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Abstract

We examine the effect of plant managers on productivity using unique matched
manager-plant panel data on US auto assembly plants during 1993-2007. Our econometric
approach is two-pronged. Our first approach relies on using the panel nature of our data to
measure variation in productivity due to managerial influence. We estimate the
interquartile range of the effect of individual plant managers on average hours-per-vehicle
to be about 30%. Further, we find that plant managers’ experience with the models that
are in production ameliorates the negative impact of new model introductions on
productivity. We also observe evidence that managers’ plant-specific tenure has a positive
impact on productivity. In our second approach, we use high-frequency time-series data,
along with structural-break tests and machine-learning methodologies, to predict variation
in production using plant manager switches. We find that a plant manager’s identity is
predictive of changes in both the mean and variance of production, further highlighting
their channels of managerial influence. These findings are robust to narrowing the sample
to focus on retirements as an exogenous source of managerial switches.
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1 Introduction

Leadership and productivity are widely regarded as important determinants of organiza-

tional outcomes including profits, stock returns and ultimately, survival. Researchers across

disciplines as diverse as business history, organizational behavior, strategy and economics have

studied leadership. There is also a long established and still flourishing literature in economics

and business on the drivers of productivity. Yet, there remains substantial unexplained variation

in productivity across plants even within narrowly defined industries, and limited study of the

role of leadership in explaining this variation. Syverson (2011, p. 336) highlights this gap,

noting that “perhaps no potential driver of productivity differences has seen a higher ratio of

speculation to actual empirical study” than the role of individual managers and managerial

practices.

This paper contributes to filling this gap by empirically studying the role of plant managers

in determining plant-level productivity in the US auto industry. At the heart of our analysis is

a unique manager-plant matched panel dataset covering 66 US auto assembly plants in the

period 1993-2007, tracking the management spells of 115 different plant managers (whom

we henceforth refer to as ‘managers’). To our knowledge, ours is the first data of its kind,

documenting operational leadership at a level lower than the C-suite. We analyze these data

using a two-pronged empirical approach that applies panel data and machine-learning methods

to relate plant-level measures of productivity and production to managerial identities. The

complementary approaches reveal the proportion of variation in productivity differences across

plants attributable to plant managers’ identities, and provide insight into some channels through

which plant managers can influence productivity.

From an econometric standpoint, a critical feature of our dataset is that we observe plant

managers who have led more than one plant in our sample period. By virtue of having such

“switchers” across plants, we can apply the approach introduced by Abowd et al. (1999) to

examine wage differentials, to explain residual variation in productivity. In essence, switchers

allow us to separately identify the fixed effects associated with both individual managers and

specific plants. Absent switchers, one cannot say to what extent a highly productive plant

owes its success to inherent aspects of the plant itself – like technology or worker demographics

– or instead to inherent aspects of its manager. The panel data approach also permits the

introduction of a time-varying measure of a manager’s experience, distinct from measures

of a plant’s experience used in prior research (e.g., Levitt et al. 2013, Gopal et al. 2013).

Controlling for the identity of plant managers also removes bias due to unobservable manager

characteristics which are likely to be correlated with the explanatory variables commonly studied

in the productivity literature.

We find that controlling for the identity of individual plant managers substantially increases

explanatory power, over and above that of established drivers of productivity. Across a

variety of specifications, controlling for individual plant managers explains about 7% of the

overall variation in productivity. From our estimates, the difference in the contribution to

productivity of the plant manager at the 25th percentile of the distribution of individual manager

effects and the plant manager at the 75th percentile of this distribution is a 30% reduction in
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hours-per-vehicle.1 This substantial role for plant managers in determining the unexplained

productivity across plants is consistent with the findings of Syverson (2004), who estimates

a two-to-one ratio for the interquartile range of plant productivity within a 4-digit Standard

Industrial Classification (SIC) code.2

Through our panel data analysis we also seek to identify some channels through which

plant managers influence productivity. The substantial negative impact of new model launch

on productivity has been documented in recent prior research (Gopal et al. 2013, Levitt et

al. 2013). Like these studies, we find that a new model reduces a plant’s productivity (i.e.,

increases hours-per-vehicle) by 22%. We build on these studies to examine the role that the plant

manager’s experience has in mitigating such productivity disruptions. Previous research has

shown that individual workers’ experience improves their productivity in the specific production

or service tasks they perform (Kellogg 2011, Maranto and Rodgers 1984, Atkinson et al. 2016).

We find that a plant manager’s experience leading plants that produced the specific models

currently in production in his/her plant significantly improves productivity. This measure

is distinct from a plant’s experience with its current models, which we find also reduces

productivity disruptions when a new model is introduced.

Managerial experience is a valuable asset in times of change. In the early 2000s, in reaction to

oil shocks, US automakers switched from making large gas guzzlers to smaller, more fuel-efficient

vehicles. For example, in 2003, Ford’s Avon Lake plant in Ohio switched from making the larger

Nissan Quest van to the hybrid Ford Escape sport utility vehicle (SUV), which the plant’s

manager had no experience in producing. Hours-per-vehicle (hpv) at Avon Lake increased

by 70% in 2003. Our estimates suggest that had the manager with the maximum experience

making the Ford Escape SUV managed its launch at Avon Lake, the Escape’s hpv would have

been 24 minutes lower, implying a saving of $3.5 million at the plant over its first two years of

production.

Finally, we see some evidence that an increase in the time since the last managerial switch

event at a plant can have a significant and economically meaningful impact on productivity.

For each extra year a manager spends at a given plant since the last manager switch, there is

an increase in productivity of about 1.6%. These results remain even when controlling for the

systematic influence of individual plant managers on productivity with manager fixed effects.

Next, we perform a series of complementary analyses using high frequency data, to provide

additional evidence on managers’ influence on productivity and further our insights into the

channels through which managers exert this influence. Using weekly time series data on

production at each plant over the period 1991 to 2005, we employ structural break tests

(Ploberger and Krämer 1992) to determine whether a change in the plant manager significantly

impacts production levels at a plant. We also perform a model-selection analysis using LASSO

regression to determine whether managerial switches can predict (“out of sample”) variation in

production levels. In both cases, we find that individual plant managers systematically influence

production levels. Importantly, these results are robust to restricting the sample to plants with

1Hours-per-vehicle is an auto industry productivity measure and equals total working hours divided by total
number of vehicles produced.

2Firms within a 4-digit SIC code are very similar; e.g., within vehicle assembly “motor vehicles and passenger
car body assembly” has a different 4-digit SIC code from “truck and bus body assembly.”
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a retiring manager, which is (presumably) a more exogenous source of variation in managerial

switches.

Reducing variability is central to operations management. Lower variability in production

can be indicative of smoother operations that are less subject to quality glitches, supply

shortages or worker absences, which can hurt productivity. Also, while production levels need

to be adjusted in response to shifting demand, matching supply with demand while keeping

production variability low can reduce costs. Plant managers affect production levels using

a number of levers including overtime, adding shifts, changing line speed and shutdowns

(Bresnahan and Ramey 1994). Using tests for grouped heteroskedasticity, we find that

individual plant managers differentially affect variance in production levels. Taken together,

these analyses using high-frequency production data further reinforce our findings that the plant

manager’s identity has an important role in determining the mean and variance of production

at a plant.

Our findings add to the extant literature on productivity in operations and economics.

Researchers have identified capital usage, quality of the workforce, overall and model-related

experience, new product launch, product variety, plant flexibility, extent of outsourcing, scale of

operations and even weather as drivers of productivity (Lieberman et al. 1990, Lieberman and

Demeester 1999, Fisher and Ittner 1999, Van Biesebroeck 2003, Van Biesebroeck 2007; Syverson

2004, Syverson 2011; Cachon et al. 2012, Gopal et al. 2013, Lee et al. 2014). More recent

research examines spillovers from buyer to supplier firms (Serpa and Krishnan 2018). Specific

to the auto industry, there remains a great deal of unexplained variation in productivity in auto

assembly plants (e.g., Van Biesebroeck 2007, Cachon et al. 2012, Gopal et al. 2013). Narrowing

this productivity gap in the auto industry is important in itself. Indeed, this is a major area

of focus for many large industry research institutes.3 We provide evidence that plant-level

leadership can explain a significant portion of the variation in productivity across plants.

While the role of plant-level leadership in improving productivity seems to have fallen

between the cracks, leadership itself has attracted tremendous research attention. There is much

conceptual, survey-based and experimental research on leadership in organizational behavior

and strategy. This work focuses on the defining characteristics of leaders and how they exert

influence (e.g., see Judge et al. 2002, Knippenberg et al. 2004), at both the top executive and

middle manager levels (e.g., Burgelman 1985; Wooldridge and Floyd 1990). While some of this

work has examined the leadership role of plant managers (e.g., Manz and Sims 1987, Mayer and

Gavin 2005, Smith et al. 2009), this research stream does not delve into estimating the impact

of plant-level leadership on productivity or other plant-level outcomes. Our interviews with

several auto assembly plant managers confirmed that their key responsibilities include managing

personnel, production, quality, safety and environmental impact. Better trained personnel,

better production scheduling, reduced rework, reduced downtime due to safety glitches, and

finding ways to meet environmental targets without compromising production levels can all

improve productivity. Our interviews also revealed the importance of leadership attributes –

including the ability to set clear goals, communicate, manage conflict and motivate their staff of

3For example, the International Motor Vehicle Program, The University of Michigan Transportation Research
Institute, the Center for Automotive Research and Auto Alliance, among others.
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several hundred or more employees – in carrying out their responsibilities. While plant managers

are selected at the corporate level, we learned that plant managers typically select other plant

personnel – e.g., line workers, quality control staff or engineers – who impact productivity. They

also work with corporate to select key senior management hires at a plant, e.g., assistant plant

manager.

Our work complements recent research in strategy and economics on how managerial

practices impact productivity, e.g., via incentives and compensation, problem-solving teams,

on-the-job training, information sharing and job rotation (Huselid 1995, Ichniowski and Shaw

1999, Bandiera et al. 2007, Bloom and Van Reenen 2007, Syverson 2011, Bloom et al. 2012). We

highlight the importance of the model-specific experience and plant-specific tenure of managers,

as opposed to that of managerial practices implemented in an organization, in explaining

productivity. Finally, by showing that a plant manager’s experience matters, above and beyond

traditional measures of manufacturing experience (e.g., see Argote et al. 1990, Levitt et al.

2013), we also contribute to the literature on learning.

A stream of literature in business and economics has used panel data econometrics and

event studies to examine whether, and how, top executives, chief supply chain and operations

management executives impact stock returns and other accounting measures of firm performance

(e.g., see Chatterjee et al. 2001, Bertrand and Schoar 2003, Boyd et al. 2010, Hendricks et al.

2015). However, this literature is silent on the effect of leadership at the level of manufacturing

plants and service shop floors on facility-level outcomes such as productivity. Syverson (2011)

emphasizes data limitations as a key “stumbling block”, noting that even detailed production

micro-data available today rarely include any aspect of managerial inputs. Our hand-collected

data on managerial spells at auto assembly plants, along with traditional auto industry data,

helps bridge this gap.

The remainder of the paper is as follows. In Section 2 we discuss data sources, describe

variables used in the analysis, and provide descriptive statistics. Section 3 contains our panel

data analysis and results, while Section 4 provides the analysis and results for the high-frequency

data. Section 5 concludes the paper.

2 Data, Variables and Descriptive Statistics

We obtained data from several sources. Automotive trade journals provide data on

productivity, production, new model launches, and established plant-specific production factors.

For data on individual plant managers, we searched news releases and new articles, interviewed

automotive industry personnel and industry experts, and conducted extensive search of different

news and information platforms. Fortunately, new managers at auto assembly plants are always

publicly announced, unlike other plant-level hires. Weather data is collected from the National

Oceanic and Atmospheric Administration (NOAA).

Our matched manager-plant data covers 66 US automotive assembly plants and 115

managers from 1993 to 2007, resulting in 677 plant-year observations. When constructing our

dataset, we follow Bertrand and Schoar (2003) and impose that managers have to be observed

for at least 3 years. This 3-year restriction helps towards ensuring that managers have enough
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time to imprint their management style in any given plant. We refer to this sample as the full

sample. We further restrict our sample to the subset of plants for which at least one specific

manager can be observed in at least one other plant. Note that we keep all observations for

each plant satisfying this requirement, meaning that we include years in which the plant has

managers who are never observed in any other plant. The resulting sample has 440 observations

from 40 plants and 80 managers. We refer to this sample as the connected sample. Given that

nearly 65% of the observations are preserved (i.e., 440 plant-year observations versus 667), this

connected sample is nearly identical to the full sample in terms of observable characteristics of

the plants and managers.

2.1 Dependent Variable

Our main dependent variable of interest is plant productivity, measured as hours-per-vehicle.

We obtained productivity data from the Harbour Reports, a well-respected industry data source

used in prior automotive research (e.g., Gopal et al. 2013, Van Biesebroeck 2007), for the

period 1993-2007. Harbour Consulting published the Harbour Reports using plant-level data

provided voluntarily by automobile manufacturers to aid its industry productivity benchmarking

analyses.4 Harbour representatives also visited the plants of participating auto manufacturers

regularly to supplement data collection and verify their analyses.

The variable hours-per-vehicle (hpv) is defined as the total number of working hours at a

plant in a year (including paid lunches, breaks and overtime) divided by the total number of

vehicles produced. Prior to 1998, Harbour Consulting used a slightly different productivity

measure, workers-per-vehicle (wpv). We convert wpv to hpv using a plant-specific conversion

factor.5 We also use high-frequency data on production, the denominator of hpv. This

plant-level data on weekly production for the period 1991-2005 comes from Ward’s Automotive,

another reliable industry data source that is widely used in prior research (e.g., MacDuffie et

al. 1996, Cachon et al. 2012).

Figure 1 plots the US auto industry’s productivity trends. Panel (a) shows that, as a whole,

the industry has seen tremendous gains in productivity during our sample period, while panel (b)

indicates that there is quite a bit of variation in productivity trends across manufacturers. GM

and Chrysler began with much worse productivity in 1993, and showed dramatic improvements

over time. In contrast, Ford, NUMMI6 and the Japanese manufacturers started out with much

higher productivity and showed relatively stable performance throughout the period.

Figure 2 shows the tremendous variation in outcome measures across plants. Panel (a) shows

that the distribution of average hpv (computed over time in each plant) has a long right tail,

with the worst plants having an average hpv of nearly 60. This dispersion demonstrates the

importance of controlling for persistent plant-specific factors that drive productivity differences

across plants, and is consistent with the observation of Syverson (2004) that even within

narrowly defined industries there is substantial heterogeneity in productivity. As with hpv,

4Harbour is now a subsidiary of Oliver Wyman.
5For some years in our sample, we have data for both hpv and wpv, for each plant. We use the average

within-plant ratio of hpv to wpv during such years as a plant-specific conversion factor.
6New United Motor Manufacturing, Inc. (NUMMI) was a GM-Toyota joint venture during 1984-2010.
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panel (b) shows that average production differs substantially across plants, with an average

number of vehicles produced per week of 4,253 and a standard deviation of almost half that

value.

Figure 1. Yearly Trends in Hours-per-Vehicle

(a) Overall trend (b) Company-specific trends

Notes: This figure displays auto-industry productivity trends from 1993 to 2007. Panel (a) plots average hours-per-vehicle

across plants in each year. Panel (b) plots average hours-per-vehicle across plants for each company in each year. The

sample in panel (a) comprises plants across all companies, while the sample in panel (b) comprises plants for the seven

companies with the longest time series in our data; other companies were excluded for clarity.

Figure 2. Between-Plant Variation in Hours-per-Vehicle and Production

(a) Hours-per-vehicle (b) Production

Notes: This figure displays the between-plant variation in outcome measures. Panel (a) shows the distribution of average

yearly hours-per-vehicle across plants during 1993-2007. Panel (b) shows the distribution of average weekly number of

vehicles produced across plants during 1991-2005.

Figures 1 and 2 taken together hint that even within each plant there is likely to be high

variation in productivity over time, particularly for those manufacturers that substantially

improve over our sample period. We next discuss plant-specific factors that contribute to this

within-plant variation in productivity.
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2.2 Plant-Specific Explanatory Variables

While our primary interest is in how managers influence productivity, many plant-specific

variables may be correlated with managerial changes and also impact productivity. We control

for the most common variables identified in prior research and we also include plant fixed effects.

A summary of these variables using the connected sample is presented in Table 1, while in the

Online Appendix Table A.1 we provide the summary using the full sample.

New Model – The launch of a new model in a manufacturing plant can severely disrupt

its productivity (Gopal et al. 2013, Levitt et al. 2013). Such productivity setbacks can

delay market introduction. Prior research indicates that both announcements of new product

introduction delays and actual delays significantly decrease market value and other accounting

measures of firm performance (Hendricks and Singhal 2008).

We identified new model launches using production data from Ward’s Automotive.

NewModel is an indicator for at least one new model being introduced in a plant in a year,

where a new model has a different model name from any model that has been previously

manufactured in a plant.7

Plant Experience with Current Models – It is well known that a plant’s productivity

improves with its experience in producing products (e.g., see Argote et al. 1990). We define

PlantModelExperience as the total number of vehicles produced in the past three years of the

same models as those currently in production.8

If a plant has plenty of experience with the models it is currently making, introduction

of a new model should be less disruptive than if the plant has little experience with these

models. Experience enhances control and may provide the organizational slack needed to absorb

unforeseen problems that naturally arise during a new model launch. For example, an auto plant

manager whom we interviewed mentioned the need to migrate labor from other lines at short

notice during launch, which could hurt the other lines more if they are less established. If there

is little control over production, introducing a new model may have more severe consequences for

productivity. To capture these effects, we introduce an interaction of PlantModelExperience

and NewModel.9

Other Plant-Specific Controls – Prior research has identified a number of additional

plant-level factors that impact productivity. All else equal, higher product variety should

hamper productivity, due to greater time spent in changeovers and reduced economies of scale

in production (Fisher and Ittner 1999, Ramdas 2003, Van Biesebroeck 2007). Higher flexibility

- i.e., ability to adjust and respond to new information (Van Mieghem 2008) - enables a plant

to make multiple models (Moreno and Terwiesch 2015), albeit with a reduction in productivity

(Van Biesebroeck 2007). Auto manufacturers often choose to outsource the production of

components or subassemblies to suppliers. Outsourcing leads to an increase in productivity

7Our definition of a new model focuses on model changes that are substantial enough for the ensuing model
to be given a new name. A minor model change on an existing model would not count as a new model.

8We are able to compute plant experience in our starting year, 1993, as our production data from Wards
Automotive goes back to 1985.

9Note that a plant’s prior experience with new models is, by definition, zero.
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by decreasing the work content per vehicle (Van Biesebroeck 2007).

Table 1. Plant-Specific Variable Definitions and Descriptive Statistics

Variable Description Sourcea Mean SD

Hours-per-Vehicle Total working hours divided by total number

of vehicles produced

HR 27.87 7.383

Production Total number of vehicles produced WA 4253 1836

NewModel Indicator for at least one new model intro-

duced

WA 0.166 0.372

PlantModelExperience Total number of vehicles produced in the

past three years of the same models as those

currently in production

WA 116.2 106.9

Flexibility Average number of platforms produced per

production line

HR 1.065 0.327

Variety Sum of the number of body styles and chassis

configurations produced

HR 7.126 10.22

Outsourcing Average of all task-specific outsourcing dum-

mies

HR 0.194 0.101

Scale Production capacity (in 10,000s) HR 22.04 6.187

Size Plant’s square footage (in 10,000s) HR 293.4 82.08

TechnologyLevel Production capacity divided by plant’s square

footage

HR 0.081 0.031

SegmentTruck Indicator for large truck manufactured HR 0.011 0.106

SegmentLarge Indicator for large/luxury car manufactured HR 0.114 0.318

SegmentMidsize Indicator for mid size car manufactured HR 0.277 0.448

SegmentPickup Indicator for pickup manufactured HR 0.289 0.454

SegmentSmall Indicator for small car manufactured HR 0.064 0.244

SegmentSUV Indicator for suv/crossover manufactured HR 0.307 0.462

SegmentVan Indicator for van manufactured HR 0.120 0.326

Wind Fraction of days with wind speed above 30

miles per hour

NOAA 0.045 0.026

Heat Fraction of days with temperature below 15

degrees Fahrenheit

NOAA 0.057 0.056

Cold Fraction of days with temperature above 90

degrees Fahrenheit

NOAA 0.051 0.040

Precipitation Fraction of days with non-zero precipitation NOAA 0.338 0.055

Notes: With the exception of the production variable that is observed at a weekly level, the unit of observation for

all variables is plant-year. Descriptive statistics are calculated using the connected sample across 40 plants. Each of

the data sources above is publicly available.
aHR stands for Harbour Reports; WA stands for Ward’s Automotive; and NOAA stands for National Oceanic and

Atmospheric Administration.

Similar to Van Biesebroeck (2007) we define V ariety in an auto plant each year as the sum

of the number of body styles and chassis configurations produced in the plant, Flexibility

as the number of platforms produced per production line, Outsourcing as the average of

all task-specific outsourcing dummies,10 and Scale as a plant’s yearly production capacity.11

10For a wide range of detailed tasks such as body stamping, frame welding, seat assembly, etc., the Harbour
reports publish annual plant-specific data on whether or not the task is outsourced.

11Harbour reports compute production capacity using a constant line rate and the regular shift pattern used
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Also as in Van Biesebroeck (2007) we include a vehicle segment fixed effect for each vehicle

segment manufactured at a plant (e.g., small car, mid-size car, large car, van, SUV, etc.), to

capture differences in hpv due to differences in the vehicle itself - e.g., subcompact cars requires

less labor than minivans. In addition to these controls, we define Size as a plant’s square

footage, and a plant’s TechnologyLevel as its capacity divided by its square footage, as more

modern technology may result in higher capacity per square foot. Major technological changes

are decided at corporate and could coincide with manager switches, so excluding them could

introduce bias.

We also include measures capturing disruptions in production due to weather conditions. Lee

et al. (2014) find that workers are more productive on bad weather days, possibly due to fewer

cognitive distractions. In contrast, Cachon et al. (2012) report that automobile production

is hurt by inclement weather, potentially due to causes such as interrupted supplies, employee

absences and low morale. Naturally, similar causes can also reduce productivity. For example,

workers who are present at work cannot assemble vehicles if components are missing due to a

weather-related supply disruption. We control for the effect of weather on productivity using

a procedure similar to that of Cachon et al. (2012). Using the exact latitude and longitude of

each plant in our sample, we locate its closest weather station and use daily weather data from

the NOAA’s National Climatic Data Center at these weather stations over our sample period.12

We convert daily weather data to yearly by aggregating each weather variable. Wind, Heat,

Cold and Precipitation denote the fraction of days with wind speed over 30 miles per hour,

temperature above 90 degrees Fahrenheit, temperature below 15 degrees Fahrenheit, and with

non-zero precipitation, respectively.

Finally, we include plant fixed effects to control for all time invariant plant-level factors.

Inclusion of this rich set of controls for time-varying and time invariant plant characteristics

in our analysis is crucial to ensure that variation in productivity due to these factors is not

mistakenly attributed to managerial changes.

2.3 Manager-Specific Explanatory Variables

Through a careful and thorough data collection process, we secure information on every

individual who served as a plant manager at a plant in our sample. We searched Factiva and

LexisNexis news archives for new plant manager announcements. These typically appear in

company press releases or news articles in local newspapers or trade journals (e.g., Automotive

News). We also spoke with managers and public relations officials at assembly plants and

with automotive experts to get information on plant managers who had served at specific

plants. We supplemented these searches with Google search using as keywords “plant manager”

along with the specific company name, plant name and year. For more recent years LinkedIn

profiles provided valuable information.13 Unless otherwise specified, we use ‘manager’ and ‘plant

during each year.
12We use data from weather stations at airports as the weather coverage at airports is more complete and

accurate.
13We are confident that measurement error is not a concern. As we often have multiple sources of data for

each manager, in cases of occasional discrepancy (e.g., two different start dates at a plant for a manager) we were
able to dig deeper and determine which was the correct information.
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manager’ interchangeably.

For each plant manager identified, we collected data on their start date and end date as

manager at each plant where they had served in our sample period. On average, a individual

spent 5.1 years as a plant manager during our sample period.

Where available, we also collected additional biographic information on a number of

manager-specific characteristics: education (type of undergraduate and graduate degree if

earned), gender and an indicator for Japanese auto experience. Crucially, we’re also able

to collect information on retirements of plant managers, which serves as a source of plausibly

exogenous changes in plant-level management. About 21% of managers retire during our sample.

These variables, and others described in detail below, are defined and summarized in Table 2.

In the Online Appendix Table A.2 we provide an analogous table to this one using the full

sample.

Table 2. Manager-Specific Variable Definitions and Descriptive Statistics

Variable Description Mean SD

TimeSinceSwitch Number of years since the last manager switch 3.164 2.120

ManagerModelExperience Number of vehicles produced of the same models

as those currently in production, in plants that

the plant manager led in the past three years (in

10,000s)

25.21 28.82

Female Indicator for female manager 0.087 0.284

Retired Indicator for whether a manager retired in our

sample period

0.213 0.412

UndergraduateDegree Indicators for Undergraduate Degrees

Business 0.237 0.428

Industrial Engineering 0.125 0.333

Other 0.313 0.466

None 0.325 0.471

GraduateDegree Indicators for Graduate Degrees

Business 0.225 0.420

Industrial Engineering 0.075 0.265

Other 0.025 0.157

None 0.675 0.471

JapaneseExperience Indicator for prior Japanese experience 0.112 0.318

Notes: Our manager data is from a variety of online sources including Linkedin, LexisNexis, and other sources like

local newspapers that cover changes to a plant’s management, supplemented with discussions with auto industry

personnel and industry experts. Descriptive statistics are computed using the connected sample of a total of 80

managers across 40 plants.

Manager Experience – Just as a plant’s experience with manufacturing the models currently

in production may enhance productivity, a plant manager’s experience in managing plants that

have manufactured the models that are currently being produced in his/her plant14 should

similarly enhance productivity. By having managed the production of the same models in the

past, the plant manager may have learned about particular model-specific problems to look out

14This experience could include both experience making continuing models at the focal plant and experience
drawn from other plants in making new model(s).
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for, as well as solutions to such problems, which should increase bandwidth to absorb a new

model introduction.

We define ManagerModelExperience as the total number of vehicles produced of the same

models as those currently in production in his/her plant, in plants that the manager led in

the past three years.15 Note that ManagerModelExperience can only be separately identified

from PlantModelExperience if there are cases in which the manager had some experience in a

different plant, in the past three years.

Similar to the argument for why disruption due to a new model launch should be alleviated

by a plant’s experience with manufacturing the other models currently made at the plant,

the manager’s experience in overseeing the other models made at a plant should help reduce

disruption due to a new model’s launch. To capture this effect, we introduce an interaction of

ManagerModelExperience and NewModel. The coefficient of this interaction term can only

be identified separately from that of the interaction of PlantModelExperience and NewModel

if some managers have been transferred in from a different plant in the three years preceding a

new model launch.

Time Since Last Manager Switch – We define TimeSinceSwitch as the number of years

since the last manager switch at a plant. This variable is identified separately from manager

fixed effects and manager experience, and captures other systematic changes that might be

occur at a plant when a new manager comes in.

Manager Fixed Effects – For each manager in our sample, we define a manager-specific fixed

effect (µm) that captures the impact on productivity of the manager’s innate ability, education

obtained prior to our sample period, ethnicity, gender and a host of other time-invariant

attributes, as well as the average effect of all time-varying attributes, including preferences

and risk aversion. As part of his personal management style, a new plant manager may choose

to make changes within a plant’s management, e.g., hiring new reporting managers or altering

their span of control. The impact of such changes would also be captured by individual manager

fixed effects.

To avoid confounding due to plant-specific factors, we focus on estimating the effect of

individual plant managers on within-plant variation in productivity (enabled in our regression

analyses by using plant fixed effects). Figure 3 shows the extent of within-plant variation in

plant outcomes in the form of density functions. Specifically, Figure 3(a) presents the probability

density function (pdf) of the deviations of hpv from the average hpv in the plant at hand, i.e.,

within-plant deviations in productivity. The dispersion of this pdf demonstrates the tremendous

amount of variation in productivity within plants. Figure 3(b) presents the difference between

the average hpv during each manager’s spell in a plant and the plant’s average hpv. Although

the distribution is substantially less variable, there is still a tremendous amount of variation in

the productivity of different managers within a plant.

We see fairly similar results if we instead examine weekly production, as seen in Figures 3(c)

and 3(d). Our regression analysis will seek to identify the portion of this variation that is due

15As with plant experience, we are able to calculate manager experience in 1993, as our production data from
Wards Automotive goes back to 1985.
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to managerial influence as opposed to other within-plant sources of variation in productivity.

Figure 3. Within-Plant Variation in Hours-Per-Vehicle and Production

Hours-per-Vehicle

(a) Annual deviations (b) Manager-specific deviations

Production

(c) Weekly deviations (d) Manager-specific deviations

Notes: This figure displays the within-plant variation in outcome measures. The unit of observation for the distributions

shown in panels (a) and (c) is plant-year, while the unit of observation in panels (b) and (d) is a manager-plant spell. Panel

(a) presents the pdf of the deviations of hpv from the average hpv in the plant at hand. Panel (b) presents the difference

between the average hpv during each manager’s spell in a plant and the plant’s average hpv. Panel (c) presents the pdf of

the deviations of weekly production from the average production in the plant at hand. Panel (d) presents the difference

between the average production during each manager’s spell in a plant and the plant’s average production. The sample in

panels (a) and (b) covers the period 1993-2007. The sample in panels (c) and (d) covers the period 1991-2005.

Managerial Switches – A critical feature of our econometric approach relies on tracking

managerial switches across plants. Table 3 reports that of the 80 plant managers observed

in the connected sample, 32 (40%) led more than one plant. These 32 switchers produced 37

switches, because some of them led more than two plants. Around half of the switches involve

managers switching to a bigger or a more technologically advanced plant. Managerial switches

to a different company are rare.
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Table 3. Manager Switching Information

Variable Obs. Percentage

Managers 80 100.0%

Plant manager position leaversa 64 80.0%

Managers that served in more than 1 plant 32 40.0%

Total managerial switches 37 100.0%

Switches to a bigger plant 20 54.1%

Switches to a more technologically advanced plant 19 51.4%

Switches to a different company 3 8.1%

Notes: Our sample includes the subset of plants for which at least one specific manager

can be observed in at least one other plant (the connected sample). This includes 80 plant

managers, each with at least three years in our sample, who served 40 plants between

1993-2007. aPlant manager position leavers is an indicator for whether a plant manager

was no longer in our sample in 2007, the last year in our study period.

3 Panel Data Analysis

In our panel data analysis, we use the connected sample described above to identify

the impact of managerial influence on productivity. To this end, we first employ a way

to separately identify the role of managers from that of plant-specific factors. Next, we

examine channels through which managers impact productivity, specifically, their plant and

model-related experience.

3.1 Fixed-Effects Framework and Identification of Managerial Influence

There are multiple difficulties that must be overcome to identify the impact of plant-level

leadership on productivity. These identification problems arise because leadership at automotive

plants is often invariant for long periods of time, and when managerial changes occur, these

may coincide temporally with other changes made by the manufacturer, at either the firm (e.g.,

C-suite executive change) or plant (e.g., production of a new model) level.

To formalize some of these issues, consider a simple approach to identifying the role of

managerial influence on productivity that estimates the following regression:

ypt = X
′
ptβ + µm + δt + εpt, (1)

where ypt is a measure of productivity (i.e., log hpv in our analysis) in plant p in year t, Xpt

represents a vector of time-varying plant-specific characteristics, µm are manager fixed effects,

δt represents year fixed effects, and εpt a residual error term. Such an approach simply adds

manager fixed effects to the regression framework of previous studies of automotive productivity.

Despite the appeal of such an approach, it is not adequate for identifying the unique role of

managerial influence on productivity.

Specifically, consider two plants, one with consistently excellent productivity (plant A) and

another that is less productive (plant B). Further, (realistically) assume that this productivity

gap is not completely explained by Xpt, such that there are unobservable determinants that

14



influence productivity that are specific to the plants. In such a case, the estimates of managerial

effects would be biased because the greater productivity at plant A would mistakenly be

attributed to the managers at that plant rather than to the unobserved factors specific to

each plant. That is, managers at plant A (be it one or many managers) would receive false

credit for the productivity gap between the two plants. An obvious, yet potentially inadequate,

way to resolve this issue would be to simply augment Equation (1) as:

ypt = X
′
ptβ + λp + µm + δt + εpt, (2)

where λp denotes plant fixed effects. The reason that doing this does not adequately resolve

the identification problem, separating plant- and manager-specific influence on productivity, is

now more subtle.

In this setting, all time-invariant plant and manager factors are clearly controlled for,

however, they are not technically separately identified for all data-generating processes. Thus,

this approach of including λp is adequate to control for time-invariant omitted (unobserved)

factors that may bias estimates of β but it is inadequate for identifying the influence of managers

(µm). Or, if the manager fixed effects are themselves of interest, as they are in our analysis,

this fixed-effects approach may still incorrectly attribute variation in productivity to managerial

influence. Consider again the example above. Suppose that no managers at plant A or B switch

plants during our sample period, that plants A and B have the same underlying productivity

(i.e., λA = λB), and that all managers at plant A improve productivity (i.e., lower hpv) and all

managers at plant B decrease productivity (i.e., raise hpv). This data-generating process yields

estimates of the plant fixed effects such that λ̂A < λ̂B, which is incorrect. The plant fixed effects

pick up average manager quality in the two plants, and this results in misattribution of the gap

in manager quality between the two plants to plant-specific factors other than the managers.

Fortunately, this issue is a well-studied problem in the economics literature across many

different applications, often in the context of wage differentials to separately identify firm- and

employee-specific factors that explain variation in wages across industries, firms, and employees.

Like our problem, which seeks to separate plant and manager influence on productivity, Abowd

et al. (1999) show in the context of wages that separate identification of firm and employee

effects is possible only when certain restrictions on the data-generating process are satisfied.

In the application of Abowd et al. (1999), the mobility of employees across firms is crucial for

identification. Consider the importance of mobility in our example by instead letting a single

manager serve at both plants A and B during our sample. In this case, the switcher provides

a common relative reference point between the plants and managers to separately identify the

contribution of each in determining productivity.

Abowd et al. (1999) provide general results as to the restrictions on the data-generating

process that provide identification in settings likes ours.16 For our purposes, the manager fixed

effects are separately identified for all managers that serve in a plant for which at least one

manager in that plant was employed in at least one other plant. Thus, if we restrict our

attention to the connected subset of our sample, i.e., those plants that had at least one manager

16Applications that apply variations of the Abowd et al. (1999) approach to study leadership include Bertrand
and Schoar (2003) and Graham et al. (2012).

15



that served in two or more plants, then manager fixed effects are identified. Thus, the degree

of connectedness of the sample relies on the mobility of managers.

In Table 4, we provide the joint distribution of the number of years a manager is in our

sample and the number of plants in which he or she served. Around 40% of the managers in

our sample served in more than one plant creating a high degree of group connectedness among

the managers and providing a strong source of identification. In addition to the technical

difficulties in identification of managerial influence on productivity, there are also additional

issues to consider. For example, as discussed in Section 2, there are a variety of factors that

vary temporally within a plant, such as new model launches, model variety and vehicle segment,

which may be correlated with both managerial switches and productivity. Thus, it is crucial to

control for these factors or else variation in productivity may be falsely attributed to managerial

influence. To overcome this concern we collect the most common variables from previous

studies of auto manufacturing and include them in Xpt. See Table 1 for additional details

on plant-specific controls.

Further, as Figure 1(b) shows, there are company-specific trends that may introduce

correlation across plants owned by the same company. To control for these trends, we replace δt

with company-year indicators θct. These remove any common fluctuations within each company

over time. Note that these fixed effects subsume year fixed effects which control for general

macroeconomic trends such as labor market conditions or consumers’ propensity to buy.

Table 4. Joint Distribution of Years as a Manager and Number of Plants

Number of Years

as Manager

Number of Plants

1 2 3

3 14 3 0

4 16 6 0

5 10 6 0

6 4 7 2

7 1 2 0

8 0 2 0

9 1 1 1

10 1 0 0

11 1 0 0

12 0 1 0

14 0 0 1

Total 60.0% 35.0% 5.0%

Notes: This table presents data for 80 plant managers, each with

at least three years in our sample. The managers represented in the

last two columns contribute to managerial switches.

Equation (2) assumes that managerial influence is constant over time, as µm is not indexed

by t. However, the effects of tenure and learning are well documented in both the economics

and the operations management literature. To relax this assumption, we further augment our

regression specification as

ypt = X
′
ptβ + Z

′
mtγ + λp + µm + θct + εpt, (3)

16



where Zmt includes our measures of managerial experience with manufacturing models currently

produced in the plant and time since the last managerial switch. We also interact elements of

Xpt and Zmt to explore whether managerial experience alters the impact of certain plant-specific

factors, like new model launch.

Equation (3) can be estimated using ordinary least squares (OLS), and the collective

influence of plant managers can be tested using a Wald statistic calculated based on the

null hypothesis that the manager dummies are jointly insignificant, µm = 0,∀m. While the

Wald statistic is of interest for statistical significance, the change in the proportion of variation

explained is perhaps a better measure of economic importance. So, as in Bertrand and Schoar

(2003), the change in the adjusted R-squared measure of fit when manager fixed effects are

added will be of interest as well. When estimating (3), we account for serial correlation of

errors by clustering the standard errors at the plant level.

3.2 Main Results

To demonstrate the variance in productivity that is attributable to different factors, we

present our results in three steps. Specifically, we first estimate different versions of Equation

(3) in which we include various fixed effects but none of the time-varying characteristics of plants

or managers. Next, we include time-varying characteristics of plants and then of managers to

demonstrate how the results change when managerial influence is cleanly identified.

The first two columns of Table 5 provide a decomposition of productivity via regressions of

log hpv on various fixed effects. The check marks in each row indicate the included set of fixed

effects. Column 1a shows that about 73% of the variation in productivity can be explained by

plant-specific indicators and company-year fixed effects, which is consistent with the time trend

visible in Figure 1 and the substantial between-plant variation in hpv in Figure 2. If manager

fixed effects are added (column 1b), the adjusted R-squared increases to 0.794, an increase of 6.4

percentage points. Note that here, as well as in the other two specifications with the manager

fixed effects (column 2b and 3b), we find the set of individual manager indicators to be jointly

significant, as indicated by the Wald statistics p-value.

Note that without additional controls, the large jumps in our measure of fit are likely

due to misattribution of other sources of variation in productivity that have little to do with

managerial switches. In other words, the results of the fixed-effects specification do not control

for a variety of factors that fluctuate temporally within a plant. These omitted factors may

bias our estimates of managerial influence if correlated with changes in plant management. In

columns 2a and 2b of Table 5 we introduce plant-specific characteristics. Specifically, we include

plant-specific controls for new model launches, plant experience with the models currently being

produced, an interaction of these two variables and various other factors commonly used in the

literature: model variety, flexibility, outsourcing, technology level, vehicle-type dummies and

weather. Again, we find a sizeable jump in fit with inclusion of manager fixed effects. In the last

two columns, we explore whether this large jump in our measure of fit remains after including

time-varying manager-specific characteristics. Specifically, we introduce managerial experience

with the models currently being produced in a plant, the interaction of manager’s experience
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with the indicator for whether a new model was introduced, and time since the last manager

switch.

The last two columns show that, after controlling for plant fixed effects and plant and

manager time-varying characteristics, the manager fixed effects still explain a little over 7% of

variation in productivity (adjusted R2 increases from 0.791 to 0.849). This percentage is higher

than the magnitude of the variation in firm-level outcomes in prior research (e.g., Bertrand and

Schoar 2003). This is not surprising as in those studies the focus was on how top executives

influence firm outcomes, whereas we focus on how frontline managers impact a plant outcome,

productivity. Naturally, we expect the actions of plant managers to be closely tied to the pulse

of operations and so to have a more visible and direct influence on outcomes at the plant-level,

than would a C-suite executive on firm outcomes.

Table 5. Managerial Influence on Productivity

Variable 1a 1b 2a 2b 3a 3b

NewModel 0.158∗∗∗ 0.185∗∗∗ 0.177∗∗∗ 0.200∗∗∗

(0.037) (0.041) (0.036) (0.043)

PlantModelExperience -0.000 -0.000 -0.000 -0.000

(0.000) (0.001) (0.000) (0.001)

NewModel×PlantModelExperience -0.001∗∗ -0.001∗ -0.000 -0.000

(0.000) (0.000) (0.000) (0.000)

TechnologyLevel -2.648∗∗∗ -1.270∗ -2.575∗∗∗ -1.231∗

(0.829) (0.747) (0.820) (0.714)

ManagerModelExperience 0.000 0.000

(0.000) (0.001)

NewModel×ManagerModelExperience -0.002∗∗∗ -0.002∗∗

(0.001) (0.001)

TimeSinceSwitch -0.000 -0.016∗

(0.005) (0.008)

R-squared 0.796 0.877 0.851 0.921 0.857 0.924

Adjusted R-squared 0.730 0.794 0.784 0.844 0.791 0.849

Wald stat p-value (µm = 0,∀m) - 0.000 - 0.000 - 0.000

Observations 440 440 374 374 374 374

Plant FEs X X X X X X

Company-Year FEs X X X X X X

Plant-Specific Controls X X X X

Manager-Specific Controls X X

Manager FEs X X X

Notes: This table presents fixed-effects regression results of equation (3) using the connected sample. All included

managers have been observed for at least 3 years. Other plant-specific controls such as variety, extent of outsourcing,

flexibility, vehicle-segment dummies and weather controls are included but not reported. Standard errors, shown in

parentheses, are clustered at the plant level. Statistical significance is denoted by * p < 0.10, ** p < 0.05, *** p < 0.01.

To demonstrate the importance of managerial influence, we follow Graham et al. (2012)

and calculate the interquartile range of the estimated manager fixed effects. Our estimates

imply that replacing the 75th percentile plant manager with the 25th percentile plant manager
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decreases average hours-per-vehicle by 30%.17

To formally demonstrate the bias resulting from exclusion of manager fixed effects, we

conduct a Hausman test comparing the estimates from column 3a and 3b in Table 5. Specifically,

we test whether the non-managerial coefficient estimates are biased when manager fixed effects

are excluded from the regression. We find a p-value of 0.004 on the chi-squared test statistic,

which suggests that substantial biases are introduced if indicators for the identity of managers

are not included in the regression. This demonstrates the importance of controlling for the

effects of individual managers even when this is not the focus of the analysis.

We consistently find that new model launches reduce productivity (i.e., increase hpv, as

found by Gopal et al. (2013) and Levitt et al. (2013). Specifically, we find that launching

a new model increases a plant’s hours-per-vehicle by 22% and that both plant and manager

experience help reduce this productivity disruption.18 To get a sense of the marginal effect of

manager experience during launch, consider Ford’s Avon Lake plant in Ohio, which made the

Nissan Quest van until 2002. In response to oil shocks in the early 2000s, this plant shut down,

revamped, and switched to making the Ford Escape SUV in 2003, which is a hybrid with higher

miles per gallon. With the introduction of the new model, hours per vehicle (HPV) at Avon

Lake increased by 22.7 hours (70%), from 32.2 to 54.9 hours per vehicle. In 2003, the plant

manager at Avon Lake had no experience making SUVs. From the distribution of manager

model experience for managers heading plants producing the Ford Escape SUV, the manager

with the maximum experience making such vehicles had 1.775 million units of experience.19

Had this manager been assigned to the Avon Lake plant for the Ford Escape introduction,

the change in HPV would have been 22.3 hours (22.7 − 0.002 × 177.5) instead of 22.7 hours,

a saving of 0.4 hours (24 minutes) in HPV. Avon Lake produced a total 62,530 vehicles over

2003 and 2004. At a labor cost of about $70/hour, this HPV reduction implies a savings of

62530× 0.4× 70× 2 = $3.5 million at the plant over these two years.

We also see some evidence that an increase in the time since the last managerial switch event

has a significant and economically meaningful impact on productivity. For each extra year a

manager spends at a given plant, there is an increase in productivity of about 1.6%.20

To further assess the validity of our main results, we explore whether managers’ effects

persist over time and across different plants, as in Bertrand and Schoar (2003). We construct

manager-plant residuals by regressing hpv on plant, company-year fixed effects and all

time-varying controls and then collapsing these residuals by manager-plant spell. Then, we

17We use the largest connected set in our connected sample to compute the interquartile range, which has 275
observations. For this largest set the jump in the adjusted R-squared is also about 7 percent.

18Note that, when describing the results, we refer to hpv and not to the log of hpv (which is our dependent
variable) because we exponentiate the coefficients to get effect size on productivity level.

19In our data, in new model launch plant-years, no manager had prior experience with the new model. Thus
the coefficient of ManagerModelExperience is identified based on variation in managers’ experience with making
continuing models. Our underlying assumption is that a unit of prior experience with a continuing or a new
model contributes in the same way to productivity in a launch plant-year.

20In Table A.4 of the Online Appendix we include a set of regression results based on different samples and
specifications analogous to the last two columns of Table 5. In particular, we first repeat our analysis based on
the full sample. We then do small variations based on the connected sample: (i) we provide estimation results
when using the outcome variable hours-per-vehicle in level (original) form instead of log-linearised, (ii) we exclude
the TechnologyLevel variable (iii) we replace the TechnologyLevel variable for the Scale variable, (iv) we add a
dummy variable capturing the time previous to a managerial switch, and (v) we exclude weather variables.
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regress the manager’s average residual in the second plant he/she is observed at on the

average residual at his/her first plant. We see a positive and marginally significant relationship

between the manager’s residual across plants, indicating some sort of persistence of unobservable

managerial traits (such as leadership style) on plant productivity. In other words, the positive

and significant manager fixed effects that we estimate for plants experiencing a period of increase

productivity do persist over time in the future plants these managers lead. We then conducted

a falsification test by creating a fake residual for the second plant that a manager is observed at

by using the average residual of the manager(s) who worked in that plant during the two-year

period before the switcher manager’s arrival. In this case we find that the coefficient is not

statistically different from zero and that the R2 is almost half of the size of the original. See

Table A.5 of the Online Appendix.

Last, we follow the minimum-distance procedure proposed by Chamberlain (1982) and

applied by Nevo (2001) to tease apart the effects of all the time-invariant manager characteristics

(education, gender and experience in a Japanese plant) that are subsumed into the manager fixed

effects. The results of this exercise show that none of these variables is statistically significant.

This analysis is reported in Table A.6 of the Online Appendix.

4 High-Frequency Data Analysis

Our high-frequency data offers an opportunity to analyze each plant in greater detail as

an individual time series. This in turn can clarify identification of managerial influence and

highlight some channels through which plant managers impact productivity. Specifically, we

can exploit the particular circumstances of a managerial switch (e.g., a retirement versus a

change for an unknown reason) to identify the causal impact of managerial switches. This

increases confidence that the change was for an exogenous reason (i.e., age) and is therefore

unlikely to be correlated with other temporal changes in the plant. Further, the high-frequency

data offers an opportunity to look at higher-order moments of outcome variables, in particular

variance in production, that a manager may be able to influence. As discussed in Section 1,

lower production variability may be indicative of fewer production disruptions, and may thus

enable higher productivity.

We perform two different types of analyses on each plant’s weekly time series to measure

managerial influence on the mean of production, using data from 1991 to 2005 on the 56 plants

that had least two managers. First, following Ploberger and Krämer (1992), we perform a

cumulative sum (CUSUM) test for parameter instability to identify whether managerial switches

coincide with changes in production. Second, we perform a model-selection analysis using a

LASSO regression to determine whether managerial switches can predict (“out of sample”)

variation in production. To ensure that our results reflect managerial influence, and not other

possible factors that coincided temporally with the managerial switch, we compare the results

for plants with and without a retiring plant manager.

To study the role of managerial influence on variability in output, we use the same

high-frequency production data to perform heteroskedasticity tests for manager-specific effects

on variability. These tests measure whether the residuals from our time-series regressions used
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for the CUSUM tests exhibit a different variance by manager. Again, this analysis is performed

for each plant to analyze whether the results for plants with and without retiring plant managers

are similar.

4.1 Mean Production: Parameter Instability and LASSO Analysis

Tests for parameter instability seek to identify the presence and timing of instability in the

values of parameters in a regression model. Identification of such breaks can provide insight

into the source of the break if observable factors coincide temporally with the break. There

are numerous alternative methods for testing for parameter instability, but some are preferable

for our objective and application. Specifically, in our application there are many time-varying

factors, observed and unobserved, that may impact production beyond just managerial switches.

In addition, the length of our panel may make multiple breaks more likely. For these reasons,

we apply the CUSUM test of Ploberger and Krämer (1992) that permits flexible testing for

multiple breaks while controlling for an arbitrary number of other observable covariates.

Consider a simple time series model for production at time t, yt, for a specific plant:

yt = βXt +

12∑
j=1

γj1j + εt, (4)

where Xt are time-varying covariates (such as a time trend), 1j are monthly dummies to capture

seasonality that may impact production (e.g., weather-related delays for arrival of components),

and εt is the error term.

To identify parameter instability or missing elements of the model, the CUSUM test looks for

abnormal serial correlation in the residuals based on a test statistic that is the cumulative sum

of the residuals. Under the null, each residual has zero expectation, and thus the expectation

of any cumulative sum of the residuals at any point in the time series is also zero. On the

contrary, if the time series is missing a time-varying factor, this can cause serial correlation in

the residuals. This logic forms the basis for the CUSUM test statistic.

Consider a plant in which we observe two managers over our sample period, and assume that

the first manager increases the plant’s productivity while the second has a negative effect on

productivity. Because the average of the residuals must be zero, we would expect the cumulative

sum of residuals to increase with t up until the manager switch, and to then decrease. The

CUSUM test formalizes this logic. Under the null that errors are uncorrelated, confidence

bands are calculated for the test statistic, for each t, 1 <= t <= T . Note that in fact T

CUSUM subtests are performed, with the periods over which the sum of residuals is taken

varying from the first period to the entire horizon T.

Next, we modify the parsimonious model in Equation (4) above by allowing the parameters

to vary with the identity of the plant manager.

yt = βmXtm +
12∑
j=1

M∑
m=1

γjm1jm + µm + εt, (5)
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where βm is a vector of manager-specific coefficients for time-varying covariates, γjm are

manager-month dummies, and, as before, µm is a vector of manager fixed effects. Again,

we can perform a CUSUM test using the residuals from the OLS estimate of Equation (5). If

we reject the null of uncorrelated errors most of the time in the first case, but fail to reject the

null most of the time in the second case, this would suggest that the timing of manager switches

coincides with the timing of structural breaks in our data. Of course, it is possible that in fact

the timing of manager switches coincides with some other changes that might also explain the

structural breaks (e.g., new technology). However, because we are using high frequency data

and know precisely when a managerial switch occurs, it is less likely that other changes may

have occurred at exactly the same time.

We conduct plant-specific CUSUM tests for each plant using weekly production data. Figure

4a shows that managerial switches do coincide with structural breaks in production. When we

allow the parameters to vary with the particular plant manager, we fail to reject the null of no

structural break in most of the cases, while the opposite is true for estimation results without

manager specific parameter instability.

Figure 4. CUSUM Tests of Managerial-Specific Production Instability

(a) All plants (b) Plants with retiring managers

Notes: This figure displays the results of plant-specific CUSUM tests for parameter instability from OLS estimates of

Equation (4) and Equation (5). The y-axis tracks the cumulative distribution of the CUSUM test statistic. The vertical

lines represent critical values of the test for conventional significance levels, as indicated at the top of each line. The sample

in panel (a) comprises 56 plants with at least two managers. The sample in panel (b) is a subsample comprised of 23 of

these 56 plants, each of which had a retiring manager. The sample period ranges from 1991 to 2005.

We also repeat the analysis for the subsample of plants with retiring managers, for which

managerial switches are plausibly exogenous. The results, shown in Figure 4b, are similar to

those of the main sample and provide evidence on the coincident timing between structural

production breaks and managerial turnover.21

To reinforce and complement our findings from the parameter-instability tests, we use a

LASSO model-selection framework to test whether variation in production can be predicted by

manager switches. Specifically, we use an out-of-sample criterion for model selection to identify

21This should reduce concerns about other factors that could have been temporally correlated with managerial
switches.
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whether the identity of the manager is useful for predicting production.

The model-selection feature of the LASSO, which is responsible for identifying useful

predictors of output, is achieved through augmenting the ordinary least squares criterion with

a shrinkage penalty. Specifically, if we consider the same baseline specification for a plant’s

output as in Equation (5), then the LASSO parameter estimates satisfy:

min
[β,γ,µβ,γ,µβ,γ,µ]

1

T

∑
t

yt − βmXtm −
12∑
j=1

M∑
m=1

γjm1jm − µm − εt


s.t. ‖[β, γ, µβ, γ, µβ, γ, µ] ‖1≤ λ,

(6)

The shrinkage parameter, λ, is chosen through k-fold cross validation that minimizes an

out-of-sample mean-squared error criterion from hold-out samples. This results in model

estimates that are optimized to predict variation in production and identify those covariates

that are successful in doing so. Thus, if managerial switches have a role in predicting variation

in production, the model will identify their role and quantify their influence.

Figure 5. LASSO-Selected Plant Manager Effects and Weekly Production

(a) All plants (b) Plants with retiring managers

Notes: This figure displays the results of a LASSO estimator. The dashed (blue) line shows the cumulative distribution

function (CDF) of manager fixed effects coming from plant-specific LASSO regressions. We use k-fold cross-validation to

select the shrinkage parameter. The solid (red) line shows the CDF of average weekly production per plant. The sample

in panel (a) comprises 56 plants with at least two managers. The sample in panel (b) is a subsample comprised of 23 of

these 56 plants, each of which had a retiring manager. The sample period ranges from 1991 to 2005.

Figure 5 displays the results of the plant-specific LASSO regressions using high-frequency

production data for each plant time series. We plot the cumulative distribution function of the

manager fixed effects selected by LASSO together with the cumulative distribution function of

each plant’s average production. We find that using all the plants in our study sample, or the

subset of plants with retiring plant managers, the variance of the estimated µm closely matches

the between-plant dispersion in production.
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4.2 Variance of Production: Heteroskedasticity Analysis

It is also conceivable that individual plant managers may impact variance in production

levels. A more competent manager may be able to smooth production, avoiding costly periods

of disruption in production. To examine whether this is the case, we use the estimated residuals

from Equation (5) to test for grouped heteroskedasticity. If managers do impact the variance

of production, then error variance should differ by manager. The test assumes a null of equal

variance of errors across all managers in a plant, so rejecting the null provides evidence that

changes in the variance of production at a plant coincides with managerial switches.

Figure 6 plots the distribution of p-values corresponding to the plant-specific heteroskedas-

ticity tests. The high over-representation of small p-values suggest that managers do have a

differential effect on variance in production. More precisely, in about 50% (60%) of the estimates

we reject the equal variance hypothesis at a 5% (10%) significance level.

Figure 6. Tests for Manager-Specific Heteroskedasticity

(a) All plants (b) Plants with retiring managers

Notes: This figure presents the results of the grouped heteroskedasticity test performed for each plant. The y-axis tracks the

cumulative distribution of the Chi-squared statistic p-value. The vertical lines represent conventional cutoffs for statistical

significance. The sample in panel (a) comprises 56 plants with at least two managers. The sample in panel (b) is a

subsample comprised of 23 of these 56 plants, each of which had a retiring manager. The sample period ranges from 1991

to 2005.

Figure 7 presents the distribution of the manager-specific standard deviation of residuals in

productivity. We find that the standard deviation of the residual of the manager at the 75th

percentile of this distribution is almost twice that of the manager at the 25th percentile. The

distributions when using all plants, or plants with retiring managers, are very similar. Using the

two-sample Kolmogorov-Smirnov test, we can not reject the null of equal distribution (p-value

0.177).
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Figure 7. Distribution of Standard Deviation of Production Residuals

(a) All plants (b) Plants with retiring managers

Notes: This figure presents the distribution of the manager-specific standard deviation of residuals in productivity. The

sample in panel (a) comprises 56 plants with at least two managers. The sample in panel (b) is a subsample comprised of

23 of these 56 plants, each of which had a retiring manager. The sample period ranges from 1991 to 2005.

5 Concluding Remarks

Cachon et al. (2020) emphasize the difficulties in establishing how leadership may impact

operational performance. In our work, we have taken a first step towards highlighting the

impact of facility-level leadership on a key operational metric, productivity.

We find that individual plant managers are a key determinant of auto assembly plant

productivity. When managers have more experience with the models that are in production, new

model introductions hurt productivity less. We also see evidence that managers’ plant-specific

tenure has a positive impact on productivity. Using high-frequency time-series data for each

plant, we find that a manager’s identity is predictive of changes in both the mean and variance

of weekly production. This finding persists when the analysis is restricted to a subsample of

plants with retirements, which provide an exogenous reason for managerial switches.

Our results, combined with the order-of-magnitude lower salaries of mid-level managers,

suggest that firms should place much more emphasis on attracting talented mid-level managers

to head up their plants or service shop floors. The econometric approach we use, a combination

of panel-data techniques, structural-break tests, and machine-learning methodologies, can also

be used to study how facility managers influence quality, safety, environmental footprint or

other operational metrics. Such work could influence manager training, or guide data-driven

methods to evaluate managers. The main limitation to date is data availability, as information

on non-executive managers is rarely publicly available.

Aside from deserving examination in its own right, managerial influence, if not accounted

for, can cause bias in many contexts of interest to researchers in operations. As real-time

tracking of individual managers becomes more common – as is the case in retail and banking –

including this heretofore omitted variable can potentially become standard practice.

Future research should further examine the channels through which facility managers exert
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influence. While managerial experience in terms of total units overseen of the vehicles currently

in production is important, with the availability of more data, more nuanced analyses could

examine other facets of experience, such as the effect of varying levels of experience with multiple

continuing models. Also, aside from how managers use operational levers, how they incentivize,

inspire, and connect with their workforce may matter, to varying degrees. Our interviews

with plant managers suggest that understanding workers’ psychology is important. One plant

manager noted that a disgruntled worker may exhibit ‘malicious obedience’ – by untraceably

seeding future defects. Several noted that communication is critical. An auto plant manager

often manages over 1,000 employees, and establishing direct lines of communication was viewed

as key to mitigating the effects of unwelcome news. Given substantial unexplained variation

in productivity and robust evidence that productivity is crucial to firm survival (Syverson

2011), such work is needed. New theory should incorporate managerial influence into standard

operations management models for managing production or service facilities.
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A Online Appendix

A.1 Summary Statistics and Variation in Productivity – Full Sample

Table A.1. Plant-Specific Variable Definitions and Descriptive Statistics

Variable Description Sourcea Mean SD
Hours-per-Vehicle Total working hours divided by total number

of vehicles produced
HR 28.41 9.989

Production Total number of vehicles produced WA 4139 2110
NewModel Indicator for at least one new model intro-

duced
WA 0.160 0.366

PlantModelExperience Total number of vehicles produced in the
past three years of the same models as those
currently in production

WA 100.8 98.69

Flexibility Average number of platforms produced per
production line

HR 1.063 0.335

Variety Sum of the number of body styles and chassis
configurations produced

HR 7.013 9.459

Outsourcing Average of all task-specific outsourcing dum-
mies

HR 0.204 0.139

Scale Production capacity (in 10,000s) HR 21.52 6.986
Size Plant’s square footage (in 10,000s) HR 274.2 85.29
TechnologyLevel Production capacity divided by plant’s square

footage
HR 0.085 0.034

SegmentTruck Indicator for large truck manufactured HR 0.022 0.148
SegmentLarge Indicator for large/luxury car manufactured HR 0.136 0.343
SegmentMidsize Indicator for mid size car manufactured HR 0.232 0.422
SegmentPickup Indicator for pickup manufactured HR 0.299 0.458
SegmentSmall Indicator for small car manufactured HR 0.118 0.323
SegmentSUV Indicator for suv/crossover manufactured HR 0.291 0.455
SegmentVan Indicator for van manufactured HR 0.121 0.326
Wind Fraction of days with wind speed above 30

miles per hour
NOAA 0.041 0.027

Heat Fraction of days with temperature below 15
degrees Fahrenheit

NOAA 0.067 0.065

Cold Fraction of days with temperature above 90
degrees Fahrenheit

NOAA 0.048 0.043

Precipitation Fraction of days with non-zero precipitation NOAA 0.329 0.064

Notes: With the exception of the production variable that is observed at a weekly level, the unit of observation for
all other variables is plant-year. Descriptive statistics are computed using the full sample across 66 plants. Each of
the data sources above is publicly available.
aHR stands for Harbour Reports; WA stands for Ward’s Automotive; and NOAA stands for National Oceanic and
Atmospheric Administration.
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Table A.2. Manager-Specific Variable Definitions and Descriptive Statistics

Variable Description Mean SD

TimeSinceSwitch Number of years since the last manager switch 3.431 2.358

ManagerModelExperience Number of vehicles produced of the same models

as those currently in production, in plants that

the plant manager led in the past three years (in

10,000s)

24.50 27.39

Female Indicator for female manager 0.078 0.270

Retired Indicator for whether a manager retired in our

sample period

0.200 0.402

UndergraduateDegree Indicators for Undergraduate Degrees

Business 0.191 0.395

Industrial Engineering 0.139 0.348

Other 0.313 0.466

None 0.357 0.481

GraduateDegree Indicators for Graduate Degrees

Business 0.217 0.414

Industrial Engineering 0.078 0.270

Other 0.061 0.240

None 0.643 0.481

JapaneseExperience Indicator for prior Japanese experience 0.191 0.395

Notes: Our manager data is from a variety of online sources including Linkedin, LexisNexis, and other sources like

local newspapers that cover changes to a plant’s management, supplemented with discussions with auto industry

personnel and industry experts. Descriptive statistics are computed using the full sample for a total of 115 managers

across 66 plants.

31



T
ab

le
A

.3
.

C
or

re
la

ti
on

M
at

ri
x

NewModel

PlantModel

Experience

Flexibility

Variety

Outsourcing

Technology

Level

Segment

Truck

Segment

Large

Segment

Midsize

Segment

Pickup

Segment

Small

Segment

SUV

Segment

Van

Wind

Heat

Cold

Rain

Manager

Model

Experience
TimeSince

Switch

N
ew

M
o
d

el
1
.0

0
0

P
la

n
t

M
o
d

el
E

x
p

er
ie

n
ce

-0
.1

5
2

1
.0

0
0

F
le

x
ib

il
it

y
-0

.0
0
6

-0
.1

1
3

1
.0

0
0

V
a
ri

et
y

-0
.0

9
1

-0
.0

0
4

0
.0

9
8

1
.0

0
0

O
u

ts
o
u

rc
in

g
-0

.0
0
4

0
.2

9
8

0
.0

2
4

0
.0

4
9

1
.0

0
0

T
ec

h
n

o
lo

g
y

L
ev

el
-0

.0
1
9

0
.3

6
7

0
.0

3
4

-0
.0

8
6

0
.1

2
7

1
.0

0
0

S
eg

m
en

t
T

ru
ck

-0
.0

4
0

-0
.0

7
1

-0
.0

2
2

0
.0

3
2

-0
.0

4
4

-0
.1

4
7

1
.0

0
0

S
eg

m
en

t
L

a
rg

e
0
.1

5
0

0
.0

5
4

0
.1

0
8

-0
.1

1
4

-0
.0

9
1

0
.1

6
6

-0
.0

3
3

1
.0

0
0

S
eg

m
en

t
M

id
si

ze
0
.0

2
0

0
.0

5
1

-0
.0

1
6

-0
.3

0
8

-0
.0

2
0

0
.4

0
4

-0
.0

5
7

0
.0

2
6

1
.0

0
0

S
eg

m
en

t
P

ic
k
u

p
-0

.1
0
5

0
.1

1
5

0
.0

5
8

0
.5

4
7

0
.1

2
8

-0
.1

5
5

0
.1

4
3

-0
.2

3
0

-0
.3

9
8

1
.0

0
0

S
eg

m
en

t
S

m
a
ll

0
.0

1
1

0
.0

6
7

-0
.1

0
7

-0
.0

7
3

0
.1

1
2

0
.2

2
4

-0
.0

2
2

-0
.0

9
1

-0
.1

5
8

-0
.1

5
7

1
.0

0
0

S
eg

m
en

t
S

U
V

0
.1

2
6

-0
.1

2
1

0
.1

6
9

0
.0

2
6

0
.0

3
6

-0
.1

3
7

-0
.0

6
4

-0
.1

3
6

-0
.3

6
1

-0
.0

9
3

0
.0

4
0

1
.0

0
0

S
eg

m
en

t
V

a
n

-0
.0

2
4

-0
.1

2
1

-0
.1

2
5

-0
.0

8
6

-0
.0

1
6

-0
.1

2
2

-0
.0

2
9

-0
.1

1
9

-0
.2

0
7

-0
.2

0
5

-0
.0

8
2

-0
.1

9
3

1
.0

0
0

W
in

d
0
.1

1
8

-0
.1

8
0

-0
.0

7
2

-0
.1

4
4

0
.0

3
8

-0
.2

3
5

0
.0

9
6

-0
.0

4
6

0
.0

0
2

-0
.0

4
5

-0
.0

5
3

0
.1

9
6

-0
.1

3
9

1
.0

0
0

H
ea

t
0
.0

2
5

-0
.1

0
2

-0
.0

1
0

-0
.0

4
0

-0
.0

3
1

-0
.2

1
1

0
.0

2
3

-0
.1

5
0

-0
.0

0
7

-0
.0

0
2

-0
.0

9
3

0
.1

9
8

-0
.0

1
2

0
.3

1
2

1
.0

0
0

C
o
ld

0
.0

4
9

0
.0

3
3

-0
.0

0
8

0
.0

1
9

-0
.0

1
0

0
.1

2
6

-0
.0

4
6

0
.1

4
5

0
.0

5
8

0
.0

2
1

0
.0

6
0

-0
.1

2
0

-0
.1

3
6

-0
.1

1
6

-0
.4

9
2

1
.0

0
0

R
a
in

-0
.0

0
2

0
.1

1
8

-0
.0

8
9

0
.0

4
5

0
.0

1
7

0
.2

7
5

0
.0

1
0

0
.1

9
5

-0
.0

7
8

-0
.0

1
4

0
.1

7
8

-0
.0

8
5

0
.0

6
7

-0
.2

7
8

-0
.7

4
9

0
.3

2
5

1
.0

0
0

M
a
n

a
g
er

M
o
d

el
E

x
p

er
ie

n
ce

-0
.1

3
0

0
.4

0
7

-0
.0

0
2

0
.0

8
0

0
.1

2
1

0
.1

1
7

0
.0

0
0

-0
.1

1
7

-0
.0

5
8

0
.0

5
5

0
.0

2
2

0
.1

3
3

-0
.1

0
3

-0
.0

7
6

0
.0

0
4

0
.0

1
9

0
.0

3
0

1
.0

0
0

T
im

e
S

in
ce

S
w

it
ch

0
.0

1
1

-0
.1

0
3

0
.0

3
6

-0
.0

1
5

-0
.0

8
7

-0
.0

5
4

0
.1

5
6

-0
.1

0
7

0
.0

4
6

-0
.0

6
5

-0
.0

4
7

0
.0

7
7

-0
.0

3
2

0
.0

6
6

-0
.0

5
2

-0
.0

0
2

0
.0

1
1

0
.5

4
8

1
.0

0
0

N
o
te
s:

C
o
rr

el
a
ti

o
n

co
effi

ci
en

ts
fo

r
a
ll

p
o
ss

ib
le

co
m

b
in

a
ti

o
n

s
o
f

v
a
ri

a
b

le
s

u
se

d
to

es
ti

m
a
te

o
u

r
m

a
in

eq
u

a
ti

o
n

(3
).

T
h

es
e

st
a
ti

st
ic

s
a
re

co
m

p
u

te
d

u
si

n
g

th
e
co
n
n
ec
te
d

sa
m

p
le

fo
r

a
to

ta
l

o
f

8
0

m
a
n

a
g
er

s
a
cr

o
ss

4
0

p
la

n
ts

.

32



T
ab

le
A

.4
.

M
an

ag
er

ia
l

In
fl

u
en

ce
on

P
ro

d
u

ct
iv

it
y

F
u
ll

sa
m

p
le

h
p
v

in
le

v
el

s
N

o
T
ec
h
n
o
lo
gy

L
ev
el

S
ca

le
a
s

co
n
tr

o
l

P
re

-s
w

it
ch

d
u

m
m

y
N

o
w

ea
th

er
v
a
ri

a
b

le
s

1
a

1
b

2
a

2
b

3
a

3
b

4
a

4
b

5
a

5
b

6
a

6
b

N
ew

M
od

el
0
.1

4
0
∗∗
∗

0
.1

5
3
∗∗
∗

6
.4

2
6
∗∗
∗

6
.9

7
6
∗∗
∗

0
.1

4
4
∗∗
∗

0
.1

5
4
∗∗
∗

5
.2

1
4
∗∗
∗

5
.9

2
4
∗∗
∗

0
.1

7
5
∗∗
∗

0
.1

9
8
∗∗
∗

0
.1

7
5
∗∗
∗

0
.1

9
5
∗∗
∗

(0
.0

3
3
)

(0
.0

3
9
)

(1
.4

0
0
)

(1
.7

8
1
)

(0
.0

3
4
)

(0
.0

3
5
)

(1
.3

0
9
)

(1
.5

8
5
)

(0
.0

3
6
)

(0
.0

4
3
)

(0
.0

3
6
)

(0
.0

4
5
)

P
la
n
tM

od
el
E
xp
er
ie
n
ce

-0
.0

0
0

-0
.0

0
1

-0
.0

0
7

-0
.0

1
4

-0
.0

0
0

-0
.0

0
0

-0
.0

0
9

-0
.0

0
8

-0
.0

0
0

-0
.0

0
0

-0
.0

0
0
∗

-0
.0

0
0

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
7
)

(0
.0

1
6
)

(0
.0

0
0
)

(0
.0

0
1
)

(0
.0

0
6
)

(0
.0

1
7
)

(0
.0

0
0
)

(0
.0

0
1
)

(0
.0

0
0
)

(0
.0

0
1
)

N
ew

M
od

el
×
P
la
n
tM

od
el
E
xp
er
ie
n
ce

-0
.0

0
0

-0
.0

0
0

-0
.0

1
6
∗

-0
.0

1
8

-0
.0

0
0

-0
.0

0
0

-0
.0

0
6

-0
.0

1
2

-0
.0

0
0

-0
.0

0
0

-0
.0

0
0

-0
.0

0
0

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
9
)

(0
.0

1
2
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
8
)

(0
.0

1
1
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

(0
.0

0
0
)

T
ec
h
n
o
lo
gy

L
ev
el

-1
.7

5
6
∗∗

-0
.9

2
2
∗

-8
4
.0

1
0
∗∗

-2
9
.3

7
4

-2
.6

0
6
∗∗
∗

-1
.3

3
1
∗

-2
.4

8
7
∗∗
∗

-1
.1

7
8
∗

(0
.6

7
1
)

(0
.4

6
2
)

(3
1
.0

1
1
)

(2
0
.1

8
7
)

(0
.8

1
9
)

(0
.7

6
0
)

(0
.7

7
8
)

(0
.6

7
8
)

M
a
n
a
ge
rM

od
el
E
xp
er
ie
n
ce

0
.0

0
0

0
.0

0
1

0
.0

0
5

0
.0

1
2

-0
.0

0
0

-0
.0

0
0

-0
.0

0
6

-0
.0

1
2

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

(0
.0

0
0
)

(0
.0

0
1
)

(0
.0

1
2
)

(0
.0

2
0
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

1
2
)

(0
.0

2
3
)

(0
.0

0
0
)

(0
.0

0
1
)

(0
.0

0
0
)

(0
.0

0
1
)

N
ew

M
od

el
×
M
a
n
a
ge
rM

od
el
E
xp
er
ie
n
ce

-0
.0

0
3
∗∗
∗

-0
.0

0
2
∗∗

-0
.0

6
9
∗∗
∗

-0
.0

6
0
∗∗

-0
.0

0
2
∗∗
∗

-0
.0

0
2
∗∗

-0
.0

5
9
∗∗
∗

-0
.0

5
2
∗∗

-0
.0

0
3
∗∗
∗

-0
.0

0
2
∗∗

-0
.0

0
2
∗∗
∗

-0
.0

0
2
∗∗

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

1
8
)

(0
.0

2
4
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

1
7
)

(0
.0

2
3
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

0
1
)

(0
.0

0
1
)

T
im

eS
in
ce
S
w
it
ch

-0
.0

0
1

-0
.0

1
2

0
.0

0
5

-0
.4

8
8
∗

0
.0

0
1

-0
.0

1
0

0
.0

9
1

-0
.2

0
0

-0
.0

0
3

-0
.0

1
9
∗

-0
.0

0
0

-0
.0

1
6
∗∗

(0
.0

0
4
)

(0
.0

0
9
)

(0
.1

2
0
)

(0
.2

5
2
)

(0
.0

0
6
)

(0
.0

0
9
)

(0
.1

2
4
)

(0
.2

8
7
)

(0
.0

0
5
)

(0
.0

0
9
)

(0
.0

0
5
)

(0
.0

0
8
)

S
ca
le

-0
.3

9
2
∗∗
∗

-0
.1

6
3

(0
.1

1
6
)

(0
.1

1
2
)

P
re
S
w
it
ch

0
.0

3
1
∗

0
.0

1
7

(0
.0

1
6
)

(0
.0

2
5
)

R
-s

q
u

a
re

d
0
.8

9
7

0
.9

3
7

0
.8

2
2

0
.9

1
1

0
.8

4
8

0
.9

1
2

0
.8

2
6

0
.9

0
2

0
.8

5
9

0
.9

2
5

0
.8

5
6

0
.9

2
3

A
d

ju
st

ed
R

-s
q
u

a
re

d
0
.8

5
1

0
.8

8
3

0
.7

4
0

0
.8

2
2

0
.7

8
5

0
.8

3
9

0
.7

5
0

0
.8

1
4

0
.7

9
2

0
.8

4
9

0
.7

9
2

0
.8

4
9

W
a
ld

st
a
t
p

-v
a
lu

e
(µ

m
=

0
,∀
m

)
-

0
.0

0
0

-
0
.0

0
0

-
0
.0

0
0

-
0
.0

0
0

-
0
.0

0
0

-
0
.0

0
0

O
b

se
rv

a
ti

o
n

s
5
4
0

5
4
0

3
7
4

3
7
4

4
2
9

4
2
9

4
0
1

4
0
1

3
7
4

3
7
4

3
7
4

3
7
4

P
la

n
t

F
E

s
X

X
X

X
X

X
X

X
X

X
X

X

C
o
m

p
a
n
y
-Y

ea
r

F
E

s
X

X
X

X
X

X
X

X
X

X
X

X

P
la

n
t-

S
p

ec
ifi

c
C

o
n
tr

o
ls

X
X

X
X

X
X

X
X

X
X

X
X

M
a
n

a
g
er

F
E

s
X

X
X

X
X

X

N
o
te
s:

T
h

is
ta

b
le

p
re

se
n
ts

es
ti

m
a
te

s
o
f

eq
u

a
ti

o
n

(3
),

a
s

re
p

o
rt

ed
in

co
lu

m
n
s

3
a

a
n

d
3
b

o
f

T
a
b

le
5
,

w
it

h
sl

ig
h
tl

y
d

iff
er

en
t

sp
ec

ifi
ca

ti
o
n

a
s

in
d
ic

a
te

d
in

th
e

co
lu

m
n

s
h

ea
d

er
.

W
it

h
th

e

ex
ce

p
ti

o
n

o
f

th
e

fi
rs

t
tw

o
co

lu
m

n
s,

th
a
t

re
p

o
rt

s
es

ti
m

a
te

s
b

a
se

d
o
n

th
e
fu
ll

sa
m

p
le

,
a
ll

o
th

er
sp

ec
ifi

ca
ti

o
n

s
a
re

b
a
se

d
o
n

th
e
co
n
n
ec
te
d

sa
m

p
le

.
A

ll
in

cl
u

d
ed

m
a
n

a
g
er

s
h

a
v
e

b
ee

n
o
b

se
rv

ed

fo
r

a
t

le
a
st

3
y
ea

rs
.

O
th

er
p

la
n
t-

sp
ec

ifi
c

co
n
tr

o
ls

su
ch

a
s

v
a
ri

et
y,

ex
te

n
t

o
f

o
u

ts
o
u

rc
in

g
,

fl
ex

ib
il
it

y,
a
n

d
v
eh

ic
le

-s
eg

m
en

t
d

u
m

m
ie

s
a
re

in
cl

u
d

ed
b

u
t

n
o
t

re
p

o
rt

ed
.

W
it

h
th

e
ex

ce
p

ti
o
n

o
f

th
e

la
st

tw
o

co
lu

m
n

s,
w

ea
th

er
co

n
tr

o
ls

a
re

a
ls

o
in

cl
u

d
ed

b
u

t
n

o
t

re
p

o
rt

ed
.

S
ta

n
d
a
rd

er
ro

rs
,

sh
o
w

n
in

p
a
re

n
th

es
es

,
a
re

cl
u

st
er

ed
a
t

th
e

p
la

n
t

le
v
el

.
S

ta
ti

st
ic

a
l

si
g
n

ifi
ca

n
ce

is
d

en
o
te

d
b
y

*

p
<

0
.1

0
,

*
*
p
<

0
.0

5
,

*
*
*
p
<

0
.0

1
.

33



Table A.5. Persistence of Managerial Influence on Productivity

Real Sample Falsification Test

Manager’s Residual 1st Plant 0.318∗ -0.251

(0.169) (0.207)

Adjusted R-squared 0.083 0.021

Notes: Our manager data is from a variety of online sources including Linkedin,

LexisNexis, and other sources like local newspapers that cover changes to

a plant’s management, supplemented with discussions with auto industry

personnel and industry experts. For the first column, the dependent variable

is the manager’s residual on the second plant. For the second column, the

dependent variable is the average residual on the manager’s second plant 2

years before the manager arrival on that plant. Standard errors are shown

in parentheses. Statistical significance is denoted by * p < 0.10, ** p < 0.05,

*** p < 0.01.
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A.2 Time-Invariant Characteristics and Managerial Influence

Estimates of Equation (3) provides insight into the importance of individual plant managers

and the variation in managerial influence across managers. However, aside from the effects

of managerial experience and auto industry tenure, it provides little insight into what makes a

successful manager. The estimates of the manager fixed effects (µ̂m) capture the collective effect

of time-invariant observed and unobserved manager characteristics. To uncover the underlying

manager characteristics that influence these manager-specific effects, we follow Nevo (2001) and

apply the minimum-distance procedure proposed by Chamberlain (1982).

Let the matrix of observed (i.e., gender, education indicators) and unobserved

manager-specific characteristics be denoted by Wm and ξm, respectively. We assume that the

contribution of each of these factors in determining managerial influence on productivity takes

a linear index form

µm = Wmα+ ξm. (7)

For this “second stage” regression, Chamberlain (1982) shows that estimates of α, the influence

of observed manager characteristics (Wm) on managerial influence (µm), can be obtained as

α̂ = (Z′V−1µ̂mZ)−1Z′V−1µ̂ µ̂. (8)

where the Mx1 vector, µ̂, is the estimate of the manager fixed effects from Equation (3), and the

MxM matrix Vµ̂ is the corresponding variance-covariance matrix of those estimates. Standard

errors for α̂ are recovered through a bootstrap procedure of the asymptotic distribution of the

manager fixed effects.

The results of this procedure are in Table A.6. Interestingly, we find that no observed

manager characteristics are statistically significant in explaining variation in managerial

influence. Thus, we find that observable characteristics are not particularly useful in explaining

the success of managers.
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Table A.6. Productivity and Time-Invariant Manager Characteristics

Connected Sample Full Sample

Female -0.043 -0.065

(0.197) (0.157)

Japanese Experience -0.047 -0.132

(0.221) (0.134)

Retired 0.035 0.053

(0.156) (0.120)

UndergraduateDegree

Business -0.118 -0.043

(0.160) (0.128)

Industrial Engineering -0.274 -0.243

(0.188) (0.158)

Other -0.036 0.012

(0.160) (0.125)

GraduateDegree

Business -0.026 0.031

(0.149) (0.124)

Industrial Engineering -0.117 -0.087

(0.208) (0.173)

Other -0.014 -0.051

(0.375) (0.230)

Observations 58 75

Adjusted R-squared 0.012 0.039

Controls included in First-Stage

Plant FEs X X

Company-Year FEs X X

Plant-Specific Controls X X

Manager FEs X X

Notes: This table shows estimates of equation (7) using the manager fixed effects

estimated using equation (3). The first column shows estimates using connected

sample. The second column shows estimates using the full sample. Bootstrap

standard errors, based on 200 bootstrap repetitions, are reported in parentheses.

Statistical significance is denoted by * p < 0.10, ** p < 0.05, *** p < 0.01.
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