
Higher Moments in the Fundamental Specification
of Electricity Forward Prices

Angelica Gianfredaa,d Giacomo Scandolob Derek W. Bunnc,d

aDEMB, University of Modena and Reggio Emilia, Modena, Italy

bDISEI, University of Florence, Italy

cMSO, London Business School, UK

dEnergy Markets Group, London Business School, UK

August 27, 2022

Abstract

An extended specification for estimating the risk premia necessary for the forward

pricing of wholesale electricity is developed in order to respond to the increasing need

for more precise risk management of hedging positions in practice. Using Taylor expan-

sions, we provide new specifications for the electricity forward premium including its

dependency on all four moments of the expected wholesale price density as well as the

higher moments of the demand density including skewness and kurtosis. Overall we

argue that previous models have been underspecified and that the extended formulation

proposed in this analysis is robust and worthwhile.

Keywords: Electricity Prices, Electricity Demand, Monte Carlo Simulations, Forward

Risk Premium, Student-t Distribution, Skew-t Distribution, Kurtosis.

1 Introduction

The forward curve for wholesale electricity is conventionally analysed in terms of the

underlying expectations for future spot prices with adjustments for forward risk premia.
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Whilst the means of producing electricity can be stored (fuels, water, batteries, etc), elec-

tricity itself is essentially an instantaneous nonstorable commodity that is produced to

meet immediate demand. As such, there is no physical cost-of-carry arbitrage between

spot and forward prices. Rather, analysts following the influential work of Bessembinder

and Lemmon (2002), view the forward prices as the sum of expected spot prices and

forward premia, in which the premia reflect the balance of risk aversion in the market

for hedges. Thus, Bessembinder and Lemmon (2002) (henceforth, BL) formulated a gen-

eral economic equilibrium for risk averse electricity producers and retailers’ trading in

spot and forward markets. Their model resulted in the forward risk premium being ex-

pressed in terms of the first three moments of the expected spot price densities (using a

Taylor approximation) and demand densities (via simulation). This switched the forward

price analysis to that of the determinants of the risk premia and a large body of work has

consequently followed on that theme.

Thus, electricity forward risk premia have been extensively investigated in many in-

ternational markets, sometimes with considerations of exogenous and fundamental fac-

tors, and sometimes with operational and technological constraints: eg Longstaff and

Wang (2004), Karakatsani and Bunn (2005), Diko et al. (2006), Hadsell and Shawky (2007),

Wilkens and Wimschulte, 2007, Álvaro Cartea and Villaplana (2008), Douglas and Popova

(2008), Ronn and Wimschulte (2009), Redl et al. (2009), Botterud et al. (2010), Furió and

Meneu (2010), Viehmann (2011), Lucia and Torró (2011), Haugom and Ullrich (2012),

Huisman and Kilic (2012), Redl and Bunn (2013), Weron and Zator (2014), Fleten et al.

(2015), Xiao et al. (2015), van Koten (2020), van Koten (2021), Peura and Bunn (2021),

Koolen et al. (2021), Huisman et al. (2021) and Jacobs et al. (2022) among many others.

However, the empirical evidence that has emerged with respect to the BL model has been

mixed.

One cause of the contradictory implications for how the BL premia depend upon the

price and demand densities could be an underspecification in the model. That motivates

consideration of a more enhanced specification in this research. With this objective, we

test the goodness of the Taylor approximation and confirm that an extension to include

the fourth moment is worthwhile. We also derive a more explicit expression for the pre-
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mium in terms of the anticipated demand distribution and investigate the dependence

of the premium on the third and fourth demand moments by simulation. As part of

this, we relax the normality assumption for both the price and demand densities to con-

sider student-t and skew-t distributions. This allows us to investigate more properly the

dependence of the premia on the anticipated price and demand skewness and kurtosis.

Whilst this work is about the usefulness of higher moments in determining electricity

forward risk premia, it can be viewed alongside the increasing interest in using higher

moments (including kurtosis) more generally in financial engineering models for asset

pricing (eg Dittmar, 2002), portfolio analysis (Harvey et al., 2010) and value-at-risk (Bali

et al., 2008).

The structure of the paper is organized as follows: Section 2 presents the original BL

model extended to include price kurtosis and the more explicit formulation relating to

demand. Section 3 provides the details on the simulation setting, together with parame-

ters used, and simulation process. The results are presented in Section 4, whereas Section

5 concludes.

2 An Extended Specification of the BL Model

The BL model considers the electricity trading to be organized through a day-ahead (or

spot) market and a forward market, within which three types of agents act. These are

Producers, of whom there are NP, and formally represented by Pi with i = 1,2, . . . , NP, who

produce power and sell it (either spot or forward) to retailers; Retailers, indicated with Rj

with j = 1,2, . . . , NR, who buy power from producers and resell it to final consumers; and

Consumers who cannot access the spot/forward market and can only buy electricity at a

fixed price from retailers.

In this BL setting, the following prices are considered: (i) the spot or day-ahead price, PW ,

at which (unit) power is traded on the spot market at time T; (ii) the forward price, PF, at

which the contract is agreed upon at time 0 for delivery of (unit) power at the maturity

T; and finally, (iii) the retail price, PR, at which (unit) power is sold to consumers at time

T; and it is reasonably higher than the spot price.
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Each producer Pi at time 0 sells the quantity QF
Pi at a forward price PF in the forward

market with delivery T. Whereas, at the maturity T, the producer generates the quan-

tity QPi > 0, which can be seen as a combination of two parts: the first one being QF
Pi,

delivered to honour the forward contracts, granting a revenue given by PF QF
Pi; and, the

second one being the residual QW
Pi = QPi −QF

Pi which is instead sold on the spot market,

with a revenue given by PW QW
Pi . Note that QF

Pi or QW
Pi may be negative, which means

that the producer buys |QF
Pi| or |QW

Pi | on the forward/spot market. However, the sum

QPi = QF
Pi + QW

Pi cannot be negative. At time T, producer i incurs into the total production

costs to generate the quantity QPi, that is TC(QPi). The (total production) cost function

is assumed to be the same for all producers, and defined as TC(Q) = C0 + aQc/c, with

a > 0 and c > 2 and where C0 are fixed costs. Marginal costs are increasing and convex in

production Q. The (ex-post) profit for producer i at time T is the same (concave) function

of (QF
Pi, QW

Pi) for all producers.

On the other hand, each retailer, Rj, at time 0 buys the quantity YF
Rj in the forward

market for delivery in T at the forward price PF, facing at time T the aggregated demand

Dj requested from all consumers, which is covered by the quantity bought at time 0 on

forward markets, YF
Rj (with an outflow at time T equal to PFYF

Rj) and the remaining part,

YW
Rj = Dj−YF

Rj, is bought on the spot market (on T, at a cost of PWYW
Rj ). Note that YF

Rj or YW
Rj

may be negative, but the sum (Dj) cannot be negative. In addition, at time T, retailer Rj

sells the total purchased quantity to consumers at the retail price PR, receiving a revenue

of PRDj. Hence, the (ex-post) profit at time T is a linear function of (YF
Rj,Y

W
Rj ), and again

is equal for all retailers. To summarize, at the initial time 0, the forward and retail prices

(PF and PR) are known together with the quantities traded forward by producers and

retailers, whereas, PW , QW
Pi , QPi, πPi, YW

Rj , Dj, πRj will become known only at the maturity

T.

The optimal choice is determined at the maturity, when spot prices and demand are

known. Then, to determine the optimal choice at the initial time 0, PW and D are unknown

and considered as random variables.

Each producer/retailer has the same mean-variance utility function for random prof-

its at time T to be maximized, where the common risk aversion coefficient is A > 0. The
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equilibrium forward price at time 0 is then determined by matching the total quantity

sold by producers with the total quantity purchased by retailers. Finally, the expression

of the forward premium FP = PF − µW , where µW = E [PW ], is obtained as

FP = ω · cov(PW , Pb+1
W − c PR Pb

W) (1)

where b = 1/(c− 1) and

ω =
ANP

(NP + NR) c ab .

Note that 0 < b 6 1 and ω > 0. Moreover, FP is finite provided that PW has a finite

moment of order b + 2, which is between 2 and 3. Equation (1) shows that the forward

premium FP depends on the distribution of the wholesale prices PW , in particular on its

moments.

Using a Taylor expansion around µW , BL derived the premium in terms of price mo-

ments. Indeed, from

FP = ω · cov(PW , Pb+1
W − cPR Pb

W) = ω ·E [(PW − µW) · (Pb+1
W − cPR Pb

W)]

we see that the premium can be written in the form FP = E [h(PW)] in terms of the

function

h(x) = (x− µW)(xb+1 − cPRxb). (2)

The function h is infinitely differentiable for x > 0, so we can consider Taylor expan-

sions of any order. In particular, since h(µW) = 0, the quartic Taylor approximation of h

around µ is1

h(x) ≈ β1(x− µW) + β2(x− µW)2 + β3(x− µW)3 + β4(x− µW)4 (3)

with βk = h(k)(µW)/k! for k = 1, . . . ,4, where h(k) denotes the k-th derivative of h.

Some algebra shows that β1 = µb
W(µW − cPR) and

1We can arrive at (3), just by taking the cubic Taylor approximation of a simpler function g(x) = (xb+1 −
cPRxb) and multiplying it by (x− µW).
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β2 = µb−1
W (b + 1)(µW − PR),

β3 = µb−2
W

b + 1
2

(µWb− PR(b− 1)) ,

β4 = µb−3
W

1− b2

6
(PR(b− 2)− µWb) .

According to (3), since E [PW − µW ] = 0, it is possible to write

FP = E [h(PW)] ≈ β2E [(PW − µW)2] + β3E [(PW − µW)3] + β4E [(PW − µW)4].

Denoting with σ2
W , ξW and κW the variance, skewness and kurtosis of wholesale prices

PW respectively, and recalling that ξW = σ−3
W E [(PW−µW)3] and κW = σ−4

W E [(PW−µW)4],

we can then write the approximation of the forward premium as

FP≈ ω · (β2σ2
W + β3σ3

WξW + β4σ4
WκW), (4)

where β2, β3 and β4 have been derived above.

Note that BL just consider the cubic Taylor expansion of h, thus obtaining the ap-

proximation of the forward premium up to the third moment, that is FP ≈ ω · (β2σ2
W +

β3σ3
WξW). Whereas, we expand their derivation by including the term with kurtosis, that

is ωβ4σ4
WκW (and we call it the extended approximation to distinguish from the BL one).

Let us now look at the sign of the βk coefficients. Given the obvious assumption that

expected wholesale prices are strictly positive (that is µW > 0), and recalling that 0 < b 6 1

(then b + 1 > 0), the following conclusions can be drawn. First, we see that β2 is negative

whenever PR > µW , which is reasonable given that the retail price contains also taxes and

levies in addition to the cost of energy. Second, β3 is always positive, since µWb > 0 and

PR(b− 1) 6 0. Finally, β4 is always negative if c > 2 since 1− b2 > 0 and PR(b− 2) < 0;

when c = 2, then b = 1 and β4 = 0.

As ω > 0, we can conclude that the forward premium FP is, ceteris paribus, decreasing
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in the standard deviation of wholesale prices and increasing in the skewness. These are,

respectively, hypotheses (H1) and (H2) as stated by BL. Thanks to our approximation, we

can add a new hypothesis (H2’), that is the forward premium is decreasing in the kurtosis of

prices when c > 2.

Looking now at the approximation in (4), it is worth emphasizing that its accuracy

can be an issue, since it has been derived by using the Taylor approximation (3) inside

an expectation. In other words, if p is some Taylor polynomial for the function h, from

h(x) ≈ p(x) around x = µ we have inferred that E [h(X)] ≈ E [p(X)] for a given random

variable X. This is obviously not always the case2, even when both expectations are finite.

Therefore, we should be extremely careful when using (1). To emphasize this point,

we have tested numerically the goodness of this approximation, when using the reduced

approximation in BL (that is neglecting the kurtosis term) or the extended one that we

propose. Based on these considerations and accounting for the empirical evidence on

time-varying shapes of electricity prices provided by Gianfreda and Bunn (2018)3, we

also investigate the dependence of the risk premium on price moments under different

distributional assumptions for wholesale prices PW . And we additionally investigate the

sensitivity to different parameter choices via simulations, hence providing new compu-

tational evidence.

Moving forward and considering the electricity demand, BL derive the equilibrium

relation between demand (D) and wholesale prices (PW) simply as

PW = a
(

D
NP

)c−1

. (5)

Whereas, and as an additional contribution, we derive a more explicit expression for

2For instance, consider h(x) = ex and the corresponding quartic Taylor polynomial (around x = 0):
p4(x) = 1 + x + x2/2 + x3/6 + x4/24. If X ∼ N(0,1) we can compute E [eX ] = e1/2 ≈ 1.649 and E [p4(X)] =
13/8 = 1.625 and we see that the quartic Taylor approximation holds reasonably well also for the expectations.
However, if X has a Laplace distribution with parameter λ ∈ (0,1), that is X = λ(Y1 −Y2) where Y1 and Y2 are
independent and exponentially distributed with mean 1, then we can compute E [eX ] = (1− λ2)−1. Next, we
have E [X] = E [X3] = 0, E [X2] = 2λ2 and E [X4] = 24λ4, so that E [p4(X)] = 1+ λ2 + λ4. We see that E [p4(X)]
can be far away from E [eX ] if λ is close to 1. For instance, if λ = 0.9, then the former expectation is 5.26, while
the latter one is just 2.47.

3They show from a detailed analysis of German prices that these prices, under a wide range of market
conditions, can be characterized by two-, three- and four-moment distributions.
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the forward premium in terms of demand. Precisely, we substitute the expression (5) into

equation (1) obtaining, after some algebra, the forward premium as

FP = ω′ · cov(Dc−1, Dc −ω′′D), (6)

where

ω′ = ω · ab+2

N2c−1
P

and ω′′ =
c PR Nc−1

P
a

.

Note that ω′ and ω′′ are both positive. Moreover, the covariance in (6) is finite pro-

vided that the demand D has a finite moment of order 2c− 1, where 2c− 1 > 3.

Expression (6) allows us to investigate the dependence of the forward premium di-

rectly on the distribution of demand or on its moments. In this regard, BL propose two

additional hypotheses: (H3) FP is convex in σD, that is the premium is first decreasing in

the demand standard deviation, and then it is increasing; (H4) FP is increasing in µD, that

is the premium is increasing with the mean of demand. No hypotheses about the depen-

dence of the premium on the demand skewness (ξD) and kurtosis (κD) were formulated

by BL. Therefore, we aim at exploring this issue by using expression (6) in Monte Carlo

simulations.

Note that we do not attempt to find an approximation for the forward premium in

terms of the four moments of demand, as we did in (4) when studying the dependence

on the moments of wholesale prices. And the reason for this choice is explained in what

follows. Rewriting (6) as

FP = ω′ ·
(

E [D2c−1 −ω′′Dc]−E [Dc] ·E [Dc −ω′′D]
)

, (7)

shows that there is the need of approximating three expectations of non-linear func-

tions of demand D. Trying to approximate these functions by a quartic polynomial of

(D− µD) is certainly doomed to fail. Indeed, the function h in (2) is a sum of (fractional)

powers of x with degrees at most b + 2 6 3, so that a Taylor polynomial of degree 4 is

able to give a good approximation even for values of x moderately far from µW . On the
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contrary, in the function v(x) = x2c−1 − ω′′xc, appearing in the first expectation in (7),

there is a power with exponent (2c− 1), which is above 4 if c > 2.5. In this latter case, the

quartic Taylor polynomial p4 gives an approximation of v which worsens quickly as we

depart from µD, thus making the statement E [v(D)] ≈ E [p4(D)] hard to justify. For this

reason, we do not pursue the route of Taylor approximations for (6). Instead, we study

the dependence on the distribution of D only by simulations.

3 Simulation Setting

In what follows we carefully consider the key variables and parameters, and then de-

scribe precisely the simulation process.

3.1 Simulation Parameters

Let us recall that in this system only generation costs are considered. No other costs for

transmission, distribution, taxes and levies are included; however, this assumption will

be relaxed in the determination of retail prices as discussed below. We set the parameters

values as follows:

• the number of producers and retailers is left unchanged with respect to the semi-

nal BL paper: NP = NR = 20; because even if these numbers approach infinity the

forward price is expected to converge to the expected spot prices;

• the production convex cost parameter c is left to vary in the range between 2 and 5,

that is c ∈ [2,5] as in BL. Let us recall that it incorporates issues related to extreme

high demand covered by inefficient peakload plants as well as limited capacity in

production or transmission;

• retail prices are assumed to be higher than expected wholesale prices to incentive

risk-averse retailers to enter the market; thus PR = λ ·E [PW ] with λ > 1, originally

set to 1.2 as in BL. However, for arguments analyzed in Appendix A, we have de-

cided to relax this assumption to include system costs and consequently consider

lower (net) margins for retailers with λ = 1.02,1.05;

9



• wholesale prices and demand are initially assumed to be normally distributed, then

other distributional assumptions are considered to include asymmetries and fat

tails.

Following Bessembinder and Lemmon (2002), the variable cost parameter is set as

a = 30(NP/100)c−1, and the risk relevance parameter is set as A = 0.8/c2.

3.2 Simulation Process

Once a distribution for wholesale prices PW or demand D has been selected and the pa-

rameters of the model have been set, we can compute the corresponding forward pre-

mium via simulation in a natural way following these steps:

1. produce N independent and identically distributed (iid) realizations of X = PW or

D, say Xi, with i = 1, . . . , N replicates;

2. compute the forward premium FP as a sample covariance, using (1) when X = PW

and (6) when X = D. More explicitly, in the former case we compute

F̂P = ω ·
(

1
N

N

∑
i=1

Xi(Xb+1
i − cPRXb

i )−
1
N

N

∑
i=1

Xi ·
1
N

N

∑
i=1

(Xb+1
i − cPRXb

i )

)
(8)

whereas in the latter case we compute

F̂P = ω′ ·
(

1
N

N

∑
i=1

Xc−1
i (Xc

i −ω′′Xi)−
1
N

N

∑
i=1

Xc−1
i · 1

N

N

∑
i=1

(Xc
i −ω′′Xi)

)
. (9)

In both cases, the numerical results are clearly prone to simulation variability. How-

ever, we find that using N = 105 gives sufficiently stable results across all our investiga-

tions. In order to further improve the quality, we increase the value of N to 106 or we

keep N = 105 and perform the computations for 100 batches of N iid realizations, and

then take the median of the 100 numerical results. In few cases, we increase the number

of batches to 400.

For all selected distributions, X (PW or D) can take negative values with positive prob-
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ability. Therefore, we discard all those values of X at step 1.4 Doing so, we actually com-

pute F̂P with less than N replicates for X. However, the fraction of discarded realizations

is less than 10% in all our investigations (and, in most cases, less than 1%).

In order to study the dependence of the premium FP on a particular moment of X

(PW or D), we fix a parametric class of distributions and, by changing the parameters in

a suitable way, we let that moment vary across a specified range, while keeping the other

moments constant. For each such choice of the parameters, we go through steps 1. and 2.

above, thus obtaining the corresponding value for the premium.

3.3 Selected Distributions

To uncover the characteristics of the premium, we consider the following parametric

classes of distributions of X (PW or D):

• Normal. This is a location-scale family of symmetric distributions with no shape

parameters. In particular, if X ∼ N(m, s2), then µX = m, σX = s, ξX = 0 and κX = 3.

By keeping m fixed while varying s, we can study the dependence of FP on σW

or σD. On the other hand, by keeping s fixed while varying m, we can study the

dependence of FP on µD. Simulations from N(m, s2) is straighforward in Matlab,

through randn.

• Student-T. This is a location-scale family of symmetric distributions with one shape

parameter: ν > 0 (degrees-of-freedom, dof ), controlling for the kurtosis. In particular,

if X ∼ T(m, s,ν), i.e. (X−m)/s ∼ T(0,1,ν), with ν > 4, then

µX = m σX = s ·
√

ν

ν− 2
ξX = 0 κX = 3 · ν− 2

ν− 4

By keeping m and ν fixed while varying s, we can again study the dependence

of FP on σW or σD. By keeping s and ν fixed while varying m, we can study the

dependence of FP on µD. Finally, by keeping s and m fixed while varying ν, we

can study the dependence of FP on κW and κD (note that as ν ranges in (4,+∞), κX

4In other words we consider the distributions left-truncated at 0, which is in line with van Koten (2020).
However, differently from him, we do not discard replicates outside the interval µ± 5σ.
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ranges in (3,+∞)). Simulations from this distribution are also straightforward in

Matlab, through the function trnd.

• Skew-T. This is a location-scale family of distributions with two additional param-

eters, that allow for both asymmetry and fat tails. It has been proposed and ex-

tensively discussed in Azzalini (2013) and nests the Student-T class as a particular

case. It turns out that if X ∼ ST(m, s,α,ν), i.e. X is Skew-T distributed with location

m ∈ R, scale s > 0, shape α ∈ R and degrees-of-freedom (dof) ν > 0, then the first

two moments µX and σX depend on all four parameters, while ξX and κX depend on

α and ν only. In particular, for all values of µX ∈R, σX > 0 and (ξX,κX) in a suitable

region in R2 it is possible to find (unique) values of the four parameters that yield

the chosen moments. Thanks to this fact, it is possible to keep three out of the four

moments fixed and vary the fourth moment in an admissible range. In this way,

we can study the dependence of FP separately on each moment. We will use the

Skew-T class to investigate the dependence on ξW , κW and ξD, but also to study the

dependence on lower moments (µ and σ) when the distribution is asymmetric. Sim-

ulations from this distribution are not directly provided in Matlab, but can be easily

implemented via a stochastic representation provided in Azzalini (2013). We refer

to Appendix B for further details about this distribution, in particular regarding its

moments and the simulation algorithm.

4 Results via Simulations

4.1 Testing the Accuracy of the Approximation for the Forward

Premium

Given that the first two hypotheses H1 and H2 in BL are based on the approximate ex-

pression for the forward premium provided in (4), and considering that no investigations

were performed so far to test the accuracy of that approximation, we aim at filling this

gap. Then, through simulation, we compute the ”exact” forward premium FP using eq.

(1) and compare it with the BL approximation (i.e using (4) without the kurtosis term) and
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with our extended one (i.e using (4) with the kurtosis term).

Table 1 shows the results for selected combinations of the mean µW and standard

deviation σW of wholesale prices, with the constant c determining from quadratic (c = 2)

to quintic (c = 5) cost functions. Retail prices are set as λ · µW with three choices for

λ (set to 1.02, 1.05, and also to 1.2 as in BL). Here, wholesale prices PW are assumed

to be normally distributed. Similar results are obtained using a Skew-T distribution for

PW , with kurtosis levels higher than 3, at least when the skewness is not too large (say,

between −1 and 1). Numerical results are available upon request.

We observe that the Taylor approximation works reasonably well when σW is small

and when c is low. However, the accuracy worsens when c and σW increase, with a

general underestimation of the premium (in absolute value). It is interesting to observe

that, as expected, the extended approximation works better than the BL approximation

especially when costs increase, consistently across all three λs. These results are robust

for mean prices set at 35 or 40 e/MWh. Additionally, since extreme prices can occur, we

inspect the case of µW = 100, as prices observed in recent years 2021 and 2022; with the

range of volatility enlarged consequently to include higher levels (20 and 30). Results in

Table 2 confirm previous conclusions about the goodness of the extended approximation,

consistently across all parameters.

Overall, these results suggest that the quartic Taylor approximation that we propose

can provide better estimations of electricity risk premia than the cubic one in BL, also

in extreme market conditions affecting mean and volatility prices. Therefore, particu-

lar attention should be paid in modelling premia by including all four moments of the

anticipated distribution of wholesale prices.

4.2 Testing the BL Hypotheses (H1) and (H2), and inspecting

Premia Dependence on Price Kurtosis (H2’)

In order to verify the validity of BL (H1) hypothesis, that the forward premium is

decreasing in the standard deviation of wholesale prices σW , we consider a nor-

mal distribution for prices PW with fixed mean µW = 100, and let the standard
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Table 1: Exact and Approximated Forward Premium for given µW , σW and c, with λ =
1.02,1.05,1.2. Prices PW are normally distributed. BL stands for the BL approximation,
whereas BGS stands for our approximation.

λ = 1.02 λ = 1.05 λ = 1.2
µW σW c Exact BL BGS Exact BL BGS Exact BL BGS
35 3 2 -0.105 -0.105 -0.105 -0.262 -0.262 -0.262 -1.051 -1.050 -1.050
35 5 2 -0.289 -0.290 -0.290 -0.727 -0.727 -0.727 -2.919 -2.915 -2.915
35 10 2 -1.044 -1.072 -1.072 -2.792 -2.822 -2.822 -11.534 -11.572 -11.572
35 12 2 -0.830 -1.024 -1.024 -3.313 -3.544 -3.544 -15.730 -16.144 -16.144
35 3 3 -0.026 -0.022 -0.026 -0.058 -0.054 -0.058 -0.221 -0.216 -0.221
35 5 3 -0.092 -0.060 -0.091 -0.183 -0.150 -0.181 -0.637 -0.600 -0.635
35 10 3 -0.812 -0.220 -0.713 -1.185 -0.580 -1.084 -3.050 -2.379 -2.937
35 12 3 -1.403 -0.209 -1.208 -1.940 -0.726 -1.747 -4.625 -3.308 -4.440
35 3 4 -0.010 -0.008 -0.010 -0.022 -0.020 -0.022 -0.081 -0.079 -0.081
35 5 4 -0.038 -0.022 -0.037 -0.071 -0.055 -0.070 -0.238 -0.219 -0.237
35 10 4 -0.384 -0.081 -0.321 -0.523 -0.212 -0.459 -1.217 -0.869 -1.145
35 12 4 -0.703 -0.076 -0.564 -0.904 -0.265 -0.764 -1.913 -1.207 -1.767
35 3 5 -0.005 -0.004 -0.005 -0.010 -0.009 -0.010 -0.039 -0.037 -0.039
35 5 5 -0.019 -0.010 -0.018 -0.035 -0.026 -0.034 -0.114 -0.104 -0.113
35 10 5 -0.204 -0.038 -0.167 -0.271 -0.100 -0.232 -0.604 -0.412 -0.560
35 12 5 -0.383 -0.036 -0.296 -0.481 -0.125 -0.392 -0.967 -0.572 -0.872
40 3 2 -0.120 -0.120 -0.120 -0.300 -0.300 -0.300 -1.202 -1.200 -1.200
40 5 2 -0.331 -0.332 -0.332 -0.832 -0.832 -0.832 -3.337 -3.332 -3.332
40 10 2 -1.284 -1.299 -1.299 -3.287 -3.299 -3.299 -13.300 -13.299 -13.299
40 12 2 -1.603 -1.674 -1.674 -4.474 -4.554 -4.554 -18.831 -18.954 -18.954
40 3 3 -0.026 -0.023 -0.026 -0.061 -0.058 -0.061 -0.235 -0.231 -0.235
40 5 3 -0.090 -0.064 -0.089 -0.187 -0.160 -0.186 -0.672 -0.641 -0.670
40 10 3 -0.718 -0.250 -0.656 -1.114 -0.635 -1.050 -3.094 -2.559 -3.019
40 12 3 -1.330 -0.322 -1.154 -1.905 -0.875 -1.727 -4.781 -3.643 -4.587
40 3 4 -0.010 -0.008 -0.010 -0.022 -0.021 -0.022 -0.085 -0.083 -0.084
40 5 4 -0.035 -0.023 -0.035 -0.070 -0.057 -0.070 -0.244 -0.229 -0.243
40 10 4 -0.320 -0.089 -0.283 -0.464 -0.227 -0.426 -1.181 -0.915 -1.137
40 12 4 -0.623 -0.115 -0.513 -0.833 -0.313 -0.720 -1.883 -1.302 -1.758
40 3 5 -0.005 -0.004 -0.005 -0.011 -0.010 -0.011 -0.040 -0.039 -0.040
40 5 5 -0.017 -0.011 -0.017 -0.034 -0.027 -0.033 -0.115 -0.107 -0.115
40 10 5 -0.166 -0.042 -0.144 -0.234 -0.106 -0.211 -0.573 -0.429 -0.547
40 12 5 -0.330 -0.054 -0.264 -0.429 -0.147 -0.362 -0.928 -0.610 -0.852
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Table 2: Exact and Approximated Forward Premium for µW = 100 and given σW and c, with
λ = 1.02,1.05,1.2. Prices PW are normally distributed. BL stands for the BL approximation,
whereas BGS stands for our approximation.

λ = 1.02 λ = 1.05 λ = 1.2
µW σW c Exact BL BGS Exact BL BGS Exact BL BGS
100 3 2 -0.300 -0.300 -0.300 -0.751 -0.750 -0.750 -3.005 -3.000 -3.000
100 5 2 -0.832 -0.832 -0.832 -2.084 -2.082 -2.082 -8.347 -8.332 -8.332
100 10 2 -3.312 -3.319 -3.319 -8.322 -8.319 -8.319 -33.372 -33.319 -33.319
100 12 2 -4.761 -4.775 -4.775 -11.976 -11.975 -11.975 -48.048 -47.975 -47.975
100 20 2 -13.136 -13.219 -13.219 -33.176 -33.219 -33.219 -133.377 -133.219 -133.219
100 30 2 -25.045 -26.159 -26.159 -69.910 -71.159 -71.159 -294.236 -296.159 -296.159
100 3 3 -0.037 -0.037 -0.037 -0.092 -0.091 -0.092 -0.367 -0.365 -0.366
100 5 3 -0.108 -0.101 -0.108 -0.260 -0.253 -0.260 -1.023 -1.014 -1.021
100 10 3 -0.509 -0.404 -0.507 -1.121 -1.013 -1.118 -4.181 -4.055 -4.172
100 12 3 -0.800 -0.581 -0.795 -1.683 -1.458 -1.676 -6.098 -5.839 -6.081
100 20 3 -3.404 -1.609 -3.257 -5.884 -4.043 -5.728 -18.281 -16.214 -18.081
100 30 3 -13.142 -3.179 -11.408 -18.826 -8.650 -17.061 -47.247 -36.001 -45.324
100 3 4 -0.012 -0.011 -0.012 -0.028 -0.028 -0.028 -0.113 -0.112 -0.112
100 5 4 -0.034 -0.031 -0.034 -0.081 -0.078 -0.080 -0.315 -0.311 -0.314
100 10 4 -0.167 -0.124 -0.166 -0.355 -0.311 -0.354 -1.296 -1.244 -1.293
100 12 4 -0.269 -0.178 -0.266 -0.540 -0.447 -0.537 -1.898 -1.792 -1.892
100 20 4 -1.243 -0.494 -1.169 -2.010 -1.240 -1.933 -5.845 -4.975 -5.750
100 30 4 -5.283 -0.975 -4.347 -7.064 -2.653 -6.108 -15.973 -11.041 -14.911
100 3 5 -0.005 -0.005 -0.005 -0.012 -0.012 -0.012 -0.049 -0.049 -0.049
100 5 5 -0.015 -0.014 -0.015 -0.035 -0.034 -0.035 -0.137 -0.135 -0.137
100 10 5 -0.075 -0.054 -0.074 -0.157 -0.135 -0.156 -0.566 -0.540 -0.564
100 12 5 -0.122 -0.077 -0.120 -0.240 -0.194 -0.238 -0.830 -0.778 -0.827
100 20 5 -0.585 -0.214 -0.545 -0.919 -0.539 -0.877 -2.592 -2.160 -2.541
100 30 5 -2.592 -0.423 -2.072 -3.375 -1.152 -2.842 -7.292 -4.793 -6.696
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deviation σW vary in the range (1,30). Then, we repeat with µW = 35 and a re-

duced range (1,12) for σW . For cost parameters c = 2,3,4,5 and two values for

λ (1.2 and the more realistic 1.02) we go through the steps of the procedure de-

scribed before, obtaining the forward premium FP as a function of price standard

deviation, σW . Results are depicted in Figure 1. We can see that in all cases the

premium is clearly decreasing in σW , thus confirming the first BL hypothesis (H1).

Similar evidence is produced when prices are skew-t distributed with skewness

ξW = 0.5 and κW = 4 (see bottom row of the same Figure 1).

For testing the BL (H2) hypothesis, that the premium is increasing in the skew-

ness of prices, contrarily to what assumed by BL, we consider the Skew-T distri-

bution for PW (see Appendix for details). We fix µW = 35, σW = 5 and κW = 4

(kurtosis) and let ξW (skewness) vary in the range (−0.5,1). Results for c = 3,4,5

and λ = 1.02 and 1.2 are reported in Figure 2. A similar behaviour can be ob-

served for other values of µW , σW , κW and λ, and results are available on request.

We can conclude that the BL (H2) hypothesis is confirmed when wholesale prices

are skew-t distributed.

Moving forward, the dependence of the forward premium on price kurtosis

κW is inspected. Let us recall that our derivation lead us to formulate an addi-

tional hypothesis (H2’) that the forward premium is decreasing in price kurtosis

when c > 2. We investigate this fact in two contrasting cases: the first one using a

symmetric distribution and the second one using an asymmetric distribution.

Assuming symmetry (that is ξW = 0), we consider a Skew-T distribution for

wholesale prices PW and fixed price mean µW = 35, standard deviation σW = 5

and skewness ξW = 0, letting price kurtosis κW vary in the range (3,6). Results

across c and for λ = 1.02 are presented in Figure 3. Results for λ = 1.2 are similar

and have been omitted. As per the mathematical derivation in (4), results for c > 3

show indeed that the premium is decreasing with price kurtosis. When c = 2

instead β4 = 0, that is the kurtosis term vanishes, but this relation is unveiled via
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(a): µW = 100 and λ = 1.2 (b): µW = 100 and λ = 1.02
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(c): µW = 35 and λ = 1.2 (d): µW = 35 and λ = 1.02

0 2 4 6 8 10 12

sigma
W

-16

-14

-12

-10

-8

-6

-4

-2

0

F
P

c=2

c=3

c=4

c=5

0 2 4 6 8 10 12

sigma
W

-1.5

-1

-0.5

0

F
P

c=2

c=3

c=4

c=5

(e): µW = 35, λ = 1.2, ξ = 0.5 and κW = 4 (f): µW = 35, λ = 1.02, ξ = 0.5 and κW = 4
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Figure 1: Behaviour of the Forward Premium FP vs Price Standard Deviation σW across c and
for selected values of µW and λ. Wholesale prices PW are Normally distributed in the first
two rows, and Skew-T distributed in the bottom row. Testing (H1): FP decreasing in σW .

simulations. Only in this case, we can observe that the effect of fat tails increases

the premium. Consistent results are obtained when asymmetry is assumed (that

is ξW = 1), and using the same values as before for µW , σW , c and λ; results

are in Figure 4. Those for λ = 1.2 are similar hence omitted. Therefore, we can

conclude that our hypothesis of forward premium FP decreasing in price kurtosis
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(a): λ = 1.02 (b): λ = 1.2
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Figure 2: Behaviour of the Forward Premium FP vs Price Skewness ξW for prices PW Skew-T
distributed, with µW = 35, σW = 5, κW = 4, and selected values of c and λ. Consistent results
for c = 2 have been omitted since in a larger scale. Testing (H2): FP increasing in ξW .

κW is supported when c > 2 for both symmetric and asymmetric distributions,

consistently with (4). The same conclusion does not hold when c = 2 as shown

by simulation results.
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Figure 3: Behaviour of the Forward Premium FP vs Price Kurtosis κW across c, for Wholesale
Prices PW symmetrically Skew-T distributed with µW = 35, σW = 5, ξW = 0, and λ = 1.02.
Testing (H2’): FP decreasing in κW .
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Figure 4: Behaviour of the Forward Premium FP vs Price Kurtosis κW across c, for Wholesale
Prices PW asymmetrically Skew-T distributed with µW = 35, σW = 5, ξW = 1, and λ = 1.02.
Testing (H2’): FP decreasing in κW .

4.3 Testing the BL Hypotheses (H3) and (H4), and inspecting for

Premia Dependence on Demand Skewness and Kurtosis

Given the development of distributed generation of solar panels and micro-wind

plants, it is reasonable to expect changes and variations in aggregated demand,

see for instance recent contributions in Koolen et al. (2021) and Huisman et al.

(2021). Thus, we investigate the behaviour of the forward premium FP with re-

spect to the demand mean µD and its standard deviation σD as in Bessembinder

and Lemmon (2002) and van Koten (2020), but considering in addition to the nor-

mal assumption the possibility that demand could follow asymmetric or fat-tailed

distributions. This allows us to inspect the premium also with respect to demand

skewness ξD and kurtosis κD, using the exact formula that we derived in eq. (6).

Let us start with BL (H3) hypothesis according to which the forward premium

FP is convex in the standard deviation of demand σD; that is, first decreasing,

and then increasing. Initially, we consider a normal distribution for electricity

demand D with fixed µD (set to 50, 75, 100, 125 and 150) and let σD varying in the
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range (1,40); as in van Koten (2020). Results across c and for λ = 1.2 are depicted

in Figure 5; which coincide with those in Figure 2 (top row) in van Koten (2020).

Results for λ = 1.02 are reported in Figure 6, with µD set to 100 and 150 and with

different ranges for σD, in order to better observe convexity.
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Figure 5: Behaviour of the Forward Premium FP vs Demand Standard Deviation σD for
Demand D Normally distributed for some fixed values of µD and λ = 1.2. Testing (H3): FP
convex in σD.

Moving forward, we assume now that the demand D follows a Student-T dis-

tribution with µD = 100, dof ν set to (5.1,5.5,8) and let σD vary in suitable ranges.

Results across c and for λ = (1.02,1.2) are provided in Figure 7. Overall, we see

that the forward premium is indeed convex,5 thus confirming BL (H3) hypothesis

not only under the hypothesis of normal demand, but also and interestingly un-

der different distributional assumptions run in our simulations; hence, providing

new further support in favour of this hypothesis.

Let us now move to the BL hypothesis (H4), stating that the forward premium

FP is increasing in the expected mean demand µD. As before, we consider first

5Convexity can be observed also in the case c = 2,3 and λ = 1.2 by widening suitably the range for σD. In
Figure 5 we kept the range (1,40) for σD in order to ease the comparison with results in van Koten (2020).
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Figure 6: Behaviour of the Forward Premium FP vs Demand Standard Deviation σD for
Demand D Normally distributed with for two fixed values of µD and λ = 1.02. Testing (H3):
FP convex in σD.
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a normal distribution for demand D with fixed σD (set to 5, 15, 25, and 35 as in

van Koten (2020)) and let µD range in (50,150). Numerical results across c and

for λ = (1.2,1.02,1.05) are provided in Figures 8, 9 and 10, respectively.
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Figure 8: Behaviour of the Forward Premium FP vs Mean Demand µD across c and for λ =
1.2, with Demand D Normally distributed with some fixed values for σD. Testing (H4): FP
increasing in µD.

Then, we assume that the expected demand follows a Student-T distribution

with σD = 20 and dof ν set to 5.1,5.5 and 8, as before, and let µD vary in the range

(50,150). Results across c and for λ = 1.02 are provided in Figure 11.

As far as (H4) is concerned, it must be recalled that previous evidence was

mixed; indeed van Koten (2020) did not find support in favour of this hypothesis.

Our simulations instead show that when more reasonable risk aversion are con-

sidered (for low values of λ = 1.02,1.05) and cost functions are high (c = 4,5), for-

ward premia clearly increase in the expected mean demand µD especially when

demand risk increases. However, when there is an higher risk aversion (λ = 1.2 as

in BL and van Koten (2020)) and the cost function is moderately high (c = 4), the

premium first increases but then quickly decreases. It also decreases for low cost
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Figure 9: Behaviour of the Forward Premium FP vs Mean Demand µD across c for λ =
1.02, with Demand D Normally distributed with some fixed values for σD. Testing (H4): FP
increasing in µD.
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Figure 10: Behaviour of the Forward Premium FP vs Mean Demand µD across c for λ =
1.05, with Demand D Normally distributed with some fixed values for σD. Testing (H4): FP
increasing in µD.
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Figure 11: Behaviour of the Forward Premium FP vs Demand Mean µD across c and for
λ = 1.02, with Demand D Student-T distributed with σD = 20, and 3 values for ν. Testing
(H4): FP increasing in µD.

functions (c = 2) and all inspected volatility levels and risk aversion profiles. Ac-

cording to these results, it can be argued that under low production costs, gener-

ators do not look for higher compensation, but that is required as soon as produc-

ing electricity becomes more costly. This is particularly evident and supported by

the behaviour of the premium for both risk aversions λ = 1.02,1.05 when mov-

ing across cost parameters. When normality of demand is relaxed towards more

realistic dynamics of asymmetric demand especially in view of a higher RES pen-

etration, our previous conclusions are even more evident (see Figure 11). Thus,

this hypothesis which has received controversial support elsewhere is shown to

depend upon specific market conditions: while it can be justified for high cost

functions, it does not seem to hold for low costs.

In trying to clarify the dependence of the forward premium on higher demand

moments, we first focus on demand skewness ξD considering the Skew-T distri-

bution for demand D, and then we look at its kurtosis κD using the Student-t
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distribution.

As far as demand skewness in concerned, we fix µD = (50,100), σD = (10,20),

κD = 4, and we let ξD vary in the range (−0.5,1). Results across c and for λ = 1.02

are presented in Figure 12. We can observe that the premium is clearly increasing

with respect to the skewness of demand, and this behaviour is consistent across

different cost levels c and the expected mean demand values considered. Results

for other (fixed) values of κD > 3 an/or for λ = 1.2 are similar hence omitted.

(a): µD = 100, σD = 20 (b): µD = 50, σD = 10
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Figure 12: Behaviour of the Forward Premium FP vs Demand Skewness ξD across c and for
λ = 1.02, with Demand D Skew-T distributed with κD = 4 and selected values of µD and σD.

As far as demand kurtosis in concerned, we assume demand D to be Student-

T distributed with fixed µD and σD, while leaving dof νD to vary in such a way

that the kurtosis ranges in (3,6). Simulations show that the premium is increasing

in the expected demand kurtosis, independently from the choice of parameters;

see Figure 13.

5 Conclusions

With the financial performance of participants in competitive electricity markets

becoming more dependent upon adequate hedging in the forward markets, we

considered how this could be improved with more precise modelling of the for-
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(a): µD = 100, σD = 20 (b): µD = 50, σD = 10
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Figure 13: Behaviour of the Forward Premium FP vs Demand Kurtosis κD across c and for
λ = 1.02, with Demand D Student-T distributed with selected values of µD and σD.

ward curve. In particular we considered the widely applied model proposed

by Bessembinder and Lemmon (2002) could be reformulated with an extended

specification to include higher moments. Thus we developed a more thorough

specification and contributed in the following ways.

Firstly, using a quartic Taylor expansion, we provided an extended approxi-

mation for the electricity forward premium including its dependency from all the

four moments of the anticipated wholesale price distribution. This aligns the for-

ward risk premium specification for electricity with the increasing research that

is incorporating kurtosis into financial risk and asset pricing models.

Secondly, we tested the goodness of the Taylor approximations and confirm

that the one we propose (extended to include the fourth moment) is more precise in

estimating the electricity risk premia, also in extreme market conditions affecting

price mean and volatility.

Thirdly, we derived a more explicit expression for the premium in terms of the

expected demand density and investigated the dependence of the premium on

the third and fourth demand moments by simulations, explaining why the above

approximation used for price is not feasible in this (demand) case.
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Fourthly, our investigations have been carried relaxing the normality assump-

tion for both wholesale prices and demand, considering student-t and skew-t dis-

tributions.

All of the above has allowed us to investigate more thoroughly the depen-

dence of the premium on the expected price skewness and kurtosis. Reassuringly,

we were able to draw the same conclusions supporting the original BL hypothesis

of premia increasing in price skewness even when prices are skew-t distributed.

Moreover, we provided new insights that the premia decrease with price kurtosis

consistently across the specifications of symmetric or asymmetric distributions

when marginal cost are high.

As far as the dependence of the premium with respect to demand is concerned,

following the same simulation style of analysis as in BL, we confirmed the origi-

nal BL hypothesis of the premium being convex in the expected demand standard

deviation also for asymmetric distributed demand. Secondly, we showed that the

BL hypothesis of the premium increasing with the expected mean demand holds

for high costs and demand risk, for both symmetric and asymmetric demand dis-

tributional assumptions.

Finally, by simulations and using skew-t and student-t distributions, we reveal

the dependence of the forward premium on the anticipated demand skewness

and kurtosis, showing that the premium increases in both cases, independently

of considered cost functions and levels of expected demand mean and risk.

Overall, this research has sought to clarify some of the controversial results

in the various applications of the original BL model for electricity premia and,

by extending the specification, we argue that new insights and clarity have been

developed. More generally, the forward premia can be specified with increasing

complexity with additional exogenous variables and/or different specifications

of risk aversion, but such elaborations would be outside the scope of this work.

We focussed upon the fundamental relationship to price and demand that has
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been central to the BL theme of research which still remains at the core of the

forward premia modelling in relation to price and demand.
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Appendix A. Inspection of Retail and Wholesale (Gross)

Price Levels

Considering the relationships between wholesale and retail prices in the mod-

elling, we inspect the retail prices observed in Germany, France, Italy, The Nether-

lands, Austria and Spain for a sample of years from 2008 to 2020, collected from

DeStatis6. These are annual average prices (in cente/kWh) to supply electric-

ity to households with annual consumption from 2.5 kWh to under 5 kWh, and

include taxes, levies and VAT. Comparing these (gross) retail prices with whole-

sale prices (in the same scale), we observe that BL expected computation rule of

retail prices determined as 1.2 times the conditionally expected wholesale prices is not

reflected in the gross data, see Table 3. Hence, we propose to consider a more rea-

sonable ratio of 1.02 or 1.05 to determine the net retail prices, that is PR = 1.02PW

or PR = 1.05PW .

6Data is from the website www.destatis.com accessed in February 2022.
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Table 3: Yearly Ratios of Annual Gross Retail over Annual Average Wholesale Prices in
ce/kWh

DE FR IT NL AT ES
2008 3.03 1.61 2.37 2.37 2.68 2.25
2009 5.44 2.59 3.22 4.64 4.91 4.37
2010 5.07 2.59 3.08 3.73 4.34 4.73
2011 4.68 2.68 2.82 3.31 3.82 4.01
2012 5.72 2.83 2.93 3.69 4.63 4.58
2013 6.98 3.28 3.66 3.54 5.47 4.81
2014 8.30 4.32 4.39 4.26 6.09 5.04
2015 8.54 4.04 4.51 4.64 6.30 4.44
2016 9.52 4.24 5.29 4.74 6.94 5.36
2017 8.09 3.60 3.84 3.81 5.71 4.14
2018 6.33 3.33 3.38 3.15 4.29 4.15
2019 7.33 4.38 3.85 4.79 5.11 4.85
2020 8.91 5.51 5.38 4.07 6.44 6.36
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Appendix B. The Skew-T Distributions

In this section, we recall definitions and basic facts about the Skew-T distribution

taken from Azzalini (2013) to which we refer for further details and proofs.

The (normalized) skew-T distribution ST(0,1,α,ν), with shape parameter α ∈ R

and degrees-of-freedom (dof) ν > 0, is defined by the density

f (x) = 2 gν(x)Gν+1

(
αx
√

ν + 1
ν + x2

)
, x ∈R, (10)

where gν and Gν are the density and the cdf of the T(0,1,ν) distribution (nor-

malized Student-T with ν dof), i.e.7

gν(x) =
Γ((ν + 1)/2)√

πν Γ(ν/2)

(
1 +

x2

ν

)− ν+1
2

Gν(x) =
∫ x

−∞
gν(y)dy

If α = 0, then f (x) = 2 gν(x)Gν+1(0) = gν(x), so that ST(0,1,0,ν) coincides

with T(0,1,ν). Also, in the limit ν→ ∞ we recover the Skew-Normal distribution,

characterized by the density 2ϕ(x)Φ(αx) (ϕ and Φ are the density and the cdf of

a standard normal).

More generally, the skew-T distribution ST(m, s,α,ν) with location parameter

m ∈ R, scale parameter s > 0, shape parameter α ∈ R and dof ν > 0, is the distri-

bution of X = m + s X′ where X′ ∼ ST(0,1,α,ν).

The Skew-T distribution admits the following stochastic representation: if

Z1, Z2 ∼ N(0,1) and V ∼ χ2
ν (chi-square distribution with ν > 0 dof), with Z1, Z2,V

independent, then

X = m + s · Z1 · [1− 2 · I(Z2 > αZ1)]√
V/ν

has distribution ST(m, s,α,ν). Here, I(A) denotes the indicator function of the

event A. The representation above allows us to easily simulate from the Skew-T

7Γ denotes the Gamma function.
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distribution, using the Matlab function chi2rnd for simulating from a χ2
ν distri-

bution.

Assuming ν > 4, the mean, standard deviation, skewness and kurtosis of

ST(m, s,α,ν) are given by

µ = m + s · µ0 σ = s · σ0

ξ =
µ0

σ3
0

(
ν(3− δ2

α)

ν− 3
− 3ν

ν− 2
+ 2µ2

0

)

κ =
1
σ4

0

(
3ν2

(ν− 2)(ν− 4)
−

4µ2
0ν(3− δ2

α)

ν− 3
+

6µ2
0ν

ν− 2
− 3µ4

0

)
where

µ0 =

√
ν Γ((ν− 1)/2)√

π Γ(ν/2)
· δα σ2

0 =
ν

ν− 2
− µ2

0 δα =
α√

1 + α2

We can see that the choice of the parameters α and ν affects all four moments

and, as a consequence, that m and s are not in general the mean and standard

deviation of ST(m, s,α,ν). Also, as m and s are location and scale parameters,

they have no influence on ξ and κ. It can also be shown that as α ranges in R

and ν ranges in (4,+∞), the couple (ξ,κ) spans the region R depicted in grey in

Figure 14. We can see that, for instance, if κ = 10 then all (ξ,κ) with (roughly)

|ξ|6 1.8 are in R.

For each µ ∈ R, σ > 0 and (ξ,κ) ∈ R, there is, unique, a set of parameters

(m, s,α,ν) that yield the chosen moments. We can numerically derive these pa-

rameters, by solving a system of four non-linear equations. We perform this task

in Matlab using the function fsolve.
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Figure 14: The joint range skewness-kurtosis. Levels for skewness are on the x-axis, whereas
those for kurtosis on the y-axis.
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