
LBS Research Online

L Kang, S Walker, P Damien and D W Bunn
Bayesian estimation of electricity price risk with a multi-factor mixture of densities
Article

This version is available in the LBS Research Online repository: https://lbsresearch.london.edu/
id/eprint/2456/

Kang, L, Walker, S, Damien, P and Bunn, D W

(2022)

Bayesian estimation of electricity price risk with a multi-factor mixture of densities.

Quantitative Finance, 22 (8). pp. 1535-1544. ISSN 1469-7688

DOI: https://doi.org/10.1080/14697688.2022.2052165

Taylor & Francis (Routledge)
https://www.tandfonline.com/doi/abs/10.1080/146976...

Users may download and/or print one copy of any article(s) in LBS Research Online for purposes of
research and/or private study. Further distribution of the material, or use for any commercial gain, is
not permitted.

https://lbsresearch.london.edu/view/lbs_authors/200683.html
https://lbsresearch.london.edu/id/eprint/2456/
https://lbsresearch.london.edu/id/eprint/2456/
https://lbsresearch.london.edu/view/lbs_authors/200683.html
https://doi.org/10.1080/14697688.2022.2052165
https://www.tandfonline.com/doi/abs/10.1080/14697688.2022.2052165?journalCode=rquf20


Bayesian Estimation of Electricity Price Risk with a

Multi-factor Mixture of Densities

Li Kang∗, Stephen Walker†, Paul Damien‡and Derek Bunn§

Abstract

The risks in daily electricity prices are becoming substantial and
it is clear that improvements in price density forecasting can translate
into improved improved risk management. However, the specification
of the most appropriate price density function is challenging as the best
functional forms differ by time of day evolve over time, dynamically
respond to fluctuating exogenous factors such as wind speed and solar
irradiance. This research develops and tests a new flexible functional
form based upon the Gamma Mixture of Uniform (GMU) densities
which effectively avoids the choice of a particular density function and
has conditional moments specified as a function of the dynamic exoge-
nous drivers. Empirical testing shows that it outperforms the multi-
factor skewed student-t family of densities, previously advocated in this
context. Additionally, using Bayesian estimation the new methodology
provides a complete description of the uncertainty in the estimation of
the coefficients for those exogenous factors. Empirical testing on day-
ahead hourly electricity prices in the German market from 2012 to
2016, where renewable energy sources, such as wind and solar, play a
critical role in the formation of electricity price risk, validates the extra
accuracy of this formulation.
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1 Introduction

Electricity markets now exhibit high trading risks. There is the rapid tech-

nological switch to renewable generation together with a much greater con-

sumer engagement though solar panels, electric vehicles and smart energy

management systems. The effect of these has been to increase uncertainties

and hence price risk in the daily wholesale markets.This risk has been seri-

ous, and financial distress for both incumbent generators and new entrant

retailers has followed. For example, in Britain, over 60 retailers competed

for customers in 2017, but 19 of those failed to pay their trading charges in

2018 and had to exit the market, with even more (26) failing in 2021. In

most cases this was due to inadequate hedging of price exposures1. More

precise risk management evidently requires more precise estimations of the

price density functions; see, for example, (Brusaferri et al., 2019) who used

Bayesian deep learning to develop day-ahead probabilistic forecasts, whilst

(Canelas et al., 2020) show the advantages of reducing trading costs and

risk in the Iberian context with a more accurate forecasting specification.

Beyond the electricity context, it is becoming widely recognized that density

specifications for risk management could benefit from higher moment esti-

mations, with skewness and kurtosis often having crucial implications. For

example, four moments are used in asset portfolio optimizations (Jondeau

and Rockinger, 2006; Giesecke et al., 2014) and in option pricing models

(de Jong and Huisman, 2000; Borland and Bouchaud, 2004; Aboura and

1Insights: Defaults and SoLRs increased in 2018 by Emma Tribe in Elexon Insights,
https://www.elexon.co.uk/operations-settlement/balancing-and-settlement/trading-
charges/elexon-insights-defaults-solrs-increased-2018/)
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Maillard, 2016), whilst the imperative of Value-at-Risk compliance has re-

quired accuracy at the extreme quantiles of price returns. In general, this

higher moment requirement has led to the use of various four-parameter

distributions with the skewed student-t becoming rather popular.

Electricity is a good example of this need for higher moment specifica-

tions and furthermore requires conditional price densities where exogenous

factors, such as renewable generation, have explicit dynamic impacts on the

price density function. Several electricity price applications have used den-

sities whose first three or four moments have been functions of fundamental

exogenous factors, which are estimated from a general additive model (Seri-

naldi, 2011; Gianfreda and Bunn, 2018; Abramova and Bunn, 2020); this

is termed multi-factor models. Various density functions have been cho-

sen in those cases. However, the choice of the appropriate density function

is not straightforward with different densities performing best at different

hours of the day and with their relative performances changing over time.

Furthermore, as exogenous factors such as wind speed change, the densities

can alter dramatically with skewness, for example, flipping from positive to

negative under high winds. Our contribution is to resolve this density spec-

ification problem by developing a highly flexible formulation based upon a

conditional gamma mixture of uniform densities (GMU) which can evolve,

via dynamic estimation, to represent a wide range of densities as a function

of the exogenous drivers (such as wind speed). We benchmark our approach

against the best performing model in those previous electricity price appli-

cations, namely the skewed student-t family of densities, which the GMU

outperforms in terms of accuracy of the predictive price densities. Further-
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more, by using Bayesian estimation, we contribute by fully representing the

uncertainty in the coefficients for those driving factors which may be useful

in pricing partial hedging instruments such as parametric weather insurance

(e.g. on wind speed).

This research is closest to Hagfors et al. (2016) who model the German

day-ahead electricity prices via non-Bayesian models. Like us, they too

provide useful insights on how renewable energy sources, specifically wind,

impact the probability of negative prices and positive spikes. They show

that extremely high and negative prices have different drivers. Moreover,

the found that wind power is of particular relevance in relation to negative

price occurrences. Another interesting study (Benth et al. (2020)) uses a

multivariate Ornstein-Uhlenbeck process to hedge wind risk by modeling

wind indexes. However, unlike our research, their focus is on finding optimal

hedging strategies using exchange-traded wind power futures in a portfolio.

Our contribution is with a new multi-factor price density forecasting model

which has not previously been developed and which appears to outperform

current best practice.

The GMU was introduced by Kang et al. (2020), based on a simple

skew transformation that allows one to model varying levels of skewness

and tail behaviors. Denoting the four-parameter family of GMU densities

as Y ∼ GMU(µ, α, β, λ), where µ, α, β and λ are the location, kurtosis, scale

and skewness parameters, respectively, then, a member from this family has

probability density function f(y) given by:
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f(y) =
β sech(λ)

2(α− 1)
γ
{
r(y − µ, λ)

}
, (1)

where

γ(t) =
∫∞
t Γ(z|α− 1, β) dz and r(ξ, λ) = max

{
− ξ exp(λ), ξ exp(−λ)

}
.

Kang et al. (2020), using various parameter combinations, show that the

GMU is more flexible than the skewed student-t, the asymmetric Laplace

distribution, etc. Moreover, they show that the GMU includes, among oth-

ers, the Laplace and the normal distributions as special cases. While Kang

et al. (2020) showed that the GMU density outperforms several alternatives,

including the skewed-t, skewed-normal, asymmetric Laplace, etc., that re-

search did not address how, in a time series context, the conditional moments

of the GMU density could be estimated dynamically as functions of several

exogenous factors. The extension to a multi-factor GMU is one of the main

theoretical contributions in this paper, as well as demonstrating its applied

benefits in the electricity price context. The second theoretical departure is

that we implement a full Bayesian analysis for the resulting latent moment

model. A Bayesian approach is useful in risk estimation, since we can ob-

tain probability distributions for all the random parameters in the model,

as well as the consequent predictive distributions. We use the electricity

market setting, and German prices in particular, because that context has

provided previous developments on this class of methods against which we

wish to benchmark our multi-factor GMU approach. In this context, our

GMU family of densities outperforms, in terms of density risk estimation,
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the alternative approaches to electricity price risk. We demonstrate this

using the pinball loss function for the extreme quantiles.

In the next Section, we describe the practical context and the data.

Section 3 introduces the GMU family of multi-factor moment models; a

technical appendix detailing the MCMC algorithm is given in a supplemen-

tary file. Section 4 provides an empirical illustration. A brief summary is

given in Section 5.

2 German Electricity Price Densities and Dynamic

Factors

We apply and investigate the multi-factor GMU method to a time series

of hourly German electricity price data from 2012 to 2016. We chose the

daily peak and trough at 19:00 and 03:00 plus an intermediate midday, to

represent the range with three different types of hours. In this context, these

are a viable representation of the price data for all the hours in a day. Since

we wanted to do a direct comparison with previously published results, we

did not use data beyond 2016. It is the methodological comparison that is

the main objective of the research; even now many researchers are choosing

not to use recent data since the beginning of 2020 because of the pandemic

lockdowns, and their impact on the accuracy of the data. We set aside the

final 10% of the data as a validation data set, while the remaining were used

in the estimation phase.

The choice of German data was partly because it is one of the largest,

most liquid and actively traded wholesale power markets in the world, and
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partly because it has attracted some of the most innovative price modeling

research. One of the reasons it has attracted so much research on dynamic

factors is because it has been prominent in the energy transition to renewable

resources, particularly wind, and it has become evident (Gianfreda and Bunn

(2018)) that when hourly wind production is high it causes hourly price levels

to reduce, variance to increase and skewness to possibly flip from positive

to negative. When the wind drops, the reverse effects, typically, happen to

those moments. Thus, day-ahead wind forecasts are drivers of at least the

first three moments in the day ahead hourly price density predictions.

For example, consider Figure 1, in which are plotted the German hourly

price series in Euros/MWh for hour 12 during the years 2012 and 2016. Up

until around 2012, the power system was dominated by fossil fuels (mainly

coal and some gas) and the 2012 series exhibits periods of volatility cluster-

ing and positive spikes, typical of conventional power markets prior to the

renewable transition. Positive spikes occur during periods of high demand

and generation scarcity. In later years, the same power system operated

with increasing wind and solar facilities replacing the gas and coal. The

price evolution in the 2016 series shows that the underlying data density

could have positive or negative skewness, depending on the hour of day.

Negative spikes occur when there is too much wind generation, partly be-

cause of the subsidies received by the wind generators for generating and

partly because inflexible generators would prefer to pay to generate rather

than switch off and then on again in short succession. It is these dynamic

effects that motivated this modeling research.

These time series, as with the time series in most of the published re-
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Figure 1: Daily time series for electricity prices (Euros/MWh) for hour 12
in 2012 and 2016. Similar plots can be obtained for hour 3 and hour 19.
These are the time series data from 2012 to 2016 that are modeled in the
paper, using a Bayesian GMU and skewed student-t family of densities.

search on daily wholesale electricity prices, consist of prices for delivery of

power over hourly periods, established from competitive auctions at noon

on the previous days. Generators make offers, and retailers make bids, for

power for each hour of the following day, resulting in a set of 24 demand

and supply functions which go into the day-ahead auction. Their intersec-

tions determine the market clearing prices and these are displayed daily on

the power exchange website (EPEX SPOT, www.eex-group.com). From a

modeling perspective, two aspects of this process are important. Although

data are archived as a series of hourly prices, they are actually panels of 24

prices produced simultaneously at noon each day for the following day. So,

the time series is actually a daily series of a 24-hour vector. This means

that most modeling is done on a daily time series for specific hours (as in

Figure 1). The markets are transparent in their fundamentals, and so all

participants, prior to submitting their offers and bids each morning, will

have access to data such as latest prices, fuel prices, demand data, weather
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forecasts, wind and solar generation forecasts, recent generator availabil-

ity, transmission constraints, import/export of power, etc. This is a set of

exogenous factors which all participants can reasonably be assumed to con-

sider when formulating their individual bids and offers. The EU mandated

the creation of a Transparency Platform (https://transparency.entsoe.eu/)

to facilitate efficient trading across all member states and to limit the infor-

mation advantages that large players held.

In general, power prices are well understood in terms of their funda-

mental and stochastic drivers. Power price formation is influenced by tech-

nological specificities, economic activity, social behavior and public policy.

The underlying fuel commodities of gas and coal have been basic to pro-

duction, whilst demand and supply are fundamental to price-clearing and

operational constraints, as well as market conduct and regulatory interven-

tions make significant impacts. Hourly, daily and seasonal periodicities are

strongly evident in electricity demand, and these translate to some degree

into prices. These factors are known, but the density forms specifying their

interactions and dynamics remain active topics of research, especially with

respect to robust forecasting and density prediction. For example, Lucia

and Schwartz (2002), Knittel and Roberts (2005), Panagiotelis and Smith

(2008), Chen and Bunn (2010), Aı̈d et al. (2013), Weron (2014) and Benth

et al. (2015) show a range of fundamental formulations while De Vany and

Walls (1999), Haldrup and Nielsen (2006), Koopman et al. (2007), Bunn

and Gianfreda (2010), Escribano et al. (2011), Nan et al. (2014) advocate

various predictive models. Price distributions can also vary by time-of-day;

see, Damien et al. (2019) and Ekin et al. (2020). In terms of our focus,
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dynamic changes to skewness in particular are attracting attention, as they

have obvious implications for tail risks. Outside the power applications, re-

search on skewed distributions is vast and has found wide use in business,

economics and finance applications. In econometrics, one of the earliest

contributions was by Hinkley and Revankar (1977). Jones (2015) and Villa

et al. (2019), as well as many references therein, discuss several families of

skewed distributions and their applications.

Recognizing the relevance of complex features underlying energy price

formations, Gianfreda and Bunn (2018) developed a family of stochastic

latent moment models to better estimate the relationships of exogenous

factors on the first four moments of the price data densities. They use

their model to forecast the day-ahead price densities at various hours of

the day. Following comprehensive comparisons, using five different types

of skewed densities, EGARCH, and Quantile Regressions to model energy

prices, they showed that using a multi-factor skewed student-t distribution

for the electricity price data density resulted in superior overall performance.

The specific skewed student-t representation on which they base their general

multi-factor model is given by:

fY (y|µ, σ, ν, τ) = (2/σ)fZ1(z)FZ2(ω) y ∈ (−∞,∞) (2)

where−∞ < µ < ∞, σ > 0, −∞ < ν < ∞ and τ > 0. And z = (y − µ)/σ,

ω = νλ1/2z, λ = (τ + 1)/(τ + z2), fZ1 is the pdf of a t-distribution with

τ > 0 degrees of freedom and FZ2 is the cumulative distribution function

of a t distribution with τ + 1 degrees of freedom. The parameters µ, σ, ν, τ ,
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relating to the first four moments, were linear functions of exogenous factors.

Following this, Abramova and Bunn (2020) undertook an extensive com-

putational search of specifications to forecast the intra-day spread densities

between prices at different hours, again on German data. This was relevant

to the intra-day arbitrage trading of battery storage operators. They found

that while the multi-factor skewed-t was most often best, the choice is not

straightforward and other densities performed better at various hours.

Motivated by this, it is evidently desirable to move away from the partic-

ular density specification problem and to develop a formulation of the hourly

price densities as realizations of a general underlying parametric stochastic

process. The parameters of such a process should remain conditional on the

same fundamental exogenous factors, and we achieve this with a stochastic,

multi-factor moment model, using the GMU. We model the location (µ),

scale (β) and skewness (λ) of the GMU (see equation (1)) via stylized re-

gressions. In order to make a direct comparison with the three-moment,

multi-factor skewed-t, which performed best in Gianfreda and Bunn (2018),

we use a comparable set of factors in the linear regressions for each moment,

and also focus on the same three daily time series for hours 3, 12 and 19.

These hours were also selected, because they cover the entire spectrum of

prices in a 24-hour period subject, of course, to some variability.

Let yt denote the hourly electricity price for a particular hour on day

t. Then, yt−1 is the autoregressive component which would impact yt; most

researchers have found that an adaptive lag of one day to be significant

in power prices. The market clears with generator offers intersecting the

retailer bids. The retailer bid functions will depend upon their demand
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forecasts. Moreover, the generators will make offers that are an increasing

function of demand as more expensive units get called upon during peak

demand periods. So prices will depend upon demand forecasts. Demand is

usually inferred from electrical load measured on the system, and while load

data is fully transparent, demand forecasts are not. In the absence of load

forecasts, we follow a common practice in German price modeling of using

the load at the same hour on the previous day as proxy for the retailers’

forecast. Thus, the electricity wholesale load data (in thousands of MW) at

time t− 1, denoted loadt−1, would influence energy price formation at t. In

contrast to load, the system operators provide forecasts for wind and solar

generation (in thousands of MW), denoted fwindt and fsolart, respectively,

and these are available to the market prior to the price auction at time t.

Similarly, lagged prices of coal and gas, denoted coalt−1, gast−1, would also

impact prices at t. Finally, there is considerable practical evidence that

points to varying price formations on German holidays and weekends. To

incorporate this assumption, we add a dummy variable holt.

In order to get a sense of the flexibility of the density fits, Figure 2 shows

both the GMU and skewed-t density fits for the hours 3,12,19 in 2012 and

2016. Visually, the GMU looks to fit better, but we need to investigate

how the GMU conditional multi-factor model helps in better estimation, as

specified in the next section; indeed, we show that the GMU fit is superior to

the skewed-t, using pinball loss estimates of the extreme quantiles, as well as

the root mean square error. We note at the outset that the primary focus is

the Bayesian estimation of the parameters of the various regressions. These

estimates would help participants quantify the impacts on the electricity
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price densities of the exogenous factors in the German market, and thereby

evaluate price risk mitigations that could be achieved through hedging or

forecasting those factors better.

Figure 2: GMU and skewed student-t density fits for electricity prices (Eu-
ros/MWh) for hours 3,12,19 in 2012 (first row) and 2016 (second row). We
also fit the skewed student-t model to our data, since the benchmark model
of Gianfreda and Bunn (2018) uses this family of densities.

2.1 The GMU stochastic latent moment model

For the tth daily observation, let

yt ∼ GMU(µt, α, βt, λt). (3)

The likelihood function for n observations with latent variable, z, is given

by
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l(µt, α, βt, λt;y, z) =
n∏
t=1

βαt exp(−βtzt)
{exp(λt) + exp(−λt)}Γ(α)

[
zα−2t 1{zt ≥ r(yt−µt, λt)}

]
(4)

with

r(yt − µt, λt) = max
{
− (yt − µt) exp(λt), (yt − µt) exp(−λt)

}
.

To model the moments with dynamic factors, we denote µt, λt, 1/βt in

(4) with the following regressions, where the exogenous factors are the ones

described above:

µt = a1 + γ1yt−1 + b11holt + b12loadt−1 + b13fwindt + b14fsolart

+ b15coalt−1 + b16gast−1

(5)

βt = e−(a2+b21holt+b22loadt−1+b23fwindt+b24fsolart+b25coalt−1+b26gast−1) (6)

λt = a3 + b31holt + b32loadt−1 + b33fwindt + b34fsolart

+ b35coalt−1 + b36gast−1.

(7)

For the parameters in the above GMU model, the following proper pri-

ors that reflect diffuse beliefs were used. For all parameters in the mean

regression, (a1, b11, γ1, · · · b16), we used uniform prior distributions since the

likelihood function involves only the indicator function. For all the other

parameters (except a2) we took a standard normal prior. Finally, simpli-

fying terms in the above, we recognize that the density for a2 is gamma

distributed. Hence, a conjugate gamma(1, 1) prior was used.
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The posterior joint distribution, clearly, is not analytically tractable.

Hence, we use a Markov Chain Monte Carlo method, namely the Gibbs

sampler (Gelfand and Smith (1990)) to provide full inference. Without loss

of generality, a technical Appendix details the computational form of the

multi-factor model; this is provided as a supplementary file. The algorithm

was programmed in Python. The MCMC chain was run for 20, 000 itera-

tions with a burn-in of 10, 000. Standard MCMC diagnostics were used to

monitor convergence. In the interests of space, we only provide the Geweke

diagnostics in the supplementary file.

3 Data Analysis

We fit our Bayesian multi-factor GMU and the benchmark multi-factor

skewed student-t models to the data. The volume of output that the Bayesian

GMU analysis of these data yields is quite vast since for every hour in a 24-

hour cycle we can generate posterior distributions for all the parameters.

This becomes unwieldy very quickly. Hence, we present critical insights for

hours 3, 12 and 19 whose density estimate plots were shown in Figure 2. Our

main aim is to compare our GMU results with the best skewed student-t

model (equation (2)) from Gianfreda and Bunn (2018); these authors use

maximum likelihood estimation for their skewed-t model, and so we do the

same for our version of that model. (With non-informative priors, the Bayes

and MLE estimates of the skewed-t model for these data are approximately

the same.)
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3.1 Parameter Estimation

The factor coefficient estimation results are shown in Table 1. In each cell,

the left (right) sign corresponds to the GMU (skewed student-t) model.

This table contains the high-level summary of all the coefficients from the

GMU and skewed student-t latent moments model. (The corresponding full

posterior summaries for the GMU model are available on request.) The

results are consistent with expectations for most part. Note that yt−1 only

appears in the mean moment equation. Likewise, solar is zero in the morning

hours; hence there are no entries corresponding to this variable for Hour 3

in the table.

Hour 3 Hour 12 Hour 19

µ β λ µ β λ µ β λ

holt - − + + - − - − - + - − - − - − - −
yt−1 + + + + + +

loadt−1 + + - − + + - + - − - − - + - + + +

fwindt - − + + - − - − - + - − - − + − - −
fsolart - − - + - − - − - − - −
gast−1 + + + + - − + + + + - + + + + + - −
coalt−1 - − + + + + + + - + + + + + - − + +

Table 1: High level summary of signs for mean (µ), scale (β), and skewness
(λ) regressions: in each cell left (right) sign is from the GMU (Skewed
student-t) model. The GMU signs for the coefficients are from the Bayesian
algorithm developed in this paper, while the skewed student-t signs for the
coefficients were estimated using maximum likelihood as in Gianfreda and
Bunn (2018). We used our dataset from 2012-2016 to estimate the GMU
and skewed student-t models. Also, these estimates were based on 90% of
the data, since the last 10% were set aside for validation purposes.

The main result is that increasing both wind and solar production always

reduced the level and skewness of hourly prices across all three hours, as ex-

pected. Of course, solar does not impact price in hour 3. We also found, as
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expected, that price levels and skewness decline during holidays/weekends.

The lagged price coefficients in the mean equations are intuitively positive

given the known adaptive element in power market bids and offers. Similarly

the lagged load coefficients in the mean equations are positive, consistent

with increased demand forecasts driving up price levels. Intuition for higher

moment effects is not obvious and there may be interactions. Interactions

between the fuel prices, gas and coal, are well known from supply function

dynamics: coal and gas are direct substitutes and often switch in their power

market price setting roles according to their relative commodity prices. Dur-

ing the period 2012-2016, gas prices fluctuated whilst coal prices declined.

Higher gas prices increased electricity prices and volatility, as expected. The

coal effects are less straightforward. Thus, higher coal increased electricity

prices during the day, but reduced them at night. This may seem counter-

intuitive, the explanation being that higher coal prices put coal generation

on the margin, and as the marginal generators during the low demand pe-

riod (Hour 3), being inflexible, they will reduce their prices in order to avoid

being called off. Without going into further specific interpretations, how-

ever, the signs are generally plausible and consistent across the two methods.

Our main focus is upon the clear effect of wind and solar forecasts on the

day-ahead price skewness.

It is perhaps less relevant to compare the coefficients to those in Gian-

freda and Bunn (2018), although again they are broadly consistent. How-

ever, they used data from 2007 to 2011, whereas our time horizon is more

recently relevant, being 2012 through 2016. They estimated the kurtosis of

the various densities in their model but concluded that “intuitions regarding
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their [parameter] signs are equivocal, and the gains in fit are small.” We

agree since we also modeled kurtosis but found that the gains were non-

existent in terms of predictability. This should not come as a surprise, since

once the volatility and skew are modeled, they impact the peakedness of the

underlying data density as well. Since most of the discrepancies in the coef-

ficient signs between the two studies related to variance, the use of kurtosis

in their study would be an explanation. They also used CO2 as a covari-

ate and found that it was not as meaningful. Hence, we omitted it in our

model. Lastly, in the various comparisons they executed, they also fitted a

VAR component to the latent moments but they concluded that these mod-

els may result in over-fitting, despite their conceptual appeal. Nevertheless,

there is broad consistency between that study and ours, particularly on the

skewness effect. However, they do not model risk estimation via probabil-

ity forecasts and merit-order effects which we do. Thus, the above table

should be seen as a first step toward the overall goal of risk estimation from

a Bayesian perspective.

Out-of-sample Predictability As a quality test, we bench-marked predic-

tions from the GMU against the multi-factor skewed student-t model. As

noted earlier in the paper, we set aside the last 10% of the data for each of

the three hours discussed in this paper. Consider Table 2. It shows the root

mean square error (RMSE) for the validation data set, and the pinball loss

estimates at the 95th and 99th percentiles for Hours 3, 12 and 19. It is clear

that both from a point-forecast (RMSE) and a density quantile forecast the

Bayesian GMU outperforms the skewed student-t.

Convergence Tests. For the Bayesian GMU model, we monitored the
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convergence of the posterior distributions of the regression parameters using

trace plots and Geweke convergence diagnostics. In the interests of space,

we provide the latter in the supplementary file.

Hour RMSE Pinball Loss at the 95th and 99th Percentiles
GMU (Skewed-t) GMU (Skewed-t) GMU (Skewed-t)

3 6.92 (8.12) 5.03 (6.28) 5.23 (6.52)

12 9.89 (10.58) 4.13 (4.20) 4.22 (4.30)

19 12.63 (16.03) 7.84 (11.27) 8.14 (11.73)

Table 2: RMSE and Pinball Loss Comparison

3.2 Posterior distributions for the Merit-Order Effect

One of the advantages of the Bayesian approach in this application is that

it provides a complete quantification of the “Merit-order Effect (MOE)” in

electricity price formation. The MOE is the process by which fluctuations

in the available capacity of “inframarginal” generation translate into higher

price volatility. Since wholesale electricity prices are set by the market clear-

ing technologies, which have higher short-run marginal costs than the more

efficient (inframarginal) generators, changes in the inframarginal outputs

will cause the market clearing prices to change by much than their own in-

framarginal costs. Thus, fluctuations in the output of renewable facilities

such as wind, which have zero marginal cost (or negative if subsidies are

included) could translate to much higher price volatility if gas generation

is the marginal technology. From a statistical perspective, we are able to

fully quantify the MOE using the posterior distributions of the appropriate

parameters from our multi-factor GMU model. For the mean effects, Equa-

tion 5 provides these parameters which are essential inputs into many risk

19



management and hedging models. Thus, the commonly used “delta” hedg-

ing needs to know how price volatility may be reduced if the uncertainty

in one of the driving factors can be mitigated. For example, gas prices

can be hedged through financial options, or wind outputs through weather

derivatives. Equation 5 gives the effects on mean prices of such hedging and

thereby helps to value its risk mitigation. If such hedges are not available,

or too expensive, the coefficients from Equation 5 will at least indicate the

value of better forecasts of these factors.

The benefit of the Bayesian estimation is that we have posterior dis-

tributions for the factor parameters and this will allow more precise risk

mitigation valuations. Consider Figures 4, 5 and 6. These summarize with

boxplots the posterior distributions of the mean regression parameters for

Hours 3, 12 and 19, respectively. The parameters correspond to the variables

wind (b13), solar (b14), coal (b15) and gas (b16), respectively. Looking at Fig-

ure 5, for midday, we see the negative coefficients for wind and solar output

forecasts, as we saw in Table 1 and would expect from increased output. But

the new insight here is the slightly more negative and much less dispersed

effect of solar compared to wind. It is not obvious why the marginal effect of

wind output on prices should have a more dispersed posterior distribution

than solar, since they are both zero marginal cost, inframarginal technolo-

gies. The answer will likely be in the market specificities. In the German

case it will be due, at least in part, to the fact that wind resources are mostly

in the north and solar in the south, with transmission constraints particu-

larly on north to south transfers. Constraints will lead to higher prices in

a nonlinear way, and so we see the risk of a much more negative coefficient
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for wind compared to solar. An implication of this is that it might be more

effective to hedge (or improve forecasts for) solar compared to wind. Gas

is hedgeable with financial options and in Figure 6 we see the strong effect

of gas prices on the evening peak, since gas turbines generally provide the

peaking technology. The posterior distribution of the mean has some neg-

ative skewness and will therefore influence the hedging formulas, distinct

from the usual normality assumption.

Non-normality in the price risk itself, rather than in the mean, is how-

ever more thoroughly analyzed through inspecting the higher moments, es-

pecially the skewness via Equation 7. Figures 7 through 9 show, for example,

the posterior box plots for the coefficients of the skewness regression appear-

ing in Equation 7. Recall that in looking at midday in Figure 5, we observed

the slightly more negative and much greater dispersed mean coefficient effect

of wind compared to solar, whilst in Figure 8, again for midday, we have

extra insight into the greater dispersion of this wind coefficient. We see in

Figure 8 that the skewness coefficient is larger in absolute value for wind

than for solar. In other words wind fluctuations not only cause greater price

fluctuations than solar, but also a longer negative tail (higher risk of very low

prices). This is a manifestation of the transmission congestion in northern

Germany, where the wind resources are located, creating local excess supply

which can occasionally lead to extreme price cuts by inflexible generators

that need to stay running for technical reasons. This type of insight is one

of the merits of the Bayesian approach to better model the MOE, and has

practical value in quantifying the benefits of hedging the exogenous factors

(e.g. through wind derivatives).
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Figure 3: Hour 3 Boxplots for b13, b15, b16 from Equation 5

µb13 = -0.0004 µb15 = 0.0008 µb16 = 0.3188

sdb13 = 3.4257e−6 sdb15 = 0.0025 sdb16 = 0.0082

iqrb13 = 4.5325e−6 iqrb15 = 0.0039 iqrb16 = 0.01347

Figure 4: Hour 12 Boxplots for b13, b14, b15, b16 from Equation 5

µb13 = −6.9323e−5 µb14 = −7.2780e−5 µb15 = 0.1028 µb16 = 0.2738

sdb13 = 1.1790e−5 sdb14 = 4.8085e−6 sdb15 = 0.0017 sdb16 = 0.0070

iqrb13 = 1.6572e−5 iqrb14 = 6.8347e−6 iqrb15 = 0.0021 iqrb16 = 0.0083
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Figure 5: Hour 19 Boxplots for b13, b14, b15, b16 from Equation 5

µb13 = −0.0004 µb14 = −4.4298e−6 µb15 = 0.0559 µb16 = 0.6601

sdb13 = 3.1795e−6 sdb14 = 1.1978e−5 sdb15 = 0.0010 sdb16 = 0.0044

iqrb13 = 4.4156e−6 iqrb14 = 1.7251e−5 iqrb15 = 0.0012 iqrb16 = 0.0063

Figure 6: Hour 3 Boxplots for b33, b35, b36 from Equation 7

µb33 = −4.412e−6 µb35 = 0.005 µb36 = -0.0338

sdb33 = 3.145e−6 sdb35 = 0.0005 sdb36 = 0.0022

iqrb33 = 4.745e−6 iqrb35 = 0.0009 iqrb36 = 0.00368

23



Figure 7: Hour 12 Boxplots for b33, b34, b35, b36 from Equation 7

µb33 = −0.0001 µb34 = −9.971e−5 µb35 = -0.005 µb36 = 0.0501

sdb33 = 4.756e−6 sdb34 = 1.375e−6 sdb35 = 0.0004 sdb36 = 0.0011

iqrb33 = 6.941e−6 iqrb34 = 1.92e−6 iqrb35 = 0.0004 iqrb36 = 0.002

Figure 8: Hour 19 Boxplots for b33, b34, b35, b36 from Equation 7

µb33 = −3.179e−5 µb34 = −0.0002 µb35 = -0.00015 µb36 = -0.0135

sdb33 = 3.354e−6 sdb34 = 1.206e−5 sdb35 = 0.00031 sdb36 = 0.00107

iqrb33 = 3.709e−6 iqrb34 = 1.742e−5 iqrb35 = 0.00045 iqrb36 = 0.00111
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4 Summary and Conclusions

This research has been motivated by the recognition that the predictions of

higher order moments, skewness in particular, is finding increasing applica-

tions in financial engineering and risk analysis generally. Electricity prices

are an important example whereby the data densities of day-ahead prices

can flip between positive and negative skewness according to the weather

conditions for renewable power generation. The general problem with es-

timating latent stochastic moments, especially with exogenous factors, has

been the selection of appropriate density functions to represent the data.

That has been an issue for many years in GARCH-X modeling for volatility

and it is more recently emerging as an awkward consideration for stochastic

skewness. Recently, Kang et al. (2020) developed a novel gamma mixture

of uniform (GMU) densities that outperform various families of densities

including skewed student-t, skewed-normal, asymmetric Laplace, etc. We

advance the GMU family by estimating its higher stochastic moments, par-

ticularly skewness, in which the moments are conditionally dependent upon

several exogenous factors. We constructed a Bayesian version of the model

and used a Markov Chain Monte Carlo scheme for its implementation. Em-

pirical testing showed that it outperforms the multi-factor skewed student-t

family of densities, previously advocated in this context. Additionally, using

Bayesian estimation the new methodology provides a complete description

of the uncertainty in the estimation of the coefficients for those exogenous

factors. Empirical testing on day-ahead hourly electricity prices in the Ger-

man market, where renewable energy sources, such as wind and solar, play
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a critical role in the formation of electricity price risk, validated the ex-

tra predictive accuracy of this formulation, using the pinball loss function.

The posterior distributions of the exogenous factor parameters show non-

normality and can therefore provide more precise inputs to hedging models

for electricity price risk management. Indeed, using the Bayesian output, it

would be interesting to develop stylized stochastic optimization algorithms

to find optimal hedging strategies. We leave this for future research. In

conclusion, we believe the GMU methodology to model stochastic skewness

could prove useful in many potential applications in financial and commodity

risk estimations.
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