line: Bank 2; black line: Strategic Model; red line: Benchmark Model (a); blue line: Benchmark Model (b)

t = 0.05× T t = 0.50× T t = 0.95× T
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Figure 2.8 Banks’ debt: Credit spreads and CDS



CHAPTER 2. STRATEGIC RISK TAKING WITH SYSTEMIC EXTERNALITIES 53

For both the early- and the late-defaulter, we find that the value of the credit spreads

is lower than in the benchmark models for adverse states of the world, at any time to

maturity (Panel A-C, Figure 2.8). This is driven by the wealth transfers that the banks

implement, from good states to systemic states, in order to minimize the burden of joint

default. These wealth transfers have a trade-off: by removing wealth from the good

states, the banks’ bonds become riskier in spite of favorable economic conditions. The

patterns in Panel A-C of Figure 2.8 highlight the close connection between the bonds’

prices and the banks’ strategic risk taking. In particular, we want to emphasize the

risk-profile of bank 2’s credit spreads close to maturity (Panel C, Figure 2.8). Indeed,

these credit spreads inherit the distinctive features of bank 2’s risk exposure (Panel C,

Figure 2.3). In the vicinity of threshold ξ̄2, it is very likely that the idiosyncratic default

of bank 2 occurs, implying a large shortfall on the debt repayment. This is naturally

reflected in the credit spreads. In the vicinity of threshold ¯̄ξ1 the credit spreads behave

non-monotonically: lower credit spreads are associated with worse states. The shorting

position, that guarantees the financing of a higher wealth level in case of a systemic

default, effectively makes the banks’ debt less risky.

The credit default swap spreads in our model reflect the price one needs to pay for

protection against the possibility of time T default of the reference bank. This price is

positively related to both the probability of default and the credit spread, as revealed

in (2.55). We document in the lower panels of Figure 2.8 that the price to pay for

protection against default is higher in the strategic model than in the benchmarks. This

is also true for the systemic states where the credit spreads of the banks are markedly

lower than for the benchmark models. This indicates that the effect of the increased

default probabilities dominates on the equilibrium CDS prices.

2.4 Concluding Remarks

Arguably, the financial sector is dominated by a small set of highly levered financial

institutions with strong interlinkages, giving rise to strategic interactions. This paper

analyzes the strategic risk taking of two such financial institutions, when systemic default

induces externalities that amplify the cost of financial distress. We develop a structural

model of credit risk in which, for a given capital structure, the asset value dynamics are

endogenously determined by the optimal portfolio allocation.

We derive a unique strategic equilibrium in which heterogenous banks adopt polarized

and stochastic risk exposure, without sacrificing full diversification. In the presence of

systemic externalities, both banks care about financing a sufficiently high level of wealth

in adverse states. To this purpose, the conservative bank reduces its risk exposure,
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whereas the radical bank optimally gambles on positive and negative outcomes, by taking

either a large long or a short position in risky securities. The underlying economic

mechanism increases the likelihood of systemic default. We believe that our analysis of

systemic crises, both in terms of likelihood and expected shortfall, within a workhorse

dynamic asset allocation framework is new and delivers a rich set of implications regarding

financial institutions’ strategic risk taking.

The tractable framework developed in this paper provides a platform to investigate

other relevant questions. For instance, evaluating the effectiveness of different proposals

to regulate systemic risk in a context of externalities represents one possible extension.

Moreover, in this paper we show that a multiplicity of equilibria arises when financial

institutions are very homogeneous. Thus, selecting amongst these equilibria and un-

derstanding their interplay with macro-prudential policies represents another promising

direction for future research. Finally, one could bring the analysis to a general equilib-

rium level in order to study the impact of strategic interaction and systemic externalities

on asset prices.



Chapter 3

Insider Trade Disclosure

Market transparency has been for many years at the heart of policy debates concerning

the design of securities markets. However, there is no agreement among financial market

regulators on what should be the optimal degree of transparency. In the United States,

the Securities and Exchange Commission’s (SEC) view is straightforward: market trans-

parency “plays a fundamental role in the fairness and efficiency of the secondary market,

[...] improves the price discovery, fairness, competitiveness and attractiveness of U.S.

market” (SEC, 1995). Similarly, the International Organization of Securities Commis-

sions (IOSCO) states that “market transparency – in essence, the widespread availability

of information relating to current opportunities to trade and recently completed trades

– is generally regarded as central to both the fairness and efficiency of a market, and in

particular to its liquidity and quality of price-formation” (IOSCO, 2001). In contrast, in

the United Kingdom, the Securities and Investment Board (SIM) has argued that there

is “a tradeoff between liquidity and trade transparency” and consequently “transparency

should be restricted if this is necessary to assure adequate liquidity” (SIB, 1994).

Differently from previous works on this issue, this paper analyzes ex-post disclosure

of corporate insider trades, as a less explored but relevant aspect of market transparency.

According to Section 16(a) of the Securities Exchange Act of 1934, insider traders (officers

and directors) must report to the SEC transactions in equity securities directly with the

related issuer within ten days following the end of the month in which the trade had

occurred. The rationale for this securities regulation, as recognized by the authority,



CHAPTER 3. INSIDER TRADE DISCLOSURE 56

is to make private information available to all market participants more rapidly, thus

increasing price efficiency and market liquidity:

Section 16(a) is likely to provide significant benefits by making information

concerning insiders’ transactions in issuer equity securities publicly available

substantially sooner than it was before. Making this information available

to all investors on a more timely basis should increase market transparency,

which will likely enhance market efficiency and liquidity.

—– U.S. Securities and Exchange Commission, File No. S7-31-02.

Recently, after the introduction of the Sarbanes-Oxley Act (August 2002), the US finan-

cial market regulator tightened up this regulation by requiring insiders to report their

trades not later than two business days following the transaction. This drastic change

is a clear sign of the intention to reduce the degree of asymmetric information in the

market.

A similar rule is enforced in the U.K., where corporate insiders must inform their

company as soon as possible and no later than the fifth business day after a transaction

for their own account or on behalf of their spouses and children. In turn, a company

must inform the London Stock Exchange (LSE) without delay and no later than the end

of the business day following receipt of the information.1 Therefore, an improvement

in market transparency through the disclosure of insider trades should translate into a

higher liquidity and efficiency of the market. In this paper we present a theoretical model

to study whether and to which extent this is true.

The natural choice to analyze dynamic strategic insider trading behavior is the ratio-

nal expectation trading model pioneered by Kyle (1985). We present here an extended

version of it in which we introduce risk aversion and mandatory ex-post trade disclosure

in a continuous-time framework. We model the regulation by requiring the informed

agent to disclose in each trading period the trade she has made in the previous one.

Then, the comparison between equilibrium outcomes for the same economy with and

without regulation (hereafter referred as transparent and opaque market respectively)

allows us to determine the impact on market components.

Our main result is that transparency reduces informational efficiency of prices and

may cause the market to be less liquid. The analysis of the following two scenarios

should clarify the intuition behind this somewhat surprising result. In an opaque market

1This implies that information about an insider transaction can reach the market as late as 6 days after
the transaction. However, in practice, this information is disclosed faster: as documented by Fidrmuc et
al. (2006) the announcement day for most of the directors’ dealings (85% in their sample) coincides with
the transaction day or is the following day.
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(i.e. without disclosure regulation), as showed by Holden and Subrahmanyam (1994)

and Baruch (2002), the risk averse informed trader chooses to exploit her informational

advantage very rapidly to protect herself against future price risk imposed by liquidity

traders. This aggressive trading behavior affects positively both market efficiency and

liquidity. Indeed, almost all the private information is revealed to the market at the very

early stages of the trading rounds, thus strongly reducing the adverse selection problem

faced by the market maker. This implies a very liquid market. In a transparent market

(i.e. with disclosure regulation), instead, we find an equilibrium in which the aggres-

siveness of the informed trader is severely reduced. The introduction of the disclosure

requirement creates a tradeoff in the informed agent’s strategy between future price risk

and the revelation of private information through disclosure. In equilibrium the concern

for the latter prevails.

There are indeed two opposite effects associated with the enforcement of such se-

curities regulation. The positive direct effect is represented by the flow of information

disclosed by the insider at the end of any trading round that clearly decreases the uncer-

tainty caused by liquidity traders’ order flow. This by itself reduces the adverse selection

problem of the market maker. However, the indirect and negative effect, due to the

change in the insider’s trading strategy, intensifies the degree of asymmetric information.

In this paper we show that when the informed agent is risk averse the indirect effect

exist, and most importantly it dominates.

Consistently with Huddart et al. (2001) the insider plays a mixed strategy by adding

a random component to her order flow. This prevents the market maker from inferring

perfectly the private information from public records, and allows the insider to maintain

an informational advantage over time. A lower market efficiency is caused by the fact

that private information is now slowly incorporated into prices. A possible interpretation

of this result is that corporate trade disclosure can be seen as the institutional means that

forces the risk averse insider to behave as if she were risk neutral. As a matter of fact,

to sustain an equilibrium in mixed strategy the trading costs set by the market maker

must be constant over time, which directly implies a risk neutral trading behavior. An

interesting feature of the model is that the transparent market equilibrium we derive is

independent of the level of risk aversion.

We also study the profitability of insider trading and show that when the private

information owned by the corporate insider is sufficiently unexpected – that is when

the degree of asymmetric information is sufficiently high – the introduction of a trade

disclosure regulation increases the insider’s expected utility. In particular, we show that

her expected utility can be easily interpreted a function of the positive direct and negative

indirect effects associated with the enforcement of the regulation, where the relative

weight of the negative effect (and hence positive for the insider profitability) is given by
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how unexpected is her private information.

More in details, our results can be summarized as follows: when ex-post insider trade

disclosure is imposed (i) the insider maintains an informational advantage over the entire

trading period despite the disclosure; (ii) market is less efficient at any trading round;

(iii) the difference in market inefficiency, in terms of how much of the private information

is not incorporated into prices, even widens if risk aversion/the variance of the liquidation

value of the risky asset/the volatility of liquidity trading increase; (iv) trading prices have

constant volatility over time and information is incorporated into prices at a constant

rate; (v) even when the insider is risk neutral market efficiency does not improve if trading

is continuous; (vi) market liquidity is constant over time; (vii) aggregate execution cost

increases if the insider is sufficiently risk averse; (viii) the insider’s ex-ante expected

utility, conditional on her private information, increases if this information is sufficiently

unexpected. These results thus question the effectiveness of such securities regulation.

This paper relates to the literature on market transparency, in which the key issue is

the tradeoff between (pre- and post-trade) transparency and liquidity. Analytical results

(Madhavan, 1995; Pagano and Röell, 1996; Naik et al., 1999; Frutos and Manzano, 2002),

laboratory experiments (Bloomfield and O’Hara, 1999; Flood et al., 1999) and natural

experiments (Madhavan et al., 2005) have shown that in a dealer market transparency

improves informational efficiency but causes opening spreads to widen.2

This paper also relates to the literature on strategic insider trading with mandated

disclosure. Fishman and Hagerty (1995) consider a two period model in which an insider

may become informed with a certain probability. When the insider becomes informed,

she never manipulates the market, while she might do it (imitating an informed insider

with good news) if uninformed. John and Narayanan (1997) extend their model by intro-

ducing asymmetry in the probability of receiving a good or a bad signal. In this setting

also an informed insider may manipulate the market. In both models manipulation is

driven by an uninformed insider’s attempt to pool with an informed insider and never

occurs in equilibrium with good and bad news simultaneously. The most related article

to this paper is Huddart et al. (2001). They extend the discrete time model by Kyle

(1985) with risk neutral insider trading by adding the trade disclosure constraint. They

find that an equilibrium in which the insider adds a noise component to her trading

strategy (dissimulation strategy) exists and that the regulation accelerates price discov-

ery and increases market depth. In what follows we show that this result is driven by

the restrictive assumption of risk neutrality. Cao and Ma (1999) introduce imperfect

competition among insiders. In their model market efficiency is unambiguously higher

with disclosure, while market liquidity may be lower when insiders’ signal are negatively

2Flood et al. (1999), instead, find that quote transparency reduces both opening spreads and market
efficiency.
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correlated.3

We contribute to the existing literature on market transparency and strategic insider

trading by (i) examining a different aspect of transparency (the requirement for corporate

insiders to ex-post disclose their trades) which is of primary importance for the design

of securities markets; (ii) obtaining close-form solution for the transparent and opaque

market equilibrium with risk aversion; (iii) formally showing the detrimental effect that

transparent markets have on market efficiency and liquidity.

Consistent with our mixed strategy equilibrium, empirical studies on legal insider

trading show that insiders place both informed and uninformed trades, and that on

average the information content is small. Lakonishok and Lee (2001) provides event-study

evidence of statistically but not economically significant market reaction around US legal

insider purchases. Fidrmuc et al. (2006) reports abnormal returns of higher magnitude

for the UK. However, abnormal returns could be a noisy proxy for insider information

and the possible endogenous relation between abnormal returns and insider trading may

lead to inconsistent results. To overcome these problems, Aktas et al. (2008) measure the

contribution of insider trades to market efficiency by estimating the correlation between

returns and the relative order imbalance, a methodology recently introduced by Chordia

et al. (2005). Within this setting they find that insiders contribute significantly to faster

price discovery. To our knowledge, Degryse et al. (2009) is the only work that analyze

the information content of insider trades across different regulatory regimes. Using de-

aggregated data for Dutch listed firms, the authors find that the implementation of

the Market Abuse Directive (European Union Directive 2003/6/EC), which makes the

reporting requirements harsher, reduces the information content of sales by top executive.

This finding seems in line with our result.

The remainder of the paper is organized as follow. Section 3.1 introduces the fea-

tures of the model. An opaque market equilibrium is derived in Section 3.2, whereas in

Section 3.3 we solve for a transparent market equilibrium. In Section 3.4 we compare

and discuss the properties of the equilibria, and assess the effectiveness of the disclosure

regulation. In Section 3.5 we describe some findings concerning the insider ex-ante ex-

pected profits. Section 3.6 outlines the policy implications of our findings and concludes.

In the Appendix B we relegate all the proofs and the derivation of a transparent market

equilibrium in discrete-time.

3Cao and Ma (1999) adopt the same signals structure as in Foster and Viswanathan (1996) and use
as a benchmark to their continuous time extension the model without trade disclosure by Back et al.
(2000).
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3.1 The Model

Our model is based on Kyle (1985). Consider a single risky asset traded in continuous

auctions by an informed trader (the corporate insider) and a number of liquidity traders.

We assume that the sequence of auction dates 〈t〉 partitions the time interval [0, 1]. At

any auction a marker maker observes the total order flow and fixes the price at which all

orders are filled. All agents are risk averse but the market maker who is risk neutral.4

Let us denote with v the ex-post liquidation value of the risky asset, which is assumed

to be normally distributed, v ∼ N (p0,Σ0). The informed trader has perfect information

in the sense she observes at t = 0 the liquidation value v.5 Let dx(t) be the order

placed by the monopolistic insider trader at time t. The aggregate order by liquidity

traders, who trade for liquidity reasons, is denoted by du(t), and we assume it follows an

arithmetic Brownian motion,

du(t) = σudBu(t) (3.1)

for some constant σu, independent of v.6 Furthermore, let dy(t) be the total order flow

given by the sum of the order flows place by the insider trader and the liquidity traders:

dy(t) = dx(t) + du(t).

We denote with W (0) the initial wealth of the informed trader and with W (t) the

wealth at time t. The informed trader has negative exponential utility, with risk aversion

coefficient A, for terminal wealth (denoted by W (1)):

U(W (1)) = − exp{−AW (1)} (3.2)

At time t the market maker sets the market price p(t) by a competitive process,

such that the price equals the expected value of v conditional on all public information

available at that auction.7 The monopolistic insider instead chooses a trading strategy

that maximizes her expected utility conditional on all public and private information.

Equilibrium is therefore defined as follows:8

4As argued by Holden and Subrahmanyam (1994), market making is typically performed by large
financial institutions, which have large capacity to bear risk. Therefore, their behavior can be modeled
by assuming risk neutrality.

5The assumption of perfectly informed monopolistic insider seems the most reasonable given the
specific type of regulation we analyze: corporate insiders subject to this regulation are very likely to have
perfect information and to be able to collude with each other, thus behaving as single informed agent.

6Back (1992), Back and Pedersen (1998), and Baruch (2002) consider a model in which the instanta-
neous variance changes over time. Since this feature would not add new insights to our result, we prefer
to consider the standard case of constant variance.

7This is equivalent to assuming Bertrand competition among several market makers, which implies
that the profits of the market maker(s) are driven to zero.

8Since the aim of this paper is far from (technically) generalizing the Kyle (1985) model, we consider
throughout the paper a locally linear choice space (space in which linear pricing rules and linear trading
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Definition 3. A linear equilibrium of the continuous-time trading game is defined by the

following conditions:

1. Utility Maximization. Given the linear pricing rule p(t), the linear trading

strategy dx(t) maximizes

E[− exp{−AW (1)}] (3.3)

2. Market Efficiency. Given the linear trading strategy dx(t), the pricing rule is

competitive:

p(t) = Emt (v) (3.4)

where the expectation is taken conditional on the marker maker information set at

time t.

3.2 The Benchmark: Opaque Market Equilibrium

In this Section we characterize the market equilibrium in a setting with continuous trad-

ing and no mandatory disclosure: this is the benchmark that allows us to assess the

effectiveness of the securities regulation. A more general version of this model, in which

different elastic liquidity demand functions are considered, is studied in Baruch (2002).

The next theorem show how to construct a linear equilibrium:

Theorem 1. There exists a recursive linear equilibrium in which the constants λ̃(t), β̃(t),

α̃(t), δ̃(t), and Σ̃(t) characterize the following:

dx(t) = β̃(t)M(t)dt (3.5)

M(t) ≡ v − p(t) (3.6)

dp(t) = λ̃(t)dy(t) (3.7)

Σ̃(t) = Var[v|F(t)] (3.8)

J(M, t) = − exp{−A [W (t) + V (M, t)]} (3.9)

V (M, t) = α̃(t)[M(t)]2 + δ̃(t) (3.10)

W (t) =

∫ t

0
(v − p(s))dx(s) (3.11)

strategies are defined) in which doubling strategies are ruled out. We refer to Back (1992) for further
details.
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for every t ∈ [0, 1]. The constants β̃(t), λ̃(t), α̃(t), δ̃(t), Σ̃(t) are given by

Σ̃(t) =

[
2 +

(
A2Σ(0)σ2

u −
√
A2Σ(0)σ2

u(4 +A2Σ(0)σ2
u)
)
t
]

Σ(0)(1− t)

2 + 2A2Σ(0)σ2
u(1− t)t

(3.12)

λ̃(t) =

[
σu
√

4 +A2Σ(0)σ2
u

2
√

Σ(0)
+Aσ2

u

(
t− 1

2

)]−1

(3.13)

β̃(t) =
2σu[√

Σ(0)(4 +A2Σ(0)σ2
u)−AΣ(0)σu

]
(1− t)

(3.14)

α̃(t) =
1

2λ̃(t)
(3.15)

δ̃(t) =
σ2
u

2

∫ 1

t
λ̃(s)ds (3.16)

Proof. See the Appendix B.

The linear strategy of the corporate insider is characterized by β̃(t), the one of the

market maker by λ̃(t). Σ̃(t) denotes the conditional variance of prices, while α̃(t) and

δ̃(t) characterize the value function of the insider.

A risk averse informed agent faces the following trade-off: on the one hand she would

like to use all the private information immediately because concerned about future price

risk induced by liquidity traders, on the other hand she would like to concentrate all

her trade at the time in which the trading cost, λ̃(t) is minimized. In equilibrium the

optimal balance of these two components is determined by the decreasing dynamic of the

trading cost. At the early stages of trading the insider behaves more aggressively, yet

maintaining an informational advantage over time and hence trading till the last auction,

in which all the private information is reveled, Σ̃(1) = 0. When the corporate insider

is risk neutral the concern for future price risk disappears, and only a constant trading

cost can be part of an equilibrium. We refer to Baruch (2002) for further discussions and

comparative statics.

3.3 Transparent Market Equilibrium

In this Section we characterize the market equilibrium when mandatory trade disclosure

is enforced. To easily communicate the intuition of how such regulation works in a

dynamic model of strategic trading, we prefer to introduce and describe it in the context

of a more intuitive discrete-time setting – in which we can make use of the time between

two subsequent auctions – before moving to a more elegant continuous-time framework.
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n-th auction (n+ 1)-th auction

An Bn An+1 Bn+1

Events (for all n)

An: (i) insider places the order ∆xn; (ii) liquidity traders place the order ∆un; (iii) market maket
observes ∆yn and sets market price pn.

Bn: (i) insider discloses her trade ∆xn; (ii) market maket updates his beliefs on v and compute the
updating price p∗n.

Figure 3.1 Disclosure regulation in discrete-time: The sequence of events

Disclosure regulation in discrete-time. Mandatory trade disclosure is modeled by

imposing the informed trader to reveal at the end of any auction the amount of trade she

placed at the beginning of the auction. Hence the insider’s past trades become public

information. Therefore, the market maker, after having set the price at the n-th auction,

but before setting the market price of the subsequent one, observes the order placed by the

informed trader at the n-th auction. Thus, he adjusts his belief of the asset value using

this new piece of information reported by the insider. We define p∗ as the updating price,

which is not a market price but rather the price that the market maker would have set for

the n-th auction if he had known the insider’s order at the beginning of the period. This

updating price is computed by the market maker in order to determine the market price

p of the next auction. The sequence of events in Figure 3.1 makes this clear. We leave

in the Appendix B the derivation of the transparent market equilibrium in the discrete-

time setting, and we show at the end of this Section that as the interval between auctions

in the discrete-time model becomes uniformly small, the sequential auction equilibrium

with mandatory trade disclosure converges to the equilibrium in continuous-time.

Disclosure regulation in continuous-time. The same intuition holds for the continuos-

time setting, in which, instead, the insider simultaneously reveals at each instant t the

trade made a dt before and places the new order (i.e., the events Bn and An+1 in Figure

3.1 happen at the same time). The main feature of the disclosure regulation is that

the insider maintains an informational advantage between the trading and the disclosing

periods. We keep this essential features in our continuous-time framework by assuming

that the market maker, although continuously observing the insider’s disclosed trades,

uses the total order flow dy(t) to determine the market price p(t). This can be considered

as the limit of the discrete-time framework. We define the updating price, p∗(t), which

is not a market price but rather the price that the market maker would have set in the
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previous auction (a dt before) if he had been able to observe the insider’s order. The

sequence of updating prices will be used by the market maker as a “base” to determine

the sequence of market prices:

p∗(t) = f
(
p∗(t− dt), dx(t− dt)

)
p(t) = h

(
p∗(t), dy(t)

)

As argued by Huddart et al. (2001), trading and pricing strategies characterizing a

linear equilibrium in an opaque market can not be part of an equilibrium in a transparent

market. To see this, suppose the contrary holds. Suppose the market maker conjectures

that insider’s demand is just a linear function of the liquidation value, v, of the risky

asset. Then, after the first disclosure, the market maker would be able to invert the

insider’s trading strategy, thus perfectly inferring the liquidation value. So, no private

information would be left to the insider. As a consequence, the market maker would set

the price in the next auction equal to v by choosing zero sensitivity to the order flow

in his pricing function (infinite market depth). Rationally behaving, the insider would

anticipate this and have an incentive to deviate from her trading strategy in order to

induce mispricing and make unbounded profits. Therefore, no invertible trading strategy

can be part of an equilibrium with trade disclosure (no equilibrium in pure strategy).

However, an equilibrium in mixed strategy does exist. At any auction the insider’s

trading strategy is determined by two components: (i) a private information-based linear

component, and (ii) a plain noise component. The next theorem presents the closed-form

solution for the linear equilibrium of the trading game in the continuous-time framework.

Theorem 2. There exists a recursive linear equilibrium in which the constants λ(t), γ(t),

β(t), α(t), δ(t), σz(t), and Σ(t) characterize the following:

dx(t) = β(t)M(t)dt+ dz(t) (3.17)

M(t) ≡ v − p∗(t) (3.18)

dz(t) = σz(t)dB
z(t) with d〈Bz, Bu〉t = 0 (3.19)

p(t) = p∗(t) + λ(t)dy(t) (3.20)

p∗(t+ dt) = p∗(t) + γ(t)dx(t) (3.21)

Σ(t) = Var[v|F ′(t)] (3.22)

J(M, t) = − exp{−A [W (t) + V (M, t)]} (3.23)

V (M, t) = α(t)[M(t)]2 + δ(t) (3.24)

W (t) =

∫ t

0
(v − p(s))dx(s) (3.25)
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for every t ∈ [0, 1]. Given the initial condition p∗(0) = p(0), the constants β(t), λ(t),

γ(t), α(t), δ(t), σz(t), Σ(t) are given by

Σ(t) = (1− t)Σ(0) (3.26)

γ(t) = γ̂ =
(
Σ(0)/σ2

u

) 1
2 (3.27)

λ(t) =
1

2
γ̂ =

1

2

(
Σ(0)/σ2

u

) 1
2 (3.28)

β(t) = γ̂−1/(1− t) = σuΣ(0)−
1
2 /(1− t) (3.29)

α(t) =
1

2
γ̂−1 =

1

2

(
σ2
u/Σ(0)

) 1
2 (3.30)

δ(t) = 0 (3.31)

σz(t) = σu , t ∈ (0, 1) (3.32)

with the boundary condition σz(1) = 0.

Proof. See the Appendix B.

The linear strategy of the corporate insider is now characterized by β(t) and σz(t),

the one of the market maker by λ(t). γ(t) represents the updating trading cost that

the market maker can compute after any trade disclosure. Σ(t) denotes the conditional

variance of prices, and α(t) and δ(t) characterize the value function of the insider.

Since no invertible trading strategy can be part of an equilibrium, the informed agent

adds a random component to her market order: at each trading round she chooses the

optimal variance of such noise, σz(t). Equation (3.32) states that in equilibrium this

variance must be equal to the instantaneous volatility of liquidity trading, σu, except for

the last trading round in which no dissimulation component is needed. As a consequence,

trading costs λ(t) must be constant over time in order to make the insider indifferent

among all the possible values of his order flow. Private information is incorporated into

prices gradually and market prices have constant volatility over time.

Finally, a somehow surprising feature of this equilibrium is that it is independent of

the level of risk aversion. This and other properties are discussed in detail in the next

Section.

A convergence result. In the Appendix B we derive a transparency market equilib-

rium in discrete-time. We study now how the equilibrium properties of the sequential

trading model are related to the properties of the continuous trading model when the

interval between auctions become smaller and smaller. A convergence result shows that

as the interval between auctions in the discrete-time model becomes uniformly small, the
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sequential auction equilibrium with mandatory trade disclosure converges to our contin-

uous auction equilibrium.

Proposition 7. Holding Σ(0) = Σ0 and σ2
u constant, and given the convention x(t) = xn

for all t ∈ [tn−1, tn), consider a sequence of sequential equilibria such that ∆t→ 0. Then

the values Σ(t), γ(t), λ(t), β(t), α(t), δ(t), and σz(t) characterized in Theorem 3 converge

to the corresponding value in the continuous auction equilibrium obtained in Theorem 2.

Proof. See the Appendix B.

3.4 The Effectiveness of the Transparency Regulation

In the introduction of this paper we argue that the aim of a corporate insider disclosure

regulation, as recognized by the authority, is to make private information available to all

market participants more rapidly in order to promote price efficiency and market liquidity.

In this Section we formally show that within the theoretical framework presented, the

regulation fails at achieving these goals.

Our main result is that transparency reduces informational efficiency of prices and

may cause the market to be less liquid. Before formalizing this in the next propositions,

we first discuss the intuition behind. When the (risk averse) corporate insider is not

required to disclose her trade, she will adopt a very aggressive trading strategy in order

to exploit her informational advantage rapidly. The reason why a risk averse insider would

behave more aggressively than the informed agent in Kyle (1985), is that the former wants

to protect herself against future price risk imposed by liquidity traders. In other words,

she is concerned about the possibility that profitable trading opportunities will be lost as

the liquidity traders move market prices against her. By trading intensively at the early

trading rounds, most of the private information is incorporated into prices, thus reducing

the adverse selection problem faced by the market maker. Since the most of the private

information is now in the market, the market maker reduces the sensitivity of prices with

respect to the order flows. This means a liquid market. Therefore, as stated by Holden

and Subrahamanyam (1994), “from a regulatory perspective, [...] insider trading may be

much less of a potential problem than the analysis of Kyle (1985) indicates”. It is the

risk attitude of the informed agent that makes the market more efficient and liquid. In

our benchmark model (the opaque market) the higher the risk aversion of the corporate

insider, the faster private information get disseminated to the market, and the faster the

market becomes liquid.

Surprisingly, the introduction of this transparency regulation prevents this effective
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“mechanism” based on risk attitude to succeed. Indeed, in equilibrium market prices

convey less private information and liquidity does not decline over time. This represents

a failure of the securities regulation. How can a transparency regulation worsen finan-

cial markets? Quoting Pagano and Röell (1996), this is possible “[...] because informed

traders adapt their strategy to the market mechanism they face [...]”. In order to main-

tain an informational advantage over time, the corporate insider can not adopt the same

trading strategy she would if no regulation was enforced, otherwise the market maker

would be able to back out the private information from public records, thus eliminating

any future profits. For this reason, we show in the model that an optimal strategy for the

insider is to add a random component to her market order. On the one hand this allows

her to maintain an informational advantage over time, but on the other hand it induces

her to behave less aggressively. It is exactly this low trading intensity that reduces the

dissemination of private information: trading prices have constant volatility over time,

meaning that information is incorporated into prices at a constant rate. Moreover, since

the insider must be indifferent to all possible values of her market order (otherwise she

would deviate from that strategy), the adverse selection problem and hence market depth

do not improve over time. Therefore, if a more realistic assumption on the risk prefer-

ence of the informed agent increases informativeness of prices and reduces the adverse

selection problem (Holden and Subrahamanyam, 1994; Baruch, 2002), the introduction

of a trade disclosure regulation makes market prices less informative and the adverse

selection problem more severe.

So, why do we observe mandatory trade disclosure regulation, if it can be so detrimen-

tal to financial markets? Our argument is that there are two opposite effects associated

with the enforcement of such securities regulation – a positive direct effect and a negative

indirect effect – and that regulators may have not considered or underestimated the lat-

ter. The positive direct effect is represented by the flow of information disclosed by the

insider at the end of any trading round that clearly decreases the uncertainty caused by

liquidity traders’ order flow. This by itself reduces the adverse selection problem of the

market maker. Hence, a thoughtless argument may be: more information available to all

market participants, less asymmetric information, more efficiency, more liquidity. How-

ever, the indirect and negative effect, due to the change in the insider’s trading strategy,

intensifies the degree of asymmetric information. In this paper we show not only that

there is also an indirect effect, but most importantly that it dominates the direct one.

Finally, another interesting interpretation of the effect of this insider trading regu-

lation is that mandatory trade disclosure represents the institutional means that makes

the informed agent behave as if she were risk neutral. To have a transparent market

equilibrium in which the corporate insider maintains an informational advantage over

time a non-invertible trading strategy is needed: adding a plain noise component to the
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market order of each auction is a tractable way to obtain one, as proposed by Huddart et

al. (2001). However, to sustain this mixed strategy in equilibrium the trading costs must

be constant over time, otherwise any disparity in such costs would induce a deviation

from this strategy to exploit the lower cost. As a consequence insider trader’s concern

for future price risk is completely disregarded in equilibrium. Hence, how risk averse

the insider is does not affect her trading behavior: the transparent market equilibrium

turns out to be independent of the level of risk aversion. Therefore, the introduction of

the disclosure regulation “forces” any risk averse insider to behave as a risk neutral one.

Needless to say, the monopolistic risk neutral insider represents the most harmful case

in terms of market efficiency and liquidity.9

As in Kyle (1985), the parameter Σ(t), which gives the error variance of prices at

time t, is an inverse measure of the informational efficiency of prices, which indicates

how much of the insider’s private information is not yet incorporated into prices. The

parameter λ(t), which characterizes the market maker pricing function, is an inverse

measure of market liquidity (or more precisely of market depth). The parameter β(t),

which characterizes the insider’s trading strategy, represents the intensity (aggressiveness)

of insider trading, that is the sensitivity of the informed order flow to private information.

Panel A of Table 3.1 shows the effect of the disclosure regulation when the insider

trader is assumed risk neutral. The three graphs contrast respectively Σ(t), λ(t), and

β(t), (i) in a transparent market (solid line), and (ii) in an opaque market (dashed line).

This means plotting Huddart et al. (2001) versus Kyle (1985) in a continuous-time

setting, in which exogenous parameters are normalized by setting Σ(0) = σ2
u = 1. In

contrast to the results in a discrete-time setting (Huddart et al., 2001), market efficiency

does not improve with the enforcement of the regulation. Insider trading intensity and

conditional variance of prices coincides in the two market equilibria. The only difference

relies on market liquidity, which is higher in a transparent market. The risk neutral case

is very instructive because it clearly highlights the positive direct effect of the regulation

aforementioned. Indeed, since insider aggressiveness remains unchanged, the negative

indirect effect is null. This is what we believe being the reason why financial market

regulators consider such regulation as beneficial for market participants.

However, Panel B of Table 3.1 shows that the results are reversed once we relax the

restrictive assumption on the risk attitude. Specifically, we consider an informed agent

characterized by a CARA utility function with coefficient of risk aversion of 4 and the

same normalization on the exogenous parameters. The first graph shows that in an

opaque market Σ(t) declines very rapidly through time, whereas in a transparent market

9In the case of a monopolistic risk neutral insider the trading costs are constant over time to eliminate
profitable destabilization schemes that can generate unbounded profits, and hence not compatible with
a rational expectation equilibrium.
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the instantaneous change in the conditional variance, dΣ(t), is constant. Concerning the

level, market efficiency is always higher in an opaque market. The third graph shows that

in a transparent market insider trading aggressiveness is reduced at any auction. Finally,

the second graph shows that with disclosure market depth is constant, while without

disclosure it declines sharply over time, becoming lower in a final trading sub-period. In

an opaque market the adverse selection problem is severe at the beginning of the trading

period because the total order flow is very informative, and it becomes almost irrelevant

once most of the information is incorporated into prices.

3.4.1 Market Efficiency

The normalized difference in conditional variance of prices between transparent and

opaque market is a measure of the efficiency loss caused by the regulation, that is how

much more information remains private and it is not incorporated into prices at each

point in time if the disclosure regulation is introduced. An aggregate measure of ef-

ficiency loss is given by the sum of the efficiency losses at each point in time. Table

3.2 presents comparative statics for the instantaneous and the aggregate measure of effi-

ciency loss with respect to the exogenous parameters of the model: the coefficient of risk

aversion, A, the prior variance of the liquidation value of the risky asset, Σ(0), and the

variance of liquidity trading, σ2
u.

The three graphs in Panel A show that the instantaneous measure of efficiency loss

is increasing in the level of risk aversion, and in both variances. For instance, according

to the first graph, when the coefficient of risk aversion is equal to 4, the enforcement of

the disclosure regulation prevents 57% of all private information to be incorporated into

prices after just one-tenth of the trading rounds. When the coefficient of risk aversion is

equal to 8, the instantaneous efficiency loss becomes 78%. Moreover, the higher the risk

aversion the faster the private information reaches the market: this is confirmed by the

right-skewness of the curves. Similar conclusions can be drawn with respect to the other

two graphs.

Panel B, instead, considers the aggregate measure of efficiency loss and shows spec-

ular comparative statics. The aggregate efficiency loss is represented by the shaded area

in the first graph (that is the sum of all the instantaneous losses) scaled by 1/2 (that is

the area below the solid line). Not surprisingly the second and the third graphs show

that also the aggregate measure is increasing in all the three exogenous parameters. The

following proposition formalizes these results.

Proposition 8. For any level of risk aversion and at each trading round, insider trading
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is more aggressive and the market is more efficient in an opaque market:

β̃(t)− β(t) > 0 ∀ t ∈ [0, 1] (3.33)

Σ̃(t)− Σ(t) > 0 ∀ t ∈ [0, 1] (3.34)

If we define the “instantaneous efficiency loss” as the difference between the conditional

variances of prices in a transparent and in an opaque market, normalized by the prior

variance of the liquidation value of the risky asset, for every t ∈ [0, 1],

Ω(t) =
Σ(t)− Σ̃(t)

Σ(0)
(3.35)

and the “aggregate efficiency loss” as the sum of all the instantaneous losses scaled by

1/2,

Ωa = 2

∫ 1

0
Ω(t)dt (3.36)

then the following cross-sectional results hold:

i. Ω(t) increases with the level of the coefficient of risk aversion A;

ii. Ω(t) increases with the level of the prior variance of the liquidation value Σ(0);

iii. Ω(t) increases with the level of the instantaneous variance of liquidity trading σ2
u;

iv. the same comparative statics hold for Ωa.

Proof. See the Appendix B.

3.4.2 Market Liquidity

In a similar fashion we define a measure of liquidity loss as the difference in the execu-

tion cost of liquidity traders between transparent and opaque market. Table 3.3 presents

comparative statics with respect to the exogenous parameters of the model. All the three

graphs in Panel A show that instantaneous liquidity loss is increasing over time, reflecting

the change in the adverse selection problem. The aggregate liquidity loss is represented

by the shaded area in the first graph of Panel B and it coincides with the difference in

the aggregate execution cost, as defined by Back and Pedersen (1998). The second and

the third graphs show that if the corporate insider is sufficiently risk averse, then the

aggregate execution cost is higher in a transparent market. The following proposition

formalizes the results on market liquidity.
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Proposition 9. If we define the “instantaneous liquidity loss” as the difference between

the execution costs of liquidity traders in a transparent and in an opaque market for every

t ∈ [0, 1],

Ψ(t) = (λ(t)− λ̃(t))σ2
u (3.37)

and the “aggregate liquidity loss” as the sum of all the instantaneous losses,

Ψa =

∫ 1

0
Ψ(t)dt (3.38)

then the following cross-sectional results hold:

i. if the informed agent is sufficiently risk averse (A > A∗), then there exists trading

sub-period in which market liquidity is higher in an opaque market, and the length

of this sub-period increases with the level of the coefficient of risk aversion A;

ii. if the informed agent is sufficiently risk averse (A > A∗∗ > A∗), then Ψa increases

with the level of the prior variance of the liquidation value, Σ(0), and the level of

the instantaneous variance of liquidity trading, σ2
u;

iii. if the informed agent is sufficiently risk averse (A > A∗∗∗ > A∗∗), then Ψa > 0.

Proof. See the Appendix B.

3.5 Insider Trading Profitability

To this point we have analyzed the implications of insider trade disclosure regulation for

market efficiency and liquidity, since identified by the regulator as being the two main

objective of such regulation. In the current section we describe some findings concerning

the insider ex-ante expected profits.10

In order to have a more flexible specification for the utility function, which encom-

passes the risk neutral case when the coefficient of risk aversion goes to zero, let us

consider the following functional form,

U(W (1)) =
1− exp{−AW (1)}

A
(3.39)

Note that the equilibrium results are the same regardless of the use of the utility functions

specified in Equations (3.2) and (3.39) because we can take a monotonic transformation

10I thank Eric Hughson for inspiring the development of this section.
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of utility and still represent the same preferences.11 Now, let π0 denote the insider’s

unconditional expected utility (at time 0),

π0 = E0[U(W (1))] (3.40)

and Π0 the insider’s expected utility conditional on her private information (still at time

0, that is before the trading takes place),

Π0 = E0[U(W (1))|v] (3.41)

where clearly π0 = E0[Π0] by the Law of Iterated Expectation.

The following proposition examines how the insider’s (un)conditional expected util-

ity changes across the two regulatory regimes, the opaque and the transparent market,

focusing in particular on the role played by her risk attitude.

Proposition 10. In an opaque market equilibrium the insider’s unconditional and con-

ditional expected utility are given by

π̃0 =
1

A

[
1−

(
1 +A

(
AΣ(0)σ2

u +
√

Σ(0)σ2
u(4 +A2Σ(0)σ2

u)
))−1/2

exp
{
−AW (0)

}]
(3.42)

Π̃0 =
1

A

[
1− Ξ exp

{
−A

[
W (0) +

1

4

(√
σ2
u(4 +A2Σ(0)σ2

u)

Σ(0)
−Aσ2

u

)(
v − E0(v)

)2
]}]

(3.43)

respectively, where

Ξ ≡

 2

2 +A
(
AΣ(0)σ2

u +
√

Σ(0)σ2
u(4 +A2Σ(0)σ2

u)
)
1/2

(3.44)

while in a transparent market equilibrium they are given by

π0 =
1

A

[
1−

(
1 +A

√
Σ(0)σ2

u

)−1/2
exp

{
−AW (0)

}]
(3.45)

Π0 =
1

A

[
1− exp

{
−A

[
W (0) +

(
1

2

√
σ2
u

Σ(0)

)(
v − E0(v)

)2
]}]

(3.46)

Then the following results hold:

i. π̃0 > π0 and ∂ (π̃0 − π0) /∂A 6 0;

11With the utility function specified in Equation (3.39), limA→0 U(W (1)) = W (1).
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ii. if we define the insider’s initial informational advantage as Γ ≡ |v − E0(v)|, then

the set

G = {Γ : Π0(Γ) > Π̃0(Γ)}

is non-empty if the insider is risk averse (A > 0), and takes the form of open

intervals [Γ∗,∞) on R+; Γ∗ is increasing in Σ(0), decreasing in σ2
u, and decreasing

in A; in the limit, as A approaches 0, Γ∗ goes to infinity.

Proof. See the Appendix B.

The main finding can be summarized as follows: in a transparent market, compared

to an opaque market, the insider’s unconditional expected utility is reduced; however,

if she is risk averse, once the private information is realized, her conditional expected

utility may be higher. This is the case when the unexpected component of the private

information is sufficiently large.

The first part of the proposition states that the introduction of a transparency regula-

tion reduces the ex-ante expected utility of the corporate insider. However, the difference

in utility across the two regulatory regimes becomes smaller and smaller the more averse

to the risk the insider is. We describe these unconditional results in Panel A of Table

3.4. The three graphs contrast the unconditional expected utility of the insider over the

prior variance of the private information (the first two graphs) and over the level of risk

aversion (third graph). The dashed line, which represents an opaque market, is always

above the solid line, a transparent market, while the solid bold line, which captures the

difference between the two is clearly decreasing in A.

The second part of the proposition highlights a more interesting feature of the model,

that further differentiates the general case of risk aversion from the specific case of risk

neutrality. With risk neutrality no matter what type of information the insider receives,

she is worse off if she has to disclose her trade; with risk aversion, instead, if the private

information is particularly unexpected, the insider can indeed be better off. This result

is important because it shows that there are states of the world in which the insider can

benefit from the introduction of such regulation. Therefore, trade disclosure not only

fails at improving market efficiency and liquidity, but it may also allow the informed

agent to exploit her private information in a more profitable way. To understand why

this is possible, let us consider the value function at time 0, given zero initial wealth:

Π0 =
1

A

[
1− exp

{
−A

(
α(0)[M(0)]2 + δ(0)

)}]
(3.47)

where M(0) = v− p(0) represents the component of the private information which is not
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expected by the market.12

The coefficient α(0) captures the initial liquidity of the market, which in equilibrium

depends on the aggressiveness of the insider. In a transparent market the insider adopts

a mixed strategy which makes her trade less aggressive, thus inducing a more liquid

market. In a opaque market, instead, the market maker anticipates the willingness of

the insider to exploit the private information in a timely manner, and hence sets a

price which is very sensitive to the order flow: this makes the market illiquid. Indeed,

straightforward algebra shows that α(0) > α̃(0), where the equality holds only for the

case of risk neutrality.

The coefficient δ(0) reflects the possibility for the insider to profit by hiding her

trades behind the ones placed by liquidity traders for the entire trading period. It is the

“aggregate value” of noise trading activities for the insider. This is positive in an opaque

market since the insider’s future informational advantages |v− p(t)| depend on du(t). In

particular δ̃(0) is proportional to the “quantity” of noise trading activities, measured by

the variance σ2
u, times the “price” of such activities, measured by the coefficients λ̃(t),

for all t, which capture impact of noise trades on market prices. Not surprisingly, in a

transparent market the coefficient δ(0) is equal to zero. As a matter of fact the insider’s

future informational advantages |v−p∗(t)| do not depend on du(t) because the disclosure

of her trades eliminates the noise trading uncertainty faced by the market maker. It

follows that δ(0) < δ̃(0).

Qualitatively, we can interpret [δ̃(0)− δ(0)] as a measure of the positive direct effect,

and [α̃(0)−α(0)] as a measure as the negative indirect effect brought by the introduction

of the trade disclosure regulation. With risk neutrality, α̃(0) = α(0), and only the positive

effect remains.

Having examined the role played by the two components that characterize the value

function at time 0, now it should be clear that the relative weight of these components

determines whether the insider’s conditional expected utility is higher in a transparent

rather than in an opaque market. As appears in Equation (3.47), the relative weight is

given by the (square of the) insider’s informational advantage. The lower Γ, the lower

the importance of the negative effect, and the lower the insider’s expected utility. This

justifies the existence of a threshold level Γ∗, such that the insider’s expected utility is

higher in a transparent market for any level of the informational advantage greater than

Γ∗. By continuity, when the informational advantage equal to Γ∗, the expected utilities

associated to the two regulatory regimes coincide. Panel B in Table 3.4 highlights these

results. The first two graphs describe how the conditional expected utility changes with

Γ for the case of risk neutrality and risk aversion respectively. When A approaches zero,

12Note that the insider’s initial informational advantage Γ is equal to |M(0)|.
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α̃(0) approaches α(0), and δ̃(0) approaches its maximum: therefore, the threshold level

Γ∗ must be very high. In the limit, Γ∗ goes to infinity, and this is the reason why it does

not appear in the first graph. With risk aversion, Γ∗ is finite, as pictured in the second

graph. Finally, the third graph presents comparative statics of Γ∗ for the exogenous

parameters A, Σ(0), and σ2
u.

The current section provides interesting findings concerning the profitability of the

informed trading activity for corporate insiders. A more rigorous welfare analysis should

also take into account the impact of the disclosure regulation on the welfare of liquid-

ity traders. However, in the framework here presented, the preferences of agents who

trade for liquidity purposes are un-modeled and their aggregate trade is exogenously as-

sumed. Departures from this assumption are analyzed in Admati and Pfleiderer (1988),

Bernhardt and Hughson (1997), and Mendelson and Tunca (2004) among others. An

extension in this direction, which goes beyond the scope of this paper, is left for further

research.

3.6 Conclusions and Policy Implications

Securities markets worldwide have different degrees of transparency with implications

that are not well understood. In this article we focus on mandatory ex-post trade disclo-

sure by corporate insiders as a particular aspect of market transparency. In a continuous-

time model of risk averse strategic insider trading we show that informational efficiency

and market liquidity are significantly lower in a transparent market (i.e. with disclosure

regulation) than in an opaque market (i.e. without disclosure regulation). The reason

for this detrimental effect is that a risk averse insider optimally chooses a less aggressive

trading strategy in order to prevent the market maker from inferring perfectly the private

information from public records, and to maintain her informational advantage over time.

Moreover, if the initial informational advantage of the insider is sufficiently high, then

her expected utility from trading is higher in a transparent market.

Our result adds an interesting theoretical evidence to the existing debate on the

relation between the degree of transparency and the optimal design and regulation of

securities markets. A number of implications for regulatory policy can be drawn from

our analysis. First, a mandatory insider trade disclosure does not eliminate the presence

of insider trading once the informed agent reveals her trade: this constitutes a relevant

empirical implication to test. Second, if the main goal of market design is to sustain

informational efficiency and liquidity, as explicitly stated by several financial regulations

such as the Section 16(a) of the U.S. Securities Exchange Act, then an opaque market

should be preferred. Strategic corporate insiders would exploit their informational ad-
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vantage more rapidly, inducing private information to reach the market (and hence to

be available to all investors) on a more timely basis. Under this view a trade disclosure

regulation would represent a friction in the system of efficient prices. Such regulation

may also not be able to sufficiently reduce the adverse selection problem in the market,

and consequently to enhance market liquidity. Finally, when the degree of asymmet-

ric information is high – that is when an effective policy intervention is more needed –

the introduction of a trade disclosure regulation increases the insider trading profitabil-

ity. Testable implications on insiders’ trading behavior and on market components then

follow.

The change in the U.S. regulation on insider trade disclosure with the introduction of

the Sarbanes-Oxley Act in 2002 offers the opportunity to carry out a natural experiment

to test the implications derived in this article. Moreover, having shown the failure of

the existing regulation, a further step would be to study and endogenously derive what

should be the optimal one. These interesting and challenging projects are left for further

research.
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Table 3.1 Equilibria

The three graphs in each Panel contrast over time the conditional variance of prices (an inverse measure of
market efficiency), Σ(t), the sensitivity of the pricing function to the total order flow (an inverse measure of
market liquidity), λ(t), and the sensitivity of the insider’s trading strategy to private information (a direct
measure of insider aggressiveness) β(t), respectively for the continuous-time equilibrium (i) in a transparent
market (solid line), and (ii) in an opaque market (dashed line). Panel A represents the case of risk neutrality
(A = 0); Panel B the case of risk aversion (A = 4). Exogenous parameters are normalized by setting Σ(0) = 1,
σ2
u = 1.
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Table 3.2 Efficiency loss

The three graphs in Panel A contrast over time the instantaneous efficiency loss and present comparative statics
for the exogenous parameters A,Σ(0), σ2

u. The shaded area in the first graph in Panel B identifies the aggregate
measure of efficiency loss (to be scaled by 1/2). The second and the third graphs in Panel B contrast over the
level of risk aversion the aggregate efficiency loss and present comparative statics for the exogenous parameters
Σ(0), σ2

u. Unless otherwise stated, exogenous parameters are normalized by setting A = 4, Σ(0) = 1, and σ2
u = 1.

Panel A: INSTANTANEOUS EFFICIENCY LOSS, Ω(t) =
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Σ(t)− Σ̃(t)
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Table 3.3 Liquidity loss

The three graphs in Panel A contrast over time the instantaneous liquidity loss and present comparative statics
for the exogenous parameters A,Σ(0), σ2

u. The shaded area in the first graph in Panel B identifies the aggregate
measure of liquidity loss. The second and the third graphs in Panel B contrast over the level of risk aversion the
aggregate liquidity loss and present comparative statics for the exogenous parameters Σ(0), σ2

u. Unless otherwise
stated, exogenous parameters are normalized by setting A = 4, Σ(0) = 1, and σ2

u = 1.

Panel A: INSTANTANEOUS LIQUIDITY LOSS, Ψ(t) =
(
λ(t)− λ̃(t)

)
σ2
u
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Table 3.4 Insider trading profitability

The three graphs in Panel A contrast the unconditional expected utility of the insider over the prior variance
of the private information (the first two graphs) and the level of risk aversion (third graph). The first two
graphs in Panel B contrast the conditional expected utility of the insider over her informational advantage,
Γ ≡ |v − E0(v)|, while the third graph contrast the minimum level of the insider’s informational advantage, Γ∗

such that for any Γ > Γ∗ her conditional expected utility is higher in a transparent market. The dashed line
represents an opaque market, the solid line a transparent market, and the solid bold line the difference between
the two. In the 3-dimensional graph the darker surface represents the threshold level Γ∗ as a function of Σ(0)
and A; the brighter surface as a function of σ2

u and A. Unless otherwise stated, exogenous parameters are
normalized by setting W (0) = 0, A = 4, Σ(0) = 1, and σ2

u = 1.
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Appendix A

Strategic Risk Taking with

Systemic Externalities

A.1 Proofs

Proof of Lemma 1. For each default region, substitute in (2.8) the relevant value of the assets

as a function of (WiT ,WjT ). Straightforward algebra leads to (2.16).

Proof of Proposition 1. We solve for bank i’s best response function considering a generic

objective function ui(·) that satisfies the properties in Remark 1. The problem faced by bank i

can be restated using Lagrangian as

max
WiT ,yi

E
[
ui(WiT ) + yi[Wi0 − ξT (WiT + CiT )]

]
(A.1)

For each state ξT :

ŴiT = arg max ui(WiT ) + yiWi0 − yiξTWiT − yiξTCiT

= arg max ui(WiT )− yiξTWiT − yiξT
{

[xiφ+ (1− xi)(Wi −WiT )]1{WiT<Wi ∧ WjT>Wj}

+ [ziφ+ (1− zi)(Wi −WiT )]1{WiT<Wi ∧ WjT<Wj}

}
(A.2)

Let hi(WiT ) denote the objective function on the RHS of (A.2). hi(WiT ) is not concave in WiT
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because of the discontinuity in Wi, and it exhibits possible maxima at:

Ii(yiξT ) if Ii(yiξT ) >Wi (A.3)

Wi (A.4)

Ii(yixiξT ) if Ii(yixiξT ) < Wi ∧ WjT >Wj (A.5)

Ii(yiziξT ) if Ii(yiziξT ) < Wi ∧ WjT < Wj (A.6)

where Ii(·) is the inverse function of u′i(·). In what follows, we show for which regions of the

domain of ξT the above candidates are indeed a global maximum. Note that, since Ii(α) is

decreasing in α and (xi, zi) ∈ (0, 1):

• when Ii(yiξT ) > Wi, then the maxima at Ii(yixiξT ) and Ii(yiziξT ) are not feasible since

Ii(yiziξT ) > Ii(yixiξT ) > Wi: hence the possible candidates are Ii(yiξT ) and Wi;

• when Ii(yixiξT ) < Wi, then the maximum at Ii(yiξT ) is not feasible sicne Ii(yiξT ) < Wi:

hence the possible candidates are Ii(yixiξT ) and Wi;

• when Ii(yiziξT ) < Wi, then the maximum at Ii(yiξT ) is not feasible sicne Ii(yiξT ) < Wi:

hence the possible candidates are Ii(yiziξT ) and Wi.

Therefore, we can distinguish among the following cases:

(i) hi(Ii(yiξT )) is a global maximum if the following two conditions are satisfied:

Ii(yiξT )−Wi > 0 (A.7)

hi(Ii(yiξT ))− hi(Wi) > 0 (A.8)

Since for anyWiT >Wi bank i does not default, (A.7) implies (A.8). Hence, ŴiT = Ii(yiξT )

if ξT 6 ξ
i

where ξ
i
≡ u′i(Wi)/yi.

(ii) When WjT > Wj , hi(Ii(yixiξT )) is a global maximum if the following two conditions are

satisfied:

Ii(yixiξT )−Wi < 0 (A.9)

hi(Ii(yixiξT ))− hi(Wi) > 0 (A.10)

Equation (A.9) implies that ξT > ξ
i
/xi, and (A.10) can be written as fi(yixiξT ) 6 0 where

fi(α) ≡
[
ui(Wi)− ui(Ii(α))

] 1

α
+ Ii(α)−Wi + φ (A.11)

fi(yiξi) = φ (A.12)

∂fi(α)

∂α
< 0 if Ii(α) < Wi (A.13)

Let ξ̄i be such that fi(yixiξ̄i) = 0 and ξ̄i > ξ
i
/xi. From (A.12) and (A.13) we can conclude

that ξ̄i exists and it is unique. Hence, ŴiT = Ii(yixiξT ) if ξT > ξ̄i. Since fi(u
′
i(Wi−φ)) > 0,

in case of default, ŴiT = Ii(yixiξT ) < Wi−φ for any ξT > ξ̄i. This proves that the optimal

equity of bank i does not take values in the interval [Wi − φ,Wi).

(iii) Symmetrically, when WjT < Wj , hi(Ii(yiziξT )) is a global maximum if the following two
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conditions are satisfied:

Ii(yiziξT )−Wi < 0 (A.14)

hi(Ii(yiziξT ))− hi(Wi) > 0 (A.15)

Equation (A.14) implies that ξT > ξ
i
/zi, and (A.15) can be written as fi(yiziξT ) 6 0 where

fi(·) is defined above in (A.11). Let ¯̄ξi be such that fi(yizi
¯̄ξi) = 0 and ¯̄ξi > ξ

i
/zi. From

(A.12) and (A.13) we can conclude that ¯̄ξi exists and it is unique. Hence, ŴiT = Ii(yiziξT )

if ξT >
¯̄ξi.

(iv) When WjT >Wj , hi(Wi) is a global maximum if either

Ii(yiξT )−Wi < 0 (A.16)

Ii(yixiξT )−Wi > 0 (A.17)

that is if ξ
i
< ξT 6 ξ

i
/xi, or

Ii(yixiξT )−Wi < 0 (A.18)

hi(Ii(yixiξT ))− hi(Wi) > 0 (A.19)

that is if ξ
i
/xi < ξT 6 ξ̄i. Hence, ŴiT = Wi if ξ

i
< ξT 6 ξ̄i.

(v) When WjT < Wj , hi(Wi) is a global maximum if either

Ii(yiξT )−Wi < 0 (A.20)

Ii(yiziξT )−Wi > 0 (A.21)

that is if ξ
i
< ξT 6 ξ

i
/zi, or

Ii(yiziξT )−Wi < 0 (A.22)

hi(Ii(yiziξT ))− hi(Wi) > 0 (A.23)

that is if ξ
i
/zi < ξT 6 ¯̄ξi. Hence, Wi is a global maximizer if ξ

i
< ξT 6 ¯̄ξi.

Putting together all the five cases and considering an isoelastic objective function as in (2.5),

where

Ii(x) = x
− 1
γi , (A.24)

we obtain (2.22). We have already shown that ξ
i
< ξ̄i, and it is straightforward to see that

ξ̄i <
¯̄ξi, since xi > zi.

Given the optimal solution ŴiT (WjT ; yi), yi is set such that the static budget constraint in

(2.19) holds with equality. Let W̃iT be any feasible solution (i.e., that satisfies the static budget

constraint), then we can show that

E[ui(ŴiT )]− E[ui(W̃iT )] = E[ui(ŴiT )− yiWi0]− E[ui(W̃iT )− yiWi0]

> E[ui(ŴiT )− yiξT (ŴiT + CiT (ŴiT ))]− E[ui(W̃iT )− yiξT (W̃iT + CiT (W̃iT ))]

> 0 (A.25)
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The first inequality follows from (2.19) holding with equality for ŴiT . The second inequality

follows from (A.2).

Lemma 2. If bank i defaults, then

WiT + CiT < Wi (A.26)

Proof. Let us consider first the case WjT >Wj :

WiT + CiT = Ii(yixiξT ) + [xiφ+ (1− xi) (Wi − Ii(yixiξT ))] (A.27)

= Wi + xi [φ−Wi + Ii(yixiξT )] (A.28)

Since Ii(α) is decreasing in α, by using the definition of ξ̄i in (2.23), we can conclude that

φ−Wi + Ii(yixiξT ) < φ−Wi + Ii(yixiξ̄i) = −
[
ui(Wi)− ui(Ii(yixiξ̄i))

] 1

yixiξ̄i
< 0 (A.29)

Hence, WiT + CiT < Wi. A symmetric proof, which makes use of the definition of ¯̄ξi in (2.23),

holds for the case WjT < Wj .

Proof of Proposition 2. As for the proof of Proposition 1, we consider a generic objective

function ui(·). Consider any realization of ξT in the set (ξ̄i,
¯̄ξi] ∩ (ξ̄j ,

¯̄ξj ], where the thresholds

ξ̄j ,
¯̄ξi are defined in (2.23). From the best response functions in (2.22), it follows that the Nash

equilibrium of the game for a fixed level of ξT (which we refer as the ξT -game hereafter) is

multiple. Hence, a unique pure-strategy equilibrium of the strategic game requires that the set

(ξ̄i,
¯̄ξi] ∩ (ξ̄j ,

¯̄ξj ] is empty: ¯̄ξj < ξ̄i. In turn, this requires that

yj > ȳj where ȳj ≡ yi
(
αjxi
αizj

)
. (A.30)

Let assume that yj > ȳj . then the Nash equilibrium of each ξT -game, for any ξT , is unique. This

can be written as

W ∗iT (yi) =


Ii(yiξT ) if ξT 6 ξ

i

Wi if ξ
i
< ξT 6 ¯̄ξi

Ii(yiziξT ) if ξT >
¯̄ξi,

W ∗jT (yj , yi) =


Ij(yjξT ) if ξT 6 ξ

j

Wj if ξ
j
< ξT 6 ξ̄j

Ij(yjxjξT ) if ξ̄j < ξT 6 ¯̄ξi
Ij(yjzjξT ) if ξT >

¯̄ξi,

(A.31)

This corresponds to a unique pure-strategy equilibrium of the strategic game if and only if the

Lagrange multipliers (y∗i , y
∗
j ) that make the budget constraints binding

E [ξT (W ∗iT (y∗i ) + CiT (W ∗iT (y∗i )))] = Wi0 (A.32)

E
[
ξT (W ∗jT (y∗j , y

∗
i ) + CjT (W ∗jT (y∗j , y

∗
i )))

]
= Wj0, (A.33)

are such that the assumed condition is indeed satisfied: y∗j > y∗i

(
αjxi
αizj

)
. To verify this we proceed

as follows. First notice that the budget constraint in (A.32) depends only on yi and not on yj .

This allows us to get y∗i independently of yj . Then, by means of the following budget-contraint
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operator

BCj(yj) ≡ E
[
ξT (W ∗jT (yj , y

∗
i ) + CjT (W ∗jT (yj , y

∗
i )))

]
(A.34)

we define

W̄j0 ≡ BCj
(
y∗i
αjxi
αizj

)
(A.35)

By monotonicity of the operator in (A.34), for which we omit the proof, we can conclude that

Wj0 < W̄j0 ⇔ y∗j > y∗i

(
αjxi
αizj

)
(A.36)

When this condition holds for only one of the two banks, the equilibrium is unique.

Proof of Corollary 1. Part (i) follows from Proposition 2. Define ȳj ≡ yi(x/z) > yi. It follows

from (A.31) that W ∗iT (yi) > W ∗jT (ȳj , yi) for any ξT . Hence it must be that W0 > Wj0. This

clearly holds for both banks. To prove part (ii), suppose by contradiction that a symmetric

equilibrium exists: (W ∗1T , y
∗
1) = (W ∗2T , y

∗
2). Then, since y∗1 = y∗2 ,

ξ ≡ ξ
1

= ξ
2
, ξ̄ ≡ ξ̄1 = ξ̄2,

¯̄ξ ≡ ¯̄ξ1 = ¯̄ξ2 (A.37)

To conclude that this can not be part of an equilibrium of the strategic game played by the two

banks, it is enough to show that there exists a realization of the state of nature (the SPD) for

which the Nash equilibrium is not symmetric. So, consider any realization ξT in the interval

ξ̄ < ξT 6 ¯̄ξ; according to Equation (2.22) in Proposition 1, if WjT >W , the optimal response of

bank i is to default, WiT < W , whereas if WjT < W , the optimal response of bank i is not to

default, WiT > W . This contradicts the initial assumption that W1T = W2T can be part of an

equilibrium.

Proof of Corollary 2. The optimal value of the assets follows from (2.11), (2.12), (2.14), and

Lemma 1. The optimal value of the debt follows from: D∗iT = V ∗iT −W ∗iT − C∗iT .

Lemma 3. The state price density follows a Geometric Brownian Motion:

dξt
ξt

= −rdt− κdwt

Then, the following results hold:

Et
[
1{ξT6H}

]
= N (−dt(H)) (A.38)

Et
[
ξT1{ξT6H}

]
= ξte

−r(T−t)N (−d̄t(H)) (A.39)

Et
[
ξ

(γi−1)/γi
T 1{ξT6H}

]
= ξ

(γi−1)/γi
t e−Ai(T−t)N (−d̂it(H)) (A.40)
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where N (·) is the standard-normal cumulative distribution function and

dt(H) =
ln (ξt/H)−

(
r − (||κ||2/2)

)
(T − t)

||κ||
√
T − t

(A.41)

d̄t(H) = dt(H) + ||κ||
√
T − t (A.42)

d̂it(H) = d̄t(H)− ||κ||
γi

√
T − t (A.43)

Ai =

(
γi − 1

γi

)[
r +
||κ||2

2γi

]
(A.44)

Proof. The results follow from the conditional expectation of a log-normal random variable.

Proof of Proposition 3. To derive the optimal asset allocation we first compute the time t

value of the equity and of the assets:

W ∗it = Et
[
ξT
ξt

(W ∗iT + C∗iT )

]
(A.45)

V ∗it =
1

βi
Et
[
ξT
ξt

(W ∗iT + C∗iT ) + (1− βi)
ξT
ξt

(W −W ∗iT )1{ξT6ξ
i
}

]
. (A.46)

Specifically,

W ∗1t = e−r(T−t)
{
W1

[
1−N (−d̄t(ξ1

))
]
− z1(W1 − φ)

[
1−N (−d̄t( ¯̄ξ1))

]}
+ e−A1(T−t)(y∗1ξt)

− 1
γ1

{
N (−d̂1t(ξ1

)) + z
1− 1

γ1
1

[
1−N (d̂1t(

¯̄ξ1))
]}

, (A.47)

W ∗2t = e−r(T−t)
{
W2[1−N (−d̄t(ξ

2
))]−x2(W2−φ)[N (−d̄t( ¯̄ξ1))−N (−d̄t(ξ

2
))]−z2(W2−φ)[1−N (−d̄t( ¯̄ξ1))]

}
+ e−A2(T−t)(y∗2ξt)

− 1
γ2

{
N (−d̂2t(ξ

2
))+x

1− 1
γ2

2 [N (−d̂2t( ¯̄ξ1))−N (−d̂2t(ξ
2
))]+z

1− 1
γ2

2 [1−N (d̂2t(
¯̄ξ1))]
}

(A.48)

and

V ∗it =
W ∗it
βi
− 1− βi

βi

{
e−Ai(T−t)(y∗i ξt)

− 1
γiN (−d̂it(ξi))− e

−r(T−t)WiN (−d̄t(ξi))
}

(A.49)

Applying Ito’s Lemma on V ∗it = V ∗i (ξt, t), we obtain:

dV ∗it = (·) dt+

(
−ξt

∂Vit
∂ξt

κ

)
dwt. (A.50)

Equating the diffusion terms in (A.50) and (2.6), we obtain (2.35).

Proof of Proposition 4. Given the equilibrium default thresholds in (2.26), default probabili-

ties follow from Lemma 3.

Proof of Proposition 5. Results follow from Lemma 3.
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Proof of Proposition 6. Results follow from Lemma 3.

A.2 Benchmarks

A.2.1 Benchmark (a): No Cost of Default

CiT = 0 ∀ i ∈ 1, 2 (A.51)

Bank i’s problem. The representative equityholder of Bank i faces the following optimization

problem:

max
WiT

E[ui(WiT )] s.t. E[ξTWiT ] 6Wi0 (A.52)

where the static budget constraint obtains by substituting Vi0 = Wi0 + Di0, ViT = WiT + DiT

and Di0 = E[ξTDiT ] into E[ξTViT ] 6 Vi0.

Proposition 11. The optimal value of the equity is not affected by the leverage in place:

W a
iT = Ii(y

a
i ξT ) where yai =

(
e−AiT

Wi0

)γi
(A.53)

Bank i defaults when W a
iT < Wi:

Ii(y
a
i ξT ) < Wi ⇒ ξT > u′i(Wi)/y

a
i ≡ ξ

a

i
(A.54)

Proof. Special case of Proposition 2 where φ = λ = η1 = η2 = 0.

A.2.2 Benchmark (b): No Systemic Cost of Default

CiT =

{
0 if DiT = Fi
φ+ λ(Fi −DiT ) if DiT < Fi

∀ i ∈ 1, 2 (A.55)

Bank i’s problem. The representative equityholder of Bank i faces the following optimization

problem:

max
WiT

E[ui(WiT )] s.t. E[ξT (WiT + CiT (WiT ))] 6Wi0 (A.56)

where the static budget constraint obtains by substituting Vi0 = Wi0+Di0, ViT = WiT+DiT+CiT
and Di0 = E[ξTDiT ] into E[ξTViT ] 6 Vi0.
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Proposition 12. The optimal value of the equity is not affected by the leverage in place:

W b
iT =


Ii(y

b
i ξT ) if ξT 6 ξb

i

Wi if ξb
i
< ξT 6 ξ̄bi

Ii(y
b
ixiξT ) if ξT > ξ̄bi ,

(A.57)

where ybi solves

E
[
ξT (W b

iT (ybi ) + CiT (W b
iT (ybi )))

]
= Wi0 (A.58)

Bank i defaults when ξT > ξ̄bi .

Proof. Special case of Proposition 2 where η1 = η2 = 0.

A.3 Example of Multiple Equilibria

This section provides an example of multiple equilibria for the case of homogenous banks. As

highlighted by Corollary 1, all multiple equilibria are characterized by asymmetric optimal poli-

cies. Even though ex-ante identical, the two banks optimally choose different equilibrium asset

allocations. Proposition 13 characterizes the equilibrium. Figure A.1 illustrates.

Proposition 13. Consider two homogeneous banks. One of the asymmetric (multiple) equilibria

can be constructed as follows:

W ∗iT =



I(y∗i ξT ) if ξT 6 ξ
i

W if ξ
i
< ξT 6 ξ̄i

I(y∗i xξT ) if ξ̄i < ξT 6 ¯̄ξj
W if ¯̄ξj < ξT 6 ¯̄ξi
I(y∗i zξT ) if ξT >

¯̄ξi,

W ∗jT =



I(y∗j ξT ) if ξT 6 ξ
j

W if ξ
j
< ξT 6 ξ̄j

I(y∗jxξT ) if ξ̄j < ξT 6 ξ̄i
W if ξ̄i < ξT 6 ¯̄ξj
I(y∗jxξT ) if ¯̄ξj < ξT 6 ¯̄ξi
I(y∗j zξT ) if ξT >

¯̄ξi,

(A.59)

where y∗i and y∗j are such that

y∗i < y∗j < y∗j

(x
z

)
(A.60)

E
[
ξT (W ∗iT (y∗i , y

∗
j ) + CT (W ∗iT (y∗i , y

∗
j )))

]
= W0 (A.61)

E
[
ξT (W ∗jT (y∗j , y

∗
i ) + CT (W ∗jT (y∗j , y

∗
i )))

]
= W0 (A.62)

Proof. We present the steps to construct the asymmetric equilibrium posited in the Proposition.

Step 1. From part (i) we deduce that yi must be different from yj . If this is not the case,

the thresholds (ξ
i
, ξ̄i,

¯̄ξi) would coincides across banks, and WiT would be equal to WjT for any

realization of the SPD at time T except for the interval ξ̄ < ξT 6 ¯̄ξ, where either WiT > WjT or

WiT < WjT . This implies that the horizon equity of one bank would always be higher than the

one of the other. Since the two banks are endowed with the same initial wealth, one of the two

budget constraints can not be satisfied. Therefore, it must be that in equilibrium yi differs from
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yj , and w.l.o.g. we can assume that y2 > y1. Then, it follows that

ξ
2
< ξ

1
, ξ̄2 < ξ̄1,

¯̄ξ2 <
¯̄ξ1 (A.63)

Step 2. We impose restrictions on the thresholds (ξ
i
, ξ̄i,

¯̄ξi) for i ∈ {1, 2} to ensure that the final

horizon equity profile of one bank does not dominate the one of the other. Specifically, we impose

that ¯̄ξ2 > ξ̄1, thus inducing to the following ordering:

ξ
2
< min{ξ

1
, ξ̄2} < max{ξ

1
, ξ̄2} < ξ̄1 <

¯̄ξ2 <
¯̄ξ1 (A.64)

Without such restriction, it is straightforward to show that the final horizon equity of bank 1

would be higher than the final horizon equity of bank 2 in any possible state of the world.

Step 3. Finding the Nash equilibrium of the strategic game entails solving for the Nash equi-

librium for a given realization of ξT in the seven partitions of the state space. By combining the

banks’ best response functions in (2.22), we obtain that

• for the states ξT 6 ξ̄1 and ξT >
¯̄ξ2, the Nash equilibrium (in pure strategies) is unique and

such that W ∗1T >W ∗2T ;

• for the states ξ̄1 < ξT 6 ¯̄ξ2, the Nash equilibrium (in pure strategies) is multiple and such

that either W ∗1T > W ∗2T or W ∗1T < W ∗2T . However, only W ∗1T < W ∗2T can be part of the Nash

equilibrium of the strategic game, otherwise the final horizon equity of bank 1 would be

higher than the final horizon equity of bank 2 in all the state of the world, thus preventing

the banks’ budget constraints to be simultaneously satisfied.

Therefore, for each of the following seven partitions the equilibrium final horizon equities are

equal to:

W ∗1T W ∗2T

ξT 6 ξ
2

I(y1ξT ) > I(y2ξT )

ξ
2
< ξT 6 min{ξ

1
, ξ̄2} I(y1ξT ) > W

min{ξ
1
, ξ̄2} < ξT 6 max{ξ

1
, ξ̄2} W + [I(y1ξT )−W ]1{ξ

1
>ξ̄2} > W + [I(y2xξT )−W ]1{ξ

1
>ξ̄2}

max{ξ
1
, ξ̄2} < ξT 6 ξ̄1 W > I(y2xξT )

ξ̄1 < ξT 6 ¯̄ξ2 I(y1xξT ) < W
¯̄ξ2 < ξT 6 ¯̄ξ1 W > I(y2xξT )

ξT >
¯̄ξ1 I(y1zξT ) > I(y2zξT )

Step 4. The equilibrium constructed above exists providing that a consistent set of Lagrange

multipliers (y1, y2) exists. Consistent multipliers means that they have to satisfy the restrictions

imposed in Step 1 and Step 2. Note that the restriction in Step 2, ¯̄ξ2 > ξ̄1, implies that

α

y2z
>

α

y1x
⇒ y2 < y1

(x
z

)
(A.65)

where α solves the following equation[
u(W )− u(I(α))

] 1

α
+ I(α)−W + φ = 0. (A.66)
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Hence, the optimal Lagrange multipliers (y∗1 , y
∗
2) must satisfy the restriction

y∗1 < y∗2 < y∗1

(x
z

)
(A.67)

and make the budget constraints of the two banks binding

E [ξT (W ∗1T (y∗1 , y
∗
2) + CT (W ∗1T (y∗1 , y

∗
2)))] = W0 (A.68)

E [ξT (W ∗2T (y∗2 , y
∗
1) + CT (W ∗2T (y∗2 , y

∗
1)))] = W0 (A.69)
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for a given ξT

ξT 6 ξ
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*

Figure A.1 Example of a multiple Nash equilibrium with homogeneous banks



Appendix B

Insider Trade Disclosure

B.1 Proofs

Proof of Theorem 1. The following filtrations allows us to define a linear equilibrium, in which

both the trading strategy and the pricing rule are linear functions:

F = {F(t)}t>0 where F(t) = σ
(
y(s) : 0 6 s 6 t

)
G = {G(t)}t>0 where G(t) = σ

(
v
)
∨ σ
(
p(s) : 0 6 s 6 t

)
The objective of the insider trader is to maximize

max
{dx(t)}t

E[− exp{−AW (1)}] = max
{dx(t)}t

E
[
− exp

{
−A

∫ 1

0

(v − p(s))dx(s)

}]
(B.1)

given the dynamic of the conjectured pricing rule p(t) defined in Equations (3.7). This is a

Markovian stochastic control problem:1

J(M, t) = max
dx

Et[J(M, t+ dt)] (B.2)

m
− exp{−A [W (t) + V (M, t)]} = max

dx
Et[− exp{−A[W (t+ dt) + V (M, t+ dt)]}] (B.3)

m
1 = max

dx
Et[exp{−A[dW (t) + dV (M, t)]}] (B.4)

1Note that, because of the exponential function, Equation (B.4) is equivalent to the standard formu-
lation of the HJB equation,

0 = max
dx

Et[dJ(M, t)]
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Application of Ito’s Lemma allows us to identify the following dynamics:2

dW (t) = (v − p(t))dx(t) (B.5)

dM(t) = −λ̃(t)[dx(t) + du(t)] (B.6)

d〈M,M〉t = λ̃(t)2σ2
udt (B.7)

dV (M, t) = VMdM(t) +
1

2
VMMd〈M,M〉t + Vtdt (B.8)

= [2α̃(t)M(t)]dM(t) + [α̃(t)]d〈M,M〉t +M(t)2dα̃(t) + dδ̃(t) (B.9)

Note that [dW (t) + dV (M, t)] is random because of du(t), and hence normally distributed. Using

the first moment for log-normal distributions, we can rewrite Equation (B.4) as

1 = max
dx

exp
{
−A[Et[dW (t)+dV (M,t)]−A

2
Vart[dW (t)+dV (M,t)]]

}
(B.10)

= max
dx

exp

{
−A

[
dx

[
1−2α̃(t)λ̃(t)

]
M(t)+α̃(t)λ̃(t)2σ2

udt+dδ̃(t)+[dα̃(t)−A
2

4α̃(t)2λ̃(t)2σ2
udt]M(t)2

]}
(B.11)

with first-order condition (FOC) equal to

exp{·}
[
−A

(
1− 2α̃(t)λ̃(t)

)
M(t)

]
= 0 (B.12)

which implies that for any t ∈ [0, 1]

α̃(t)λ̃(t) =
1

2
(B.13)

Evaluating Equation (B.11) with the above optimal condition we get

1 = exp

{
−A

[
1

2
λ̃(t)σ2

udt+ dδ̃(t) +

[
dα̃(t)− A

2
σ2
udt

]
M(t)2

]}
(B.14)

which holds for every level of M(t) and A if and only if:

dα̃(t) =
A

2
σ2
udt (B.15)

dδ̃(t) = −1

2
λ̃(t)σ2

udt (B.16)

Given the equilibrium condition in Equation (B.13) and the dynamic of α̃(t), it follows that

dλ̃(t) = −Aλ̃(t)2σ2
udt (B.17)

Solving this differential equation:

λ̃(t) = (Aσ2
ut+ k)−1 (B.18)

2The differential d〈H,K〉t simply coincide with dH(t)dK(t) and represents the differential of the
quadratic variation process. Note that d〈x, x〉t = 0 because of order (dt)2.
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for some constant k. Moreover, since no utility can be gained after trading is complete, the

boundary condition δ̃(1) = 0 must hold. Therefore,

δ̃(t) =
σ2
u

2

∫ 1

t

λ̃(s)ds (B.19)

Following closely Back et al. (2000) we now define in the following Lemma the filtering

problem of the market maker.

Lemma 4. Assume the insider trader follow the linear strategy as in Equation (3.5) and let us

define V (t) = E[v|F(t)] and Σ(t) = Var[v|F(t)]. Then the following process

Q(t) =

∫ t

0

β̃(s)[v − V (s)]ds+ u(t) (B.20)

is a Wiener process on the market maker’s information structure F and it is called “innovation”

process for the market maker’s estimation problem. The differential

dQ(t) = β̃(t)[v − V (t)]dt+ du(t) (B.21)

is the unpredictable part of the total order flow. Moreover,

V (t) =

∫ t

0

β̃(s)Σ̃(s)

σ2
u

dQ(s) (B.22)

The market maker’s estimate of v is revised according to

dV (t) =
β̃(t)Σ̃(t)

σ2
u

dQ(t) (B.23)

Finally,

dΣ̃(t) = − [β̃(t)Σ̃(t)]2

σ2
u

dt (B.24)

Proof. This is an application of the Kalman-Bucy filter. See Kallianpur (1980, Sec. 10.3).

Comparing Equation (B.23) with Equation (3.7) we can easily conclude that

λ̃(t) =
β̃(t)Σ̃(t)

σ2
u

(B.25)

Given our linear choice space lims→1 p(s) = v, meaning that all the private information is

incorporated into prices at the end of the trading game, Σ(1) = 0. Hence, considering the
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conditional variance process specified in Equation (B.24), it follows that for every t ∈ [0, 1]

Σ̃(t) =

∫ 1

t

λ̃(s)2σ2
uds (B.26)

In order to have a closed-form solution for this equilibrium – in which all the equilibrium pa-

rameters are expressed in terms of the exogenous ones, {Σ(0), σ2
u, A} – let us substitute Equation

(B.18) in the expression for Σ̃(t) evaluated at t = 0, and solve for (the positive root of) k:

Σ(0) =

∫ 1

0

λ̃(s)2σ2
uds (B.27)

=

∫ 1

0

(Aσ2
us+ k)−2σ2

uds (B.28)

=
σ2
u

k(k +Aσ2
u)

(B.29)

⇓

k =

√
Σ(0)σ2

u(4 +A2Σ(0)σ2
u)−AΣ(0)σ2

u

2Σ(0)
(B.30)

Substituting this last expression back into Equation (B.18), we obtain through simple algebra

Equation (3.13).3 Similarly, evaluating the integral in Equation (B.26) and considering that

β̃(t) = λ̃(t)σ2
u/Σ̃(t), we get Equation (3.12) and (3.14) respectively. This complete the proof of

the theorem.

Proof of Theorem 2. We follow closely the Proof of Theorem 1. The information structure is

then represented by the following filtrations:

F = {F(t)}t>0 where F(t) = σ
(
y(s) : 0 6 s 6 t

)
∨ σ
(
x(s) : 0 6 s < t

)
F′ = {F ′(t)}t>0 where F ′(t) = F(t) ∨ dx(t)

G = {G(t)}t>0 where G(t) = σ
(
v
)
∨ σ
(
p∗(s), p(s) : 0 6 s 6 t

)
The objective of the insider trader is to maximize her expected utility over terminal wealth. The

3An alternative way to determine the equilibrium λ̃(t) is to express it as a function of λ̃(1) (instead
of k), and then solve the following system of non linear equations for the positive roots {λ̃(t), λ̃(1)}: λ̃(t) = λ̃(1)

1−Aσ2
uλ̃(1)(1−t)

Σ(0) =
∫ 1

0

(
λ̃(1)σu

1−Aσ2
uλ̃(1)(1−s)

)2

ds
(B.31)
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following dynamics allow us to characterize the stochastic control problem faced by the insider:4

dW (t) = (v − p(t))dx(t) (B.32)

= M(t)dx(t)− λ(t)d〈x, x〉t − λ(t)d〈u, x〉t (B.33)

= M(t)dx(t)− λ(t)d〈x, x〉t (B.34)

dM(t) = −γ(t)dx(t) (B.35)

d〈M,M〉t = γ(t)2d〈x, x〉t (B.36)

dV (M, t) = VMdM(t) +
1

2
VMMd〈M,M〉t + Vtdt (B.37)

= [2α(t)M(t)]dM(t) + [α(t)]d〈M,M〉t +M(t)2dα(t) + dδ(t) (B.38)

Note that, given dx, [dW (t) + dV (M, t)] is not random. Therefore,

1 = max
dx

exp

{
−A

[
dx
[
1− 2α(t)γ(t)

]
M(t) + (dx)2

[
α(t)γ(t)2 − λ(t)

]
+M(t)2dα(t) + dδ(t)

]}
(B.39)

The first-order condition (FOC) is

exp{·}
[(

1− 2α(t)γ(t)
)
M(t) + 2dx(t)

(
α(t)γ(t)2 − λ(t)

)]
= 0 (B.40)

Because the conjectured trading strategy of insider incorporates a random component, in equi-

librium she must be indifferent across all possible values of her trade, that is the FOC must

hold for any dx(t). The following equations characterize the two dissimulation conditions for any

t ∈ [0, 1]:5

1− 2α(t)γ(t) = 0 (B.41)

α(t)γ(t)2 − λ(t) = 0 (B.42)

Evaluating Equation (B.39) with the above optimal conditions we get

1 = exp
{
−A

[
M(t)2dα(t) + dδ(t)

]}
(B.43)

which holds for every level of M(t) and A if and only if α(t) and δ(t) are constant:

dα(t) = 0 (B.44)

dδ(t) = 0 (B.45)

Given the boundary condition δ̃(1) = 0 (no utility can be gained after trading is complete),

4Note that d〈u, x〉t = 0 since d〈Bu, Bz〉t = 0 (the two Brownian motion are assumed independent)
and dBudt is of order higher than dt, and that d〈x, x〉t 6= 0 because of the dissimulation component.

5An alternative way to solve for the equilibrium is to explicitly specify the conjectured trading strategy,
and maximize over β(t) and σz(t). Although with this formulation [dW (t)+dV (M, t)] becomes stochastic
because of the noise added to the informative component of the trading strategy, the two approaches
in terms of equilibrium conditions are equivalent. We prefer to leave the trading strategy unspecified
because it offers a more intuitive (and comparable to the discrete-time) explanation of the dissimulation
conditions.
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δ(t) = 0 for all t ∈ [0, 1]. Moreover, since α(t) is constant, by Equation (B.41) it must be the

case that also γ(t) is constant. The same holds true for λ(t) once considered Equation (B.42).

Therefore,

λ̂ =
1

2
γ̂ (B.46)

α̂ =
1

2
γ̂−1 (B.47)

where {γ̂, λ̂, α̂} denote the equilibrium values for {γ(t), λ(t), α(t)} respectively for all t ∈ [0, 1].

A simple application of Lemma 4 on both the filtration F and F′ allows us to characterize the

filtering problems faced by the market maker:

γ(t) =
β(t)Σ(t)

σ2
z(t)

(B.48)

λ(t) =
β(t)Σ(t)

σ2
z(t) + σ2

u

(B.49)

dΣ(t) = − [β(t)Σ(t)]2

σ2
z(t)

dt (B.50)

The optimal dissimulation component follows from λ(t) = (1/2)γ(t):

β(t)Σ(t)

σ2
z(t) + σ2

u

=
1

2

β(t)Σ(t)

σ2
z(t)

(B.51)

⇓
σ2
z(t) = σ2

u (B.52)

Given the constant drift for the conditional variance process,

Σ(t) = Σ(0)−
∫ t

0

γ(s)2σz(s)
2ds (B.53)

= Σ(0)− (γ̂2σ2
u)t (B.54)

for every t ∈ [0, 1], and given our linear choice space (lims→1 p
∗(s) = lims→1 p(s) = v), all the

private information is incorporated into prices at the end of the trading game: Σ(1) = 0. Then,

it follows that

γ̂ =
(
Σ(0)/σ2

u

) 1
2 (B.55)

All the other constants (β(t), λ(t), α(t)) are obtained through straightforward algebra. The

boundary condition σz(1) = 0 states that no dissimulation component is added to the trading

strategy at the last trading instant. This complete the proof of the theorem.

Proof of Proposition 7. Once the positive root of the polynomial in Equation (B.90) is deter-

mined, the sequential auction equilibrium is fully characterized for any number of auctions N .

It is straightforward to see that for ∆t → 0 the polynomial becomes of order two and the only

positive root λ is equal to
√

Σ(0)/4σ2
u. Since t ∈ [0, 1], then n = tN and the following limits (for
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∆t→ 0) hold true:

γn →
(
Σ(0)/σ2

u

) 1
2 (B.56)

Λ →
(
Σ(0)/σ2

u

) 1
2 (B.57)

βn → σuΣ(0)−
1
2 /(1− t) (B.58)

σ2
zn → σ2

u (B.59)

αn → 1

2

(
σ2
u/Σ(0)

) 1
2 (B.60)

Σn → (1− t)Σ(0) (B.61)

δn ≡ ln(ηn) → 0 (B.62)

Proof of Proposition 8: Σ(t)− Σ̃(t) > 0 and β̃(t)− β(t) > 0 imply respectively

A[Σ(0)]
3
2σu

[√
4 +A2Σ(0)σ2

u +
√
A2Σ(0)σ2

u(1− 2t)
]

(1− t)t

[2 + 2A2Σ(0)σ2
u(1− t)t]

> 0 (B.63)

AΣ(0)σ2
u +

√
Σ(0)σu

[√
4 +A2Σ(0)σ2

u − 2
]

2Σ(0)(1− t)
> 0 (B.64)

Straightforward algebra can show that these two inequalities hold true for any t ∈ [0, 1]. Using

the first result we can derive Ω(t) simply by dividing the l.h.s of Equation (B.63). The partial

derivative of Ω(t) with respect to the coefficient of risk aversion is equal to

∂Ω(t)

∂A
=

√
Σ(0)σ2

u

[
2 +A

√
Σ(0)σ2

u

√
4 +A2Σ(0)σ2

u(1− t) +A2Σ(0)σ2
u(1 + 2(t− 1)t)

]
(1− t)t√

4 +A2Σ(0)σ2
u

[
1 +A2Σ(0)σ2

u(1− t)t
]2

(B.65)

Straightforward algebra can show that this partial derivative is non-negative for any t ∈ [0, 1].

This proves part (i). Part (ii) and (iii) follow since

∂Ω(t)

∂Σ(0)
=

∂Ω(t)

∂A

A

2

1

Σ(0)
(B.66)

∂Ω(t)

∂σ2
u

=
∂Ω(t)

∂A

A

2

1

σ2
u

(B.67)

Finally, a simple application of Leibniz’s rule proves part (iv).

Proof of Proposition 9: Since λ̃(t) is decreasing over time,

∂λ̃(t)

∂t
= − 4AΣ(0)(√

4 +A2Σ(0)σ2
u +Aσu

√
Σ(0)(2t− 1)

)2 (B.68)

this means that λ̃(t) and λ(t) cross at most once in t ∈ [0, 1]. Moreover, since λ̃(1) is decreasing
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in the level of risk aversion,

∂λ̃(t)

∂A

∣∣∣∣
t=1

= −Σ(0)

2

(
1−

√
A2Σ(0)σ2

u

4 +A2Σ(0)σ2
u

)
(B.69)

then for any A > A∗, with A∗ = 3
[
2
√

Σ(0)σ2
u

]−1

, market liquidity is higher in an opaque market

for the trading sub-period [t∗, 1], with

t∗ =
AΣ(0)σu +

√
Σ(0)(4−

√
4 +A2Σ(0)σ2

u)

2AΣ(0)σu
(B.70)

Moreover ∂t∗/∂A < 0: this proves part (i). The aggregate liquidity loss is equal to

Ψa =

√
Σ(0)σ2

u

2
+

1

A
ln

(√
4 +A2Σ(0)σ2

u −A
√

Σ(0)σ2
u√

4 +A2Σ(0)σ2
u +A

√
Σ(0)σ2

u

)
(B.71)

Straightforward algebra can show that for any A > A∗∗ > A∗, with A∗∗ = 2
√

3
[√

Σ(0)σ2
u

]−1

,

the partial derivatives ∂Ψa/∂Σ(0) and ∂Ψa/∂σ2
u are both positive. This proves part (ii). Finally,

since Ψa is monotone increasing in A (∂Ψa/∂A > 0 for any level of A) and since Ψa(A∗∗) < 0

and limA→∞Ψa =
√

Σ(0)σ2
u/2, then there must exist a level A∗∗∗ > A∗∗ such that Ψa > 0 for

any A > A∗∗∗. This concludes the proof of the proposition.

Proof of Proposition 10. Given the monotonic transformation, T (x) = (1+x)/A, of the utility

function, as in Equation (3.39), the insider’s conditional utility at time zero (conditional on the

private information v) is given by

Π0 =
1

A
[1 + J(M, 0)] =

1

A

[
1− exp{−A[W (0) + α(0)M(0)2 + δ(0)]}

]
(B.72)

Substituting the equilibrium values of α(0) and δ(0) (Equations (3.30) and (3.31) respectively) into

Equation (B.72), we obtain Equation (3.46). Similarly, if we substitute α̃(0) and δ̃(0) (Equations

(3.15) and (3.16) respectively) into Equation (B.72), we obtain the expression in Equation (3.43).

Taking expectation with respect to the random variable M(0) ∼ N (0,Σ(0)) of Equations (3.43)

and (3.46), we obtain Equations (3.42) and (3.45) respectively:6

π̃0 =
1

A

[
1− Υ̃ exp{−AW (0)}

]
(B.73)

π0 =
1

A
[1−Υ exp{−AW (0)}] (B.74)

where

Υ̃ =
(

1 +A
(
AΣ(0)σ2

u +
√

Σ(0)σ2
u(4 +A2Σ(0)σ2

u)
))−1/2

(B.75)

Υ =
(

1 +A
√

Σ(0)σ2
u

)−1/2

(B.76)

6If w ∼ N (0,Σ), then

E[exp(w′Aw + b′w + c)] = |I − 2ΣA|
1
2 exp

[
1

2
b′(I − 2ΣA)−1Σb+ c

]
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It is easy to see that for any finite and positive A, Υ̃ < Υ, and hence that π̃0 > π0. Moreover,

we can conclude that ∂ (π̃0 − π0) /∂A 6 0 by the following factors: (i) @ a finite and positive

value of A such that ∂ (π̃0 − π0) /∂A = 0 ; and (ii) limA→0 ∂ (π̃0 − π0) /∂A = −(5Σ(0)σ2
u +

4
√

Σ(0)σ2
uW0)/8. Straightforward but computationally intense algebra confirms the result.

Solving the equation (Π̃0 −Π0) = 0 for M(0), we find:

M∗(0) = ±

√√√√(A√Σ(0)(σ2
u)3 + σ2

u

(
2 +

√
4 +A2Σ(0)σ2

u

))
log

(√
2+A2Σ(0)σ2

u+A
√

Σ(0)σ2
u(4+A2Σ(0)σ2

u)
√

2

)
Aσ2

u

(B.77)

hence Γ∗ = |M∗(0)|. Since

∂(Π̃0 −Π0)

∂M(0)

∣∣∣∣
M(0)=Γ∗

< 0

then we can conclude that for any Γ > Γ∗, Π0 > Π̃0. This and the sign of the partial derivatives of

Γ∗ with respect to (Σ(0), σ2
u, A) are again obtained through straightforward but computationally

intense algebra, that we prefer to omit.

B.2 Transparent Market Equilibrium in Discrete-time

Let v ∼ N (p0,Σ0). The informed trader has perfect information in the sense she observes at

t0 the liquidation value v. Let ∆xn be the order placed by the monopolistic insider trader at

the n-th auction. The aggregate order at the n-th auction by liquidity traders, who trade for

liquidity reasons, is denoted by ∆un. We assume ∆un ∼ N (0, σ2
u∆tn) ∀n, serially uncorrelated

and independent of v. Furthermore, let ∆yn be the total order flow observed by the market

maker in period n: ∆yn = ∆xn + ∆un. As in Holden and Subrahmanyam (1994) we denote with

W0 the initial wealth of the informed trader and with Wn the wealth at auction n. Moreover,

the informed trader has negative exponential utility, with risk aversion coefficient A, for terminal

wealth (denoted by WN+1):

U(WN+1) = − exp{−AWN+1} (B.78)

The information of the market maker is represented by a prior (pre-disclosure) and an up-

dating (post-disclosure) filtrations, denoted respectively by F and F′, whereas the information of

the informed agent is represented by a single filtration G:

F = {Fn}n>0 where Fn = σ
(
ym : 0 6 m 6 n

)
∨ σ
(
xm : 0 6 m < n

)
F′ = {F ′n}n>0 where F ′n = σ

(
ym, xm : 0 6 m 6 n

)
G = {Gn}n>0 where Gn = σ

(
v
)
∨ σ
(
pm, p

∗
m : 0 6 m < n

)
The monopolistic insider behaves strategically by choosing a G-mesurable function as opti-

mal trading strategy that maximizes her expected utility conditional on all public and private

information. Let J(Wn) denote the indirect utility from Wn.

Let ∆xn = Xn(Gn) represent the optimal strategy of the insider trader at the n-th auction,

and pn = Pn(Fn), p∗n = P ∗n(F ′n) the optimal strategies of the market maker before and after
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disclosure at that auction respectively. Then, let us define X = 〈X1, ..., XN 〉, P = 〈P1, ..., PN 〉
and P ∗ = 〈P ∗1 , ..., P ∗N 〉 as the vectors of strategy functions.

Definition 4. An equilibrium of the discrete-time trading game is defined as a triple (X,P, P ∗)

such that the following conditions hold:

1. Utility Maximization. For any n ∈ {1, ...N} and for any alternative trading strategy

X ′ = 〈X ′1, ..., X ′N 〉:

E
[
J
(
Wn+1(X,P, P ∗)

)∣∣∣Gn] > E
[
J
(
Wn+1(X ′, P, P ∗)

)∣∣∣Gn] (B.79)

2. Market Efficiency. For any n ∈ {1, ...N} the two prices are competitive:

pn = E[v|Fn] (B.80)

p∗n = E[v|F ′n] (B.81)

Given the definition of the equilibrium we restrict our attention on the class of linear equilibria.

In particular, we search for an equilibrium in which both the insider trader and the market maker’s

strategies are linear functions. Moreover, without loss of generality we consider auctions occurring

at equally spaced intervals ∆tn = ∆t = 1/N for all n.

Theorem 3. There exists a recursive linear equilibrium in which the constants βn, λn, γn, αn,

ηn, σ2
zn , and Σn characterize the following:

∆xn = βnMn−1∆t+ ∆zn (B.82)

Mn−1 ≡ v − p∗n−1 (B.83)

∆zn ∼ N (0, σ2
zn∆t) (B.84)

pn = p∗n−1 + λn∆yn (B.85)

p∗n = p∗n−1 + γn∆xn (B.86)

Σn = Var[v|F ′n] (B.87)

J(Wn) = −ηn−1 exp
{
−A

(
Wn + αn−1(v − p∗n−1)

2
)}

(B.88)

Wn = Wn−1 + ∆xn−1(v − pn−1) (B.89)

for all auctions n ∈ {1, ..., N}. Given the initial condition p∗0 = p0, and denoting with λ the

positive root of the following polynomial, that satisfy the SOC of the insider maximization problem

at the last trading round,

λ4
[
A2σ2

u(σ2
u∆t)

2
]

+ λ3
[
4Aσ2

u(σ2
u∆t)

]
+ λ2

[
4σ2

u

]
− λ

[
Aσ2

u∆tΣ0

]
− Σ0 = 0 (B.90)
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the constants λn, γn, αn, ηn, βn, σ
2
zn , Σn are given by

λn = λ (B.91)

γn = γ = 2λ +Aλ2σ2
u∆t (B.92)

ηn = 1 (B.93)

βn =

(
Λσ2

u

Σ0

)
N

N − n+ 1
(B.94)

σ2
zn = σ2

u

(
Λ

γ

)
N − n

N − n+ 1
(B.95)

Σn = Σ0
N − n
N

(B.96)

for all auctions n ∈ {1, ..., N}, and by

αn = (2γ)−1 (B.97)

αN = 0 (B.98)

for all auctions n ∈ {1, ..., N − 1}, where the constant Λ is defined as follows:

Λ = γ(1 +Aλσ2
u∆t)−1 (B.99)

Proof. We proceed by backward induction. Suppose that for constants αn and ηn

J(Wn+1) = −ηn exp
[
−A

(
Wn+1 + αnM

2
n

)]
(B.100)

We have then

J(Wn) = max
∆x

E[J(Wn+1)|Gn]

= max
∆x

En
[
−ηn exp

[
−A

(
Wn + ∆x(v − pn) + αnM

2
n

)]]
(B.101)

s.t.

{
pn = p∗n−1 + λn(∆x + ∆un)

p∗n = p∗n−1 + γn∆x
(B.102)

where ∆x denotes the control quantity of the insider trader at the n-th auction, and the two

constraints highlight the linear functional form of the conjectured pricing functions. Substituting

Equations (B.102) in (B.101), which clearly shows the strategic behavior of the insider, and

evaluating the conditional expectation for log-normal distributions, we obtain

J(Wn) = max
∆x
−ηn exp

{
−A
[
Wn + ∆x[1− 2αnγn]Mn−1 + (∆x)2

[
αnγ

2
n − λn −

1

2
Aλ2

nσ
2
u∆t

]
+ αnMn−1

]}
(B.103)

The first-order condition (FOC), where ∆xn denote the optimized value of ∆x for the above

expression, turns out to be

Mn−1[1− 2αnγn] + ∆xn[2αnγ
2
n − 2λn −Aλ2

nσ
2
u∆t] = 0 (B.104)

Since the conjectured trading strategy of the informed agent incorporates a random component

(the dissimulation part of the trade), it means that in equilibrium the insider must be indifferent

across all possible values of her trade, that is the FOC must hold for any ∆xn. This implies

that the following conditions (hereafter called dissimulation conditions) must hold for any n ∈
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{1, ..., N − 1}:

1− 2αnγn = 0 (B.105)

αnγ
2
n − λn −

1

2
Aλ2

nσ
2
u∆tn = 0 (B.106)

Note that, if these conditions are satisfied, both FOC and SOC hold.

In equilibrium the conjectured indirect utility must be correct. This means that αn−1 and

ηn−1 must be such that Equation (B.100) at time tn is equal to Equation (B.101):

−ηn−1 exp
[
−A

(
Wn + αn−1M

2
n−1

)]
= max

∆x
E[J(Wn+1)|Gn] (B.107)

When computing the expectation in the r.h.s. of the above expression we must take into account

that dissimulation of insider trading implies randomness in the insider trading strategy. In partic-

ular, J(Wn+1) contains linear and quadratic functions of two independent (normally distributed)

random components: ∆un and ∆zn. For this purpose let us consider the following lemma.

Lemma 5. Let X and Z be two independent normally distributed random variables: X ∼
N (0, σ2

X), Z ∼ N (0, σ2
Z). Then, if σ2

X(2a+ c2σ2
Z) < 1:

E
[
exp
(
aX2 + bX + dZ + cXZ

)]
= exp

(
Ξ

2Φ

)
1√
Φ

(B.108)

where

Ξ ≡ d2σ2
Z + σ2

X(b2 + 2dσ2
Z(bc− ad)) (B.109)

Φ ≡ 1− σ2
X(2a+ c2σ2

Z) (B.110)

If σ2
X(2a+ c2σ2

Z) > 1, the above expectation is not well-defined.

Proof. See Brunnermeier (2001, pag. 64).

Simple algebra leads to the following expression for the indirect utility at tn:

J(Wn) = −ηn
[
exp(−AQn)En

[
exp
(
an(∆zn)

2
+ bn∆zn + dn∆un + cn∆zn∆un

)]]
(B.111)

where 

Qn ≡ Wn + [βn(1− 2αnγn) + β2
n(αnγ

2
n − λn) + αn]M2

n−1

an ≡ −A(αnγ
2
n − λn)

bn ≡ −A[(1− 2αnγn) + 2βn(αnγ
2
n − λn)]Mn−1

dn ≡ AλnβnMn−1

cn ≡ Aλn

(B.112)

Using Lemma 5 and the two dissimulation conditions in Equations (B.105) and (B.106), we

find that α and η are constant over time until the second last auction. Therefore, since

αn = [2λn(2 +Aλnσ
2
u∆t)]−1 and αn−1 = αn ∀ n ∈ {1, ..., N − 1} (B.113)
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it follows that

γn−1 = γn ∀ n ∈ {1, ..., N − 1} (B.114)

2(λn − λn−1) +Aσ2
u∆t(λ2

n − λ2
n−1) = 0 (B.115)

which implies

λn−1 = λn ∀ n ∈ {1, ..., N − 1} (B.116)

Solving the maximization problem that the insider faces at the last trading round, in which

it is clearly optimal not to add any noise component to the order flow, we get as in Holden and

Subrahmanyam (1994) the following equations:

βN∆t = [λN (2 +AλNσ
2
u∆t)]−1 (B.117)

αN−1 = [2λN (2 +AλNσ
2
u∆t)]−1 (B.118)

ηN−1 = 1 (B.119)

Finally, Equation (B.91) follows from Equation (B.113) evaluated at second last auction and

from Equation (B.118). As in Huddart et al. (2001) market depth is constant over all trading

rounds. Moreover, since no utility can be gained after trading is complete, αN = 0 and ηN = 1.

Market efficiency conditions requires that pn = E[v|Fn] and p∗n = E[v|F ′n]. Simple application

of the projection theorem for normally distributed random variables confirms the linear pricing

rules specified in Equations (B.85) and (B.86), where the slope coefficients are respectively given

λn =
βnΣn−1

β2
n∆tΣn−1 + σ2

zn + σ2
u

(B.120)

γn =
βnΣn−1

β2
n∆tΣn−1 + σ2

zn

(B.121)

By the same theorem and using Equation (B.121) we find the expression for the conditional

variance:

Σn = Σn−1(1− γnβn∆t) (B.122)

Furthermore, simple algebra allows us to conclude that also γn is constant for any auction n ∈
{1, ..., N}.

Now, combining Equations (B.120) and (B.121) we can derive a convenient expression for βn:

βn = Λσ2
u(Σn−1)−1 (B.123)

where Λ is a constant defined in Equation (B.99). Substituting βn in Equation (B.122) we clearly

see that the conditional variance decreases at a constant rate:

Σn = Σn−1 − (γΛσ2
u∆t) (B.124)

= Σ0 − (γΛσ2
u∆t)n ∀ n ∈ {1, ..., N} (B.125)
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Since all the private information is incorporated at the end the trading game, ΣN = 0. Therefore,

0 = Σ0 − (γΛσ2
u∆t)N (B.126)

Σn = Σ0(N − n)/N ∀ n ∈ {1, ..., N} (B.127)

Equations (B.94) and (B.95) are obtained through straightforward algebra.

Finally, in order to obtain the optimal constant λ we need to solve the polynomial of degree

four in Equation (B.90), obtained by combining Equations (B.117), (B.118) and (B.127). Note

that any positive root satisfies the SOC of the insider maximization problem at the last trading

round: −2λ −Aλ2σ2
u∆t 6 0. This complete the proof of the theorem. Note that if we set A = 0

we obtain the same equilibrium as in Huddart et al. (2001), in which case the positive root of

the polynomial in Equation (B.90) is equal to
√

Σ0/4σ2
u.
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