
LBS Research Online

Sirio Aramonte
Option pricing and portfolio choice
Thesis

This version is available in the LBS Research Online repository: https://lbsresearch.london.edu/
id/eprint/2461/

Aramonte, Sirio

(2009)

Option pricing and portfolio choice.

Doctoral thesis, University of London: London Business School.

DOI: https://doi.org/10.35065/PUB.00002461

Users may download and/or print one copy of any article(s) in LBS Research Online for purposes of
research and/or private study. Further distribution of the material, or use for any commercial gain, is
not permitted.

https://lbsresearch.london.edu/view/lbs_authors/712713.html
https://lbsresearch.london.edu/id/eprint/2461/
https://lbsresearch.london.edu/id/eprint/2461/
https://lbsresearch.london.edu/view/lbs_authors/712713.html
https://doi.org/10.35065/PUB.00002461


Option pricing and portfolio choice

by

Sirio Aramonte

A dissertation submitted to the University of London
for the degree of Doctor of Philosophy

Department of Finance
London Business School

University of London
c©2009

1



Declaration

The work presented in this dissertation is entirely my own.

Sirio Aramonte

2



a Tobias e Viviane

3



Abstract

The focus of this dissertation is on option pricing, in particular on the economic de-
terminants of option risk premia, and on the interaction between investor sentiment
and innovation in the context of technology diffusion. The first of the three chapters
empirically investigates whether macroeconomic uncertainty is a priced risk factor
in the cross-section of equity option returns. The analysis employs a factor model,
estimated with the Fama-MacBeth methodology, and the macroeconomic uncertainty
factor is based on options’ “excess” pricing errors on days immediately before sched-
uled macroeconomic announcements. I find that macroeconomic uncertainty is priced
in the cross-section of equity option returns, even after controlling for a large set of rel-
evant factors. In addition, introducing the macroeconomic uncertainty factor affects
the estimated risk premia on the market, the volatility of volatility and the volatility
of jumps. The results are robust to measurement error in stock and option prices, to
possible biases generated by the non-linearity of option returns and by non-randomly
missing returns, and to several methods of measuring macroeconomic uncertainty and
expected volatility. The second chapter studies how the interaction between techno-
logical innovation and investor sentiment affects firm-level investment and aggregate
productivity growth. When firms face the decision to adopt a new technology with
uncertain productivity, small scale experimentation is a direct way of obtaining infor-
mation useful to evaluate full-scale adoption. If such information is not appropriable,
a free-rider problem arises and the aggregate level of investment is sub-optimal. I hy-
pothesize that investor sentiment mitigates the effect of informational externalities,
which would make investor sentiment socially valuable in the context of technology
diffusion. I find that investor sentiment increases the effect of technological innova-
tion on investment for firms more susceptible to informational externalities, and that
investor sentiment also raises the impact of technological innovation on productivity
growth. The third chapter focuses on portfolio choice, investigating whether distribu-
tions implied in option prices can help reducing estimation error for expected returns,
given that the cross-section of option prices contains information about the moments
of expected returns that is not available in the underlying’s prices. I study the per-
formance of portfolio strategies based on option-implied distributions relative to that
of the robust 1

N
allocation rule, and I find that option-based models outperform the

1
N

strategy, especially with (limited) short-selling. Transaction costs are relatively
high for option-based strategies, and they reduce, but do not eliminate, the economic
significance of the results.
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Overview

The option pricing literature has, so far, mostly focused on explaining option

prices with reduced-form models, that characterize the distribution of observed re-

turns on the underlying and implicitly define investor preferences through the choice

of the risk-neutral distribution. As Bates (2003) notes, however, it is becoming in-

creasingly important to give clearer economic foundations to the differences between

the properties of observed asset returns and of returns implied by option prices.

The first chapter of my dissertation is a contribution to the growing literature

that addresses the point made by Bates. I study whether macroeconomic uncertainty

is a priced risk factor in the cross-section of equity option returns, and how its in-

clusion changes the risk premia on other factors, in particular volatility and jumps.

The analysis is based on a series of factor models, estimated with the Fama-MacBeth

methodology. The macroeconomic uncertainty factor is built using three results in

the literature. First, uncertainty about important economic variables is higher before

the release of economic news, and is rapidly resolved upon announcement. Second,

the implied volatility of equity options increases before scheduled releases and drops

afterwards. Third, this change is correlated with the implied volatility of options on

macroeconomic variables, which were traded between 2002 and 2007. The sensitivity

of options to macroeconomic uncertainty is estimated by studying the pattern of op-

tion pricing errors around announcement days, and the macroeconomic uncertainty

factor is a portfolio that buys options with the highest estimated sensitivity. The

analysis includes a large set of relevant asset- and option-pricing factors, and controls

for measurement error and hedging risk. The results show that macroeconomic un-

certainty is a priced risk factor for equity options, and this conclusion is robust to
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the effects of non-linearity of option returns with respect to some of the factors, to

alternative methods of estimating option sensitivity to macroeconomic uncertainty, to

calculating returns by selling at the bid and buying at the ask price, to adjustments

for non-randomly missing returns, and to alternative definitions of the expected objec-

tive volatility. The contribution of the macroeconomic uncertainty factor to expected

excess option returns is about 70% a year for option portfolios with a beta equal to

the median factor loading. This compares to 20-25% for the market factor. Including

the macroeconomic uncertainty factor reduces the risk premium on the market and on

the volatility of jumps, while it makes the premium on the volatility of volatility more

negative and significant. This suggests that it is important to identify the economic

foundations of the reduced-form sources of uncertainty that are commonly used in

option pricing.

The second chapter brings together the topics of technology diffusion and behav-

ioral finance. I study whether investor sentiment acts as a subsidy to investment

in new technologies, in particular for firms that are more likely to experience in-

formational externalities, and if such subsidy produces positive effects for aggregate

productivity growth. Early adopters likely generate informational externalities about

the productivity of a new technology, and this can create a free rider problem that

keeps aggregate investment below the social optimum. The resulting reduction in the

flow of information can delay the adoption of a valuable technology, or the rejection

of a less productive one, both of which generate a loss in productivity growth. In-

vestor sentiment can act as a subsidy to investment by reducing funding costs, and by

enticing managers to undertake investments that cater to investors’ optimism about

the new technology. The empirical analysis investigates how the interaction between

investor sentiment and technological innovation affects 1) firm-level investment, in

particular for firms that are more susceptible to informational externalities, and 2)

aggregate productivity. I find that the interaction has a positive effect on investment

for firms subject to informational externalities, and that it raises future aggregate

productivity growth. A one standard deviation increase in technological innovation

12



adds about 7% to the difference in the investment ratio between high/low capital in-

tensity firms if investor sentiment is higher rather than lower, as measured by changes

in sentiment at the top and bottom of the interquartile range. The effect of the same

increase in innovation on productivity growth, when changes in sentiment are at the

third quartile, is slightly more than 0.5%.

In Chapter 3, I solve a portfolio choice problem by estimating the distributions

of expected returns on cross-sections of option prices, to study whether the informa-

tion about higher moments that is implied in risk-neutral distributions improves the

precision of estimated expected returns. I obtain the corresponding objective distri-

butions by applying the empirical pricing kernel of Rosenberg and Engle (2002) and,

alternatively, by shifting the distribution to the right by adding the risk premium.

The second method allows to evaluate the portfolio choice implications of risk-neutral

skewness, which imposes a penalty on extreme weights by increasing expected losses.

The marginal distributions are joined using copula theory, and the comparison of the

performance of portfolios based on the normal and t copulas provides evidence on the

economic value of accounting for tail dependence. The results show that option-based

models outperform the 1
N

rule, especially with (limited) short-selling. Time-series

models, on the other hand, produce certainty equivalents that are consistently lower

than the näıve strategy’s. The wedge between option-based models and the 1
N

rule is

greater for three- rather than two-dimensional portfolios. Transaction costs are rela-

tively high for the strategies derived from options, and reduce, but do not eliminate,

the economic significance of the results.
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Chapter 1

Macroeconomic uncertainty and option
returns

This chapter benefited from the suggestions of Mike Chernov, Elroy Dimson, Vito Gala, Fran-
cisco Gomes, Christopher Hennessy, Oguzhan Karakas, Stephen Schaefer and Raman Uppal.
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1.1 Introduction

One of the best known empirical regularities of the Black-Scholes option pricing model

is the volatility smile, which is the expensiveness of out-of-the-money options relative

to at-the-money ones.1 A large part of the recent option pricing literature has tried

to explain this and other stylised facts, like the change in the shape of the volatil-

ity smile after the October 1987 crash, by relaxing the Black-Scholes assumptions

and incorporating additional sources of uncertainty, notably stochastic volatility and

jumps.2

The most common approach to building an option pricing model involves speci-

fying the distribution of the underlying asset’s returns and identifying the sources of

uncertainty that carry a risk premium. Priced sources of uncertainty have different

parameters in the objective and risk-neutral distributions. If the volatility of jumps

is priced, for instance, the risk-neutral jump volatility will not be equal to the ob-

jective one. This is the reason why differences between the estimated objective and

risk-neutral parameters are usually interpreted as risk premia.

During estimation, risk premia effectively act as free parameters that reconcile

any discrepancies between the objective and risk-neutral distributions. One impor-

tant consequence is that model misspecification can appear as a risk premium, and

specification tests are of primary importance (see Broadie, Chernov and Johannes

(2007)).

1 The Black-Scholes implied volatility is the volatility that makes the Black-Scholes price equal to
the market price of an option, for given stock price, interest rate, dividends, maturity and strike
price. The implied volatility curve is a plot of implied volatilities across different moneyness
levels, for options with the same maturity. The Black-Scholes model implies a flat curve, but
observed implied volatilities for out-of-the money options are higher, hence the name volatility
smile or smirk.

2 See Bakshi, Cao and Chen (1997), Bates (2003) and Benzoni, Collin-Dufresne and Goldstein
(2005).
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Econometric issues aside, a reduced-form approach to option pricing also poses

questions in terms of economic interpretation. The difficulty in reconciling standard

preferences, option returns and option holdings probably reflects the need for mod-

els that explicitly take into account frictions in financial intermediation, like agency

problems in portfolio delegation (Driessen and Maenhout (2007)). The economic

mechanisms that drive the sources of uncertainty in reduced-form models are also not

fully specified. The volatility of expected returns, for instance, can be generated by

the interaction between the asset’s return volatility and uncertainty about the value

of a state variable (David and Veronesi (2002)). Option prices may also depend on

the microstructure of option markets (Jameson and Wilhelm (1992), Bates (2003),

Gârleanu, Pedersen and Poteshman (2007)) and on market segmentation (Pan and

Poteshman (2006)). Bates (2003, p.399) clearly emphasizes the need for a sharper

focus on the economic fundamentals behind the differences between the objective and

risk-neutral distributions:

To blithely attribute divergences between objective and risk-neutral prob-

ability measures to the free “risk premium” parameters within an affine

model is to abdicate one’s responsibilities as a financial economist.

This paper examines the contribution of macroeconomic uncertainty to equity

option returns. In particular, I study the effect that time-varying uncertainty about

the current value of macroeconomic variables has on option returns.3 The focus is not

on the time-series relation, that is if an increase in macroeconomic uncertainty trans-

lates into higher option prices and positive returns. Instead, I investigate whether

the sensitivity of option returns to one particular source of uncertainty - macroeco-

3 Defined as holding returns: rt−1,t = opt.pricet−opt.pricet−1
opt.pricet−1
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nomic - explains the cross-section of equity option returns, which would imply that

macroeconomic uncertainty is a priced risk factor.

Let us consider two examples to clarify the meaning of “macroeconomic uncer-

tainty”. The release of the official figures for August 1999’s employment situation in

the U.S. was scheduled on September 3, 1999. Referring to the pre-announcement

day, the Financial Times wrote:4 “Interest rate worries returned to ambush global eq-

uity markets, as investors nervously anticipated today’s US employment numbers [...].

Recent economic data have reawakened fears that the US Federal Reserve will have

to move to raise interest rates again shortly”. The following day, the same newspa-

per reported: “The smaller-than-expected increase in US job creation last month [...]

and the lower-than-expected increase in hourly earnings [...] was seen as reducing the

likelihood of a rise in US rates [...]”.5

More recently, in September 2008, the Financial Times linked heavy stock market

losses to the fact that “[...] labour market data heightened concerns that today’s crucial

non-farm payrolls report might be weaker than expected [...]”.6

Clearly, in both cases investors were uncertain about the current state of the

employment situation, and its implications for future growth prospects. Even if in

one case the economy was in a phase of robust expansion, and in the other it was

on the brink of a recession, uncertainty about macroeconomic fundamentals had an

equally significant impact on asset prices.

Returning to the empirical analysis presented in this paper, I proxy for unobserv-

able macroeconomic uncertainty with a factor that sorts options on the basis of their

4 “Rate fears cast shadow ahead of jobs data”, September 3, 1999.
5 “Shares jump on bid news and US jobs report”, September 4, 1999.
6 “Worries over financial sector weigh on equities”, September, 5, 2008.
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pricing errors, measured on days immediately before scheduled macroeconomic an-

nouncements, and normalized with respect to pricing errors on non pre-announcement

days (see Section 1.3.3). I find that this factor explains the cross-section of option

returns, and results are robust to a large set of additional relevant factors, alterna-

tive ways of measuring macroeconomic uncertainty, and I account for potential biases

due to non-randomly missing returns, measurement error, the non-linearity of op-

tion returns, and non-linearity in the relation among factors. The macroeconomic

uncertainty factor is built in three steps. First, I identify days when macroeconomic

uncertainty is higher. Second, I find options that have unusual pricing errors on

such days - they likely are more sensitive to macroeconomic uncertainty. Finally, I

form a factor mimicking portfolio that buys options with the highest sensitivity to

macroeconomic uncertainty.

These steps deserve further discussion. The existing literature suggests that

macroeconomic uncertainty is likely higher before a scheduled macroeconomic an-

nouncement. Several authors have shown that asset prices react quickly to the release

of economic news (see Section 1.2.2), which is consistent with a rapid resolution of

uncertainty. Beber and Brandt (2008) report that the implied volatility of options

on macroeconomic variables,7 which is likely very correlated with macroeconomic un-

certainty, explains the reduction of stock implied volatilities after scheduled releases

of economic news. More precisely, the higher the implied volatility of options on

macroeconomic variables, the more substantial the drop in equity options’ implied

volatilities. While it is possible that uncertainty is partially reduced as the announce-

ment approaches, because information may be leaked, the results in the literature

7 Economic Derivatives, that were marketed between 2002 and 2007.
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suggest that a large component is still resolved upon announcement. In addition, one

of the robustness checks in the empirical analysis involves choosing different combi-

nations of days to measure uncertainty.

As for the second step, the proxy for macroeconomic uncertainty is based on

Black-Scholes pricing errors, to focus on the price component that is not explained

by fundamental variables like the underlying stock price, interest rates and time to

maturity. The choice of using Black-Scholes pricing errors, rather than those from a

more flexible model, is to make sure that the effect of macroeconomic uncertainty is

not unduly captured by one of the additional moments and risk premia. To avoid,

however, that the macroeconomic uncertainty factor proxies for other variables, the

empirical analysis includes a large number of relevant factors, like stochastic volatility,

jumps and higher moments.

Third, the factor mimicking portfolio only buys options with the highest sensitiv-

ity to macroeconomic uncertainty, rather than also selling those with a low one, to

avoid picking up the effect of inventory management by market makers. More specif-

ically, market makers may be reluctant to fully accommodate a significant increase in

the demand of options that are exposed to a specific risk factor, when such risk fac-

tor increases. Given that market makers are typically long equity options (Gârleanu,

Pedersen, Poteshman (2009)), they may tend to reduce the price of an option to dis-

courage investors from selling, which in turn may dampen the increase in price due

to higher uncertainty. In fact, I provide evidence that the probability of a negative

return increases when changes in trading volume are associated to a relatively large

number of macroeconomic announcements. This implies that the measured sensitivity

may be lower than the true one, and that the factor I use in the empirical analysis is
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a conservative measure of macroeconomic uncertainty.

In a recent paper, Anderson, Ghysels and Juergens (2007) find that aggregate

uncertainty, proxied by the dispersion of forecasts from the Survey of Professional

Forecasters, helps to explain market returns and the cross-section of expected stock

returns. While the theoretical framework is similar, there is one important difference

between their work and mine. I look for the effect of macroeconomic uncertainty on

option returns beyond the effect it has on stocks, because this provides useful informa-

tion about why options are non-redundant securities. If investors were able to attain

payoffs across states of high/low macroeconomic uncertainty by either buying options

or replicating options with stocks, then the effect of macroeconomic uncertainty on

options would be routed only through the underlying stock, and macroeconomic un-

certainty would not explain the cross-section of option returns after controlling for

the exposure of the underlying stocks.

Before discussing the empirical implementation and the results in detail, I review

the relevant literature in Section 1.2. Section 1.3 presents the empirical methodology,

describes the data and discusses test assets and factors. Section 1.4 analyses the

results, Section 1.5 focuses on the robustness checks and Section 1.6 concludes.

1.2 Related literature

1.2.1 Uncertainty about state variables and asset pricing

The macroeconomic uncertainty factor is built by analyzing option prices around an-

nouncements about the current, unobservable, value of the Consumer Price Index,
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the Employment Situation, Real Earnings, the Producer Price Index and Productiv-

ity and Costs. These variables are usually considered important indicators of the of

the state of the economy. The often-cited8 “misery index”, for instance, is the sum

of the unemployment and inflation rates, and variables related to income and pro-

ductivity are also used as proxies for the business-cycle (Stock and Watson (1989)).

Macroeconomic uncertainty can then be interpreted as uncertainty about the current

value of state variables, and this subsection reviews the literature on the asset pricing

implications of uncertainty about unobservable state variables.

There are several ways through which the unobservability of a state variable makes

its way into asset prices, starting with heterogenous beliefs. Buraschi and Jiltsov

(2006), for example, build an option pricing model where uncertainty and hetero-

geneous beliefs affect option trading volume and generate an asymmetric volatility

smile. They test several implications of their model with a Difference in Beliefs index,

which is based on survey data, and find that it helps to explain the volatility smile,

future realized volatility, and violations of the Black-Scholes bounds on option deltas

(∆ ∈ [0, 1] for calls and ∆ ∈ [−1, 0]).

Learning about the process of the unobservable state variable also affects prices

and volatilities, like in David and Veronesi (2002). Investors try to learn the current

value of the dividend drift, which follows a two-state regime-switching model with

time-varying uncertainty about the true value, and the learning process itself gen-

erates stochastic volatility and stochastic correlation between returns and volatility.

As a result, David and Veronesi (2002) can generate asymmetric smiles, whose slope

is sometimes positive. Guidolin and Timmermann (2003) focus on a model where

8 “The return of the misery index”, New York Times, September 12, 2008.
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dividend news evolve according to a binomial lattice with unobservable probabilities.

Investors use Bayes’ rule to update their estimates, and the resulting dynamics gener-

ate skewed volatility smiles and a non-constant term structure of implied volatilities.

Veronesi (2000) studies a Lucas economy where investors don’t observe the output

growth rate, but receive a noisy signal. He finds that the risk premium can be lower

for higher uncertainty levels. The reason is that dividend realizations affect both ex-

pectations and the hedging demand for stocks, especially if the signal is very noisy.

The correlation between consumption and returns is smaller for a less precise signal, in

which case the risk premium is lower. Veronesi (2000) also finds that the correlation

between expected returns and volatility depends on the level of uncertainty, which

suggests a reason why the empirical evidence on the time-series relation between the

conditional mean and volatility of stock returns is mixed (e.g., Whitelaw (1994)).

It is also possible that Knightian uncertainty and model mis-specification enter

directly into investors’ preferences. In this case the price of risk is generally higher,

equity holdings are smaller and precautionary savings increase (Hansen, Sargent and

Tallarini (1999), Cagetti, Hansen, Sargent and Williams (2002), Maenhout (2004)).

Investors may prefer portfolio allocations that are skewed towards assets whose re-

turn distribution is subject to relatively small ambiguity (Uppal and Wang (2003)).

Liu, Pan and Wang (2005) derive option pricing implications of uncertainty aversion

toward rare events, for which model specification and estimation are intrinsically dif-

ficult. They are able to reproduce the volatility smirk because options, and especially

out-of-the-money puts, are very sensitive to rare events.
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1.2.2 Economic news and asset prices

The contribution of my work is to examine the relation between macroeconomic un-

certainty and the cross-section of option returns, and it is clearly linked to the litera-

ture on the effect that news about economic fundamentals have on asset prices. The

overall conclusion is that stocks, bonds and options react quickly to macroeconomic

news. McQueen and Roley (1993) focus on stock prices, for which the effect varies

across the business-cycle, with “good” news increasing prices only when the economy

is weak. Balduzzi, Elton and Green (2001) examine the interdealer market for Trea-

sury bills and bonds, finding evidence of strong and rapid price effects. Andersen,

Bollerslev, Diebold and Vega (2003)) study the foreign exchange market, showing

that announcement surprises generate conditional mean jumps. The work of Edering-

ton and Lee (1996) and Beber and Brandt (2006,2008) is especially relevant for my

analysis, because they focus on the relation between macroeconomic news and option

prices. Ederington and Lee (1996) examine the markets for Treasury bonds, Eurodol-

lar and Dollar/Deutsche Mark options. The effect of macroeconomic news depends

on whether the release is scheduled or not. In the first case implied volatilities drop,

but rise for unscheduled releases. Beber and Brandt (2006) study bond options, too,

finding that implied volatilities always decrease after announcements, irrespective of

whether the content is unexpectedly positive or negative for the economy. The behav-

ior of higher moments, however, depends on the unexpected information brought by

the announcement. Beber and Brandt (2008) derive a measure of macroeconomic un-

certainty by computing the implied volatility of options on macroeconomic variables,

and directly test whether the drop in implied volatilities after scheduled releases is

related to macroeconomic uncertainty. The results show that higher uncertainty does
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lead to sharper declines.

1.2.3 Microstructure and demand effects in option pricing

The empirical analysis discussed in Section 1.3 includes a series of controls to account

for demand and microstructure effects on option prices. Option market-makers ab-

sorb the net demand of investors and, because imperfectly hedged imbalances expose

them to the risk of losses, prices may reflect the strength of the underlying demand,

especially for options that are inherently more difficult to hedge, like those with high

gamma or vega.9 The empirical literature supports this hypothesis: Figlewski and

Webb (1993) find that a large short-interest in the underlying stock increases the im-

plied volatility of puts, but not calls, which is consistent a demand effect. Jameson and

Wilhelm (1992) report that option spreads are increasing in gamma. Net demand also

helps to explain excess implied volatility, especially for options that are more difficult

to hedge (Bollen and Whaley (2004), Gârleanu, Pedersen and Poteshman (2009)).

1.3 Empirical implementation

The analysis of the contribution of macroeconomic uncertainty to the cross-section of

option returns is based on a factor model, which is estimated with the Fama-MacBeth

methodology. This setting imposes little structure on the data, and reduces the po-

tential for model misspecification problems, which can attribute risk premia to factors

that are actually not priced (Broadie, Chernov and Johannes (2007)). Test assets are

9 Gamma is the second derivative of the option price with respect to the underlying price. Vega
is the first derivative of the option price with respect to volatility.
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portfolios of options (as defined in Section 1.3.2), and weekly holding returns10 are

defined as:

rit =
OPi

t −OPi
t−1

OPi
t−1

(1.1)

where OPi
t is the price of option i at time t. The return on a particular option

portfolio, A, is the equally weighted return of all the options that belong to it at time

t− 1:

rA
t =

1

#At−1

∑
i∈At−1

rit (1.2)

The first step of the Fama-MacBeth method consists in estimating the sensitiv-

ity of portfolio returns to a set of factors, using time-series regressions (first-stage

regressions):

rkt − r
f
t = α1,k +

n∑
i=1

βi,kfi,t + εk,t,∀k (1.3)

where rkt is the weekly return on asset k and fi,t is one of the n factors.

The cross-sectional (second-stage) regressions determine the extent to which differ-

ences in the estimated factor sensitivities explain asset returns:

rkt − r
f
t = α2,t +

n+m∑
j=n+1

λj,tContj,t +
n∑
i=1

λi,tβ̂i,k + εk,∀t (1.4)

where Contj,t are controls for measurement error and hedging risk, to be defined later

in this paragraph.

The risk premium on factor f is estimated as the time-series average of the coefficients

10 Measured on Tuesdays, following Coval and Shumway (2001).
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from the T cross-sectional regressions:

λ̂f =
1

T

T∑
t=1

λ̂f,t (1.5)

I use holding returns, rather than hedged returns, for two reasons. First, the

computation of hedged returns requires the choice of an option pricing model to

form hedging portfolios, which creates a potential source of misspecification. Second,

hedging portfolios need to be rebalanced frequently in order to maintain replicating

accuracy, typically every day, and with daily rebalancing measurement error and

non-synchroneity have a higher impact on observed returns. The main reason why

option prices are measured with noise is that Optionmetrics, the source for option

data, only reports the daily bid-ask spread, and the true option price may not the

bid-ask midpoint, as it is commonly assumed. Non-synchroneity arises because the

database does not include information on the exact time of the trade, which may have

taken place at any time during the day. The consequence is that a daily return may

actually be a “eveningt−1 to morningt” or a ”morningt−1 to eveningt” return. By

taking weekly returns the noise generated by measurement error and non-synchroneity

is a smaller proportion of the overall return variability. I also address the issue of

measurement error by including controls in second stage regressions: the relative

option bid-ask spread, given that measurement error is likely proportional to the

spread, and the underlying stock’s relative bid-ask spread, because measurement error

in the stock price is by definition fed into the option’s. Two additional controls are

the option’s log-vega and log-gamma, as proxies for the hedging risk borne by option

market-makers, and the underlying stock’s exposure to macroeconomic uncertainty
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(its beta from time-series regressions). All controls are median t− 1 portfolio values.

Using a factor model to study option returns gives an advantage in terms of ro-

bustness, but it also requires to carefully account for one characteristic of option

returns, namely their non-linearity in the returns of the underlying security and in

factors that affect the underlying. As Broadie, Chernov and Johannes (2008) note,

non-linearity may bias the coefficients of linear models. I take non-linearity into ac-

count in three ways. First, I use fractional polynomial regressions to study the relation

between returns and factors, and among factors, and then I include non-linear terms

in the Fama-MacBeth regressions when necessary. Second, I estimate cross-sectional

regressions with Weighted Least Squares to account for the heteroskedasticity (re-

turns on out-of-the-money options are more volatile than returns on in-the-money

ones). Third, the analysis is based on option portfolios, rather than individual op-

tions. One of the characteristics used to sort options into portfolios is moneyness,

which means that the sensitivity of option returns to returns in the underlying tends

to be quite homogeneous, minimizing the impact of non-linearity (see Section 1.3.2

for more details).

Finally, a simulation confirms that, when accounting properly for non-linearity

by including squared terms and moneyness dummies, the Fama-MacBeth procedure

accurately estimates factor risk premia.

1.3.1 Data description

Daily option bid-ask prices, together with additional variables like option volume,

stock prices and interest rates, are from OptionMetrics, which covers all U.S.
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exchange-traded index- and equity-options. The Fama-French, momentum and

Pastor-Stambaugh liquidity factors, and stock bid-ask spreads are from CRSP. In-

tradaily returns on the Dow Jones Industrial are from Global Financial Data, while

the VIX series is from the Chicago Board of Options Exchange. VIX is a daily index

of implied volatility, based on S&P500 option prices, and is often used as a proxy for

expected market volatility. Days of scheduled releases for the Consumer price index,

the Employment situation, Real earnings, the Producer price index and Productivity

and costs are from the Bureau of Labor Statistics. The sample includes 11.5 years,

from January 1996 to June 2007.

As is customary with option data, I apply a series of filters to eliminate illiquid

prices and recording errors. Table 1.1 shows the average number of monthly observa-

tions, by year, before and after the filters. The database grows substantially between

1996 and 2007, with a temporary reduction after 2000, and it includes almost 390

million entries. OptionMetrics provides an option identifier (optionid) which should

be uniquely assigned to a single option contract. This is not always the case, so I

define a new identifier that merges optionid and the suffix of the option symbol. This

reduces but does not eliminate identifiers with more than one entry on a given date,

and I drop all the observations that can not be uniquely identified. The requirement

of non-zero trading volume eliminates many observations, but it is important to have

option prices that reflect information from a recent transaction, which is not the case

without trades on the day. I also drop observations where either the ask or the bid

price is zero, and those with a bid greater than the ask. I only keep options on com-

mon stocks and with standard settlement (e.g., investors are sometimes able to deliver

securities other than the underlying). All equity options have American exercise, but
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I delete those with a missing exercise style flag because additional data fields may be

incorrectly recorded. The remaining sample size is about 16% of the total, with more

than 60 million observations.

1.3.2 Option portfolios

In this section I explain how option portfolios are formed, then present the summary

statistics of their holding returns, and finally discuss the effect of non-linearity on the

coefficients of time-series OLS regressions.

Definition of option portfolios

While many option pricing studies have focused on index options, mainly because of

data availability and market liquidity, I have decided to use equity options. The reason

is that stock characteristics are useful to create dispersion in options’ sensitivities to

macroeconomic uncertainty. In addition, returns on equity options do not embed

a substantial compensation for jump risk, which minimizes the possibility that the

macroeconomic uncertainty risk premium proxies for jump risk premium. Size and

book-to-market are a common way of sorting stocks in asset pricing studies, because

they are well-known sources of empirical regularities. Such sorting may be helpful

in my case, too, because Barinov (2007) shows that the value effect is related to

the real option nature of growth stocks, which makes them particularly sensitive to

uncertainty. OptionMetrics, however, is not representative of CRSP, especially in

terms of firm size, so I sort options on the basis of the underlying’s sensitivity to the

three Fama-French factors, given that Hml and Smb are strictly related to the book-

to-market and size effects. Sensitivities are computed by regressing daily stock excess
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returns on the Fama-French factors for each year from 1995 to 2006, and stocks are

then sorted into beta tertiles for each factor (Pmkt,Psmb,Phml=1,2,3 - 3 being the

highest-sensitivity tertile). The sorting based on year t’s betas applies to year t+ 1.

Options are also sorted into portfolios on the basis of the following contract char-

acteristics: moneyness, maturity and put/call type. Moneyness should be especially

useful to create dispersion in the sensitivity to macroeconomic uncertainty, because

several authors have linked the effect of uncertainty about state variables to the

volatility smile (Buraschi and Jiltsov (2006), David and Veronesi (2002) and Liu, Pan

and Wang (2005)). In particular, letting K be the strike price and S the stock price,

I sort options into five moneyness categories:

MonDummyt =



Put
1
2
3
4
5

Call
5
4
3
2
1

−0.200 < ln(K/St−1) ≤ −0.100
−0.100 < ln(K/St−1) ≤ −0.025
−0.025 < ln(K/St−1) ≤ 0.025
0.025 < ln(K/St−1) ≤ 0.100
0.100 < ln(K/St−1) ≤ 0.200

In addition, options with time to maturity between 15 and 90 calendar days at time

t−1 are assigned to MatDummy=1, while those with 90 to 360 days to maturity belong

to MatDummy=2. Options that do not fall into a moneyness and maturity category

are discarded.11 Excluding deep out-of-the-money/in-the-money and very long/short

maturity options may create concerns of sample selection. Generally speaking, it is

quite common to apply criteria aimed at reducing econometric problems due to outliers

and at eliminating thinly-traded options. Studies that use tick data sometimes focus

on options that trade in a specific minute of the day (Constantinides, Jackwerth and

11 I also drop options if the bid-ask spread is smaller than the tick size (see Goyal and Saretto
(2007)), if the underlying pays dividends during the week, and if the stock price is below 1 dollar.
I censor the sample of individual option returns at 0.5% and the sample of option portfolios
returns at 1% on both tails. I have tried several other symmetric and non-symmetric cutoffs,
without altering the conclusions.
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Perrakis (2009)). The simulation results I present in Section 1.5.6 are based on the

sample selection criteria described above, and show that my variables of interest are

accurately estimated.

To summarize, individual equity options are sorted into portfolios using six char-

acteristics: three related to the underlying (sensitivity to the market, Smb and Hml

factors) and three related to the option contract (maturity, moneyness, put/call type),

and the sorting is based on the value of the characteristic in year t− 1 (for the Fama-

French sensitivities) or in week t− 1 (for moneyness and maturity).

Return statistics

Table 1.2 shows summary statistics for option portfolios’ weekly holding returns,

averaged across different portfolio characteristics. Sorting by moneyness produces

the most evident pattern, with out-of-the-money options earning more than 7% a

week, and in-the-money ones losing almost 10%. Short maturity options and puts

also lose about 1.2% and 2.5%, while long maturity options earn 0.79%. Sorting

across stock characteristics does not produce a clear-cut pattern. Options on stocks

with low sensitivity to the market and Hml lose slightly more than 0.5% a week,

and those with medium sensitivity to Hml gain about 0.80%. Interestingly, the mean

return for portfolios of options with average factor-sensitivity is always greater than

for portfolios with a high/low sensitivity, although the statistical significance is weak,

with the exception of Hml, as noted above. The distributions of returns are mainly

positively skewed, and their kurtosis is only slightly above 3, although it is about 7

for portfolios on stocks with high sensitivity to the market and to Hml.

As discussed in Section 1.3, option returns are non-linear in returns on the un-
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derlying and in factors that affect returns on the underlying, like the market. To

gauge the effect of such non-linearity on the coefficients of a time-series OLS regres-

sion, Figures 1 and 2 plot returns on a call and a put option portfolio against market

returns. Both portfolios have high sensitivity to the market, low sensitivity to Hml

and Smb, short maturity, and include at-the-money options, for which non-linearity

is more pronounced (at-the-money options have a large gamma).

Figure 1.1 shows returns on the portfolio of call options, together with two re-

gression lines. One is calculated from standard OLS, while the other is computed

by weighing down observations that generate non-linearity. More specifically, obser-

vations corresponding to the bottom 25% of market returns receive a weight of 0.25

in the Weighted Least Squares regression, rather than 1. The reason for doing so is

apparent in the leftmost portion of Figure 1. When call options are at-the-money,

high market returns (routed through returns on the underlying stock) translate into

higher option returns. On the other hand, low market returns do not generate cor-

respondingly low option returns, because the value of a call option rapidly goes to

zero. Indeed, Figure 1 shows that the relation between option returns and market

returns is almost a flat line for low market returns, while it is positively sloped for

high returns. By weighing down the bottom 25% of market returns, I can evaluate

the impact of non-linearity on the estimated market beta. The plot suggests there is

a slight difference in the estimated slopes, with the market beta being larger when

non-linearity is accounted for. More in detail, the standard OLS regression gives a

market beta equal to 9.52 and an intercept of -0.0036, while Weighted Least Squares

estimates the slope at 9.97 and the intercept at -0.0077. The percentage difference

between the betas is less than 5.0%.
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Figure 1.2 repeats the analysis described above for the put option portfolio. In

this case non-linearity is generated by high market returns, because the price of a

put option quickly declines toward zero, so the weight of 0.25 applies to observations

with market returns in the last quartile. Standard OLS estimates are equal to -10.15

for the market beta, and -0.031 for the intercept. In the case of WLS, beta is equal

to -10.79 and the intercept to -0.037, giving a percentage difference of less than 6.0%

between the betas.

1.3.3 The macroeconomic uncertainty factor

The proxy for unobservable macroeconomic uncertainty is built by exploiting the

pattern of option prices around days of macroeconomic announcements.

The starting point is that, before scheduled releases, uncertainty about the value

of macroeconomic variables is relatively high. There is concurring evidence about this,

as discussed in Section 1.2.2. Stock, bond and option prices react quickly to macroe-

conomic announcements, which suggests a resolution of uncertainty immediately after

the release of economic news. Furthermore, Beber and Brandt (2008) and Savor and

Wilson (2008) analyse, respectively, the behavior of equity implied volatilities and in-

terest rates around macroeconomic announcements, and infer that investors increase

their hedging activity before scheduled announcements, which is also consistent with

higher uncertainty.

Secondly, options that are more sensitive to macroeconomic uncertainty should be

relatively more expensive before an economic release is made, consistently with pricing

the higher macroeconomic uncertainty. Beber and Brandt (2008) provide evidence
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of this price effect, studying the relation between the implied volatility of options on

macroeconomic variables, which is likely correlated with unobservable macroeconomic

uncertainty, and the implied volatility of equity options around scheduled releases of

economic news. They find that higher implied volatilities from macroeconomic options

are associated with larger reductions in equity options’ implied volatilities after the

release of news.

Lastly, I identify options that have unusual prices on days before macroeconomic

announcements, and I form a portfolio that goes long such options. To define which

options have unusual prices, I first of all normalize option prices by taking out the ef-

fect of fundamental variables like the underlying price, interest rates, time to maturity

and strike price. In other words, I compute pricing errors to isolate the component

that is not explained by these variables. I do so by using the Black-Scholes formulas,

because more complex models may proxy for macroeconomic uncertainty with one of

the additional moments and risk premia. Of course, there is the possibility that the

macroeconomic uncertainty factor proxies for variables omitted in the Black-Scholes

model, and this is the reason why the Fama-MacBeth regressions include a large set of

relevant asset- and option-pricing factors, like stochastic volatility, jumps and volatil-

ity of jumps. After calculating the Black-Scholes residuals, I compute the difference

between pricing errors on the day preceding a macroeconomic announcement and the

median pricing errors on all other days. Options that are in the highest quintile of

this difference are at the basis of the macroeconomic uncertainty factor (EU).
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Detailed definition of the macroeconomic uncertainty factor

First, I compute pricing errors (PE) for all options, on each day:

PEi,t =
SBSi,t − BSi,t

OPi,t

(1.6)

where BSi,t is the option’s Black-Scholes price computed with the expected objective

volatility, SBSi,t is the Black-Scholes price computed with OptionMetrics’ implied

volatility12 and OPi,t is the option’s bid-ask midpoint. I then calculate the daily

PE for each option portfolio, PEp,t, as the median PEi,t of all the options belonging

to p. Next, I collect scheduled announcement dates for the Consumer price index,

the Employment situation, Real earnings, Producer price index and Productivity and

costs. For each option portfolio, in each quarter, I define the Excess PE (EPE) as the

difference between the median PE on pre-news days and the median PE on normal

days. More precisely, the EPE for portfolio p in quarter q is:

EPEp,q = P̄E
pre-news
p,q − P̄E

normal
p,q (1.7)

where P̄E
pre-news
p,q is the median PE on days immediately before (i.e., t− 1) scheduled

news releases, and P̄E
normal
p,q is the median PE on non pre-announcement days.

I then sort option portfolios into quintiles on the basis of their EPE,13 and the EU

factor is the median return of the high EPE quintile. The reason why I do not build

the factor mimicking portfolio as a long/short position is that inventory management

by option market makers may partially offset the price effect of macroeconomic uncer-

12 This implied volatility is calculated using a binomial tree based on the Cox-Ross-Rubinstein
model. See the OptionMetrics Data Reference Manual for more details.

13 The sorting in quarter q applies to quarter q + 1.
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tainty. Specifically, when a risk factor increases, market makers may not wish to fully

accommodate the incremental demand for options that expose them to such factor,

because imperfect hedging increases the risk of unexpected losses. On average, mar-

ket makers have positive holdings of equity options (Gârleanu, Pedersen, Poteshman

(2009)), so they may reduce the price of an option to discourage investors from sell-

ing, which in turn may dampen the increase in price due to higher uncertainty. The

implication is that the lowest EPE quintile may contain options whose true sensitivity

to macroeconomic uncertainty would place them in higher quintiles, and this would

make EU a noisier proxy for macroeconomic uncertainty. Of course, this issue holds

true even when the EU factor is defined as the return on the highest EPE quintile,

but it works against finding the results that I present in Section 1.4. Consistently

with an inventory management effect, Table 1.3 shows that the probability of a nega-

tive return increases when changes in trading volume are associated with a relatively

high number of macroeconomic announcements. More in detail, the table shows odds

ratios from probit models in which the dependent variable is a dummy equal to 1 if

the residual of a regression of option returns on the following factors is negative: Mkt,

Mkt2, Smb, Hml, Hml2, Vix, Vix2, Vixv, Skew, Put, Putv and EU (see Section 1.3.4

for definitions). The independent variables are the weekly percentage change in the

average trading volume of all options, the number of macroeconomic announcements

in the week, and their interaction. The odds ratio of interest is for the interaction,

and to be consistent with an inventory management effect it must be greater than

one. The reason is that market makers, on average, have a positive holding of eq-

uity options, so a string of events that generate uncertainty (announcements) coupled

with an increase in demand from investors (proxied for by the change in trading vol-
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ume) should increase the probability of price reductions (i.e., negative returns) to

keep investors from selling. Interestingly, market makers have larger holdings of calls

(Gârleanu, Pedersen, Poteshman (2009)), and the odds ratio is greater for calls than

for puts, while the odds ratio is also large and significant for at-the-money options,

which are relatively difficult to hedge (they have a high gamma).

Alternative definitions of the macroeconomic uncertainty factor

The definition of the macroeconomic uncertainty factor deserves further discussion.

First of all, there is the question of how to determine the volatility used to compute the

Black-Scholes price. The main results are based on a trailing 30 days volatility, while

the robustness checks section shows results based on alternative definitions: 1) trailing

30 days volatility, similar to the base case but the current day is excluded to make

sure that volatility does not contain more recent information than the option price

(which can be the case if the option stops trading before the stock); 2) trailing 30 days

volatility, where zero stock returns are dropped, to avoid that pricing errors reflect

trading liquidity in the underlying stock;14 3) for options belonging to MatDummy=1

(=2), the volatility realized in the two (seven) months following the day when the

pricing error is calculated, to make sure that the difference in pricing errors across

maturity does not reflect expectations about the term structure of volatility. Figure

1.3 shows the term structure of implied volatility for call and put options belonging

to different moneyness categories. The implied volatility of equity options is not very

different from the corresponding objective volatility, unlike for index options, so the

term structure of the implied volatility should be a good proxy for the term structure

14 The calculation includes the latest 30 non-zero returns from the previous 50 days.
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of the expected objective volatility. The term structure is calculated by normalizing

the implied volatility of an option with the implied volatility of the longest maturity

option on the same underlying, with the same strike price and of the same put/call

type, as long the longest maturity is between 200 and 250 days, and then taking

the median for each maturity across moneyness categories and put/call type. The

figure shows that the volatility term structure flattens substantially after about one

month but, for in- and out-of-the-money options, the short term implied volatility is

noticeably higher.

Second, the assumption held so far is that macroeconomic uncertainty is relatively

higher on the day before a macroeconomic announcement is made. In addition, the

pricing error on a pre-announcement day is normalized by subtracting the median on

all other days. It is possible, however, that uncertainty is partially resolved as the

day of the release approaches, and that the normalizing pricing errors incorporate

a significant amount of macroeconomic uncertainty, given that there is more than

one announcement per quarter. To address these points the EU factor is also built by

computing pricing errors 1) two days before scheduled announcement and normalizing

them with the median pricing errors on non pre-announcement days; 2) one day before

announcements and normalizing them with the pricing errors on the announcement

day. In additional robustness checks, meant to isolate the uncertainty generated by

individual announcements, the factor is built by only considering announcements that

are three and seven days apart.
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Properties of the macroeconomic uncertainty factor

The composition of the high EPE quintile, in terms of option portfolio characteristics,

is examined in Figure 1.4. For each characteristic, the table shows the proportion of

portfolios that belong to the high EPE quintile, across the values of the characteristic.

The clearest pattern is across moneyness, with out-of-the-money options belonging

more often to the high EPE quintile, and the proportion declining monotonically as

moneyness increases. There is no difference across maturity, while put options are

only slightly more likely than calls to be in the high EPE quintile. The sensitivities

of the underlying stocks to the Fama-French factors show an interesting pattern, with

options on stocks with medium sensitivities belonging to the top quintile.

To better understand its properties, it can be useful to compare the EU factor to

other macroeconomic variables and to alternative measures of aggregate uncertainty.

Figure 1.5 shows the quarterly average of the residuals from regressing EU on a

set of other factors, namely Mkt, Smb, Hml, Vix, Vixv, Skew and Put (see Section

1.3.4), plotted together with the end-of-quarter level of the S&P 500, of the Industrial

capacity utilization index, and with an index of dispersion of analyst forecasts. The

figure shows residuals, rather than the EU factor itself, because the way it is computed

means that EU contains the effect of variables omitted by the Black-Scholes model,

in addition to macroeconomic uncertainty. The factor spikes between 2001 and 2002,

and is relatively high in 1997 and early 2000. It is interesting to note that in early

2000 the robust economic growth of the late 1990s was about to come to an end,

while in 2002 the economy started to pick up again (the NBER identifies the through

in the last quarter of 2001). This suggests that macroeconomic uncertainty is higher

when the growth trend of the economy turns from positive to negative, but also
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when it turns from negative to positive. The first panel of Figure 1.5 shows the EU

residuals together with the level of the S&P 500 index, and it is apparent that, with

the exception of the very beginning of the sample, macroeconomic uncertainty does

rise when the S&P 500 is entering phases of growth or decline, and stabilizes when

the trend is set. The second panel of the figure plots the EU residuals together with

the level of industrial capacity utilization. The relation between the two series once

again suggests that macroeconomic uncertainty increases at the inflection points of

economic activity. This is also clear in the first part of the sample, where the relation

between EU and the S&P 500 is less defined. The final panel shows the macroeconomic

uncertainty residuals and a measure of analyst forecast dispersion. The FD index is

built by normalizing a firm’s one-year-ahead forecasts of earnings-per-share by the

monthly average of the absolute value of the firm’s forecasts, and then computing the

quarterly volatility of all standardized forecasts. The two measures of uncertainty

peak at the same time in 2002, and share a common pattern in the first part of the

sample. The correlation over the 1996-2007 period is 0.21, which is relatively low,

but it increase to 0.31, 0.43 and 0.73 when EU is greater than the 50th, 60th and 75th

percentile. This suggests that the FD index normally measures a different type of

uncertainty, although it reflects macroeconomic uncertainty to a greater extent when

this is higher.

1.3.4 Additional factors

As mentioned above, the EU factor is based on Black-Scholes pricing errors and, being

residuals, pricing errors contain the effect of omitted factors. To control for this, the

regressions include 13 additional factors that are likely to be relevant when explaining
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option returns (Bates (2003), Broadie, Chernov and Johannes (2007)).

Asset pricing factors. Mkt, Smb, Hml, Umd and Liquidity.

Weekly Fama-French factors are computed by compounding daily returns. The

Pastor-Stambaugh liquidity factor is only available at monthly frequency, so I con-

struct a factor mimicking portfolio. I sort CRSP stocks on the basis of their liquidity

beta, computed by regressing monthly excess returns on the market, Smb, Hml, Umd

and on innovations to the Pastor-Stambaugh liquidity factor (Pastor and Stambaugh

(2003)). The regressions cover the 1996-2004 period. Stocks are sorted into quintiles

on the basis of their liquidity beta, and the factor is the difference between the equally

weighted returns on stocks in the fifth and in the first quintile.

Option pricing factors. Volatility, Volatility of volatility, Skewness of volatility,

S&P 500 put returns, Volatility of S&P 500 put returns, Skewness of S&P 500 put

returns, Market skewness, Market kurtosis.

The Volatility factor (Vix) is the series of weekly changes in the VIX index. Volatility

of volatility (Vixv) and Skewness of volatility (Vixs) are changes in the weekly volatil-

ity and skewness of daily VIX changes. S&P 500 put returns (Put) is the weekly

average of daily returns on S&P 500 put options with -0.2<ln(K/S)<-0.1. Volatility

and Skewness of S&P 500 put returns (Putv and Puts) are changes in the weekly

volatility and skewness of daily returns on out-of-the-money S&P 500 options, as de-

fined above. Market skewness (Skew) and Market kurtosis (Kurt) are weekly changes

in the skewness and kurtosis of intradaily Dow Jones Industrial returns. Driessen,

Maenhout and Vilkov (2009) find evidence of a priced correlation risk factor, which

contributes to explain the expensiveness of index options with respect to individual

ones. It is not included in the list of factors because I focus on equity options, whose
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returns are “likely to be much less dependent on correlation shocks”.15 In addition, the

Put factor would account for the correlation movements that are usually associated

with periods of market stress (Roll (1988)).

Table 1.4 shows time series summary statistics for the 14 factors used. Only three

have statistically significant average returns, namely Hml, Umd and Put. Kurtosis

is mostly slightly above three, with the exception of Smb, Hml, Umd, Vix and Vixv,

for which it lies in the range 6-10. Table 1.5 reports factor correlations. As expected,

the market factor is highly correlated with Vix and Put (-76% and -56%), but also

moderately correlated (37%) with the macroeconomic uncertainty factor.

1.4 Results

Factor risk premia (λ̂f ) are estimated with the Fama-MacBeth methodology, using

weekly excess returns on the option portfolios defined in Section 1.3.2. The sample

starts in the second quarter of 1996 - the first is used to sort options into Excess

Pricing Error (EPE) quintiles - and ends in June 2007. All t-stats are Newey-West-

(4 lags) and Shanken-adjusted. Unless specified otherwise, the EU factor is built using

trailing 30 days volatility as a proxy for expected objective volatility.

Table 1.6 reports the first set of estimates, without the controls for measurement

error and hedging risk. The base-case specification (1) includes nine factors: Mkt,

Smb, Hml, Vix, Vixv, Put, Putv and EU. Five of them are statistically significant: the

market, Hml, Vix, Put and EU. The macroeconomic uncertainty factor has a large risk

premium, about 16%, which is substantially greater than other factors’ risk premia.

15 Driessen, Maenhout and Vilkov (2009), page 28.
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The estimated λ̂EU has the same magnitude and statistical significance throughout the

other specifications of Table 1.6, while the market and Hml are rendered insignificant

by the inclusion of the whole set of factors in specification (4). There are two reasons

why the risk premium on EU is so large. First, the model appears to be misspecified,

as demonstrated by the large and very significant intercept. Second, factor exposures

have to be taken into account when assessing the contribution of a factor to expected

excess returns. As discussed in detail in Section 1.5, EU increases the expected excess

return on options with a EU beta equal to the median by about 50% a year. While

large, this number has to be compared with an average annualized return upwards of

400% for out-of-the-money option portfolios (Table 1.2). Both the first- and second-

stage average adjusted R2 are relatively high, at 38.68% and 48.35% in specification

(4).

Measurement error, hedging risk and the underlying stock sensitivity to EU are

taken into account in Table 1.7. The coefficient on the option spread is positive

and significant, as one would expect given that measurement error positively biases

observed returns (Blume and Stambaugh (1983)). If hedging risk exerted an effect on

option returns, higher gamma and vega would have a positive coefficient. This is the

case for λ̂ν , which is strongly significant, while λ̂γ is negative, much smaller in absolute

value, and statistically insignificant in the full specifications (3) and (4). Introducing

the hedging risk and measurement error controls reduces the risk premium on EU

by about half, and the statistical significance of the intercept is substantially smaller,

although it is now positive and larger in absolute value. A comparison of specifications

(3) and (4) gives three interesting results. First of all, EU increases the cross-sectional

adjusted R2 by 0.70% in absolute value. Second, λ̂EU takes explanatory power away
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from λ̂Mkt. Third, comparing λ̂Vixv and λ̂Putv across the two specifications shows

the consequences of explicitly considering macroeconomic uncertainty as a separate

source of uncertainty. The risk premium on the volatility of volatility becomes more

negative, and the risk premium on the volatility of jumps becomes non-significant.

Put differently, the results suggest that, in a reduced form specification, Vixv and

Putv capture the effect of macroeconomic uncertainty, and because EU and Vixv have

opposite signs, it is difficult to identify λ̂Vixv . While the model is still misspecified, as

suggested by the significant intercept, the effect of EU on λ̂Vixv and λ̂Putv is found in

most of the specifications presented in the rest of the paper.

The most likely source of misspecification in the models discussed in Tables 1.6

and 1.7 is the non-linearity of option returns with respect to returns in the under-

lying (and hence with respect to some factors). As discussed by Broadie, Chernov

and Johannes (2008), applying linear models to option returns may result in biased

regression coefficients. To evaluate which factors should enter non-linearly in the

specification, and if the relation among any of the factors is also non-linear, I use

fractional polynomial regressions to compare specifications in which the factors enter

with different powers. The first step is to run time-series regression in which the

factors can enter with powers 1 or 1 and 2. If, for a given factor, the percentage of

option portfolios in which the best-fitting regression includes a squared term exceeds

5%, the factor is included in the model. The first column of Table 1.8 shows that this

is the case only for Mkt, Hml and Umd. Interestingly, only “asset pricing” factors,

that is those that have been shown to be important for stocks, enter non-linearly in

the time-series regressions. The reason is that the main effect of these factors on

options is routed through returns on the underlying stocks.
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The second column of Table 1.8 shows whether the relation between the selected

factor and other factors includes non-linear terms. Each factor is regressed on all

the others using a fractional polynomial model, in which factors can enter with any

combination of the following powers: -2, -1, -0.5, 0, 0.5, 1, 2, 3, where 0 means that

the log of the factor is included. The same power can also be repeated twice, in which

case factor x would enter as βx,1x
p +βx,2x

plnx. The model is estimated over five time

periods - the full sample and four subperiods - to evaluate the robustness of the non-

linearities. Column (2) of Table 1.8 shows whether, for each factor, any of the other

factors enters the best-fitting regression non-linearly in at least three of the five time

periods. On the basis of the regression of Mkt on the other factors, only Vix squared

will be included as a factor in the Fama-MacBeth procedure. The difference between

Vix2 and Vixv is that the first is the square of the weekly changes in VIX, while the

second is the weekly volatility of daily VIX changes. In both columns (1) and (2),

the best fitting model is determined as the one with the lowest D = n(1 + ln2πRSS
n

),

where n is the number of observations and RSS the residual sum of squares.

Table 1.9 shows the estimated risk premia when including the additional squared

factors selected above. To account for heteroskedasticity in cross-sectional regressions,

I use Weighted Least Squares, where the weight is given by the inverse of the squared

residual predicted by the log relative option spread (os).16 Unreported Breusch-

Pagan tests show that heteroskedasticity is related to os, and indeed this variable

is monotonically decreasing in moneyness. The risk premium on EU is still positive

and strongly significant, slightly below 10%, and introducing EU reduces λ̂Mkt, and

still makes λ̂Vixv more negative and λ̂Putv insignificant. The risk premia on Mkt2,

16 Unless stated otherwise, the results presented from now on include squared terms and the
cross-sectional regressions are based on WLS.
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Hml2 and Umd2 are all positive, quite small but strongly statistically significant. The

intercept is now smaller and statistically equal to zero. The model in Table 1.10

deals with heteroskedasticity in a different way, by adding moneyness dummies in the

cross-sectional regressions. More specifically, it includes six moneyness dummies, for

calls and puts with MonDummy from 1 to 3. The macroeconomic uncertainty risk

premium λ̂EU is still positive and strongly significant, although it is now less than

half the corresponding values in Table 1.9. The coefficient on os is much smaller and

less statistically significant, and introducing EU does not produce discernible results

on λ̂Vixv and λ̂Putv . The reason is that the volatility of jumps plays an important

role in the cross-section of moneyness (see also Liu, Pan and Wang (2005)), and the

dummies absorb the effect. Similarly, as noted above, os is monotonic in moneyness,

and the dummies take much of its explanatory power away.

An important source of revenue for option market-makers is the bid-ask spread.

Assuming that the option price is the mid-point of the bid-ask spread, every trade

gives a revenue equal to half the spread. The revenue is used to pay for the running

costs of the business, the costs of inventory management, and part of it may go as

compensation for the risks associated with trading on a particular source of uncer-

tainty. Table 1.11 shows the time-series average of the coefficients from cross-sectional

regressions of a measure of bid-ask revenue on the factor loadings of option returns.

The dependent variable in the first two specifications is BArevt,1=1
2

0.5·(askt−bidt)·volumet
oit·opricet

,

where the total theoretical revenue is at the numerator, and it is scaled by a proxy

for the value of the net holdings of market makers. This measure is then multiplied

by 1
2

to account for fixed and inventory management costs. In specifications (3) and

(4) the dependent variable is BArevt,2=1
2

0.5·(askt−bidt)·volumet
oit−1·opricet

, that is the proxy for net
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holdings is the lagged value of the open interest. In the last two specifications the the-

oretical revenue is multiplied by 1
4

as an additional robustness. The results show that

the option exposure to EU is an important determinant of the bid-ask revenue, and

including EU takes explanatory power away from Mkt, Putv and Skew. Interestingly,

higher exposure to Hml reduces BArev.

Before proceeding to the robustness checks section, it is important to discuss

the economic interpretation of the risk premium on macroeconomic uncertainty. As

pointed out in Section 1.3.3, EU is higher at economic inflection points, when the

trend of growth turns from positive to negative and viceversa. This means that, when

it comes to the relation with the marginal utility of investors, macroeconomic uncer-

tainty is not entirely interpretable, on average, as a “bad” state of the world, which

would explain why λ̂EU is non-negative. An implication is that the interaction of EU

with a factor that increases when investors expect a deterioration of the economic

conditions should have a negative risk premium, because macroeconomic uncertainty

would signal an increased chance of a downturn, rather than of an upturn. In unre-

ported results, this is indeed the case. The risk premium on the interaction between

EU and Put is slightly less than -1% a week, with a t-stat of 2.08.

1.5 Robustness checks

The macroeconomic uncertainty factor is built by aggregating announcements about

five macroeconomic variables. The first robustness check presents estimated risk pre-

mia when the factor is based on one variable at the time, and the main conclusions

are not affected. Table 1.12 shows that λ̂EU ranges from 6.93% for the Producer Price
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Index to 11.56% for Real Earnings. The intercept is insignificant in every specifica-

tion, and λ̂Putv is always lower when EU is included, although it remains statistically

significant and the difference is marginal. The risk premium on the market is also

smaller, and marginally significant at 10%, while λ̂Vixv is practically unchanged.

1.5.1 Alternative definitions of returns

Option returns are calculated from prices defined as the mid-point of the bid-ask

spread, but investors are unable to trade on the basis of this theoretical price. Rather,

they need to buy and sell options at the quoted ask and bid prices. Table 1.13 shows

the estimated risk premia when returns are computed by selling at the bid and buying

at the ask. The intercept is naturally negative and significant, because the relatively

large bid-ask spread generates a substantial net loss for every weekly trade, but λ̂EU

is still positive and significant, and both λ̂Vixv and λ̂Putv are smaller when EU is

introduced, although λ̂Putv is never significant. The coefficient on os is now negative

and significant, but this follows the fact that the higher os, the higher the spread loss

that investors have to incur. Interestingly, the risk premium on Vix is now negative

and significant, which confirms the findings of Table 1.11 and suggests that, when

aggregate volatility increases, market makers widen the bid-ask spread.

In the results presented so far, if an option has a valid price in week t−1, but not in

week t, the return is not calculated. This, however, implies that the trading strategy

is not replicable, because it is based on information unavailable at time t−1. For this

reason, the first two specifications of Table 1.14 assume a return of -50% and 0% if

the price at t is not available. The 0% return is essentially equivalent to the riskless

rate, given the short horizon. In specification (3) the EU factor is computed as the
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average rather than median return of the option portfolios in the high Excess Pricing

Error quintile, which implies that, trading costs aside, the factor can be interpreted

as the return on an equally weighted portfolio. Specification (4) shows risk premia

when first stage regressions are based on the Cochrane-Orcutt procedure, to account

for any autocorrelation in option returns. The results discussed in Section 1.4 prove

to be robust to the four specifications, with λ̂EU equal to about 7% and the intercept

remaining statistically insignificant. The adjusted R2s are noticeably lower if missing

returns are substituted with 0%, and especially if with -50%. Specifications (5) to (7)

present a sub-period analysis, for years 1996-1999, 2000-2003, and 2004-2007. The

risk premium on macroeconomic uncertainty is still positive and significant, equal to

5.2%, 6.5% and 3.5% in the three subperiods. The intercept is positive and significant

for 2000-2003, while λ̂Vixv is positive in 1996-1999 and negative in the second part of

the sample.

1.5.2 Alternative ways to measure macro uncertainty

As discussed in Section 1.3.3, the rationale behind the way the EU factor is constructed

is that macroeconomic uncertainty is higher before scheduled announcements, that

it is resolved afterwards, and that this change is measurable in option prices. In

this subsection I investigate how four alternative definitions of the factor impact the

results. First of all, the day of higher macroeconomic uncertainty is assumed to be t−2

rather than t− 1, and pricing errors on such days are still normalized by subtracting

the median on all other days. Second, the day of higher macroeconomic uncertainty

is assumed to be t− 1, and pricing errors are normalized by subtracting those on day

t. In addition, to isolate the contribution of individual announcements, I repeat the
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second robustness check above by only considering announcements that are set apart

by at least 3 and 7 days. Specifications (1) to (6) in Table 1.15 show that λ̂EU is

unchanged, but it is interesting to compare the effect of the different definitions of

EU on the magnitude and statistical significance of the risk premia on Mkt, Vixv and

Putv. All of them are larger than in the equivalent specifications in Table 1.9, and

the pattern of statistical significance is reversed: λ̂Vixv is insignificant while λ̂Putv and

λ̂Mkt are significant. Interestingly, λ̂Putv is larger when the day of higher uncertainty

is assumed to be t − 2, with the exception of specifications (5)-(6). The overall

conclusion is that the risk premium on EU is robust to measuring uncertainty in

different ways around announcements, although the more stable pattern in how λ̂EU

takes explanatory power away from other risk premia suggests that the most accurate

measurement is the one presented in Section 1.3.3.

The last two specifications of Table 1.15 exclude options on stocks that pay divi-

dends within expiration, to rule out that pricing errors may be related to unobserved

differences in the valuation of options on dividend paying stocks. The macroeconomic

uncertainty risk premium, in this case, is more than 10%.

1.5.3 Alternative definitions of expected volatility

The calculation of the macroeconomic uncertainty factor is based on pricing errors, de-

fined with respect to the Black-Scholes model. The formula includes the Black-Scholes

price computed with the implied volatility provided by OptionMetrics (SBSi,t, see Sec-

tion 1.3.3), which is a synthetic Black-Scholes price that can be compared with the

one calculated using the expected objective volatility (BSi,t). The implied volatility

is not available, however, when the mid-point of the bid-ask spread is lower than the
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intrinsic value, when vega is below 0.5 or when the optimization fails to converge.17

Duarte and Jones (2007) note that this sample selection is related to censoring on

the basis of measurement error, because large measurement errors are more likely to

result in a violation of arbitrage bounds. If the censoring is not randomly distributed

across the days used to measure macroeconomic uncertainty, the EU factor may proxy

for the causes of non-random measurement error. To address this problem I define

an augmented implied volatility, which is equal to the implied volatility of the same

option contract on the previous day, or two days before, depending on availability.

Specifications (1) and (2) of Table 1.16 show the estimated risk premia when the

augmented implied volatility is used instead of the implied volatility provided by Op-

tionMetrics. It is important to note that the returns of options with missing implied

volatility are still excluded, because the controls ν and γ are not available without

implied volatility. Table 1.6 shows results when ν and γ are not included and there

is no sample selection in option returns due to missing implied volatility.

The remaining specifications in Table 1.16 are based on different definitions of the

expected objective volatility that enters the calculation of pricing errors. In (3) and

(4) I use a trailing 30 days volatility, with the exclusion of day t, to make sure that

the volatility does not contain more information about future returns than the option

implied volatility. (5) and (6) are based on a trailing 30 days volatility, excluding zero

returns, so that there is no bias due to the liquidity of the underlying stock. Finally,

specifications (7) and (8) use realized volatility in the subsequent 2 (7) months for

options with MatDummy=1 (=2), to make sure that differences in the pricing errors

between long/short maturity options are not due to the term structure of expected

17 IvyDB reference manual v.2.6, page 33.
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volatility.

The results in Table 1.16 show that the risk premium on EU remains positive and

significant throughout the specifications and, with the exception of (1) and (2), λ̂EU

makes λ̂Vixv , λ̂Putv and λ̂Mkt smaller.

1.5.4 Non-randomly missing option returns

The filters applied to the dataset (see Table 1.1) mean that option portfolio returns

may be missing on certain dates. I need to evaluate whether this is a random occur-

rence, and if there is a pattern I have to account for it to avoid possible biases in the

estimated risk premia. The first step is to establish a relation between the probabil-

ity of missing returns, factors and other relevant variables. I do so by estimating a

logit for each option portfolio, in which the dependent variable is a dummy equal to

one if the return is missing, and the independent variables are a set of factors plus a

time trend, and the natural logarithm of the trading volume, open interest and op-

tion spread. The last three variables are defined as either the median across put/call

type on a given date (specification (1) of Table 1.17) or the median for each portfolio

(specification (2)). Table 1.17 shows the median odds ratios across portfolios, with

the relative 90% confidence intervals. The results suggest that the time trend reduces

the probability of missing returns, as the option market grows and becomes more

liquid, while an increase in the open interest makes it more likely to have missing

returns. Of the factors considered, the odds ratios for the market, Smb, Hml, and

Vix are less than one, while the macroeconomic uncertainty factor has an odds ratio

equal to about two in both specifications. Trading volume and open interest are two

measures of activity on the option market, and it may be natural to expect that their
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odds ratio are less than one, especially in specification (2), where open interest is

measured at the portfolio level. While volume is a direct gauge of trading activity -

and the odds ratio is indeed less than one - open interest is the number of outstanding

contracts. The consequence is that changes in the open interest not only reflect the

number of contracts added on a given date, but also the number of contracts that

are delivered, and this can be especially significant for equity options, which have

American exercise. It is then possible that the odds ratio for volume reflects the neg-

ative relation between trading activity and missing returns, while the odds ratio on

the open interest measures the effect a reduction in the number of contracts that are

delivered.

Table 1.18 shows the betas from a regression where the dependent variable is the

change in the number of equity options that satisfy the filters, and the independent

variables are the same as in the logit described above. The log-volume increases

the number of observations, as does the Smb factor, while the log-open interest and

the EU factor decrease them. The sign of these coefficients is consistent with the

corresponding odds ratios in Table 1.17, as a positive/negative effect on the number

of observations is associated with a lower/higher probability of observing a missing

return. The coefficient on Vix, however, is negative, while the odds ratio is much

smaller than one. This suggests that, when volatility increases, trading becomes

concentrated in a smaller set of options and the likelihood of a missing return is lower

(on a given week, option portfolios need to include at least two options for the return

to be valid).

After having studied the relation between the probability of missing returns and

a set of factors and measures of market activity, I re-estimate the option risk premia
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with a Heckman model in place of the standard time-series regressions. The selection

equation includes the variables that have a significant odds ratio in the logit described

above, namely Mkt, Smb, Hml, Vix, EU, a time trend, log-volume, log-open interest

and log-option spread. Table 1.19 shows the results, which confirm that λ̂EU is positive

and statistically significant, and that it decreases the risk premia on Mkt, and Putv.

It also makes the risk premium on Vixv more negative in specifications (3) and (4),

where the log-volume, log-open interest and log-option spread are median portfolio

values.

1.5.5 Factor contributions to expected excess returns

The results discussed so far suggest that the risk-premium on the macroeconomic

uncertainty factor is between 5% and 7% per week. This is quite a large number, but,

to evaluate the contribution of a factor to expected excess returns, it is important to

take the distribution of factor betas into consideration. Table 1.20 shows, for different

specifications, the annualized product between factor risk premia and 25th, 50th and

75th percentile betas. With the exception of specifications (1) and (2), which include

moneyness dummies in second-stage regressions, all cross-sectional regressions are es-

timated with WLS. Dots mean that the factor is not included in the specification,

and zeros that the risk premium, or the product, is not significant. There is a marked

difference in the contribution of macroeconomic uncertainty, depending on the esti-

mation method for second-stage regressions. When moneyness dummies are included,

the median effect is about 30% a year, while it increases up to about 75% when the

estimation is based on WLS. The magnitude is relatively insensitive to what other

factors are included and to alternative factor definitions. The market, Mkt2 and Hml2
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are also significant across most specifications, with a median contribution of, respec-

tively, about 20-25%, 10% and 10-13%, although it falls to about 2-4% for Hml2 for

alternative definitions of EU. Vixv has a zero median effect, but it is about 10% and

-10% for 25th and 75th percentile betas. Lastly, the risk premium on Putv is significant

in 5 of the 11 specifications, with a median contribution to expected returns of about

4% a year.

1.5.6 Simulation

Option returns are non-linear in the underlying’s returns, and this can bias the esti-

mates of linear factor models (see Broadie, Chernov and Johannes (2008)). In order

to account for non-linearity, I have included selected squared factors in first and

second-stage regressions, and used moneyness dummies or WLS in cross-sectional re-

gressions. I now rely on a simulation to evaluate whether this approach generates

accurate estimates of factor risk premia.

I simulate returns on 50 assets using a single factor model, and then compute

Black-Scholes returns on several options on each asset. Following the empirical anal-

ysis discussed in the previous sections, I form option portfolios on the basis of mon-

eyness, maturity, put/call contract type and stock sensitivity to the single factor (or

market). While the Black-Scholes model is relatively simple and omits factors like

volatility and jumps, the simulation is meant to analyse the effect of option returns’

non-linearity, and this can be accomplished with a single factor model. Tellingly,

Table 1.8 shows that, in the actual data, Mkt is the only factor for which a squared

term clearly improves the fit of the regressions.
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The simulated option returns have weekly frequency, for a total of 11.5 years.

The simulation is repeated with the market risk premium equal to 0% and 10%. The

riskless rate and the volatility of the market are constant, at 3% and 18% year. Asset

betas and volatilities match the range of the corresponding variables in the sample,

with market betas starting at 0.4 and up to 1.9, while annualized volatilities are be-

tween 20% and 95%. Every week I compute Black-Scholes prices for call and put

options with maturity of 2 and 7 months, and moneyness ln(K/S) equal to -15, -6.25,

0, 6.25, 15%. These values are the mid-points of the moneyness and maturity intervals

defined in section 1.3.2. I then form option portfolios by intersecting the following

characteristics: underlying stock’s beta with respect to the market (10 deciles), mon-

eyness (5 categories), maturity (2) and call/put type (2). Weekly portfolio returns are

the equally weighted average of the constituent options’ returns. To reduce the effect

of outliers on the results, I censor option returns at both the option and portfolio

level with cut-offs of, respectively, 0.175% and 0.35%. These are a fraction (1
3
) of the

cutoffs used in the empirical analysis, because simulated returns are not affected by

measurement error and non-synchroneity.

I test whether the estimated market risk premium, λ̂Mkt, is statistically different

from the risk premium used to generate stock returns, and if the intercept α̂2 is

different from zero. First and second stage regressions include the market squared,

and moneyness dummies (category 1 to 3, for calls and puts separately) are added to

cross-sectional regressions.

Table 1.21 reports the average λ̂Mkt and α̂2 across the 1,000 replications, along with

90% confidence intervals based on bootstrapped standard errors. The results suggest

that, after accounting for option returns’ non-linearity, the Fama-MacBeth method
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accurately estimates option risk premia. More precisely, when the risk premium is

equal to 10%, both α̂2 and λ̂Mkt are not statistically different from their true values

(0% and 10% ). For a zero risk premium, on the other hand, λ̂Mkt is negatively biased

by about 36 basis points a year. The 95% confidence interval, however, does include

zero.

1.6 Conclusion

I study whether macroeconomic uncertainty is a priced risk factor in the cross-section

of equity option returns, and how its inclusion changes the risk premia on other

volatility and jump factors. The analysis is based on a series of factor models, esti-

mated with the Fama-MacBeth methodology. The macroeconomic uncertainty factor

is built using three results in the literature. First, uncertainty about important eco-

nomic variables is higher before the release of economic news, and is rapidly resolved

upon announcement. Second, the implied volatility of equity options increases before

scheduled releases and drops afterwards. Third, this change is correlated with the

implied volatility of options on macroeconomic variables, which were traded between

2002 and 2007. The sensitivity of options to macroeconomic uncertainty is estimated

by studying the pattern of option pricing errors around announcement days, and the

macroeconomic uncertainty factor is a portfolio that buys options with the highest

estimated sensitivity.

The analysis includes a large set of relevant asset- and option-pricing factors, and

controls for measurement error and hedging risk. The results show that macroeco-

nomic uncertainty is a priced risk factor for equity options, and this conclusion is
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robust to the effects of non-linearity of option returns with respect to some of the

factors, to alternative methods of estimating option sensitivity to macroeconomic un-

certainty, to calculating returns by selling at the bid and buying at the ask price, to

adjustments for non-randomly missing returns, and to alternative definitions of the

expected objective volatility.

The contribution of the macroeconomic uncertainty factor to expected excess

option returns is about 70% a year for option portfolios with a beta equal to the

median factor loading. This compares to 20-25% for the market factor. Including

the macroeconomic uncertainty factor reduces the risk premium on the market and

on the volatility of jumps, while it makes the premium on the volatility of volatility

more negative and significant. This suggests that it is important, also in terms of

future research, to identify the economic foundations of the reduced-form sources of

uncertainty that are commonly used in option pricing.
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Figure 1.1: Non-linearity of option returns and OLS. Call options.
Market returns, and returns on the at-the-money call option portfolio with the highest sensitivity to
Mkt (third tertile), short maturity and low sensitivity to Smb and Hml (first tertile). One regression
line is from standard OLS of option returns on market returns (β = 9.52, α = −0.0036), the other
is calculated by assigning a weight of 0.25 to observations with market returns below -0.028, which
is the 25% percentile (β = 9.97, α = −0.0077).

Figure 1.2: Non-linearity of option returns and OLS. Put options.
Market returns, and returns on the at-the-money put option portfolio with the highest sensitivity to
Mkt (third tertile), short maturity and low sensitivity to Smb and Hml (first tertile). One regression
line is from standard OLS of option returns on market returns (β = −10.15, α = −0.031), the other
is calculated by assigning a weight of 0.25 to observations with market returns above 0.027, which
is the 75% percentile (β = −10.79, α = −0.037).
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Figure 1.3: Term structure of implied volatility.
The implied volatility of individual options is standardized using the implied volatility of the longest
maturity option with the same strike, put/call type and on the same stock, provided that its days
to expiration are between 200 and 250. The figure shows median implied volatilities, by time to
maturity, over the whole sample, across moneyness categories and put/call type.
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Figure 1.4: Composition of high EPE quintile.

For a given characteristic, the figure shows the fraction of option portfolios that belong to the high
Excess Pricing Error (EPE) quintile, across different values of the characteristic. Pmkt, Psmb and
Phml are the sensitivity of the underlying stock to the Fama-French factors (1=Low, 3=High). Mat-
Dummy and MonDummy are the maturity and moneyness categories (MatDummy=1,2 for short and
long maturity options. MonDummy=1,...,5 for out-of-the-money to in-the-money options). Pricing
errors are defined using realized volatility over the previous 30 days.
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Figure 1.5: Macroeconomic uncertainty, S&P 500 level, capacity utilization
and forecast dispersion.

Quarterly average of the residuals from regressing EU on Mkt, Smb, Hml, Vix, Vixv, Skew and Put,
and (top) end-of-quarter level of the S&P500, (center) end-of-quarter level of the Capacity utilization
index and (bottom) the FD index. FD is a forecast dispersion index, computed as the quarterly
volatility of analyst forecasts for one-year-ahead earnings-per-share. The correlation between EU
and FD over the whole sample is 0.21. It is equal to 0.31, 0.43 and 0.73 when EU is greater than the
50th, 60th and 75th percentile. The EU factor is defined using realized volatility over the previous
30 days and average option portfolio returns.
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Table 1.3: Sign of option return residuals, trading volume and macroeco-
nomic announcements.

For each option portfolio, returns are regressed on Mkt, Mkt2, Smb, Hml, Hml2, Vix, Vix2, Vixv,
Skew, Put, Putv and EU. Mkt, Smb and Hml are the market, Small-minus-Big and High-minus-Low
Fama-French factors. Vix and Vixv are weekly changes in VIX, and changes in the weekly volatility
of daily VIX changes. Skew is the change in the weekly skewness of Dow Jones Industrial intradaily
returns. Put and Putv are the weekly average of daily returns on out-of-the-money S&P 500 put
options, and changes in the weekly volatility of daily returns on out-of-the-money S&P 500 put
options. EU is the macroeconomic uncertainty factor. A dummy variable is equal to zero if the
regression residuals are positive, and one if they are negative. The dummy is the dependent variable
in a probit model, in which the independent variables are weekly percentage changes in the average
trading volume of all options, the number of macroeconomic announcements in the week, and their
interaction. The table reports the median odds-ratio across the indicated characteristics, and the
90% confidence interval, calculated using the binomial method of Mood and Graybill (1963).

∆ Volume # Weekly Ann.ts Interaction

Med. 90% C.I. Med. 90% C.I. Med. 90% C.I.

Pmkt 1 1.25 1.01 1.33 1.00 0.99 1.03 1.13 1.05 1.37
2 1.20 1.11 1.41 0.98 0.95 1.01 1.08 1.01 1.16
3 1.16 1.01 1.30 0.96 0.94 0.97 1.06 1.00 1.14

Psmb 1 1.21 1.12 1.31 0.99 0.97 1.01 1.07 1.01 1.12
2 1.08 0.95 1.28 0.94 0.93 0.99 1.22 1.04 1.55
3 1.24 1.01 1.48 0.94 0.91 0.97 1.13 0.97 1.29

Phml 1 1.24 1.16 1.32 0.97 0.95 0.98 1.10 1.05 1.14
2 1.01 0.78 1.26 1.02 0.96 1.08 1.02 0.89 1.28
3 1.07 0.92 1.48 0.97 0.93 1.01 1.14 0.93 1.37

Moneyness 1 1.10 0.99 1.24 0.98 0.96 1.01 1.04 0.97 1.18
2 1.32 1.11 1.44 0.97 0.95 1.00 1.05 0.98 1.14
3 1.16 0.97 1.30 0.99 0.96 1.03 1.15 1.06 1.29
4 1.19 0.92 1.30 0.94 0.89 0.97 1.10 1.01 1.23
5 1.28 0.87 1.48 0.94 0.88 1.00 1.11 0.94 1.28

Maturity 1 1.16 1.07 1.24 0.95 0.94 0.97 1.10 1.04 1.16
2 1.27 1.11 1.40 0.98 0.97 1.00 1.09 1.01 1.15

Style Call 1.10 1.01 1.18 0.97 0.96 0.99 1.10 1.04 1.16
Put 1.43 1.24 1.59 0.96 0.93 0.98 1.05 0.97 1.14
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Table 1.8: Analysis of non-linearity in the relation between returns and
factors, and among factors.

Column (1) reports the percentage of option portfolios in which the best-fitting time-series regression
includes a squared term for the selected factor, among regressions in which each factor enters with
powers 1 or 1 and 2. Column (2) shows whether the relation between the selected factor and other
factors includes non-linear terms. Each factor is regressed on the others using a fractional polynomial
model, in which factors can enter with any combination of the following powers: -2, -1, -0.5, 0, 0.5,
1, 2, 3, where 0 means that the log of the factor is included. The model is estimated over five
time periods: the full sample and four subperiods (1996-98, 1999-2001, 2002-04, 2005-07). Column
(2) reports whether any factor enters the best-fitting regression non-linearly in at least three of
the five time periods. Only factors included in the base case specification are analyzed (see Table
1.6). In both columns (1) and (2), the best fitting model is determined as the one with the lowest
D = n(1 + ln 2πRSS

n ), where n is the number of observations and RSS the residual sum of squares.

Factor (1) (2)

Mkt 28.43 Vix, with power=2
Smb 1.52 no
Hml 7.61 no
Umd 10.66 .

Liq 2.54 .
Vix 0.51 no

Vixv 1.02 no
Vixs 0.51 .
Skew 0.51 no
Kurt 0.51 .
Put 0 no

Putv 1.52 no
Puts 0 .

EU 2.03 no

70
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Table 1.17: Determinants of the probability of missing option returns.

A dummy variable is set equal to one if option portfolio returns are missing, and to zero otherwise.
The dummy is the dependent variable of a logit model, in which the independent variables are a year
dummy, the natural logarithm of trading volume, open interest and relative option bid-ask spread,
and the following factors: Mkt, Smb, Hml, Vix, Vixv, Skew, Put, Putv and EU. Trading volume,
open interest and option spread are the median across call/put type (1) and for each portfolio (2).
A probit model gives similar odds-ratios and an identical pattern of statistical significance. The
table reports the median odds-ratio, across all option portfolios, and the 90% confidence interval,
calculated using the binomial method of Mood and Graybill (1963).

(1) (2)
Factor Median 90% C.I. Median 90% C.I.

year 0.745∗ 0.720 0.764 0.764∗ 0.737 0.789
log-volume 0.861∗ 0.808 0.918 1.021 0.979 1.063

log-op.interest 1.736∗ 1.341 2.204 1.175∗ 1.129 1.247
log-spread 0.949 0.683 1.297 0.799∗ 0.658 0.905

Mkt 0.015∗ 0.001 0.157 0.015∗ 0.001 0.072
Smb 0.001∗ 0.000 0.013 0.002∗ 0.000 0.011
Hml 0.000∗ 0.000 0.000 0.000∗ 0.000 0.001
Vix 0.074∗ 0.014 0.608 0.038∗ 0.009 0.306

Vixv 1.993 0.207 44.208 0.590 0.089 7.244
Skew 1.006 0.990 1.021 1.005 0.992 1.014

Put 1.052 0.861 1.306 0.881 0.740 1.217
Putv 1.128 0.882 1.354 1.054 0.814 1.321

EU 2.046∗ 1.749 2.562 2.111∗ 1.815 2.785
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Table 1.21: Market risk premium estimated on simulated option returns.

Fama-MacBeth estimated market risk premium, and second stage intercept. Confidence intervals are
based on bootstrap standard errors (200 replications). Option returns are censored at 0.175% and
option portfolio returns at 0.35%. 1,000 replications. The 95% confidence interval for λ̂Mkt when
Rp=0 includes 0.

Rp Average 90% C.I.

0.10 α̂2 -.0003748 -.0024221 .0016726
λ̂mkt .0976612 .0944565 .1008659

0.00 α̂2 .0005656 -.0015481 .0026793
λ̂mkt -.0036066 -.0067519 -.0004612
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Chapter 2

Technology diffusion and
the social value of investor sentiment

This chapter benefited from the suggestions of Francesca Cornelli, Theodosios Dimopoulos,
Elroy Dimson, Carlo Fezzi, Tim Johnson, Chris Malloy, Stefano Sacchetto and Raman Uppal.
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2.1 Introduction

When firms face the decision of whether to invest in a new technological vintage with

uncertain productivity, they need to account for different types of costs. Besides

the direct capital expenditure, and the need to retrain the workforce (Chari and

Hopenhayn (1991)), early adopters likely generate informational externalities that are

difficult to appropriate, and benefit competitors instead (Bolton and Harris (1999)).

The difference between costs like retraining the workforce and unpriced externalities is

one of substance. The diffusion of a new capital vintage may be slowed by technology-

specific human capital (Jovanovic and Nyarko (1996)), but this simply reflects the

presence of adjustment costs in the learning process. Unpriced externalities, on the

other hand, are the result of a market failure, namely the inability of early adopters

to appropriate the information that their initial investment reveals about the new

technology’s productivity. The consequence is a free rider problem, which normally

implies that the aggregate level of investment falls short of the social optimum, and

the resulting reduction in the flow of information can either delay the adoption of a

valuable technology, delay the rejection of a bad one1, or lead to rejecting a good or

adopting a bad technology (Bolton and Harris (1999)).

The question at the heart of this paper is whether higher investor sentiment acts

as a subsidy to investment in new technologies, in particular for firms that are more

likely to experience informational externalities, and if such subsidy produces posi-

tive effects for the economy’s productivity growth. Sentiment can be interpreted as

the tendency of investors’ decision making to deviate from rationality, in particu-

lar when forming beliefs. Some market participants may trade on noise rather than

1 A “good”/“bad” new technology has a higher/lower productivity than the one currently in use.
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fundamental news (Black (1986)), and rational investors may be unable to eliminate

the resulting mispricing (De Long, Shleifer, Summers and Waldmann (1990)). Baker

and Wurgler (2006) define sentiment as the “propensity to speculate”, while in Du-

mas, Kurshev and Uppal (2008) sentiment is reflected in the overconfidence of some

investors about a noisy public signal.

The sign of investor sentiment’s contribution to aggregate productivity is key to

evaluate whether the firm-level effect actually brings investment closer to the social

optimum. If investor sentiment is to have a positive social value in the context of

technology diffusion, it is essential that it offsets costs generated by a market fail-

ure, rather than costs reflecting relative scarcity. As an example, suppose that there

are no informational externalities, and that investor sentiment increases the rate of

adoption of a new, better technology because firms use the subsidy to offset the cost

of lost productivity while retraining the workforce. At the aggregate level the ad-

ditional investment is wasteful, because too much of the production is moved to a

technology that, for the time being, is less productive. In other words, unless there is

a slack generated by suboptimal investment, the subsidy provided by sentiment is un-

likely to yield a positive aggregate benefit, because it simply mis-allocates resources.

There are several ways in which investor sentiment can act as a subsidy to invest-

ment. First, it can reduce funding costs (Baker, Stein and Wurgler (2003), Farhi and

Panageas (2004)). Second, managers may be willing to invest in projects that cater

to investors’ optimism about the new technology, in order to maximize stock prices in

the short term (Polk and Sapienza (2009), Jensen (2005)). The firm-level empirical

evidence is that stock mispricing explains both investment and future returns (Polk

and Sapienza (2009)). At the aggregate level, Chirinko and Schaller (2001) support
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the hypothesis that sentiment affects investment. They analyse the Japanese stock

market bubble of the late 1980s, and find that it increased business fixed investment

by about 5%-10%. It is important to clarify that the focus of this paper is not on

informational externalities at the invention stage, that is when a new technology is

developed by a relatively small group of firms. I am rather interested in the external-

ities produced during the adoption stage, when the larger population of firms decides

whether to invest in the new technology. The distinction is important because, as

Johnson (2007) notes, patent protection and first-mover advantages can reduce the

impact of informational externalities on technological innovation. This is probably

true for technology providers during the invention process but, from the point of

view of technology diffusion, the focus is on technology users, and externalities are

generated while learning about uncertain productivity, in which case information is

likely more difficult to appropriate.

The empirical analysis I present in section 2.3 investigates how the interaction

between investor sentiment and technological innovation affects 1) firm-level invest-

ment, in particular for firms that are more susceptible to informational externalities,

and 2) aggregate productivity, in the form of changes in the multi-factor productivity

index, provided by the Bureau of Labor Statistics. I find that, when investor senti-

ment is higher, the effect of technological innovation on investment is greater for firms

subject to informational externalities (in years t and t + 1), and a positive effect on

productivity growth is detectable after three years.

The paper is organized as follows. Section 2.2 is a literature review. Section 2.3

discusses the empirical implementation. Section presents 2.4 the results and Section

2.5 concludes.
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2.2 Related literature

The hypothesis at basis of this paper is that investor sentiment has a positive social

value in the context of technology diffusion, because it offsets the costs generated by a

free-rider problem that arises when firms experiment with the new technology in order

to learn its productivity. This brings together three strands of research, on learning

by doing and informational externalities, on investor sentiment, and on the real effects

of mispricing. The next three sections briefly review the relevant literature.

2.2.1 Uncertain productivity and learning

Learning by doing is an important ingredient of many vintage-capital investment mod-

els (Chari and Hopenhayn (1991), Jovanovic and Nyarko (1996), Cooley, Greenwood

and Yorukoglu (1997)). It is typically used to explain the decrease in productivity

that follows investment in a new technological vintage (Hugget and Ospina (2001)).

As such, it is a variable that enters the problem of whether to invest or not. The

decision maker has to factor in the upfront cost of investment, the expected period of

learning, and the gains in productivity that the investment will likely generate. As

long as the relevant variables are known, the decision maker needs to look no further

than her own firm. However, it is reasonable to assume that the productivity of a new

capital vintage is not precisely known. From this point of view, learning by doing is

not only a cost to factor in, but also an opportunity to refine initial beliefs about the

productivity. As long as the results of a firm’s investment are known to outsiders, firms

can learn about the productivity of a new technology by waiting and observing how

well early adopters fare, rather than investing themselves. It is well known that the
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presence of unpriced externalities can reduce the production of a public good below

the optimal level. When the productivity of a new technology is uncertain, strategic

interaction among firms is then a key element of the diffusion process (Bhattacharya,

Chatterjee and Samuelson (1986), Jovanovic and MacDonalds (1994), Reinganum

(1983)). Bolton and Harris (1999) solve a continuous time two-armed bandit problem

where firms decide, at each point in time, how much to produce with the old and with

the new technology. They show that, in general, equilibrium experimentation is less

than the socially optimal level. The literature on learning by doing and informational

externalities is mostly theoretical, but there are a few empirical contributions that

provide evidence of substantial learning effects. Zimmerman (1982) focuses on the

construction of nuclear power plants, while Thornton and Thompson (2001) analyse

wartime ship-building in the US.

2.2.2 Investor sentiment

Investor sentiment has increasingly been a subject of interest in behavioral finance, a

research field that relaxes the paradigm of fully rational investors to explain anoma-

lies that the standard asset pricing theory struggles to reconcile (see Barberis and

Thaler (2003)). In a recent contribution, Baker and Wurgler (2006) build a proxy for

investor sentiment from variables that the literature has linked to investors’ irrational

behavior, like the closed-end fund discount (Lee, Shleifer and Thaler (1991)), and

find that stocks more attractive to speculators, like those of small, young firms, earn

low future returns when the sentiment proxy is high, and viceversa, which is consis-

tent with an over-/under-valuation generated by high/low sentiment. The efficient

market hypothesis implies that any mispricing is quickly eliminated by arbitrageurs,
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but there are several reasons why this may not always be the case in practice. First,

arbitrage is risky if the persistence of mispricing is uncertain (De Long, Shleifer,

Summers and Waldmann (1990), Dumas, Kurshev and Uppal (2009)). Even if ratio-

nal investors collectively have the resources to immediately eliminate deviations from

fundamental values, coordination problems can delay arbitrage, and may actually

provide incentives to trade on a continuation of mispricing (Abreu and Brunnermeier

(2003)). Brunnermeier and Nagel (2004) and Lakonishok, Lee and Poteshman (2004)

provide evidence that, during the late 1990s, sophisticated investors actually tried

to accommodate what they perceived as mispricing, in order to realize short-term

profits. Even if they had tried to arbitrage it out, it might have been difficult to

do so. In IPOs, for instance, a large part of the floated capital is usually held in

lock-up agreements for at least 6 months (Hong, Scheinkman and Xiong (2006)). In

addition, it can be harder to take a stand against aggregate rather than single-firm

mispricing, because of the large funds this requires. Arbitrageurs usually raise capital

with open-ended structures, and need to take the performance-flow relation (Shleifer

and Vishny (1997)) into account. They may find it difficult to raise capital through

closed-end funds, even if it would be more efficient, because asymmetric information

and agency problems usually make the early liquidation option valuable to investors.

2.2.3 The real effects of mispricing

The effect of mispricing on economic growth has been studied, from a theoretical point

of view, by Olivier (2000), who suggests that bubbles can enhance growth because high

stock valuations increase the creation of firms and investment. This conclusion, how-

ever, is unambiguous only for small open economies, where the interest rate is loosely
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dependent on domestic investment. For large economies, the increase in interest rates

potentially offsets the effect of additional investment on growth. Farhi and Panageas

(2004) suggest that mispricing can relax financing constraints, and its aggregate ef-

fect depends on the proportion of newly available funds that finance efficient versus

wasteful investments. Their empirical analysis shows that the net macroeconomic

effect is negative. More precisely, they estimate a vector auto-regression for NYSE

aggregate profits and turnover (turnover is a function of mispricing, as in Scheinkman

and Xiong (2003)), and the impulse response function of shocks to turnover on profits

is negative. Polk and Sapienza (2009) focus on the cross-sectional relation between

discretionary accruals and investment, in particular for firms where capital misalloca-

tion is more difficult to pin down (high R&D expenses) and whose shareholders more

likely have a short investment horizon (high share turnover). Discretionary accru-

als are used as a proxy for firm-level mispricing because they measure the extent of

possible earnings manipulation by the management (Sloan (1996)). Consistent with

the hypothesis that mispricing affects both the quantity and quality of investment,

their results show that investment by firms with either high R&D or high turnover

is more sensitive to discretionary accruals, and both classes of firms have low returns

following abnormally high investment. Baker, Stein and Wurgler (2003) also study

the relation between non-fundamental stock valuation and investment, finding that

equity dependent firms (according to Kaplan and Zingales (1997)’s index) issue more

equity and invest more when their stock is likely overvalued, as measured by a high

Tobin’s Q and low future stock returns.
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2.3 Empirical analysis

The hypothesized effect of the interaction between investor sentiment and technologi-

cal innovation implies three testable restriction. First, from a microeconomic point of

view, the difference in the marginal effect of technological innovation on investment,

across firms more/less susceptible to informational externalities, should be larger when

sentiment is higher. Second, from a macroeconomic perspective, the marginal effect

of technological innovation on aggregate productivity should be larger for higher sen-

timent. Third, the effect on firm-level investment has to take place before the one on

productivity.

The empirical implementation relies on different econometric methods. The mi-

croeconomic test is based on a panel regression, estimated with fixed effects, while the

macroeconomic analysis employs regressions, vector auto-regressions and the method

proposed by Den Haan (2000) to estimate the comovement of macroeconomic vari-

ables.

Before presenting the results, the next two sections discuss the data and the

econometric approach.

2.3.1 Data description and summary statistics

The proxy for investor sentiment is the index of Baker and Wurgler (2006), which

is based on the principal component analysis of a set of variables that have been

linked to sentiment by previous research. More specifically, the variables included in

the “short” series, which runs from 1962 to 2005, are the closed-end fund discount,

NYSE share turnover, the number of IPOs, the average first day return on IPOs, the
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equity share in new issues, and the dividend premium. Baker and Wurgler (2006) also

calculate a “long” series, from 1934 to 2005, which is based on three variables: the

closed-end fund discount, the equity share in new issues and NYSE share turnover.

To make sure that the index is not proxying for a business-cycle component, Baker

and Wurgler (2006) orthogonalize the sentiment variables with respect to industrial

production growth, growth in consumer durables, nondurables and services, and a

dummy for NBER recessions. The results I present in Section 2.4 are mainly based

on the “long” sentiment index, in order to increase the available time-series, although

some specifications also use the “short” series for robustness.

To further reduce the risk that the sentiment index contains a business-cycle com-

ponent, the empirical analysis includes several controls. Two variables are related to

the financial market: ∆SPdisc, which is the return on the S&P consumer discretionary

index, and lnP/E, the log P/E ratio of the S&P 500. Two are proxies for real economic

activity: ∆IP, the log-change in industrial production, and ∆RS, the log change in

retail sales. Another two controls are monetary variables: D.spread, the yield on BBB

bonds minus the yield on the CBOE 10 year government bond index, and T.spread,

the yield on the CBOE 10 year government bond index minus the yield on 6 months

T-bills. All these series are from Global Financial Data. The last control for ag-

gregate investment opportunities is a proxy for investor expectations derived from

the Livingston Survey. The survey is maintained by the Federal Reserve Bank of

Philadelphia, and collects academic and professional economists’ forecasts for a set

of macroeconomic variables. I define the proxy, LS, as the first principal component

of changes in the median forecasts for real GDP, Weekly wages for the non-farm sec-

tor and Industrial production, which are the only variables with forecasts available

97



through the whole post-war period. Changes are defined as the difference between the

12- and the 6-months-ahead median forecasts, in order to avoid measurement error in

the current value of the variable.

The aggregate productivity measure is the Multifactor Productivity Index for the

private non-farm business sector (excluding government enterprises), provided by the

Bureau of Labor Statistics. Following Griliches (1990), the proxy for technological in-

novation is ∆P, the log change in the number of patents granted by the United States

Patent and Trademark Office (USPTO), which I obtain from the USPTO’s website.

Granted patents provide a first screening of the novelty of the claim - the rejection

rate is about 30% - and on average two years pass from application to grant. One may

be tempted to lag granted patents accordingly, but strategic interaction among firms

means that patent applications usually lead the actual availability of a technology.

Early patents, for instance, are valuable in case of disputes about the attribution of

later patents on the more mature technology (Barzel (1968), Griliches (1990)). I do

not use citation-weighted patents (Trajtenberg (1990)) because future citations are

not part of the information set available to investors when patents are granted. As

Griliches (1990) notes, the variation in granted patents at the end of the 1970s is

related to staff shortages at the USPTO, rather than to actual innovation, and 1979

and 1980 do show extreme changes. To make sure that this is not driving the results,

I multiply the change in patents for the years 1979-1981 by 30% in the macroeco-

nomic test, and I drop 1979-1981 in the microeconomic analysis. The conclusions,

however, are similar when using the original ∆P series. There is one last important

point to discuss, namely the potential endogeneity between innovation and economic

growth. Technological innovation is a key contributor to economic growth, but it’s not
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unreasonable to expect that business cycle conditions also affect the resources spent

on R&D and, eventually, innovation itself. Indeed, while in “supply push” models

innovation is driven by exogenous and unpredictable advances in scientific knowledge,

in a “demand pull” framework it is economic conditions that affect future innovation.

Geroski and Walters (1995) find that demand plays a modest role relative to supply

side factors.

The microeconomic test is based on firm-level investment decisions, where the

dependent variable is the ratio of investment to installed capital, and the independent

variables are controls for firm profitability and aggregate investment opportunities,

plus changes in sentiment, ∆S, and changes in patents. End-of-year balance sheet

items are from Compustat, share prices and the number of shares outstanding from

CRSP, while analyst forecasts are obtained from IBES. A detailed definition of firm-

level variables is available in Appendix A.

Tables 2.1 and 2.2 report summary statistics for the macroeconomic and firm-level

variables. Changes in multifactor productivity, industrial production, retail sales and

returns on the S&P consumer discretionary index are all positive and significant, re-

flecting the strong economic growth of the post-war period. The mean of the business

cycle control built from the Livingston Survey, LS, is not significant because the prin-

cipal component analysis is run on demeaned variables. For firm-level variables, I

use the definitions of Polk and Sapienza (2009), and the statistics in Table 2.2 are

very similar to what they report, even if the sample is slightly different. The average

investment ratio is about 32%, the mean Tobin’s Q is 1.7, and the expected analyst

forecast for ROA is just above 5.1%. Table 2.3 reports the correlations among the

macroeconomic variables. Changes in the multifactor productivity index are strongly
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correlated with industrial production and retail sales growth, while ∆S and ∆P are

essentially uncorrelated with the other variables.

2.3.2 Econometric methods

This section describes the implementation of the tests on firm-level investment and

multifactor productivity. In both cases the objective is to identify the marginal effect

of innovation conditional on higher or lower investor sentiment. In the case of firm

investment, the analysis is based on a panel regression. For the test on multifactor

productivity, I use standard regressions, vector auto-regressions and the method of

Den Haan (2000) based on forecast errors.

Microeconomic test

The hypothesis to test is that, for firms that are more susceptible to informational

externalities, the marginal effect of ∆P is larger for higher ∆S. The empirical literature

on informational externalities in a learning by doing framework is relatively small,

and it has focused on firms with high capital intensity (Zimmerman (1982), and

Thornton and Thompson (2001)). Indeed, it is reasonable to expect that, in industries

characterized by a high ratio of capital to total assets, firms can more easily observe the

level of investment in a new technology, and measure the effect on their competitors’

profitability. Capital intensity, then, is the variable I use to proxy for the relevance of

informational externalities. I compute the median ratio of book capital to book assets

within industries, defined by the first two digits of the SIC code, and sort industries

in three groups, according to whether the median capital intensity is in the bottom

30%, middle 40% or top 30%. The marginal effect of ∆P, conditional on ∆S, is then
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compared across firms that belong to industries in the bottom 30% and top 30% of the

capital intensity ratio. To do so, I estimate a model that explains the investment ratio

with controls for firm-level profitability, aggregate growth expectations, and with ∆S,

∆P and their interaction. I then define a dummy, equal to one if the firm belongs to

an industry in the top 30% of the capital intensity ratio, and this dummy is interacted

with all the variables in the model. In other words, the estimation includes “marginal”

effects for high capital intensity firms. More in detail, the model is as follows (the

loadings are omitted):

It
Kt−1

= α + Qt−1 + CFt−1 + dBEt−1 + DDt−1 + {ctrlt−s}2
s=0 +

+ {LSt−s}2
s=0 + {∆Pt−s}2

s=0 + {∆St−s}2
s=0 + {∆Pt−s ·∆St−s}2

s=0 +

+ d>70% ·
(
1 + Qt−1 + CFt−1 + dBEt−1 + DDt−1 + {ctrlt−s}2

s=0+

+ {LSt−s}2
s=0 + {∆Pt−s}2

s=0 + {∆St−s}2
s=0 + {∆Pt−s ·∆St−s}2

s=0

)

where It
Kt−1

is the investment to capital ratio, Qt−1 Tobin’s q, CFt−1 the cash-flow to

capital ratio, dBEt−1 the total amount of dividends paid in the previous year, as a

fraction of book equity, DDt−1 a dummy equal to one if the firm has paid dividends

in the previous year, ctrl one of the macroeconomic controls, LS the expectation

index built from the Livingston Survey, and ∆P and ∆S changes in patents and

investor sentiment. Finally, the dummy d>70% is equal to one if the firm belongs to

an industry in the top 30% of the capital intensity ratio. When testing the main

hypothesis, I test that ∆(βdt ) = βd∆P·∆S · (∆S75 −∆S25) is different from zero, where

βd∆P·∆S is the coefficient on the interaction between ∆P, ∆S and the dummy d>70%.

∆(βdt ) quantifies how much the difference in the marginal effect of innovation, between
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high/low levels of capital intensity, changes when ∆S is at its 75th rather than the

25th historical percentile. The model is estimated with a fixed-effect panel regression,

and the standard errors for ∆(βdt ) are computed with the delta method.

Macroeconomic test

The joint effect of investor sentiment and technological innovation on multifactor

productivity is assessed using three methodologies. First of all, I estimate regressions2

of ∆MFP on controls, ∆P, ∆S and ∆P·∆S, and then compute the marginal effect of

∆P conditional on different levels of ∆S. The specification is:

∆MFPt = α+
3∑
s=1

βk,t−sctrlk,t−s+
4∑
s=1

γt−s∆Pt−s+
4∑
s=1

δt−s∆St−s+
4∑
s=1

λt−s∆St−s∆Pt−s

(2.1)

and marginal effects are calculated as:

∆Pm
t−s = γt−s + λt−s ·∆Sqt−s (2.2)

where {ctrlk}3
k=1 are investment opportunities controls, and ∆Sqt−s is the qth percentile

of ∆St−s. Given that there is no a-priori restriction on the exact lag of ∆S·∆P

that may have an effect on ∆MFP, the significance will be judged on the basis of a

Bonferroni adjustment.

The second method of testing the relation between investor sentiment, aggregate

productivity and innovation is a vector auto-regression. I estimate several specifi-

2 I have also estimated an autoregressive distributed lags (ARDL) model, with unchanged re-
sults. ARDL models allow to analyse the effect of a longer lag structure without increasing
the number of regressors. By adding a lagged dependent variable in the right hand side of the
regression described above, coefficients on lagged interaction terms, for instance, can be written
as: ∆MFPt = . . . + λ1L+...+λ4L

4

(1−ΘL) , where Θ is the coefficient on the lagged dependent variable
and L is the lag operator.
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cations, that will be discussed in detail in Section 2.4, which include at least one

business-cycle control, in addition to ∆MFP, ∆S, and ∆P. The number of lags is 3,

selected on the basis of the Akaike Information Criterion, but the results are also

robust to choosing 2 or 4 lags. To identify structural shocks I impose that B is a

lower triangular matrix:

(I − A (L)) yt = Bεt (2.3)

where yt is the vector of variables included in the VAR. The economic interpretation

of this restriction is that the first variable is contemporaneously affected only by its

own shocks, the second by it own and the first variable’s shocks, and so on. The

ordering of the variables in this case is important, and I will discuss the economic

intuition of the various specifications while presenting the results.

The third econometric approach is based on the method proposed by Den Haan

(2000), which has the advantage of computing conditional correlations without re-

quiring identifying assumptions. After estimating a VAR, I use the parameters3

to generate a simulated time series for the variables in the model, and then I cal-

culate ρ
(

∆P (p = 40%, 60%)FE
t ,∆MFPFE

t+s

)
, which is the correlation between time

t forecast errors for ∆P (p = 40%, 60%) and time t + s forecast errors for ∆MFP,

with s ∈ [1, 5]. ∆P (40%) and ∆P (60%) are variables equal to ∆P if ∆S is smaller

than the 40th percentile or greater than the 60th, and zero otherwise. Each sim-

ulation consists of 250 observations, and I keep the last 55 to eliminate the ef-

fect of the starting conditions (the unconditional mean of each variable), and to

have the same sample size as in the actual dataset. I repeat the simulation 1,000

times, and the correlation ρ (∆P (p = 40%, 60%)t ,∆MFPt+s) is estimated as the aver-

3 The parameters are also randomly drawn, using the standard errors provided by the VAR.
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age ρ
(

∆P (p = 40%, 60%)FE
t ,∆MFPFE

t+s

)
across the 1,000 repetitions, with bootstrap

standard errors.

2.4 Results

As I discuss in the next two sections, the results provide strong evidence that the

impact of technological innovation on firm-level investment ratios and on productivity

growth depends on investor sentiment. The timing is also as expected, with higher

∆S·∆P in year t increasing investment in t and t+ 1, and raising productivity growth

after three years.

2.4.1 Microeconomic analysis

The first step in understanding the contribution of ∆S to firm investment is to estimate

the model in equation (2.1) on the whole sample, which runs from 1969 to 2005,

setting d>70% to zero. Specification (3) in Table 2.4 shows that, of the controls for firm

investment opportunities, Tobin’s Q and cash-flows increase the investment ratio, and

the coefficients are similar to those reported by Polk and Sapienza (2009). Retail sales

have a positive effect when lagged by one year, unlike LS, which has a statistically

significant negative impact. The sign of ∆P and ∆S is also negative, with high t-

stats for lagged effects, while the interaction between ∆P and ∆S is not statistically

significant at any lag. In specification (4) the model is estimated on the sample of firms

that belong to industries in the top/bottom 30% of the distribution of capital intensity,

and the dummy d>70% is set to 1 for firms in the top 30%. Some of the parameters are

substantially different when interacted. The coefficients on cash flows and retail sales
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are smaller for firms with high capital intensity, while those on ∆P and ∆P·∆S are

larger. The coefficient on the interaction, in particular, is statistically significant only

for high capital-intensity firms, which suggests that the effect of innovation, made

conditional on ∆S, is indeed larger for such firms.

To directly test whether this is the case, Table 2.5 shows the values and t-stats of

∆(βdt ) = βd∆P·∆S · (∆S75 − ∆S25) for different specifications. As discussed in Section

2.3.2, ∆(βdt ) quantifies how much the difference in the marginal effect of innovation,

between high/low levels of capital intensity, changes when ∆S is at its 75th rather

than the 25th percentile. In Table 2.5, model (2.1) is estimated with one business-

cycle control at the time, and specification (1) excludes 1979-1981 because, as reported

by Griliches (1990), staff shortages at the USPTO created spurious changes in the

number of granted patents. The second specification covers the whole 1969-2005

sample, and there is little difference in the conclusions. The contemporaneous and

lagged ∆(βdt ) is positive across the whole set of controls, with t-stats equal about 2.5,

and usually the lagged ∆(βdt ) is smaller than the contemporaneous one. In economic

terms, ∆P has a volatility of about 13% a year, so a one standard-deviation increase

in ∆P adds 7% to the difference in the investment ratio, between high/low capital

intensity firms, when ∆P is at its 75th rather than the 25th percentile.

Table 2.6 reports the first set of robustness checks, estimating the model with 1

and 3 lags rather than 2, clustering standard errors by firm to account for autocor-

relation, and using the shorter proxy of investor sentiment, which covers 1962-2005

(see Section 2.3.1). The results prove to be robust, with the contemporaneous ∆(βdt )

being higher when the panel regression includes three lags, and staying statistically

significant in 4 out of 7 cases in the specification based on the shorter sentiment

105



proxy. Table 2.7 shows additional specifications, that add discretionary accruals (fol-

lowing Polk and Sapienza (2009)) and include two business-cycle controls. Including

accruals (specification (1)) makes every ∆(βdt ) statistically insignificant, but this is a

sample size issue, because accruals are available for only less than half the firm-year

observations. Specification (2) shows the results from models that do not include

discretionary accruals, but are estimated on observations that have a valid accruals

entry. Almost all coefficients are statistically insignificant, confirming that the results

of specification (1) are due to a substantial reduction in sample size. The remaining

panels of Table 2.7 show ∆(βdt ) when the regression includes two business-cycle con-

trols. The coefficients and t-stats are slightly smaller when the controls are the lnP/E

and ∆SPdisc, but the overall magnitude and pattern of significance carry through this

last robustness check.

2.4.2 Macroeconomic analysis

The first evidence on the effect of investor sentiment and innovation on aggregate

productivity is based on a set of regressions, estimated both with OLS and with the

method of Rousseeuw and Leroy (1987), which improves the robustness to outliers.

The dependent variable is ∆MFP, while the right-hand side includes several sets of

controls, ∆S, ∆P and ∆S·∆P. The regression estimates may be biased by endogeneity,

although the coefficients are remarkably stable through alternative specifications, but

the conclusions are confirmed by a VAR analysis that I discuss later in this section.

In Table 2.8 the specifications include four lags of ∆S, ∆P and of their interaction,

because it is difficult to formulate restrictions on the exact lag that should affect

multifactor productivity, and four years is a reasonably long period of time. This
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obviously changes the significance level of the t-tests but, as I discuss below, the only

significant interaction between ∆P and ∆S has large t-stats in most specifications,

which make it significant at 10% even after a Bonferroni adjustment that accounts

for all the combinations of the 4 lags. The results show that high ∆IP predicts lower

∆MFP, while ∆RS does not enter significantly. LS, on the other hand, is positive and

significant. ∆S and ∆P are mostly statistically insignificant when taken alone, but

the third lag of the interaction is highly significant and with the expected positive

sign. It is the only significant lag in all the specifications, so it is the lag I focus on

when computing the marginal effects, that are reported at the bottom of the table

for the three full specifications. In every case the marginal effect of ∆P is positive

and significant when ∆S is at its top quartile, while it is usually non significant for

∆S equal to the median or the first quartile. The results suggest that a one standard

deviation increase in ∆P would raise ∆MFP in three year’s time by about 0.70%

for high values of ∆S. This finding is confirmed by Table 2.9, which provides initial

robustness checks with specifications that include different lags for the controls, and

OLS estimation rather than robust regressions.

The second set of evidence comes from a series of vector auto-regressions, which

provide an insight on the dynamic relations between the variables. As explained in

Section 2.3.2, I impose the restriction that the matrix B in equation (2.3) is lower

triangular, so the shocks can be given a structural interpretation. In this setting, de-

ciding the order of the variables in the VAR is important to give economic content to

the restriction on the matrix B. Most of the impulse response functions that I present

are based on models where ∆S is the first variable, then ∆P, LS, one of the business

cycle controls and finally ∆MFP. The rationale for this ordering is that contempo-
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raneous innovations to variable n should not be relevant for variable n − 1. More in

detail, investor sentiment should behave like noise, and demand factors have a modest

impact on innovation (Geroski and Walters (1995)). In addition, expectations (LS)

should react more quickly than business-cycle controls to new information, and pro-

ductivity growth should be associated with changes in business-cycle variables. The

first row of Figure 2.1 shows the cumulative orthogonalized impulse response func-

tion (COIRF) of ∆S to ∆MFP in the VAR specifications ∆S, ∆RS, ∆MFP and ∆S,

LS, ∆MFP. The functions suggest that ∆S has an initially negative impact, which is

consistent with investor sentiment misallocating resources and reducing productivity,

when considered in isolation. The effect of ∆P on ∆MFP, on the other hand, is not

significant, as suggested by the sub-figures in the second row, which show COIRFs

of ∆P on ∆MFP in the VAR that includes ∆S, ∆P, ∆RS (LS), ∆MFP. In the third

row the specifications are ∆S, ∆P·∆S, ∆RS (LS), ∆MFP, and in both cases there

is a significant effect of the interaction after three years, consistent with the results

presented in Tables 2.8 and 2.9. The same conclusion can be drawn from the last row

of Figure 2.1, in which the VARs include the variable ∆P interacted with a dummy

equal to one if ∆S is above (below) its 60th (40th) percentile. The implication is that

∆P produces a delayed positive effect on ∆MFP only if the contemporaneous ∆S is

relatively high. These findings are confirmed in Figure 2.2, where the VARs include

the controls LS and ∆RS at the same time. The last three panels show COIRFs from

the the vector auto-regressions LS, ∆RS, ∆MFP, ∆S and LS, ∆RS, ∆P, ∆MFP,

∆S which are useful to evaluate the assumption that ∆S is only affected by its own

innovations. Indeed, the impulse response functions of the controls do not show a

significant effect, while ∆P does have a slightly negative impact on ∆S after one year,
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although the effect is smaller and only marginally significant when ∆P is multiplied

by 0.3 in the years 1979-1981 (unreported result), as discussed in Section 2.3.1. The

final set of vector auto-regressions changes the order of the variables, so that ∆RS is

now affected by all the structural innovations, and ∆MFP by all with the exception of

those for ∆RS. Indeed, it can be reasonable to assume that contemporaneous shocks

to productivity affect sales, rather than viceversa. The impulse response functions

confirm the findings of the previous specifications, with both ∆P(60) and ∆P·∆S

having a positive effect on productivity growth after three years.

The last set of results is based on the method of Den Haan (2000), which is

particularly useful for computing multi-horizon correlations between macroeconomic

variables because it does not require identifying assumptions. The procedure for es-

timating the correlations (see Section 2.3.2) is based on a VAR that includes ∆MFP,

∆S, ∆P, a business-cycle control and either ∆P(60) or ∆P(40). Table 2.10 reports

correlations up to five years ahead, across business-cycle controls and for both the

“long” and “short” sentiment index. Interestingly, the pattern of correlations is dif-

ferent across the two sentiment proxies, but not across controls. When the “long”

index is used, the correlation between ∆P(60) and ∆MFP is small for the first two

years, but then reaches 30% in year t+ 3, in line with the results presented so far. It

is then negative in year t + 4, meaning that the effect on productivity growth is not

permanent, which is quite reasonable from an economic point of view, and consistent

with the VAR analysis presented above, where the cumulative impulse response func-

tion is positive after three years but zero in the long run. The correlations between

∆P(40) and ∆MFP, on the other hand, are negative and usually small, with a few

exceptions in year t + 4. The second panel of Table 2.10 presents results when the
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“short” sentiment index is used. The correlations between ∆P(60) and ∆MFP are

positive and gradually increasing from year t + 1 to t + 3, rather than high in just

t+ 3, and still substantially negative in t+ 4.

2.5 Conclusion

I study whether investor sentiment acts as a subsidy to investment in new technologies,

in particular for firms that are more likely to experience informational externalities,

and if such subsidy produces positive effects for aggregate productivity growth. Early

adopters likely generate informational externalities about the productivity of a new

technology, and this can create a free rider problem that keeps aggregate investment

below the social optimum. The resulting reduction in the flow of information can

delay the adoption of a valuable technology, or the rejection of a less productive one,

both of which generate a loss in productivity growth. Investor sentiment can act

as a subsidy to investment by reducing funding costs, and by enticing managers to

undertake investments that cater to investors’ optimism about the new technology, in

order to maximize stock prices in the short term.

The empirical analysis investigates how the interaction between investor sentiment

and technological innovation affects 1) firm-level investment, in particular for firms

that are more susceptible to informational externalities, and 2) aggregate productivity.

I find that the interaction has a positive effect on investment for firms subject to

informational externalities, and that it raises future aggregate productivity growth.

A one standard deviation increase in technological innovation adds about 7% to the

difference in the investment ratio between high/low capital intensity firms if investor
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sentiment is higher rather than lower, as measured by changes in sentiment at the top

and bottom of the interquartile range. The effect of the same increase in innovation

on productivity growth, when changes in sentiment are at the third quartile, is slightly

more than 0.5%.
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Figure 2.1: Cumulative orthogonalized impulse response functions, I/III

The VAR variables are (in the same order as in the Cholesky decomposition): (row 1, col. 1) ∆S,
∆RS, ∆MFP. (2,1) ∆S, ∆P, ∆RS, ∆MFP. (3,1) ∆S, ∆P·∆S, ∆RS, ∆MFP. (4,1) ∆S, ∆P(40),
∆RS, ∆MFP. (1,2) ∆S, LS, ∆MFP. (2,2) ∆S, ∆P, LS, ∆MFP. (3,2) ∆S, ∆P·∆S, LS, ∆MFP. (4,2)
∆S, ∆P(60), ∆RS, ∆MFP. ∆S is the change in the sentiment index, ∆RS the log change in retail
sales, ∆P the log change in patents, LS the investor expectation index, ∆MFP the log change in
multifactor productivity. ∆P(60) and ∆P(40) are ∆P multiplied by a dummy equal to one if ∆S is
greater/smaller than the 60th/40th percentile. 90% confidence intervals shown.
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Figure 2.2: Cumulative orthogonalized impulse response functions, II/III.

The VAR variables are (in the same order as in the Cholesky decomposition): (1,1) ∆S, LS, ∆RS,
∆MFP. (2,1) ∆S, ∆P·∆S, LS, ∆RS, ∆MFP. (3,1) ∆S, ∆P(60), LS, ∆RS, ∆MFP. (4,1) LS, ∆RS,
∆MFP, ∆S. (1,2) ∆S, ∆P, LS, ∆RS, ∆MFP. (2,2) ∆S, ∆P(40), LS, ∆RS, ∆MFP. (3,2) LS, ∆RS,
∆MFP, ∆S. (4,2) LS, ∆RS, ∆P, ∆MFP, ∆S. See Figure 2.1 for variable definitions. In the subtitles,
ctrl1 is LS and ctrl2 is ∆RS. 90% confidence intervals shown.
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Figure 2.3: Cumulative orthogonalized impulse response functions, II/III.

The VAR variables are (in the same order as in the Cholesky decomposition): (1,1) ∆S, LS, ∆MFP,
∆RS. (2,1) ∆S, ∆P·∆S, LS, ∆MFP, ∆RS. (1,2) ∆S, ∆P, LS, ∆MFP, ∆RS. (2,2) ∆S, ∆P(40), LS,
∆MFP, ∆RS. (3,2) ∆S, ∆P(60), LS, ∆MFP, ∆RS. See Figure 2.1 for variable definitions. 90%
confidence intervals shown.
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Table 2.1: Summary statistics.

Means, standard deviations and percentiles for the macroeconomic variables. ∆MFP is log-changes
in the multifactor productivity index. ∆IP and ∆RS are log-changes in industrial production and
retail sales. lnP/E is the log P/E ratio of the S&P 500. ∆SPdisc is the return on the S&P consumer
discretionary index. D.spr. and T.spr. are the default and term spread (BBB - 10 year T.bonds
and 10 year T.bonds - 6 months T.bills, respectively). LS is the principal component of Livingston
Survey’s forecasted 6 to 12 months ahead changes of real GDP, weekly wages for the non-farm sector
and industrial production. ∆P is the log-change in granted patents and ∆S is the change in Baker
and Wurgler’s ”long” sentiment index. 1951 to 2005.

Mean σt 25th 50th 75th

∆MFP 0.01157 0.00235 0.00075 0.01205 0.02528

∆IP 0.03247 0.00600 0.01017 0.03656 0.0656

∆RS 0.03397 0.00276 0.01886 0.03314 0.05271

lnP/E 2.75013 0.05366 2.45873 2.81661 2.94969

∆SPdisc 0.07784 0.02392 -0.05636 0.10368 0.19399

D.spr. 0.01640 0.00114 0.00900 0.01584 0.02270

T.spr. 0.01116 0.00160 0.00290 0.00945 0.01920

LS 0.00115 0.00168 -0.00487 0.00087 0.00881

∆P 0.02524 0.01749 -0.06228 0.01770 0.08505

∆S 0.01546 0.10757 -0.46737 0.08194 0.46822

Table 2.2: Summary statistics of firm-level variables.

I is investment, K capital, Q Tobin’s q, CF cash flows, dBE the ratio of dividends through the
year on book equity, Et−1[ROAt] the ratio of the median analyst forecast of year t earnings during
year t− 1 divided by book assets, and daccr discretionary accruals. See Appendix A for a detailed
definition of the variables.

Mean Median σ Min. Max. Obs.

It

Kt−1
0.323 0.214 0.392 0.000 6.652 34740

Q 1.702 1.255 1.353 0.453 13.631 37478
CF 0.287 0.292 1.621 -11.489 6.857 37388

dBE 0.018 0.000 0.029 0.000 0.150 38275
Et−1[ROAt] 0.051 0.047 0.077 -0.744 0.361 13508

daccr 0.022 0.025 0.130 -0.818 0.530 20671

115



T
ab

le
2.

3:
C

or
re

la
ti

on
s.

C
or

re
la

ti
on

s
fo

r
th

e
m

ac
ro

ec
on

om
ic

va
ri

ab
le

s.
∆

M
F

P
is

th
e

lo
g-

ch
an

ge
in

th
e

m
ul

ti
fa

ct
or

pr
od

uc
ti

vi
ty

in
de

x.
∆

IP
an

d
∆

R
S

ar
e

lo
g-

ch
an

ge
s

in
in

du
st

ri
al

pr
od

uc
ti

on
an

d
re

ta
il

sa
le

s.
ln

P
/E

is
th

e
lo

g
P

/E
ra

ti
o

of
th

e
S&

P
50

0.
∆

SP
d
is

c
is

th
e

re
tu

rn
on

th
e

S&
P

co
ns

um
er

di
sc

re
ti

on
ar

y
in

de
x.

D
.s

pr
.

an
d

T
.s

pr
.

ar
e

th
e

de
fa

ul
t

an
d

te
rm

sp
re

ad
(B

B
B

-
10

ye
ar

T
.b

on
ds

an
d

10
ye

ar
T

.b
on

ds
-

6
m

on
th

s
T

.b
ill

s,
re

sp
ec

ti
ve

ly
).

L
S

is
th

e
pr

in
ci

pa
lc

om
po

ne
nt

of
L

iv
in

gs
to

n
Su

rv
ey

’s
fo

re
ca

st
ed

6
to

12
m

on
th

s
ah

ea
d

ch
an

ge
s

of
re

al
G

D
P,

w
ee

kl
y

w
ag

es
fo

r
th

e
no

n-
fa

rm
se

ct
or

an
d

in
du

st
ri

al
pr

od
uc

ti
on

.
∆

P
is

th
e

lo
g-

ch
an

ge
in

gr
an

te
d

pa
te

nt
s

an
d

∆
S

is
th

e
ch

an
ge

in
B

ak
er

an
d

W
ur

gl
er

’s
”l

on
g”

se
nt

im
en

t
in

de
x.

19
51

to
20

05
.

∆
M

F
P

∆
IP

∆
R

S
ln

P
/E

∆
SP

d
is

c
D

.s
pr

.
T

.s
pr

.
L

S
∆

P
∆

S

∆
M

F
P

1
∆

IP
0.

63
1

∆
R

S
0.

75
0.

84
1

ln
P

/E
0.

18
-0

.0
9

0.
00

1
∆

SP
d
is

c
-0

.0
3

-0
.3

1
-0

.1
1

0.
23

1

D
.s

pr
.

-0
.3

2
-0

.4
3

-0
.3

6
0.

36
-0

.0
4

1
T

.s
pr

.
0.

03
-0

.3
2

-0
.1

8
0.

25
0.

24
0.

49
1

L
S

0.
05

-0
.3

6
-0

.3
1

0.
35

0.
17

0.
10

0.
30

1
∆

P
-0

.0
5

0.
10

0.
04

0.
19

0.
02

-0
.0

2
0.

01
0.

06
1

∆
S

-0
.0

1
0.

09
-0

.0
1

0.
01

0.
08

-0
.1

4
-0

.2
5

0.
01

-0
.0

6
1

116



Table 2.4: Investment, investor sentiment and technological innovation.
The following model is estimated on a panel of Compustat firms: It

Kt−1
= α + Qt−1 + CFt−1 +

dBEt−1 + DDt−1 + {ctrlt−s}2s=0 + {LSt−s}2s=0 + {∆Pt−s}2s=0 + {∆St−s}2s=0 + {∆Pt−s ·∆St−s}2s=0 +
d>70% · (Qt−1 +CFt−1 +dBEt−1 +DDt−1 +{ctrlt−s}2s=0 +{LSt−s}2s=0 +{∆Pt−s}2s=0 +{∆St−s}2s=0 +
{∆Pt−s · ∆St−s}2s=0). d>70% is zero in specifications (1) to (3). Specification (4) focuses on firms
in the top/bottom 30% of the distribution of capital intensity, and d>70% is equal to 1 for firms in
the top 30%. Q is Tobin’s q, CF cash-flow/capital ratio, dBE the ratio of dividends through the
year on book equity, DD a dummy equal to 1 if dividends have been paid in the year. See Table
2.1 and Appendix A for detailed variable definitions. Reported t-stats are based on standard errors
computed with the heteroskedasticity-consistent sandwich estimator, and are clustered by year. 1969
to 2005, but 1979-1981 are excluded, as staff shortages at the USPTO spuriously affected ∆P.

(1) (2) (3) (4)
dci>70%

Qt−1 0.083 0.081 0.020
18.86 12.39 1.30

CFt−1 0.029 0.037 -0.057
5.65 6.21 -2.27

dBEt−1 -0.115 -0.262 0.218
-1.16 -1.10 0.79

ddt−1 -0.008 -0.027 0.008
-0.98 -0.95 0.26

∆RSt 0.029 0.041 0.072 -0.067
0.73 1.42 2.46 -3.35

∆RSt−1 0.089 0.030 0.105 -0.110
2.54 0.96 2.62 -3.34

∆RSt−2 0.088 0.057 0.132 -0.094
2.31 1.67 2.89 -2.61

LSt -2.661 -1.663 -1.963 -2.483 0.863
-3.57 -2.65 -3.90 -2.30 0.75

LSt−1 -0.499 -1.101 -1.262 -0.715 -0.018
-0.54 -0.98 -1.40 -0.50 -0.02

LSt−2 -0.192 -0.172 -0.274 -1.346 2.029
-0.24 -0.19 -0.37 -1.30 2.50

∆Pt 0.088 0.097 0.036 0.074 0.071
1.05 1.14 0.46 0.60 0.59

∆Pt−1 -0.197 -0.276 -0.213 -0.299 0.317
-1.75 -2.56 -2.26 -2.36 2.99

∆Pt−2 -0.315 -0.376 -0.275 -0.402 0.324
-2.72 -4.44 -3.38 -2.03 1.76

∆St 0.015 0.005 0.001 0.010 -0.023
1.00 0.28 0.06 0.36 -1.08

∆St−1 -0.022 -0.018 -0.024 -0.026 0.008
-1.69 -1.75 -2.35 -1.40 0.52

∆St−2 -0.006 -0.008 -0.012 -0.014 0.004
-0.37 -0.63 -1.13 -0.84 0.29

(∆P·∆S)t -0.169 0.010 0.003 -0.144 0.495
-1.12 0.06 0.02 -0.63 2.15

(∆P·∆S)t−1 -0.083 -0.064 0.017 0.002 0.280
-0.55 -0.53 0.19 0.02 2.26

(∆P·∆S)t−2 -0.248 -0.250 -0.101 -0.235 0.351
-2.41 -2.56 -1.21 -0.96 1.39

intercept 0.002 0.003 0.001 0.001 -0.001
0.36 0.48 0.33 0.29 -0.27

R2 1.10 1.38 7.91 8.98
Obs 33621 33621 33531 17136
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Table 2.5: Investment, investor sentiment and technological innovation: test
of the microeconomic channel.

The following model is fitted on a panel of Compustat firms with a fixed-effects regression: It

Kt−1
=

α + Qt−1 + CFt−1 + dBEt−1 + DDt−1 + {ctrlt−s}2s=0 + {LSt−s}2s=0 + {∆Pt−s}2s=0 + {∆St−s}2s=0 +
{∆Pt−s · ∆St−s}2s=0 + d>70% · (Qt−1 + CFt−1 + dBEt−1 + DDt−1 + {ctrlt−s}2s=0 + {LSt−s}2s=0 +
{∆Pt−s}2s=0 + {∆St−s}2s=0 + {∆Pt−s · ∆St−s}2s=0). ctrl is a business-cycle control (shown in the
columns of the table). The table reports a test of whether the sensitivity of investment to the
interaction between sentiment and innovation is higher for firms belonging to industries with high
capital intensity (capital to book value of assets). The panel includes firms in the top/bottom 30% of
the distribution of capital intensity, and the dummy d>70% is equal to 1 when firms fall in the top 30%.
See Table 2.1, 2.4 and Appendix A for detailed variable definitions. The table reports values and
t-stats of the following difference: ∆(βdt ) = βd∆P·∆S ·(∆S75−∆S25), where βd∆P·∆S is the coefficient on
the interaction between innovation, changes in sentiment and the dummy d>70%. ∆(βdt ) quantifies
how much the difference in the marginal effect of innovation, between high/low levels of capital
intensity, changes when ∆S is at its 75th rather than the 25th historical percentile. Reported t-stats
are based on standard errors computed with the heteroskedasticity-consistent sandwich estimator,
and are clustered by year. 1969 to 2005, but 1979-1981 are excluded in specification (1) because
staff shortages at the USPTO created spurious changes in the number of granted patents.

lnP/E ∆SPcd ∆IP ∆RS D.spr. T.spr ∆SP

∆(βdt ) 0.518 0.549 0.448 0.478 0.686 0.645 0.755
2.04 2.15 1.95 2.24 2.69 2.34 2.71

(1) ∆(βdt−1) 0.138 0.311 0.506 0.35 0.425 0.302 0.446
0.61 2.26 3.84 2.74 2.50 1.61 3.31

∆(βdt−2) 0.193 0.39 0.428 0.363 0.29 0.42 0.44
0.67 1.39 1.64 2.14 1.06 1.29 1.33

∆(βdt ) 0.512 0.508 0.469 0.496 0.48 0.505 0.489
2.73 2.52 2.50 2.56 2.47 2.47 2.42

(2) ∆(βdt−1) 0.49 0.475 0.49 0.487 0.499 0.504 0.478
2.72 2.57 2.69 2.59 2.73 2.65 2.58

∆(βdt−2) 0.276 0.287 0.265 0.26 0.289 0.289 0.294
1.20 1.24 1.17 1.18 1.21 1.21 1.24
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Table 2.6: Investment, investor sentiment and technological innovation: test
of the microeconomic channel. Robustness checks, I/II.

The following model is fitted on a panel of Compustat firms with a fixed-effects regression: It

Kt−1
=

α+Qt−1+CFt−1+dBEt−1+DDt−1+{ctrlt−s}2s=0+{LSt−s}2s=0+{∆Pt−s}2s=0+{∆St−s}2s=0+{∆Pt−s·
∆St−s}2s=0 +d>70% · (Qt−1 + CFt−1 + dBEt−1 + DDt−1 + {ctrlt−s}2s=0 + {LSt−s}2s=0 + {∆Pt−s}2s=0 +
{∆St−s}2s=0 + {∆Pt−s · ∆St−s}2s=0). ctrl is a business-cycle control (shown in the columns of the
table). ∆(βdt ) = βd∆P·∆S · (∆S75 −∆S25), where βd∆P·∆S is the coefficient on the interaction between
innovation, changes in sentiment and the dummy d>70%. ∆(βdt ) quantifies how much the difference
in the marginal effect of innovation, between high/low levels of capital intensity, changes when ∆S
is at its 75th rather than the 25th historical percentile. (1) and (2): the macroeconomic controls,
∆P, ∆S and (∆P·∆S) are lagged by 3 and 1 years. (3): standard errors are clustered by firm rather
than year. (4): ∆S is the the ”short” Baker and Wurgler’s sentiment index. Standard errors are
computed with the heteroskedasticity-consistent sandwich estimator, and are clustered by year. See
Table 2.1, 2.4 and Appendix A for detailed variable definitions. 1969 to 2005, but 1979-1981 are
excluded because staff shortages at the USPTO created spurious changes in the number of granted
patents.

lnP/E ∆SPcd ∆IP ∆RS D.spr. T.spr ∆SP

∆(βdt ) 0.624 0.990 0.628 0.492 0.642 1.090 1.055
1.80 3.57 2.08 2.22 2.41 2.95 3.38

∆(βdt−1) 0.229 0.338 0.458 0.473 0.542 0.363 0.385
(1) 1.03 2.56 3.62 3.58 3.84 2.50 2.58

∆(βdt−2) 0.249 0.552 0.388 0.325 0.131 0.325 0.558
0.99 2.26 1.51 1.76 0.75 1.23 2.00

∆(βdt−3) 0.241 -0.118 0.021 0.167 0.023 0.082 -0.083
1.04 -0.68 0.13 0.81 0.13 0.39 -0.40

∆(βdt ) 0.437 0.418 0.108 0.240 0.407 0.350 0.436
(2) 2.41 2.22 0.47 1.06 2.17 1.71 2.14

∆(βdt−1) 0.067 0.276 0.391 0.287 0.333 0.213 0.348
0.29 1.30 2.03 1.43 1.71 0.85 1.72

∆(βdt ) 0.518 0.549 0.448 0.478 0.686 0.645 0.755
2.01 2.17 1.66 1.90 2.62 2.50 2.85

(3) ∆(βdt−1) 0.138 0.311 0.506 0.350 0.425 0.302 0.446
0.52 1.27 1.91 1.43 1.69 1.22 1.79

∆(βdt−2) 0.193 0.390 0.428 0.363 0.290 0.420 0.440
0.83 1.70 1.80 1.59 1.32 1.82 1.81

∆(βdt ) -0.053 0.327 0.641 0.554 0.159 0.644 0.585
-0.31 1.17 3.39 2.98 0.54 2.49 2.13

(4) ∆(βdt−1) 0.113 0.037 0.228 0.369 -0.021 0.082 0.049
0.84 0.21 1.57 3.06 -0.10 0.54 0.27

∆(βdt−2) -0.417 0.048 0.129 0.331 -0.171 0.041 -0.013
-2.78 0.31 0.94 2.30 -0.97 0.22 -0.07

119



Table 2.7: Investment, investor sentiment and technological innovation: test
of the microeconomic channel. Robustness checks, II/II.

The following model is fitted on a panel of Compustat firms with a fixed-effects regression: It

Kt−1
=

α+Qt−1+CFt−1+dBEt−1+DDt−1+{ctrlt−s}2s=0+{LSt−s}2s=0+{∆Pt−s}2s=0+{∆St−s}2s=0+{∆Pt−s·
∆St−s}2s=0 +d>70% · (Qt−1 + CFt−1 + dBEt−1 + DDt−1 + {ctrlt−s}2s=0 + {LSt−s}2s=0 + {∆Pt−s}2s=0 +
{∆St−s}2s=0 + {∆Pt−s · ∆St−s}2s=0). ctrl is a business-cycle control (shown in the columns of the
table). ∆(βdt ) = βd∆P·∆S · (∆S75 −∆S25), where βd∆P·∆S is the coefficient on the interaction between
innovation, changes in sentiment and the dummy d>70%. ∆(βdt ) quantifies how much the difference
in the marginal effect of innovation, between high/low levels of capital intensity, changes when
∆S is at its 75th rather than the 25th historical percentile. (1): the panel regression includes
contemporaneous discretionary accruals. (2): the panel regression does not include observations with
missing discretionary accruals. (3) and (4): the regression includes two macroeconomic controls, in
addition to LS, and the macroeconomic controls, ∆P, ∆S and (∆P·∆S) are lagged by 2 and 3 years.
Standard errors are computed with the heteroskedasticity-consistent sandwich estimator, and are
clustered by year. See Table 2.1, 2.4 and Appendix A for detailed variable definitions. 1969 to 2005,
but 1979-1981 are excluded because staff shortages at the USPTO created spurious changes in the
number of granted patents.

lnP/E ∆SPcd ∆IP ∆RS D.spr. T.spr ∆SP

∆(βdt ) 0.415 0.403 0.164 0.290 0.337 0.464 0.614
1.34 1.35 0.52 0.99 0.99 1.44 1.84

(1) ∆(βdt−1) -0.244 -0.030 0.137 0.118 0.192 0.016 0.052
-1.62 -0.22 0.94 0.87 1.10 0.11 0.38

∆(βdt−2) 0.277 0.409 0.359 0.314 0.189 0.310 0.461
0.76 1.16 1.00 1.21 0.61 0.78 1.10

∆(βdt ) 0.407 0.399 0.157 0.288 0.320 0.456 0.609
1.30 1.32 0.49 0.98 0.94 1.39 1.81

(2) ∆(βdt−1) -0.257 -0.036 0.134 0.114 0.193 0.007 0.045
-1.70 -0.27 0.92 0.83 1.09 0.05 0.32

∆(βdt−2) 0.266 0.395 0.346 0.302 0.167 0.299 0.442
0.72 1.10 0.94 1.15 0.54 0.74 1.03

lnP/E & ∆SPcd ∆IP & ∆RS D.spr. & T.spr

∆(βdt ) 0.309 0.393 0.590
1.46 1.77 2.33

(3) ∆(βdt−1) 0.081 0.436 0.690
0.44 3.98 3.25

∆(βdt−2) 0.232 0.275 0.069
0.94 1.72 0.26

∆(βdt ) 0.588 0.540 0.942
1.66 2.08 2.75

∆(βdt−1) 0.213 0.622 0.711
(4) 1.13 4.56 3.89

∆(βdt−2) 0.290 0.365 -0.095
1.26 2.16 -0.47

∆(βdt−3) 0.063 0.278 -0.171
0.25 1.44 -1.02
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Table 2.10: Correlation between forecast errors of ∆MFP and of ∆P when
contemporaneous ∆S is high or low.

The correlations are calculated by estimating a VAR that includes ∆MFP, the indicated business-
cycle control, ∆S, ∆P and either 1) ∆P(60), a variable equal to ∆P if ∆S is greater than its 60th

historical percentile, and zero otherwise or 2) ∆P(40), a variable equal to ∆P if ∆S is smaller than
its 40th historical percentile, and zero otherwise. Using the VAR parameters I simulate a series
of length 250, discard the first 195 observations to eliminate the effect of starting conditions (each
series’ unconditional mean) and to have a simulated sample with the same number of observations
as the actual sample. I then compute the simulated forecast errors at horizons of 1 to 5 years,
and calculate the correlation between the simulated forecast errors of ∆MFP and of ∆P(60)) or
∆P(40). The simulation is repeated 1,000 times, and the table shows the average across simulations.
Entries with a ”0” (”1”,”2”) superscript are not statistically significant (significant at 10%, 5%), and
those without a superscript are significant at 1%. Bootstrap standard errors are calculated with 50
replications.

LS ∆IP ∆RS lnP/E ∆SPcd D.spr. T.spr. ∆SP

Investor sentiment: ”long” Baker and Wurgler’s index
∆P(∆S>p(60))

1yr 0.14 0.15 0.14 0.15 0.15 0.10 0.18 0.17
2yr 0.04 0.06 0.04 0.012 0.05 0.09 0.04 0.08
3yr 0.28 0.32 0.30 0.29 0.31 0.26 0.28 0.28
4yr -0.21 -0.14 -0.14 -0.15 -0.15 -0.15 -0.20 -0.14
5yr 0.010 0.03 0.01 0.01 -0.012 -0.05 0.000 0.010

∆P(∆S<p(40))
1yr 0.06 -0.01 -0.010 -0.01 0.06 -0.02 0.000 0.04
2yr -0.04 -0.01 -0.06 -0.08 -0.06 -0.06 -0.04 -0.06
3yr -0.07 -0.12 -0.11 -0.14 -0.12 -0.09 -0.07 -0.11
4yr -0.18 -0.13 -0.15 -0.11 -0.16 -0.14 -0.080 -0.200

5yr -0.06 -0.05 -0.07 -0.03 -0.01 -0.05 -0.01 0.00

Investor sentiment: ”short” Baker and Wurgler’s index
∆P(∆S>p(60))

1yr 0.08 0.19 0.16 0.15 0.15 0.18 0.19 0.16
2yr 0.13 0.14 0.11 0.12 0.20 0.20 0.17 0.22
3yr 0.12 0.18 0.13 0.17 0.21 0.20 0.20 0.20
4yr -0.28 -0.27 -0.25 -0.27 -0.28 -0.27 -0.32 -0.26
5yr 0.000 -0.04 -0.01 -0.04 -0.05 -0.10 -0.04 -0.05

∆P(∆S<p(40))
1yr 0.03 -0.04 -0.08 -0.03 0.02 0.000 -0.010 0.04
2yr 0.04 0.05 0.03 0.02 0.05 0.04 0.04 0.06
3yr -0.02 -0.04 -0.07 -0.09 -0.10 -0.01 -0.05 -0.08
4yr -0.03 -0.07 -0.02 0.01 -0.10 -0.012 -0.010 -0.13
5yr 0.01 0.03 0.06 0.17 0.12 0.07 0.05 0.13
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Appendix A

The definition of firm-level variables follows Polk and Sapienza (2009), and the first

part of this Appendix is adapted from Appendix A in their paper. Investment (I)

is capital expenditure (Compustat Item128). Capital (K) is net property, plant, and

equipment (Item8). Tobin’s q (Q) equals the market value of assets divided by the

book value of assets (Item6). The market value of assets equals the book value of

assets plus the market value of common stock less the sum of book value of common

stock (Item60) and balance sheet deferred taxes (Item74) in year t − 1. Cash flow

(CF) equals the sum of earnings before extraordinary items (Item18) and depreciation

(Item14) over beginning-of-year capital. Sales (Item12) is net sales. Accruals (accr)

equal the change in accounts receivable (Item2) plus the change in inventories (Item3)

plus the change in other current assets (Item68) minus the change in accounts payable

(Item70) minus the change in other current liabilities (Item72) minus depreciation

(Item178). Accruals are scaled by total assets (the average of Item6 at the beginning

and end of the fiscal year). Discretionary accruals (daccr) are:

daccrt = accrt − normal accrt (2.4)

normal accrt =
Σ5
k=1accri,t−k

Σ5
k=1salesi,t−k

· salesi,t (2.5)

BE is stockholders’ equity, plus balance sheet deferred taxes (Item74) and investment

tax credit (Item208, set to zero if unavailable), plus post-retirement benefit liabilities

(Item330, set to zero if unavailable), minus the book value of preferred stock. De-

pending on availability of preferred stock data, I use redemption (Item56), liquidation

(Item10), or par value (Item130), in that order, for the book value of preferred stock.
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Stockholders’ equity is as follows. If Item216 is not available, stockholders’ equity is

the book value of common equity (Item60), plus the book value of preferred stock.

If common equity is not available, stockholders’ equity is the book value of assets

(Item6) minus total liabilities (Item181). The sample only includes firms with fiscal

years ending in December.

The analysis focuses on common stocks (CRSP share code 10 and 11) traded

on NYSE, AMEX and NASDAQ (exchange code 1, 2 and 3). Only ordinary cash

dividends are considered (distribution code 12). The following variables are censored

at the 0.5 and 99.5 percentiles: investment rate (It/Kt−1), Tobins’s Q, discretionary

accruals and expected ROA. The cash-flow ratio (CFt/Kt−1) is censored at the 1.5 and

98.5 percentiles, because it exhibits a larger proportion of extreme values. Censoring

at 3% rather than 1% of the cash-flow ratio’s has a noticeable effect on the statistical

and economic significance of the coefficient. The ratio of dividends to book equity

(dBE) is censored at 0 and 0.15 to limit the effect of small BE values.
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Chapter 3

Portfolio choice with distributions implied
in option prices

This chapter benefited from the suggestions of Victor De Miguel, Theodosios Dimopoulos, Carlo
Fezzi, Tim Johnson, Andrew Patton, Franco Peracchi, Stefano Sacchetto and Raman Uppal. I
would also like to credit Andrew Patton and Michael Rockinger the Matlab code they made
available on their web sites.
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3.1 Introduction

In a recent contribution on the implications of estimation error for portfolio choice,

De Miguel, Garlappi and Uppal (2009) compare the out-of-sample performance of

several portfolio choice models with that of a näıve strategy that allocates wealth

in equal proportions to N securities. They show that, far from being badly ineffi-

cient, the 1
N

strategy often yields the best out-of-sample results. The literature has

indeed recognized that model misspecification and estimation error can have impor-

tant consequences for portfolio choice problems. One solution is to acknowledge that

portfolio weights may be driven by noise rather than fundamentals, and to prevent

the model from taking extreme positions. This can be done by imposing constraints

on the domain of the distributions’ parameters (Ledoit and Wolf (2003)) or on the

portfolio weights (Brandt, Santa-Clara and Valkanov (2009), Jagannathan and Ma

(2003)). Investors can use the Bayesian framework to formalize uncertainty about

the return generating function (Jorion (1986), Pastor (2000), Pastor and Stambaugh

(2000)), or they may adopt robust decision rules. In Garlappi, Uppal and Wang

(2007), for instance, it is possible to account for model uncertainty by minimizing

the objective function over admissible parameter values, which are represented by

confidence intervals. On the other hand, the precision of estimated returns can be

improved by exploiting the statistical properties of returns themselves (as in Pastor

and Stambaugh (2009)), or by recognizing the implications that omitted factors have

on the relation between expected returns and the covariance structure (MacKinlay

and Pastor (2000)).

My contribution is to suggest a method that improves the precision of estimated

expected returns. I solve a portfolio choice problem by deriving the distribution of
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expected returns from the cross-section of option prices, under the assumption that

the information about higher moments implied in the moneyness structure can be

helpful to reduce uncertainty about estimated expected returns. There is substan-

tial evidence, for instance, that implied volatility has significant forecasting power for

future realized volatility (Christensen and Prabhala (1997), Jiang and Tian (2005)).

Distributions derived from option prices are risk-neutral, which means that the proba-

bilities incorporate a correction for investors’ risk aversion, and I rely on the empirical

pricing kernel of Rosenberg and Engle (2002) to obtain estimates of the expected ob-

jective distributions. Alternatively, I simply shift the risk-neutral distribution to the

right by adding the risk premium, which allows to evaluate the portfolio choice impli-

cations of risk-neutral skewness, that imposes a penalty on extreme weights in terms

of magnified expected losses.

The empirical analysis solves a portfolio choice problem for an investor with power

utility, and compares the certainty equivalent from the 1
N

rule with those from strate-

gies based on distributions of expected returns estimated with option prices, and with

times-series models that allow an autoregressive structure for the first four moments.1

The marginal distributions for expected returns are joined into a multivariate one by

using the normal and t copulas. Comparing the results across the two specifications

allows to evaluate the economic importance of accounting for tail dependence with

the t copula. Other families of copulas can also model asymmetric dependence, in

particular the Archimedean copulas used by Patton (2004), but they can seldom be

extended beyond the bivariate case, and parameter instability may increase estimation

error (Nelsen (1999)). The focus is on how the “active” portfolio choice models com-

1 The relatively large number of parameters in the time-series models may generate estimation
error, so in unreported robustness checks I have used a simpler GARCH-in-mean, without
altering the conclusions.
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pare with the 1
N

strategy. If distributions implied in option prices actually increase the

precision of estimated expected returns, their certainty equivalents should be closer

to 1
N

’s than those obtainable from the time-series models. The portfolio problem is

solved for four international equity indices, and this, as noted by De Miguel, Garlappi

and Uppal (2009), increases the chance that the näıve strategy performs well, because

portfolios have lower idiosyncratic risk than individual stocks. The results show that

option-based models generate higher certainty equivalents than the 1
N

rule, especially

when limited short-selling is allowed, while time-series models have consistently lower

performance than the näıve strategy. The wedge between the 1
N

allocation and option-

based models is largest for portfolios consisting of three assets. Transaction costs are

very low for the 1
N

rule, which requires little rebalancing, while they are relatively high

for option-based strategies. As a consequence, they reduce, but do not eliminate, the

economic significance of the results.

Section 3.2 reviews the relevant literature, Section 3.3 describes the methodology,

Section 3.4 presents the data and the results, and Section 3.5 concludes.

3.2 Literature review

I now discuss the literature on option-implied distributions, models for dynamic skew-

ness and kurtosis, and copula theory, which are at the basis of the methodology used

to solve the portfolio problem.
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3.2.1 Risk neutral distributions of expected returns

There are different ways of obtaining distributions of expected returns from option

prices. Some exploit the fact that the distribution is equal to the second derivative

of the call price function with respect to the strike price (Breeden and Litzenberger

(1978)). To compensate for the limited number of observable strike prices, the volatil-

ity smile is usually fitted with non-parametric techniques, like parabolic functions

(Shimko (1993)) or cubic and fourth order splines (Andersen and Wagener (2002)).

A major problem is that liquid options aren’t usually far in- or out-of-the-money, so

the shape of the tails of the implied distributions depends substantially on how the

volatility smile is extrapolated. Other approaches require distributional assumptions

on the process of the underlying. The reduced flexibility is compensated by robust-

ness to outliers, which is quite valuable when there is only a small number of liquid

strike prices available. Jondeau and Rockinger (2000) compare several methods and

conclude that a diffusion process with jumps is well suited for long maturity options,

while a mixture of lognormals performs better for short maturities. Other studies

have used binomial trees (Rubinstein (1994), Jackwerth and Rubinstein (1996)) and

kernel regressions (Aı̈t-Sahalia and Lo (1998)).

3.2.2 Models for dynamic skewness and kurtosis

Fama (1965) provided the first evidence that stock returns are not normally dis-

tributed, and since then the literature has shown that excess kurtosis and skewness

are a common characteristic of the unconditional distribution of daily equity returns

(Ané and Geman (2000)). The ARCH family provides a dynamic model that accounts
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for volatility clustering and produces excess kurtosis even with normal innovations.

Departure from normality has been first studied by Bollerslev (1987) and Nelson

(1991). Hansen (1994) proposed a class of autoregressive density functions (ARD),

which build on the GARCH structure and make the parameters controlling the third

and fourth moments time varying. Previous research had already introduced distribu-

tions with dynamic moments beyond the second (Gallant, Hsieh, and Tauchen (1997))

but Hansen (1994)’s formulation is more parsimonious and is based on the familiar

Student t. Rockinger and Jondeau (2002) estimate a conditional density from mo-

ment conditions through the entropy principle: this imposes a low amount of a-priori

information, but requires a rather complex estimation procedure. They find that the

model is flexible enough to span a greater set of skewness and kurtosis values than

Hansen (1994)’s skew t.

In continuous time, normal diffusion processes have been augmented with stochas-

tic volatility and jump components (Aı̈t-Sahalia (2002), Benzoni (2002), Eraker, Jo-

hannes and Polson (2003)). Recent contributions also added jumps in volatility (Cher-

nov, Gallant, Ghysels and Tauchen (2003), Eraker (2004)). Most of these models can

explain the cross section of option prices quite well but, from a term structure perspec-

tive, Das and Sundaram (1999) show that jump-diffusions and stochastic volatility

models cannot account for both long and short term anomalies.

While the behavior of daily returns can’t be easily reconciled with a normal dis-

tribution, longer horizons generate weaker rejections of the normality assumption

(Upton and Shannon (1979)). A natural question is whether models for dynamic

skewness and kurtosis are justified for monthly data. Even if monthly returns tend to

be more “well behaved” than the daily counterpart, there is evidence that the return
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series used in this paper have significant skewness and excess kurtosis (Harris and

Küçüközmen (2001)).

3.2.3 Analysis of dependence

The multivariate normal distribution has been under intense scrutiny for quite some

time in the equity returns literature. Three of its characteristics - absence of tail

dependence, symmetry and linear dependence - are at odds with the evidence accu-

mulated over the years (Ang and Bekaert (2002), Ang and Chen (2002), Erb, Harvey

and Viskanta (1994)). Alternative models either focus on a particular aspect of the

distribution, as in the case of extreme value analysis (Longin and Solnik (2001)), or

introduce a level of complexity that creates estimation problems (Bauwens and Lau-

rent (2005)). The main advantage of using copula functions to generate multivariate

models is flexibility, both from the computational and descriptive point of view. Pa-

rameters can be estimated separately for each marginal and for the copula, and the

loss of efficiency does not compromise consistency and asymptotic normality (Pat-

ton (2005)). At the same time, features like asymmetric dependence structures or tail

dependence can be easily described by Student t or Archimedean copulas (see Gagliar-

dini and Gourieroux (2004), Nelsen (1999) for references). Archimedean copulas, in

particular, are one of the most useful families. They can model a wide range of depen-

dence structures and can be extended to generate stochastic dependence (Dias and

Embrechts (2004)). Patton (2004), for instance, shows that time-varying asymmetry

in the dependence structure is important for portfolio choice. A major shortcoming

of Archimedean copulas is that they can be extended beyond the bivariate case only

under restrictive conditions. This helps explaining why the great variety of families
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used in bivariate applications turns into a near-monopoly of the normal and Student

t copulas for higher dimensions.

Recent applications of copula theory include Jondeau and Rockinger (2006), who

estimate dynamic normal and Student t copulas on stock-returns series. Cherubini

and Luciano (2002) study the option pricing implications of tail dependence. Li (2000)

explores the effects of different dependence structures on default correlation models.

3.3 Methodology

This section describes the set-up of the portfolio choice problem and the details of

the optimization. It first defines the utility function and then explains how the dis-

tribution of joint returns is built. The marginal distributions and the dependence

structure are described separately.

3.3.1 The investor problem

Each month, from January 2000 to November 2004, the investor allocates her wealth

to four equity indices: S&P 500, Ftse 100, Nasdaq 100, Nikkei 225.

She solves:

w∗t = arg max
wt∈W

Et[U(wt·r′t+1)]

where

wt = [w1,t, ..., wN,t] , {wi,t}Ni=1 are portfolio weights

rt = [r1,t, ..., rN,t] , {ri,t}Ni=1 are monthly gross returns
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U
(
wt·r′t+1

)
=


(wt·rt+1)1−γ

1−γ

log (wt·rt+1)

for γ 6= 1

for γ = 1

Et[U(wt·r′t+1)] =
∫
·· ·
∫
U(wt·r′t+1)f(ln(rt+1))drt+1

The multivariate density function f(ln(rt+1)) is equal to the product of the marginal

densities m(ln(ri,t+1)) and the copula density c(M1(ln(r1,t+1)), ...,MN(ln(rN,t+1))),

where Mi(ln(ri,t+1)) is the marginal cumulative probability function of index i’s re-

turns:

f(ln(rt+1)) = c(M1(ln(r1,t+1)), ...,MN(ln(rN,t+1)))
∏

imi(ln(ri,t+1))

The optimization is performed under two sets of shortselling constraints. In the first

case, shortselling is not allowed:

WC = {[w1,t, ..., wN,t ∈ [0, 1]N :
∑

iwi,t = 1,∀t}

In the second case a limited amount of shortselling is possible (this is referred to as

the unconstrained optimization throughout the paper):

WU = {[w1,t, ..., wN,t] ∈ [−2, 2(N − 1) + 1]N :
∑

iwi,t = 1,∀t}

Shortselling is limited because the comparison among different models should not

be based on returns driven by extreme positions. Results of completely unconstrained

optimizations (not reported) show that option-based models typically produce much

larger returns. For the Ftse 100 - S&P500 portfolio, for instance, the gross return over

the five years can be as high as 1.70 (0.95 with limited shortselling), but is mainly

driven by three months with shortselling in excess of 5,000%.
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The portfolio problem does not allow to invest in the riskless asset. This is

inefficient (Ang and Bekaert (2002)), but preventing the investor from taking a safe

position is a way of “stress testing” the models, because the certainty equivalent

depends only on the model’s ability to describe expected returns.

The choice of the utility function warrants further discussion. The optimization

problem is solved as if the investor were myopic, even with γ > 1. The reason is that

liquid options have short maturity, and a feasible multi-period model would not be

very different from a myopic one. Different values of γ can still give useful insights in

the asset allocation choices.

The details of the optimization procedure are as follows. At time t, after having

estimated f(ln(rt+1)) as described in the following sections, the expected value of the

utility function is approximated with a Montecarlo simulation:

1. a matrix S with N columns and T rows (T = 400, 000 for N = 3, 4; T =

10, 000 for N = 2) is generated according to a standardized N -variate normal

(or Student t).

2. the standardized univariate normal Φ (or Student t, Tυ) cumulative function is

applied to each column of S to obtain a T ×N matrix U.

3. the inverse integral transformation of each estimated marginal distribution is

applied to the corresponding column of U to obtain a T ×N matrix R, whose

generic element (i, j) is then defined as:

R[i,j] = M−1
j (F (S[i,j])), F = Φ or Tυ.

4. the expected utility is approximated by:
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Êt[U(wt·r′t+1)] = 1
T

∑
i U(exp(R[i,1]w1,t + ...+R[i,N ]wN,t))

Simulated returns outside the 0.1% and 99.9% percentiles (0.2% and 99.8% for

Nasdaq 100) are winsorized. The number T of simulated returns has been chosen by

trading off accuracy (as defined by the average variance of gross returns on the port-

folios over 20 simulated optimizations) and computational speed. Average variance

appears to be a hyperbolic function of T : for N = 4, at T = 400, 000 it is half than

at T = 100, 000, and it is further halved only for T = 2, 500, 000.

3.3.2 Distributions estimated on historical returns

The time-series process presented below is an extension of the AR(1)-GARCH(1,1)

model. It accounts for dynamic skewness and kurtosis, where the dynamics are ob-

tained through an autoregressive structure for the skewness (λt) and the degrees-of-

freedom (ηt) parameters of Hansen (1994)’s skew t. The logistic transformation is

used to make sure that they remain within their bounds [λt ∈ (−1, 1), ηt ∈ (2,∞)].

Letting yt be returns for month t, the model is defined as follows:

yt = k + αmyt−1 + εt

zt = 1√
ht
εt

g (zt|ηt, λt) =


dtet

(
1 + 1

ηt−2

(
dtzt+ft

1−λt

)2
)−(ηt+1)/2

zt < −ft/d

dtet

(
1 + 1

ηt−2

(
dtzt+ft

1+λt

)2
)−(ηt+1)/2

zt ≥ −ft/dt

dt =
√

1 + 3λ2
t − f 2

t

et =
Γ(
ηt+1

2
)√

π(ηt−2)Γ(
ηt
2

)

ft = 4λtet(
ηt−2
ηt−1

)
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where the laws of motion for the parameters are:

ht = kv + αvε
2
t−1 + βvht−1

ηt = 2.1 + 47.9
1+exp(η̂t)

with η̂t = kd + αd(
εt−1√
ht−1

)2 + βdη̂t−1

λt = 1.98

1+exp(−λ̂t)
− .99 with λ̂t = ks + αs

εt−1√
ht−1

+ βsλ̂t−1

Models with time varying degrees of freedom are typically difficult to estimate,

so I trade off efficiency for parameters’ stability with a two-steps estimation. First,

the AR(1) process is fitted through quasi-maximum likelihood. Then, the dynamics

of variance, skewness and degrees of freedom are estimated on the residuals via exact

maximum likelihood. The results are remarkably robust to different initial values.

The AR(1) describes the series of returns reasonably well and captures the low au-

tocorrelation. To quantify the effects of misspecified conditional mean on portfolio

optimization, an ARMA(1,1) is also fitted. Given the low autocorrelation of the re-

turns series, the ARMA(1,1) is likely to yield estimates for the autoregressive and

moving average parameters that are very similar in value but with opposite sign.

This induces spurious autocorrelation (often alternating in sign for odd/even lags)

and increases the volatility of the conditional mean.

The time series of Ftse 100 and Nasdaq 100 are quite short (about 250 monthly ob-

servations), and estimating the full model may be problematic. To avoid unstable

estimates, I use a traditional AR(1)-GARCH(1,1) with normal innovations for the

Ftse 100 and Nasdaq 100.
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3.3.3 Distributions implied in option prices

Jondeau and Rockinger (2000) compare several methods of extracting risk neutral

distributions from option prices. For long maturity options, they find supportive ev-

idence for a jump-diffusion, while a mixture of log-normals is more suited for shorter

maturities. The estimation procedure follows Jondeau and Rockinger (2000), mini-

mizing the sum of squared differences between observed and theoretical option prices.

A skew t is then fitted to returns generated by a random draw of 1,000 observations

from the mixture of normals. The next step is to transform risk neutral into objec-

tive distributions. Rubinstein (1994) suggests that simply adding the risk premium

to the risk neutral distribution is a good approximation. As a first estimate of the

objective distribution, I shift the risk neutral one to the right by adding an arbitrary

but reasonable 7% to risk neutral expected returns.

I also rely on the power utility specification of Rosenberg and Engle (2002)’s

empirical pricing kernel, which is estimated on S&P 500 returns:

M(rt+1; δ0, δ1) = δ0(rt+1)−δ1

where δ0 = 1.0051, δ1 = 7.56 and rt+1 is the gross return on the asset.

The five-years gap between the estimation of the pricing kernel and the beginning

of the portfolio choice analysis may create spurious differences between the certainty

equivalents of the models based on historical returns and option prices. The pricing

kernel, however, can not be estimated on the same dataset used to solve the portfolio

choice problem, because there would not be any difference between the objective

distributions obtained from option prices and those estimated from the data.
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3.3.4 The dependence structure

I use normal and Student t copulas to model dependence among the series of stock

indices returns. The comparison between certainty equivalents from the two copulas

quantifies the contribution of accounting for tail dependence on investor’s utility. In

light of the relatively small number of available observations, I use static, elliptic

copulas in the interest of parameter stability.

When coupled with skew marginal distributions, like in this case, elliptical copu-

las don’t generate elliptical multivariate distributions. This means that correlations

must be estimated by maximum likelihood rather than through sample moments.

Copulas’ parameters are estimated only once, with kernel densities for the marginals,

from Feb. 1983 to Dec. 2004. Estimating the normal copula has been quite straight-

forward2, while the presence of degrees of freedom makes the Student t copula less

tractable. I then use the methodology of Mashal and Zeevi (2002), which yields esti-

mates very similar to full maximum likelihood. Kendall τ (ρτ ) is a suitable measure

of dependence for non elliptical copulas, and it is related to the linear correlation ρs

by: ρs = sin
(
π
2
ρτ
)
. The correlation matrix can be estimated as:

ρs = [ρsij]i,j=1,...,N = [sin(π
2
ρτ )]i,j=1,...,N

Degrees of freedom are then estimated by maximum likelihood. The correlation matrix

is not guaranteed to be positive definite, but this has never been a problem in practice.

The normal copula is:

2 The positive definiteness of the covariance matrix has been enforced by setting the likelihood
function to -∞ (more precisely, to the lower overflow threshold in Matlab, which is still a number)
if the determinant is less than 1e-8. This is correct only if the the likelihood is decreasing for
the determinant going between 1e-8 and zero, however the estimation has proven robust across
on several asset combinations and subsamples.
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C(u1, ..., uN ; ρ) = Φρ(Φ
−1(u1), ...,Φ−1(uN))

with density:

c(u1, ..., uN ; ρ) = φρ(Φ−1(u1),...,Φ−1(uN ))∏N
i=1 φ(Φ−1(ui))

The Student t copula is:

C(u1, ..., uN ; ρ, υ) = Tρ,υ(T
−1
υ (u1), ..., T−1

υ (uN))

with density:

c(u1, ..., uN ; ρ, υ) = tρ,υ(T−1
υ (u1),...,T−1

υ (uN ))∏N
i=1 tυ(T−1

υ (ui))

Where Φρ, Tρ,υ, φρ, tρ,υ are the cumulative and density functions of the multivariate

standardized normal and Student t with correlation matrix ρ and υ degrees of freedom,

and φ, tυ, Φ−1, T−1
υ are the probability distributions and inverse functions of the

univariate standardized normal and Student t with υ degrees of freedom.

3.4 Data and results

Monthly returns for S&P 500, Nikkei 225 (from May 1950), Nasdaq 100 (from Feb.

1983) and Ftse100 (from Feb. 1978) are obtained from Datastream and Global Fi-

nancial Data. Daily closing prices and trading volume for call and put options are

provided by the Chicago Board of Options Exchange (CBOE), the London Inter-

national Financial Futures Exchange (LIFFE) and the Osaka Securities Exchange

(OSE). Riskless rates are one-month LIBORs.
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The last trading day is the third Thursday of each expiration month3 and the number

of strike prices varies for each expiration month, being typically greater for options

expiring on the quarterly cycle. I filter out illiquid contracts (less than 5 trades a

day), those that violate basic and vertical spread arbitrage. The number of options

used to estimate each implied distribution is typically 14-20.

3.4.1 Conditional and unconditional returns statistics

Table 3.1 shows the first four unconditional moments of the indices. Excess kurtosis

is very high only for Ftse 100 but is noticeable in all of the series. Jarque-Bera

tests easily reject the assumption of normality, but unconditional distributions can be

non-normal even if the conditional ones are. Ljung-Box tests (not reported) provide

evidence in favor of models with time varying third and fourth moments. They show

little autocorrelation in returns but support time-dependence in higher moments,

in particular for Nasdaq 100 and S&P500. Ftse 100 has the highest unconditional

kurtosis and skewness, and both the Ljung-Box and Kolmogorov-Smirnov tests (Table

3.4) suggest that conditional volatility models do not provide a good fit (although the

AR-GARCH cannot be rejected at α = 5%). This is probably due to the very low

return on November 1987, which increases unconditional third and fourth moments

but is an isolated event. A model with both stochastic volatility and jumps would

probably increase the goodness of fit and reduce the standard errors reported in Table

3.4.

3 Nikkei 225 options expire one week before the others. The implied distribution is always esti-
mated 30 days before the last trading day, to avoid liquidity concerns. but the optimization is
carried out as if they expired on the same date as the others. In other words, the risk neutral
distribution for Nikkei 225 is assumed to be the same on the second and third Thursdays of
each month.
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The conditional means of the four series are modeled with both an AR(1) and

ARMA(1,1). ARMA models are known to produce spurious autocorrelation when

the series is weakly autocorrelated. Detecting the misspecification is not always easy.

The ARMA(1,1)-GARCH(1,1) fitted to the Ftse 100 has an Akaike criterion equal

to −3.262369, while the same statistic is −3.253499 for the AR(1)-GARCH(1,1). A

Kolmogorov-Smirnov test on the ARMA specification of the S&P 500 has quite a high

p-value, too. The correlogram, however, is quite indicative of the misspecification.

3.4.2 Evaluation of portfolio choice models

Figure 3.1 plots certainty equivalents (CE) against risk aversion for the five models

defined in Section 3.3, estimated on three portfolios with unconstrained optimiza-

tion. They represent (to my judgement, admittedly) the best, worst and typical

performance of the option-based models with respect to the näıve strategy. Historical

models are always outperformed, which confirms the findings of De Miguel, Garlappi

and Uppal (2009) that historical models often produce worse results than the simple

1
N

strategy. Interestingly, the “worst scenario” refers to the portfolio Nasdaq 100 -

S&P500, which has a very high correlation. Figure 3.2 shows CE for the same mod-

els and portfolios as Figure 3.1, this time for constrained optimization. While the

differences are smaller, the pattern is unchanged.

Table 3.5 reports the mean CE for the normal and Student t copulas, averaged

across all portfolios and models. The differences are quite small in economic terms and

not statistically significant, both in the constrained and unconstrained optimization

case. This suggests that the choice of dependence structure is a rather secondary

issue, at least in the framework I consider. Table 3.6 shows CE averaged across risk
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aversion, constrained/uncostrained optimization, portfolio choice models and copulas

for all two-assets portfolios, with the exception of S&P500-Nasdaq100. The reason

for excluding this pair is that its high correlation generates extreme portfolio weights,

which would significantly affect the results. Tables 3.7 and 3.8 have the same structure

as Table 3.6. The first includes three-asset portfolios, again excluding those with the

highly correlated S&P500-Nasdaq100 pair, while the second refers to the only four-

asset portfolio.

Tables 3.6-3.8 contain several interesting results. First of all, option-based models

tend to perform better than the others when optimization is constrained, and much

better with unconstrained optimization. Furthermore, CE generated by option-based

models are remarkably stable across two- and three-assets portfolios. They are lower

in Table 3.8, which shows the results for the only four-assets portfolios, that includes

the highly correlated S&P500-Nasdaq100 pair. Option-based models still outperform

those estimated on historical returns.

Finally, a note on transaction costs. With a trading fee of 0.1%, the performance

of the näıve strategy is hardly affected, because it requires little rebalancing. For

unconstrained optimization, annualized transaction costs are between 0.5 and 2%

(depending on risk aversion) for ARMA and option-based models, and about 0.5%

for AR models. Costs for constrained models are about 60% smaller. The effect of

transaction costs reduces the advantage of using option-implied distributions with

respect to the näıve strategy, but does not eliminate it.
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3.5 Conclusion

I solve a portfolio choice problem by estimating the distributions of expected returns

on cross-sections of option prices, to study whether the information about higher mo-

ments that is implied in risk-neutral distributions improves the precision of estimated

expected returns. I obtain the corresponding objective distributions by applying the

empirical pricing kernel of Rosenberg and Engle (2002) and, alternatively, by shift-

ing the distribution to the right by adding the risk premium. The second method

allows to evaluate the portfolio choice implications of risk-neutral skewness, which

imposes a penalty on extreme weights by increasing expected losses. The marginal

distributions are joined using copula theory, and the comparison of the performance

of portfolios based on the normal and t copulas provides evidence on the economic

value of accounting for tail dependence. The results show that option-based models

outperform the 1
N

rule, especially with (limited) short-selling. Time-series models,

on the other hand, produce certainty equivalents that are consistently lower than the

näıve strategy’s. The wedge between option-based models and the 1
N

rule is greater

for three- rather than two-dimensional portfolios. Transaction costs are relatively high

for the strategies derived from options, and reduce, but don’t eliminate, the economic

significance of the results.
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Figure 3.1: Certainty equivalents, unconstrained optimization.

The vertical axes report certainty equivalents for varying risk aversion coefficients (x-axes). On
the left column, the four models are: options-based correcting risk neutrality by adding the risk
premium (dashed line) and with the pricing kernel (dotted line), historical-AR(1) (solid line) and 1

N

(dash-dot line). In the right column the solid line represent the historical-ARMA(1,1). Optimization
is unconstrained. The certainty equivalent is computed over the realized returns from Feb. 2000
to Dec. 2004. The three portfolios are (across rows): Nikkei 225 and Nasdaq 100, Nasdaq 100 and
S&P500, and Nikkei 225, Ftse 100 and S&P500. They represent, respectively, the best, worst and
”typical” relative performance of the options-based models under unconstrained optimization.
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Figure 3.2: Certainty equivalents, constrained optimization.

The vertical axes report certainty equivalents for varying risk aversion coefficients (x-axes). On the
left column, the four models are: options-based correcting risk neutrality by adding the risk premium
(dashed line) and with the pricing kernel (dotted line), historical-AR(1) (solid line) and 1

N (dash-
dot line). In the right column the solid line represent the historical-ARMA(1,1). Optimization is
constrained. The certainty equivalent is computed over the realized returns from Feb. 2000 to Dec.
2004. The three portfolios are (across rows): Nikkei 225 and Nasdaq 100, Nasdaq 100 and S&P500,
and Nikkei 225, Ftse 100 and S&P500. They represent, respectively, the best, worst and ”typical”
relative performance of the options-based models under constrained optimization.
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Table 3.1: Returns statistics, 2000-2004

Nikkei 225 Nasdaq 100 Ftse 100 S&P500

Mean 0.00731 0.00972 0.00738 0.00638
St. Dev. 0.05409 0.07429 0.04718 0.04055
Skewness -0.31 -0.59 -1.46 -0.47
Kurtosis 4.44 4.51 10.80 3.87

Jarque-Bera 67.63 40.64 929.06 45.43
p-value 0 0 0 0

Table 3.2: Returns statistics, 2000-2004

Estimated correlations for the normal (upper half matrix) and Student-t (lower half matrix) copula
in the four-dimensional case. Estimated degrees of freedom for the Student-t are 16.594.

Nikkei 225 Nasdaq 100 Ftse 100 S&P500
Nikkei 225 1 0.356 0.3929 0.4076

Nasdaq 100 0.2859 1 0.5327 0.8339
Ftse 100 0.3482 0.4847 1 0.6349
S&P500 0.3699 0.8206 0.5833 1
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Table 3.4: Parameters for the one-period-ahead distributions. Summary
statistics.

Coefficient estimates for the processes fitted to the four index returns series from the beginning of the
series to November 2004. Models with conditional means following an AR(1) are indicated with ”I”.
Models with (mis-specified) ARMA(1,1) conditional mean are indicated with ”II”. Panels contain
the estimates for Nasdaq 100 (a), Ftse 100 (b), Nikkei 225 (c) and S&P500 (d). The p-value for the
two-tailed Kolmogorov-Smirnov test over the estimation period is also reported (H0: the cdf of the
hypothesized distribution is equal to the one generating the data).

a) Mean Variance KS-test
κm αm βm κv αv βv p-value

I 0.0115 0.1029 0.0005 0.0672 0.8396 0.88
0.0051 0.0745 0.0004 0.05 0.1286

II 0.0114 0.3089 -0.2077 0.0005 0.0662 0.841 0.84
0.0052 0.5503 0.5848 0.0004 0.0499 0.1282

b) Mean Variance KS-test
κm αm βm κv αv βv p-value

I 0.0091 -0.0436 0.0009 -0.0206 0.6413 0.0641
0.0029 0.0363 0.0011 0.0181 0.5086

II 0.0072 -0.883 0.9376 0.0001 0.0929 0.8454 3.00E-05
0.0028 0.0597 0.0423 0.0001 0.0381 0.0641

c) Mean Variance KS test
κm αm βm κv αv βv p-value

I 0.0073 0.0671 7.00E-05 0.132 0.8576 0.9811
0.0022 0.0391 4.00E-05 0.0483 0.0461

II 0.0073 -0.7936 0.8323 7.00E-05 0.1331 0.8592 0.9155
0.0021 0.0999 0.0928 4.00E-05 0.0457 0.0428

Skewness D.o.f
κs αs βs κd αd βd

I -0.0215 -0.0781 0.9194 -0.1076 0.2546 0.8705
0.0198 0.0439 0.0571 0.2029 0.1322 0.0712

II -0.0237 -0.0775 0.9188 -0.1198 0.2637 0.872
0.0199 0.044 0.0576 0.2383 0.1246 0.0806

d) Mean Variance KS test
κm αm βm κv αv βv p-value

I 0.0063 0.0368 1.00E-04 0.1305 0.8111 0.9256
0.0016 0.0392 2.00E-05 0.042 0.0361

II 0.0064 -0.5336 0.574 1.00E-04 0.1335 0.8107 0.9533
0.0016 0.3779 0.3665 6.00E-05 0.0439 0.0498

Skewness D.o.f
κs αs βs κd αd βd

I -0.2408 0.0592 0.521 0.2424 0.4588 1.00E-08
0.3192 0.1088 0.612 1.0293 0.246 0.129

II -0.2578 -0.04146 0.5073 0.0613 0.5094 1.00E-08
0.4374 0.1111 0.8083 1.03 0.3616 0.1314
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Table 3.5: Model performance, across copula specification.

Average out-of-sample certainty equivalent (in %) across the type of copula used for the dependence
structure. N and T denote the normal and Student-t copula. The average is calculated across all
portfolios. Jackknife standard errors are reported below the average CE. γ is risk aversion and
constr., unc. indicate constrained and unconstrained optimization. Feb. 2000 to Dec. 2004.

γ = 1 γ = 2 γ = 6 γ = 10 γ = 20
constr. unc. constr. unc. constr. unc. constr. unc. constr. unc.

N) 93.347 92.381 92.603 92.293 89.778 88.6 86.77 86.187 78.417 77.147
0.195 0.312 0.195 0.266 0.201 0.236 0.214 0.235 0.267 0.297

T) 93.343 92.285 92.631 92.207 89.75 88.576 86.685 86.123 78.565 77.334
0.195 0.323 0.195 0.276 0.201 0.242 0.214 0.244 0.262 0.311
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Table 3.6: Model performance, two-dimensional case.

Average out-of-sample certainty equivalent (in %) across different risk aversions and models. Panels
A and B refer to the normal and Student-t copula. Models are as follows: a) historical-ARMA;
b) historical-AR; c) options plus equity premium; d) options and pricing kernel e) 1

N . γ is the
risk aversion and constr., unc. indicate constrained and unconstrained optimization. Only two-
dimensional portfolios are included. The portfolio Nasdaq100-S&P500 is excluded because of the
high correlation between the two series. Jackknife standard errors are reported below the average
CE. Feb. 2000 to Dec. 2004.

γ = 1 γ = 2 γ = 6 γ = 10 γ = 20
constr. unc. constr. unc. constr. unc. constr. unc. constr. unc.

Panel A

a) 93.342 90.316 92.314 91.282 88.416 88.471 85.068 84.891 75.951 75.23
0.073 0.132 0.074 0.101 0.078 0.083 0.083 0.086 0.105 0.108

b) 92.669 90.871 91.724 91.241 88.748 88.82 85.352 85.41 76.343 76.176
0.07 0.088 0.071 0.073 0.074 0.074 0.08 0.08 0.102 0.102

c) 93.787 96.184 93.376 95.214 90.544 90.967 87.282 87.275 78.876 78.262
0.068 0.097 0.067 0.086 0.07 0.074 0.074 0.076 0.092 0.093

d) 94.507 96.035 93.887 94.503 90.965 91.392 88.023 88.17 80.19 79.28
0.071 0.106 0.07 0.092 0.071 0.076 0.074 0.076 0.087 0.089

e) 94.012 94.012 93.326 93.326 90.524 90.524 87.645 87.645 80.29 80.29
0.062 0.062 0.063 0.063 0.067 0.067 0.071 0.071 0.087 0.087

Panel B

a) 93.098 90.145 92.212 90.772 88.392 88.271 85.137 84.932 76.692 76.238
0.074 0.134 0.075 0.104 0.078 0.084 0.083 0.087 0.101 0.106

b) 92.616 90.318 91.694 90.907 88.552 88.479 85.258 85.24 76.872 76.935
0.069 0.091 0.07 0.074 0.074 0.074 0.08 0.08 0.1 0.1

c) 93.736 96.107 93.385 95.267 90.489 90.974 87.258 87.672 78.972 74.966
0.068 0.101 0.067 0.088 0.07 0.074 0.074 0.075 0.089 0.15

d) 94.435 96.177 93.667 94.674 90.914 91.388 87.765 88.186 79.997 80.152
0.071 0.109 0.07 0.094 0.071 0.076 0.075 0.076 0.088 0.088

e) 94.012 94.012 93.326 93.326 90.524 90.524 87.645 87.645 80.29 80.29
0.062 0.062 0.063 0.063 0.067 0.067 0.071 0.071 0.087 0.087

151



Table 3.7: Model performance, three-dimensional case

Average out-of-sample certainty equivalent (in %) across different risk aversions and models. Panels
A and B refer to the normal and Student-t copula. Models are as follows: a) historical-ARMA;
b) historical-AR; c) options plus equity premium; d) options and pricing kernel e) 1

N . γ is the
risk aversion and constr., unc. indicate constrained and unconstrained optimization. Only three-
dimensional portfolios are included. The portfolio Nasdaq100-S&P500 is excluded because of the
high correlation between the two series. Jackknife standard errors are reported below the average
CE. Feb. 2000 to Dec. 2004.

γ = 1 γ = 2 γ = 6 γ = 10 γ = 20
constr. unc. constr. unc. constr. unc. constr. unc. constr. unc.

Panel A

a) 91.825 87.818 90.957 89.748 87.384 87.226 84.35 81.456 74.826 65.739
0.046 0.11 0.048 0.084 0.051 0.058 0.054 0.063 0.072 0.113

b) 91.997 88.336 90.658 88.736 88.119 87.602 85.248 85.364 75.762 75.077
0.046 0.063 0.046 0.047 0.046 0.047 0.05 0.051 0.066 0.068

c) 92.41 94.05 92.505 95.794 90.732 91.988 87.761 88.362 78.256 74.947
0.041 0.068 0.039 0.058 0.039 0.043 0.042 0.043 0.053 0.08

d) 95.086 97.19 93.613 95.901 91.704 84.085 89.305 89.99 81.662 82.082
0.045 0.077 0.045 0.065 0.04 0.049 0.041 0.043 0.048 0.048

e) 93.987 93.987 93.396 93.396 90.987 90.987 88.509 88.509 82.123 82.123
0.037 0.037 0.037 0.037 0.039 0.039 0.041 0.041 0.048 0.048

Panel B

a) 92.423 84.57 91.661 88.294 87.712 86.973 84.118 83.839 75.483 74.226
0.046 0.114 0.048 0.086 0.051 0.059 0.055 0.061 0.068 0.075

b) 91.869 87.543 90.86 89.311 87.894 87.773 84.476 83.723 75.389 71.15
0.046 0.067 0.046 0.05 0.047 0.047 0.05 0.05 0.065 0.08

c) 92.428 95.329 92.423 96.595 90.684 91.921 87.776 88.259 78.961 77.405
0.041 0.071 0.039 0.061 0.039 0.044 0.041 0.044 0.051 0.058

d) 95.18 98.376 93.586 95.353 91.742 86.743 89.346 89.574 81.721 82.131
0.045 0.08 0.045 0.069 0.04 0.059 0.041 0.043 0.048 0.048

e) 93.987 93.987 93.396 93.396 90.987 90.987 88.509 88.509 82.123 82.123
0.037 0.037 0.037 0.037 0.039 0.039 0.041 0.041 0.048 0.048
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Table 3.8: Model performance, four-dimensional case.

Out-of-sample certainty equivalent (in %) across different risk aversions and models. Panels A
and B refer to the normal and Student-t copula. Models are as follows: a) historical-ARMA; b)
historical-AR; c) options plus equity premium; d) options and pricing kernel e) 1

N . γ is the risk
aversion and constr., unc. indicate constrained and unconstrained optimization. The figures refer to
the only four-dimensional portfolio. Jackknife standard errors are reported below the CE. Feb. 2000
to Dec. 2004.

γ = 1 γ = 2 γ = 6 γ = 10 γ = 20
constr. unc. constr. unc. constr. unc. constr. unc. constr. unc.

Panel A

a) 90.013 72.539 89.371 75.927 86.299 78.023 83.429 75.732 74.436 66.277
0.032 0.092 0.033 0.081 0.037 0.061 0.039 0.061 0.05 0.073

b) 92.155 87.129 90.908 87.249 88.427 86.609 84.75 82.264 76 73.669
0.03 0.043 0.031 0.036 0.031 0.031 0.036 0.037 0.049 0.058

c) 92.386 91.518 92.845 93.081 91.696 85.789 89.192 85.444 79.748 79.098
0.032 0.066 0.03 0.061 0.028 0.061 0.03 0.049 0.039 0.041

d) 92.92 89.988 92.036 86.906 89.906 67.988 87.953 81.438 81.647 79.389
0.034 0.067 0.035 0.067 0.034 0.085 0.033 0.067 0.038 0.046

e) 94.23 94.23 93.588 93.588 90.966 90.966 88.268 88.268 81.323 81.323
0.027 0.027 0.027 0.027 0.029 0.029 0.03 0.03 0.036 0.036

Panel B

a) 90.899 71.709 90.243 73.637 86.671 77.424 83.481 74.195 74.274 62.817
0.032 0.095 0.033 0.087 0.037 0.065 0.04 0.068 0.05 0.092

b) 91.905 86.915 91.186 86.414 88.233 86.663 84.584 83.18 75.24 71.633
0.03 0.045 0.032 0.038 0.032 0.033 0.037 0.039 0.049 0.061

c) 92.389 93.423 92.841 94.665 91.702 83.876 89.217 84.352 78.761 81.535
0.032 0.068 0.03 0.061 0.028 0.074 0.03 0.055 0.04 0.041

d) 93.032 91.71 92.123 89.355 90.022 67.128 88.07 78.748 81.527 79.064
0.034 0.074 0.035 0.075 0.034 0.077 0.033 0.085 0.038 0.05

e) 94.23 94.23 93.588 93.588 90.966 90.966 88.268 88.268 81.323 81.323
0.027 0.027 0.027 0.027 0.029 0.029 0.03 0.03 0.036 0.036
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Ané, T.; Geman, H. (2000), Order flow, transaction clock, and normality of asset returns,
Journal of Finance, 55(5), 2259-2284

Ang, A.; Bekaert,G. (2002), International asset allocation with regime shifts, Review of
Financial Studies, 15(4), 1137-1187

Ang, A.; Chen, J. (2002), Asymmetric correlations of equity portfolios, Journal of Financial
Economics, 63(3), 443-494

Baker, M.; Stein, J.C.; Wurgler, J.C. (2003), When does the market matter? Stock prices
and the investment of equity-dependent firms, Quarterly Journal of Economics, 118,
969-1005

Baker, M.; Wurgler, J.C. (2006), Investor sentiment and the cross section of stock returns,
Journal of Finance, 61(4), 1645-1680

Bakshi, G.; Cao, C.; Chen, Z. (1997), Empirical performance of alternative option pricing
models, Journal of Finance, 52(5), 2003-2049

154



Balduzzi, P.; Elton E.J.; Green, T.C. (2001), Economic news and bond prices: evidence
from the U.S. Treasury market, Journal of Financial and Quantitative Analysis, 36(4),
523-543

Barberis, N.; Thaler, R. (2003), A survey of behavioral finance, in Handbook of the Eco-
nomics of Finance, Elsevier

Barinov, A. (2007), Idiosyncratic volatility, growth options, and the cross-section of returns,
Working paper

Barzel, Y. (1968), Optimal timing of innovations, Review of Economics and Statistics,
50(3), 348-355

Bates, D.S. (2003), Empirical option pricing: a retrospection, Journal of Econometrics, 116,
387-404

Bauwens, L.; Laurent, S. (2005), A new class of multivariate skew densities, with applica-
tions to GARCH models, Journal of Business and Economic Statistics, 23(3), 346-354

Beber, A.; Brandt, M.W. (2006), The effect of macroeconomic news on beliefs and prefer-
ences: evidence from the options market, Journal of Monetary Economics, 53, 1997-
2039

Beber, A.; Brandt, M.W. (2008), Resolving macroeconomic uncertainty in stock and bond
markets, Review of Finance, forthcoming

Benzoni, L. (2002), Pricing options under stochastic volatility: an empirical investigation,
Working paper

Benzoni, L.; Collin-Dufresne, P.; Goldstein, R.S. (2005), Can standard preferences explain
the prices of out-of-the-money S&P 500 put options?, Working paper

Bhattacharya, S.; Chatterjee, K.; Samuelson, L. (1986), Sequential research and the adop-
tion of innovations, Oxford Economic Papers, 38, 219-243

Black, F. (1986), Noise, Journal of Finance, 41(3), 529-543

Blume, M.; Stambaugh, R. (1983), Bias in computed returns: an application to the size
effect, Journal of Financial Economics, 12, 387-553

Bollen, N. P.B.; Whaley, R.E. (2004), Does net buying pressure affect the shape of implied
volatility functions?, Journal of Finance, 59(2), 711-753

Bollerslev, T. (1987), A conditionally heteroskedastic time series model for speculative prices
and rates of return, Review of Economics and Statistics, 69(3), 542-547

Bolton, P.; Harris, C. (1999), Strategic experimentation, Econometrica, 67(2), 349-374

Brandt, M.W.; Santa-Clara, P.; Valkanov, R. (2009), Parametric portfolio policies: exploit-
ing characteristics in the cross section of equity returns, Review of Financial Studies,
forthcoming

Breeden, D.T.; Litzenberger, R.H. (1978), Prices of state-contingent claims implicit in
option prices, Journal of Business, 51(4), 621-651

Broadie, M.; Chernov, M.; Johannes, M. (2007), Model specification and risk premia: evi-
dence from futures options, Journal of Finance 62(3), 1453-1490

Broadie, M.; Chernov, M.; Johannes, M. (2008), Understanding index options returns,
Review of Financial Studies, forthcoming

155



Brunnermeier, M.K.; Nagel, S. (2004), Hedge funds and the technology bubble, Journal of
Finance, 59(5), 2013-2040

Buraschi, A.; Jiltsov, A. (2006), Model uncertainty and options markets with heterogeneous
beliefs, Journal of Finance, 61(6), 2841-2897

Cagetti, M.; Hansen, L.P.; Sargent, T.J.; Williams, N.(2002), Robustness and pricing with
uncertain growth, Review of Financial Studies, 15(2), 363-404

Chari, V.V.; Hopenhayn, H. (1991), Vintage human capital, growth and the diffusion of
new technology, Journal of Political Economy, 99(6), 1142-1165

Chernov, M.; Gallant, A.R.; Ghysels, E.; Tauchen, G. (2003), Alternative models for stock
price dynamics, Journal of Econometrics, 116(1-2), 225-257

Cherubini, U.; Luciano, E. (2002), Bivariate option pricing with copulas, Applied Mathe-
matical Finance, 9(2), 69-85

Chirinko, R.S.; Schaller, H. (2001), Business fixed investment and “bubbles”: the Japanese
case, American Economic Review 91, 663-680

Christensen, B.J.; Prabhala, N.R. (1998), The relation between implied and realized
volatiltiy, Journal of Financial Economics, 50, 125-150

Constantinides, G.M.; Jackwerth, J.C.; Perrakis, S. (2009), Mispricing of S&P 500 index
options, Review of Financial Studies, 22(3), 1247-1277

Cooley, T.F.; Greenwood, J.; Yorukoglu, M. (1997), The replacement problem, Journal of
Monetary Economics, 40, 457-499

Coval, J.D. (2001); Shumway, T. (2001), Expected option returns, Journal of Finance, 56(3),
983-1009

Cremers, M.; Driessen, J.; Maenhout, P.; Weinbaum, D. (2008), Individual stock-option
prices and credit spreads, Journal of Banking and Finance, forthcoming

Das, S.R.; Sundaram, R.K. (1999), Of smiles and smirks: a term structure perspective,
Journal of Financial and Quantitative Analysis, 34(2), 211-239

David, A.; Veronesi, P. (2002), Option prices with uncertain fundamentals: theory and
evidence on the dynamics of implied volatilities, Working paper

De Long, J.B.; Shleifer, A.; Summers, L.H.; Waldmann, R.J. (1990), Noise trader risk in
financial markets, Journal of Political Economy, 98(4), 703-738

De Miguel, A.V.; Garlappi, L.; Uppal, R. (2009), Optimal versus näıve diversification: how
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