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Hospitals throughout the developed world are reimbursed on the basis of diagnosis-related groups (DRGs).

Under this scheme, patients are divided into clinically meaningful groups, and hospitals receive a fixed fee

per patient episode tied to the patient DRG. The fee is based on the average cost of providing care to

patients who belong to the same DRG across all hospitals. This scheme, sometimes referred to as ‘yardstick

competition’, provides incentives for cost reduction, as no hospital wants to operate at a higher cost than

average, and can be implemented using accounting data alone. Nevertheless, if costs within a DRG are

heterogeneous, this scheme may give rise to cherry-picking incentives, where providers ‘drop’ patients who

are more expensive to treat than average. To address this problem, regulators have tried to reduce within-

DRG cost heterogeneity by expanding the number of DRG classes. In this paper, we show that even if

cost heterogeneity is eliminated, such expansion will fail to completely eliminate patient cherry picking. In

equilibrium, the market will bifurcate into two groups, one of which will continue to cherry-pick patients and

underinvest in cost reduction, while the other group treats all patients. Furthermore, we show that DRG

expansion is particularly problematic if hospitals are also able to ‘upcode’ patients, i.e., intentionally assign

patients to a more resource-intensive DRG than needed to increase income. Upcoding increases within-

DRG cost heterogeneity and amplifies cherry-picking incentives. We examine potential solutions involving

yardstick competition based on input statistics.
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1. Introduction

Hospitals throughout the developed world are reimbursed based on diagnosis related groups

(DRGs), a patient classification system first developed by the Operations Research Department of

Yale University (Fetter 1991). Under the DRG system, patients are divided into a small number of

clinically meaningful groups, which can be thought of as hospital products, such that resources and

services required to treat patients within a group are as homogeneous as possible.1 Hospitals are

1 The original goal of the classification system was to allow hospitals to better measure what they “produce” and
serve a tool for “budgeting, cost control, and quality control.” In 1990, Professor Fetter, the inventor of the DRG
classification system, was honored with the Franz Edelman Award (Fetter 1991).
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then reimbursed a fixed fee for every patient episode, which is set at to the average cost of treating

patients of the same DRG across other similar hospitals, after applying local adjustments, e.g., for

differences in labor costs. The Inpatient Prospective Payment System (IPPS) used by the Centers

for Medicare & Medicaid Services in the United States is an example of this reimbursement model

(CMS.gov 2021a).

This form of reimbursement was first introduced by CMS in 1983 and similar versions were soon

adopted by the private sector and internationally (Mayes 2007, Busse et al. 2013). In contrast to the

retrospective cost-based reimbursement system used in the US before 1983, this payment innovation

was prospective in the sense that it separated hospital pay from the intensity of services provided,

thus generating incentives for cost efficiency. Hospitals treating patients at a cost lower than the

DRG fixed fee would be making a profit and inefficient hospitals would have a strong incentive

to improve. Furthermore, by linking the payment of each hospital to the cost of treatment of

similar patients at other hospitals, the DRG system induced a form of indirect competition between

hospitals, sometimes referred to as ‘yardstick competition’ – for any DRG, no hospital would want

to operate at a cost higher than the average of all other hospitals and, as a result, the average

cost itself would, in equilibrium, be reduced to the efficient level (Shleifer 1985). Importantly, this

scheme can be implemented through retrospective cost accounting data alone, placing a relatively

small informational burden on the regulator. For these reasons, the DRG payment system has been

described as “revolutionary” (Mayes 2007).

One concern with the initial implementation of the DRG system was that it was vulnerable

to cherry picking (Newhouse 1996). More specifically, because DRG definitions are based on rela-

tively coarse clinical diagnoses, there may be heterogeneity in the complexity of patient conditions

within a DRG and, therefore, in the resources required to effectively treat them. To the extent that

providers can observe patient complexity and predict patient profitability, they have an incentive

to selectively treat those patients with lower-than-average cost (cherry picking) and avoid treating

those with higher-than-average cost (lemon dropping).2 Empirical evidence supports this hypothe-

sis. For example, Newhouse (1989) finds disproportionately more high-costs patients to be treated

in hospitals of last resort that do not have the option to turn patients away and KC and Terwiesch

(2011) find evidence that focused cardiology hospitals selectively admit “easy-to-treat” patients.

In a similar vain, Shactman (2005) reports that “specialty hospitals [...] concentrate on certain

DRGs and treat relatively low-severity cases within them.” Alexander (2020) exploits a natural

experiment to show that physician financial incentives is one mechanism that gives rise to such

cherry picking behaviour.

2 Throughout the paper we refer to the activity of overly selecting low-cost patients as cherry picking and the reciprocal
activity of dropping high-cost patients as lemon dropping.
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To address the cherry-picking problem, the DRG system has been refined over the past 30 years,

primarily by increasing the number of DRG classes to better reflect patient severity (Shactman

2005). A larger number of DRG classes, with patients of higher severity being allocated to a different

DRG class than patients of lower severity, should reduce cost heterogeneity within a DRG and limit

providers’ ability to cherry pick (or lemon drop) profitable (unprofitable) patients. For instnance, in

1983 there were only two DRGs associated with concussion – 31 for concussion with complications

and comorbidities (CCs) and 32 for concussion without CCs, with payment increasing by 33%

for treating patients with CC compared to treating those without (Latta and Helbing 1991). In

2020, there were three DRGs associated with concussion – 090 for concussion without CCs, 089

for concussion with CCs, and 088 for concussion with multiple CCs, with payment increasing by

16% and 64% from 090 to 089 and 088, respectively.3 Indeed, when the DRG system was first

implemented in the US in 1983 there were 467 DRGs. The number in 2020 was 761 (a relative

increase of 63%). A similar trend can also be observed in Europe, where between 2005 and 2011

the number of DRGs increased by 36% in Germany, 127% in the UK, and 239% in France (Busse

et al. 2013).

A second issue with the DRG system is ‘upcoding,’ also referred to as ‘DRG creep,’ where

providers modify patient diagnosis (e.g. by including additional CCs) or even provide unnecessary

treatments in order to push the DRG assignment to one that commands a higher fee.4 This problem

arises due to the fact that care provision is essentially a credence good, where the regulator and/or

the patient are not able to assess if the diagnoses and/or treatments provided accurately reflect the

needs of the patient (Dulleck and Kerschbamer 2006). The work of Jürges et al. (2013) provides an

interesting instance of upcoding in neonatology. Extremely premature babies are expensive to treat

and, naturally, are assigned to a higher-paying DRG compared to babies at or close to full term.

Due to the approximate nature of estimating gestation term, the assignment to DRGs associated

with prematurity in Germany is based on birth weight, with substantial discontinuities at specific

weights (e.g. 1000g and 1500g). The authors compare the distribution of reported birth weights

before the DRG system was implemented to birth weights after implementation. Under the new

DRG system, the number of babies reported to have been born weighing just below the DRG

thresholds for prematurity increased substantially, with a similar drop in the number of babies

reported just above the threshold. The authors estimate that, in the period 2003–2010, upcoding

generated additional reimbursement of 100M Euro ($ 133M using the average 2010 exchange rate).

3 See Table 5 https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/

Downloads/FY2020-FR-Table-5.zip

4 For the purposes of this research we use the term ‘upcoding’ to refer to both the process of modifying patient
diagnosis and the process of providing unnecessary treatment done for reimbursement purposes.

https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Downloads/FY2020-FR-Table-5.zip
https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Downloads/FY2020-FR-Table-5.zip
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Beyond neonatology in Germany, Silverman and Skinner (2004) find evidence that, following the

implementation of DRG payments in the US, patients with respiratory conditions were more likely

to be upcoded to the more generous DRG for pneumonia and more so at for-profit hospitals. Dafny

(2005) find that following a change in DRG prices hospitals responded by upcoding patients to

DRGs with the largest price increase, and Psaty et al. (1999) estimate the cost of upcoding in

heart failure in the US to be as high as $993M per year.

The focus of this paper is on the interaction between the two phenomena described above: Patient

cherry picking and upcoding. In particular, we develop a unifying theoretical framework that

extends the classic model of yardstick competition (Shleifer 1985) by explicitly modeling patient

heterogeneity within DRGs and allowing for cherry picking and upcoding. The model confirms

that, under the standard yardstick competition scheme applied in practice, providers will indeed

have every incentive to lemon drop patients whose cost of treatment is higher than the DRG

average. Furthermore, dropping patients will distort investment incentives, resulting in higher costs

compared to socially optimal levels. More importantly, we show that, in the absence of upcoding,

increasing the number of DRGs so that costs within DRG become homogeneous is effective in

improving welfare but it does not completely eliminate cherry-picking incentives. In fact, we show

that the unique equilibrium outcome of the yardstick competition game is asymmetric – the market

bifurcates into two groups of providers: one group that chooses to specialize in treating patients

with relatively minor needs (and drop patients with complex needs); and a second generalist group

that treats everyone, irrespective of their care needs. Compared to the second group, the first

group’s treatment costs are relatively high, but nevertheless both groups make a positive profit –

the first loses money on treating patients but this loss is more than offset by reduced investment

costs, and the second group makes a profit on treating patients but this profit is partially eroded

by higher investment costs. This result may provide a complementary explanation for the recent

proliferation of specialist providers, which are often found to cherry-pick less-complex patients

(Shactman 2005, KC and Terwiesch 2011) – in addition to the benefits of focus that have been

identified by the literature (Freeman et al. 2020), our model suggests that the emergence of such

cherry-picking providers, which co-exist with efficient all-purpose providers, may be the rational

response of the industry to the expansion in the number of DRG classes within a condition.

Turning to the case where providers can also upcode patients, we show that expanding the

number of DRGs is much less effective. Because the practice of upcoding ‘mixes’ some low-cost

patients into the high-cost category, costs within a DRG become once again heterogeneous. As a

result, providers have an even stronger incentive to drop high-cost patients and, in most cases,

underinvest in cost reduction compared to socially optimal level levels. In fact, we show that in the
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presence of upcoding, under some conditions, increasing the number of DRGs will actually reduce

total welfare.

We conclude by investigating solutions to this problem. One potential solution is to move from

prospective payments (DRG-system) to retrospective (or cost-of-service) reimbursement. We show

that such a move eliminates the incentives inherent in prospective payment systems to cherry pick

and upcode, but at the expense of removing incentives for cost reduction. Instead, we show that

there exists an alternative yardstick competition scheme, which can be implemented with currently

availably information based on ‘input statics,’ that can eliminate upcoding and can also reduce

(and sometimes eliminate) the problem of cherry picking. More specifically, the regulator could

add an additional payment that is proportional to the difference between the number of patients

actually treated and the expected number of patients treated at each provider for every DRG.

The expected number of patients could be calculated using appropriately adjusted benchmarks

based on patient statistics drawn from all providers, as done in other regulatory schemes used in

practice (e.g., the Hospital Readmissions Reduction Program (HRRP) introduced by the Centers

of Medicare & Medicaid Services (CMS) in 2012, where each hospital’s observed readmission rates

in a number of monitored conditions are compared against a benchmark of expected readmission

rates constructed using a national panel of hospital readmissions (Chen and Savva 2018)). This new

payment will be positive (a bonus) if the provider treats more patients relative to other providers

and negative (a penalty) if the provider treats relatively fewer patients. Therefore, it generates

yardstick competition incentives where no provider wants to treat fewer patients than average for

any DRG. As we show, it is possible to use information on the costs of other providers to set

the penalties in a way that completely eliminates upcoding. It is more difficult to set the penalty

sufficiently high in order to eliminate cherry picking, but we show that any positive penalty reduces

the aggregate number of patients lemon dropped and, thus, improves welfare.

Finally, in a series of extensions, we show that our findings are robust to alternative model

specifications. More specifically, we show that under quite mild conditions providers will not find

it optimal to downcode patients (i.e., assign a lower complexity DRG tfrehan warranted based

on the patient diagnosis), and examine the case where i) engaging in patient cherry picking or

upcoding is itself costly; ii) transfer payments between the payer and the health care providers are

not allowed; iii) there are two providers that are asymmetric in the number and the proportion of

high complexity patients they treat.

2. Literature Review

The use of relative benchmarks (i.e., yardstick competition) in the context of hospital reimburse-

ment was first analyzed by Shleifer (1985) – see also Holmstrom (1982), Nalebuff and Stiglitz (1983),
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Laffont and Tirole (1993) for the use of relative benchmarks in other settings. This early work

demonstrates that yardstrick competition is effective in inducing regulated firms (e.g., healthcare

providers) to exert more effort (e.g., for cost cutting) in a setting where they are privately informed

about the cost of effort but the outcomes (e.g., costs) are ex post verifiable. Sobel (1999) examines

yardstick competition in a setting where in addition to effort in cost reduction the providers need

to also invest in ex ante cost-reducing innovation. The paper shows that yardstick competition is

effective in incentivizing effort but may fail to incentivize innovation. Lefouili (2015) extends this

analysis to the case were there are no transfer payments. A common feature of these studies is

that the quality of medical care is assumed to be exogenous and fixed. Tanger̊as (2009) provides

an extension where, in addition to costs, quality is also endogenous and hospitals compete directly

based on quality (but not costs). The paper finds that the use of yardstick competition reduces

informational rents (compared to individual regulation) but it is fairly complex and thus difficult

to implement. Continuing with the theme of exploring the implications of yardstick competition

on dimensions other than costs, Savva et al. (2019) examine patient waiting times – a dimension

of service quality that involves an externality (see also Naor (1969)). The authors show that the

form of yardstick competition implemented in practice fails to incentivize wait-time reduction and

propose modifications that better serve this purpose. More recently, the literature has examined

yardstick competition as applied in HRRP. The program penalizes hospitals whose (risk-adjusted)

readmission rates in a number of targeted conditions is higher than the national average. The

research points out shortcomings with the current HRRP implementation that may lead to equi-

librium outcomes where some hospitals are not incentivized to improve or an equilibrium might

not exist (Zhang et al. 2016, Arifoglu et al. 2021).

In parallel to the work that examines the properties of prospective payments set through yard-

stick competition, another stream of literature has focused on comparing the performance of

exogenously-set prospective payments against cost-based retrospective payments in settings where

healthcare providers are local monopolists (Ellis and McGuire 1986, Dranove 1987, Ma 1994) or

compete directly for patients on the basis of the quality offered (Pope 1989, Ellis 1998). For exam-

ple, Dranove (1987) shows that if patient costs are heterogeneous, inefficient hospitals will “dump”

high-cost patients, thus raising the cost of care of efficient hospitals. Ma (1994) shows that, if

quality is endogenous and hospitals can dump patients, then prospective payments may provide

incentives to reduce costs but at the same time, if there is cost heterogeneity, they will induce

patient cherry picking which distorts investment incentives. Ellis (1998) finds that, in addition

to patient dumping, prospective payments may induce hospitals to overinvest in quality for low

cost patients (in order to attract more of them) or choose to underinvest in quality for high-cost

patients, phenomena he dubs “creaming” and “skimping”, respectively. A general conclusion from
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this literature is that measures that reduce patient cost heterogeneity, such as increasing the num-

ber of DRGs, can mitigate the adverse incentives created by prospective payments (e.g., patient

dumping) – a conclusion that regulators have implemented in earnest.

In contrast to the stream of literature introduced in the first paragraph, the stream of literature

discussed in the second paragraph does not focus on problems of asymmetric information on costs

– it either assumes costs are fixed (e.g., Dranove 1987, Ellis 1998) or that the regulator knows

the cost technology and is able to set prospective payments exogenously (e.g., Ma 1994). Our

work brings together elements from the previous two streams of literature by examining how

prospective payments, which due to asymmetric information on costs are set endogenously via

yardstick competition, affect patient cherry picking and investment incentives.

More importantly, the literature described above assumes that the patients’ medical needs are

verifiable at least ex post and, therefore, the provider administers and gets paid for the treatment

needed – in other words, a patient without complications or comorbidities (i.e., has minor care

needs) will not receive (or be billed as having received) care intended for patients with complications

and comorbidities (a major service). In this paper we relax this assumption. In this sense this work

borrows ideas from the literature of credence goods, first introduced by Darby and Karni (1973)

as an additional category to complement search and experience goods. Unlike search goods, where

the customer (or, in our case, the payer) can assess the value of a product before purchase (e.g., a

new pair of jeans), or experience goods, where the customer finds out the value of the good after

purchase and consumption (e.g., a bottle of wine), in the case of credence goods the customer is not

able to tell even after purchase what the value of the good was. A canonical example of a credence

good is healthcare, where a customer’s problem is diagnosed and treated by an expert who is better

informed than the customer (see e.g., Gottschalk et al. 2020). As a result, even after the service is

provided the customer is not able to judge if it was appropriate (or indeed in some cases whether it

was actually provided). The literature on credence goods is excellently summarized by Dulleck and

Kerschbamer (2006). A general finding is that the expert has an incentive to overtreat (provide a

higher intensity treatment than needed) and overcharge (charge for a treatment of higher intensity

than the one provided). As Debo et al. (2008) show, the incentive to overtreat is more pronounced

when the expert’s workload level is relatively low. Our work adds to this literature by examining

how yardstick competition, which naturally generates incentives for cost reduction, interacts with

the credence character of healthcare provision. Importantly, our work shows that once the credence

nature of healthcare is accounted for, the conclusion that reducing cost heterogeneity (by increasing

the number of DRGs) will ameliorate cherry picking problems is no longer valid. The process of

overtreating/overcharging patients reintroduces cost heterogeneity, which amplifies patient cherry

picking incentives.
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Finally, our work is also related to recent literature in Operations Management that examines

the problem of designing payment schemes for healthcare. This includes So and Tang (2000), Lee

and Zenios (2012), Jiang et al. (2012), Gupta and Mehrotra (2015), Adida et al. (2017), Zorc et al.

(2017), Guo et al. (2019), Adida and Bravo (2019), Aswani et al. (2019), Jiang et al. (2020), Delana

et al. (2021), Nassiri et al. (2021), amongst others. Typically, this literature does not examine the

credence-good character of healthcare services or reimbursement via yardstick competition.

3. Model

We consider a setting where a Health Organization (HO) acts as a welfare-maximizing regulator

and payer of healthcare provision and is responsible for N ≥ 2 identical non-competing profit-

maximizing service providers (e.g., hospitals) that provide service to a large population of patients

as needed (e.g., when they fall ill). We expand on the objectives, decisions, and payments of each

of the interacting parties below. We will present a summary of the main assumptions in Figure

1. Many modeling choices are made to ensure the model (and more importantly the results) are

easily comparable to the classic model of yardstick competition by Shleifer (1985).

3.1. Patients

In the catchment area of each service provider there is a large volume of patients λ that may

independently visit the service provider in case they experience a service need (e.g., a healthcare

problem). The latter happens with a relatively small probability q per time period (e.g., a year),

resulting in demand of λq. (In Appendix 3 we examine the case where the demand λq is asymmetric

across providers.) The provider will restore the patient’s health and will generate a positive welfare

for the patient which we denote by U0.

To focus the analysis on the actions of the providers rather than the patients, throughout this

work we make two simplifying assumptions. First, that patients co-pays are zero, as they would be

in some insurance plans or in national health care systems where care is free at the point of access.

Second, to help with analytical tractability we assume that patients do not exercise choice and visit

only one default provider. While this is clearly a simplification, empirical evidence suggests that in

some settings this may not be far from reality. For example, Victoor et al. (2016) provide evidence

based on semi-structured interviews that “most patients tend to visit the default [hospital] without

being concerned about choice.” We nevertheless acknowledge that it would be interesting for future

work to extend our analysis to the case where patients exhibit choice.

3.2. Service providers

Provider costs: Once a patient develops a health problem they arrive at one of the N ≥ 2

providers and they receive service that fully resolves their health problems. For this to happen,
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some of the patients (proportion 1 − h) require a minor intervention which costs the provider

on average cm = c and some (proportion h) require a major intervention which costs on average

cM = c+δ, where c, δ > 0. We will refer to these two groups of patients as low- and high-complexity,

respectively. (In Appendix 3 we examine the case where providers are asymmetric in the proportion

of high-complexity patients.) The costs assumptions reflect the fact that the service provided to

low-complexity patients is a subset of the services provided to high-complexity patients.

The provider starts from historical average cost levels c0, δ0 and may decide to invest to reduce

the average cost of treatment to some lower level c, δ. The cost of such investment is represented by

Rc(.) and Rδ(.), with Rc(c0) = 0, d
dc
Rc()< 0, d2

d2c
Rc()> 0 and similarly for Rδ(.). This formulation

assumes that reducing costs is relatively cheap when costs are high but it becomes increasingly more

expensive to continue doing so. It also captures positive spillovers from low- to high-complexity

patients, but not vice versa, in the sense that any investment to reduce the cost of the minor

component of the treatment c will reduce the cost of both patients needing the minor and major

intervention (cm and cM , respectively) but any intervention that reduces the cost of the major

component of the treatment δ will not have an impact on the costs of the minor treatment.

Furthermore, this specification ensures that the average cost of the major treatment is always

greater than the average cost of the minor treatment.

Upcoding: The provider, but not the patient or the HO, is able to determine the type of service

required by the patient – the service has a credence character. Although the provider may not

undertreat patients (i.e., may not offer the minor service to a complex patient), it may upcode

a proportion of patients 0 ≤ α ≤ ᾱ (e.g., as described in the case of coding premature babies in

Germany, presented in the introduction). The assumption that undertreatment is not possible

is consistent with the fact that providers may be held financially and criminally responsible if

patients are systematically discharged without being offered the appropriate level of treatment and

it is not consistent with the Hippocratic Oath. In the credence goods literature it is sometimes

referred to as the “liability rule” (Dulleck and Kerschbamer 2006). The cost associated with low-

complexity patients who are upcoded is on average c′m = cm +β(cM − cm) = c+βδ, where 0<β <

1. This formulation for upcoding nests two special cases: i) overbilling (β → 0), where upcoded

patients actually receive the minor treatment or a treatment very close to it in terms of costs ; ii)

overtreatment (0<β < 1), where at least some elements of the major treatment are offered to low-

complexity patients. The fact that the average cost of overtreatment is lower than the average cost

of the major treatment (i.e., β < 1) reflects the fact that upcoded patients are relatively healthier

and are offered only a subset of the more expensive major treatment, or may be less time-consuming

to treat and experience fewer complications. For the main analysis we assume that providers do
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not engage in ‘downcoding’ (i.e., do not code patients that receive the major intervention as having

received the minor intervention for reimbursement purposes) – as we show in Appendix A2.1 under

reasonable conditions downcoding is not optimal.

Cherry picking and lemon dropping: The provider will treat all low-complexity patients

but may select not to treat a fraction 0 ≤ γ ≤ γ̄ of the complex patients. If a high-complexity

patient is denied service, they will have to seek service outside the system – for example in taxpayer

supported safety-net hospitals or academic medical centers at a higher average cost cout > c0 + δ0

covered by the HO. The assumption that providers will not deny service to low-complexity patients

is consistent with practice – providers would find it difficult to justify denying service to patients

with relatively simple needs. We will refer to the fraction γ of patients dropped by the provider

as the lemon-dropping rate. Such lemon dropping could take place through several mechanisms,

such as offering physicians direct or indirect financial incentives to select low-cost patients (as

empirically documented in Alexander (2020)) or ex ante through the hospital’s investment decisions

(e.g., specialist hospitals that choose not to invest in the staff and resources required to treat

patients needing a major intervention (Shactman 2005)). The increased average cost cout of treating

such patients could be due to the fact that the ‘hospital of last resort’ operates with a less cost-

efficient technology, or it could represent the direct reduction in patient welfare associated with

the inconvenience of not receiving care at their hospital of first choice.5

We note that in the above formulation, the costs associated with treating patients (c, c+δ, c+βδ,

cout) are averages and the realized costs are subject to substantial (ex post) uncertainty (i.e., some

patients requiring the major treatment will end up costing more than the average cost c+ δ and

others less). Nevertheless, providers are not able to estimate realized cost ex ante and, therefore,

cannot lemon drop patients based on realized costs (i.e., they can only lemon drop patients based on

complexity). In addition, despite the fact that the average cost of an upcoded patient may be lower

than the average cost of providing the major treatment, the residual (ex post) cost uncertainty

makes it impossible for the HO to determine with certainty that upcoding is taking place (i.e., the

HO cannot rule out that a typical upcoded patient is a high-complexity patient that turned out to

be cheaper than average). Furthermore, since the HO and providers are risk neutral, for the rest

of the analysis we will ignore this ex post cost uncertainty and work directly with average costs.

5 Instead of assuming that lemon dropped patients are treated outside the system it is possible to assume that (at
least) some of them receive treatment at another provider within the system. The main results of the paper remain
qualitatively unchanged.
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Figure 1 Main modeling assumptions: A large population λ may develop a medical need with probability q and seek

care at one of N providers. A proportion h of patients is of high complexity and may be given the major treatment at an

average cost c+ δ or may be ‘dropped’ in which case they will receive treatment outside the system at an average cost cout

paid for by the HO. A proportion 1−h of patients is of low complexity and may be given the minor treatment at an average

cost of c or may be ‘upcoded’ to the major treatment at an average cost of c+βδ, where 0<β < 1. Providers need to

decide on the cost level c and δ they want to operate at by investing R(c) and R(δ), respectively, and the rate of patient

upcoding α (up to a limit ᾱ) and dropping γ (up to a limit γ̄). The HO decides on reimbursement rates for minor and major

treatments (Pm and PM , respectively) and transfer payment (T ) to be paid to the providers.

Provider Payments and Objective: Providers receive payments pM and pm from the HO for

each treatment provided in a period (typically a year). The payments may depend on the type of

treatment, major or minor respectively, but not on the type of patient (low- or high-complexity) as

the former is observable by the HO but not the latter. Providers may also receive a direct transfer

payment T ≥ 0 from the HO. For example, in the UK alongside the prospective payment system

based on DRGs (referred to as the National Tariff) hospitals have also received transfer payments

(referred to as block contracts). In Appendix A2.4 we extend the model to the case where transfer

payments are not allowed. Providers are assumed to be profit maximizers and their profit is given

by:

π(c, δ,α, γ) = T +λq ((h(1− γ) + (1−h)α)pM + (1−h)(1−α)pm) (1)

−λq ((h(1− γ) + (1−h)αβ)δ+ (1−hγ)c)−Rc(c)−Rδ(δ).

The first line represents the provider’s revenues, which include a transfer payment and fee for

every treatment provided (including upcoding) and the second line represents the provider’s costs,

including the cost of providing treatments and the investment in cost reduction. We note that,
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in the preceding discussion, we have effectively assumed that lemon dropping and upcoding are

costless up to an exogenous threshold (γ̄ and ᾱ, respectively) and infinitely expensive after this

limit. In Appendix A2.3 we extend the model by presenting a continuously increasing cost (or,

equivalently, risk of detection) in the proportion of upcoding or lemon dropping. We also note that

except for costs c, δ and rates of upcoding and lemon-dropping α,γ, providers are identical – in

particular, they are not differentiated on any dimension of clinical or service quality.

3.3. The Health Organization

The HO, such as the CMS in the US and the NHS in the UK, acts as the regulator of and payer for

healthcare provision. We make the usual assumption in this literature that the HO’s objective is to

maximize total welfare subject to the constraint that providers break even (π≥ 0). Total welfare is

the sum of the patient welfare and the provider profit within the regulated period (e.g., a year). As

typical in such models, we assume that all within system payments (i.e., the transfer payments T ,

the per patient fees pM and pm) can be collected frictionlessly and therefore do not affect welfare

directly. Of course, they affect welfare indirectly as they may influence provider actions.

The HO’s objective function (for each provider) is given by:

U(c, δ,α, γ) = λqU0− [(h(1− γ) + (1−h)αβ)δ+ (1−hγ)c]λq−Rc(c)−Rδ(δ)− γhλqcout, (2)

where U0 is the patient welfare generated by having their health problem resolved irrespective of

where the treatment is provider or of the complexity of the treatment. The next terms represent

the provider cost (including both the variable cost and the investment cost) and the final term

represents the additional cost (or the direct patient welfare loss) associated with providing treat-

ment to lemon-dropped patients. We note that more general formulations, where patient welfare

is a non-linear decreasing function of the lemon-dropping rate (γ) and/or the upcoding rate (α)

would generate similar results. The total welfare over all N providers is simply the sum of (2) over

all providers.

3.4. HO’s (first-best) solution

The first-best solution, which maximizes the HO’s objective subject to the constraint that the

providers break even, is given by the following equations, which derive from the problem’s first

order conditions:

γ∗ = α∗ = 0,− d

dc
Rc(c

∗) = λq,− d

dδ
Rδ(δ

∗) = λqh,

and any combination of payments (T,pM , pm) that satisfies T ≥Rc(c∗) +Rδ(δ
∗)− λq(h(pM − c∗−

δ∗) + (1− h)(pm− c∗)). The second-order conditions d2

d2c
Rc()> 0, d2

d2δ
Rδ()> 0 ensure that the first

order conditions are necessary and sufficient to characterize the optimal solution. For the rest of
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this work we assume that they are both satisfied and we focus on the more interesting case where

the initial costs satisfy c0 > c
∗ and δ0 > δ

∗. We also assume that the HO will choose the minimum

transfer payment that satisfies the providers’ participation constraint (π= 0).

The solution makes intuitive sense. Since lemon-dropping patients generates additional costs

(cout > c0 + δ0) the HO finds it optimal not to do it (γ∗ = 0). Similarly, since upcoding patients

increases costs (β > 0) without conferring any benefit to the patient, the HO finds it optimal not

to upcode (α∗ = 0). The last two conditions determine the optimal costs of providing care – the

HO finds it optimal to reduce the cost of care c such that the marginal benefit of reducing the

cost by ∆c for the λq patients requiring treatment is equal to the investment cost associated with

such a reduction (− d
dc
Rc(c)), and similarly for the proportion hλq that require major treatment.

Note that, as consequence of the assumption that d2

di2
Ri(.)> 0, investment in cost reduction exhibit

economies of scale – the more patients a provider treats the first best solution shifts to lower costs.

This is consistent with empirical evidence in this industry (Freeman et al. 2020).

Clearly, for the HO to implement this solution they need to know the cost functions Rc(.),Rδ(.),

the disease incident rate (q) and the proportion of patients that require major treatment (h). Given

the complex and ever-changing nature of healthcare costs and medical technology, this is a tall

order. For the rest of the paper, we investigate payment schemes that do not place this unrealistic

informational burden on the HO.

We note that, when the costs of treating patients are ex ante homogeneous (i.e., if δ0 = 0), or

if it is impossible to lemon drop or upcode patients (i.e., if γ̄ = ᾱ= 0) then the model reduces to

one equivalent to Shleifer (1985) albeit with the difference that we assume that patient demand

is exogenous to prices. This is a simplification that is realistic in the context of national health

systems (e.g., Medicare in the US, NHS in the UK).

4. Cost-based yardstick competition

Since implementing the first best solution directly places an unreasonable informational burden on

the HO, in this section we will investigate the effectiveness of yardstick competition, a regulatory

scheme that has been implemented in practice as it requires information more readily available

to the HO (Shleifer 1985). Throughout this section we will not assume that the HO knows the

provider’s cost functions (Rc(.),Rδ(.)) or anything relating to the disease (e.g., q or h). Instead,

we will assume that the HO has access to patient-level ex post costing data, which are audited for

accuracy, and is able to accurately estimate the realized average cost of treating patients within a

DRG at least at the provider level. This is indeed the case in the UK (see NHS Digital (2021) where

the average cost data per DRG are publicly available) and in the US as described in CMS.gov

(2021a)). The regulator can use this cost information when setting provider payments.
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To make this more exact, we need to amend the notation by adding the subscript i on each

provider’s decision variable (costs ci and δi, dropping rate γi, and upcoding rate αi). We need to

distinguish two possible cases. In the first, the HO covers the costs of provider i by paying a single

fee per patient episode (pi) irrespective of the treatment provider (i.e., pi = pMi = pmi) – this is

equivalent to assuming that there is only one coarse DRG associated with the condition. In this

case, the price pi is set at the observed average cost per episode at all other providers, which is

given by6

c̄i :=
1

N − 1

∑
j 6=i

[
cj + δj

h(1− γj) + (1−h)αjβ

1−hγj

]
. (3)

In the second case, the HO breaks the condition into two distinct DRGs – one for the minor and

another for the major treatment and covers the providers’ costs by paying tow distinct fees, one for

each DRGs. In this case, the fee per patient episode are given by pMi = c̄Mi, pmi = c̄mi where c̄Mi

and c̄mi are the average costs of providing the major and minor treatments at all other providers

given by

c̄Mi :=
1

N − 1

∑
j 6=i

[
cj + δj

h(1− γj) + (1−h)αjβ

h(1− γj) + (1−h)αj

]
and c̄mi :=

1

N − 1

∑
j 6=i

cj, (4)

respectively. In both cases, the realized average investment cost incurred by all other providers is

given by:

R̄i :=
1

N − 1

∑
j 6=i

[Rc(cj) +Rδ(δj)] (5)

and the providers are paid a transfer payment equal to Ti = R̄i.

Note that, in order to implement the payments defined above, the HO must credibly commit to

setting payments equal to the average costs realized by the other service providers. Furthermore,

since providers are identical in our setting the average cost of other providers should be a good

proxy of the cost of provider i. If, however, providers are heterogeneous in observable and exogenous

dimensions (e.g., labor costs, teaching status, patient demographic characteristics) these costs could

be adjusted accordingly (see Shleifer (1985) for a theoretical treatment and CMS.gov (2021a) for

an description on how this is done in practice).

Given these terms, each provider decides on the cost-reduction investment (which determines

the costs ci and δi they will operate at) and whether they want to engage in any patient upcoding

αi or lemon dropping γi. Note that due to the relative benchmarking associated with yardstick

6 To help the reader understand this formula, note that the cost of providing the minor service to patients who are
not upcoded at a provider j is λq(1− h)(1−αj)cj , the cost of providing the major service to patients who are not
lemon dropped is λqh(1−γj)(cj + δj) and the cost of upcoding αj minor patients is λq(1−h)αj(cj +βδj). The total
volume of patients treated, is λq(1 − hγj). The sum of the first three expressions divided by the fourth gives the
summand.



Savva, Debo and Shumsky Cherry Picking and Upcoding in Hospital Reimbursement 15

competition, each provider’s payoff depends on the actions of other providers through the fees pi

and transfer payment Ti. Therefore, even though providers do not engage in direct competition, the

reimbursement mechanism described above forces them to engage in a simultaneous-move game.

We will characterize the equilibrium outcome of this game for different cases.

4.1. In the absence of upcoding and cherry picking.

We begin the analysis by examining the simpler case where patient upcoding is not possible (e.g.,

because patient needs are observable and verifiable by the HO thus alleviating any credence goods

concerns) and that providers are not able to select patients (e.g., because all hospitals have to treat

every patient). This case is equivalent to setting γ̄ = ᾱ= 0.

Proposition 1 Under yardstick competition, and irrespective of the number of DRGs used (one

or two), in the absence of patient cherry picking and upcoding (γ̄ = ᾱ = 0) there exists a unique

Nash equilibrium which is symmetric. All providers invest in cost reduction optimally (i.e., c∗, δ∗)

and they all break even.

The proposition above demonstrates the power of yardstick competition as first described by

Shleifer (1985). Without knowing the providers’ cost structure, just by observing the providers’

realized (average) costs, the HO can incentivize first-best investment in cost reduction. The relative

benchmark forces the providers to engage in indirect competition – no provider wants to operate

at a cost that is higher than average – and, as a result, the average cost of treatment is set at the

level the HO would have chosen. Furthermore, the HO can achieve this without surrendering rents

to providers – the prices and transfer payments are set so as to break even. More importantly, for

the purposes of this work, if cherry picking and upcoding are not possible, it does not matter if

the patient categories are finely or coarsely defined – having one or two DRGs in this case makes

no difference. As we shall see in the rest of this section, this is no longer the case if cherry picking

and/or upcoding are a possibility.

4.2. Patient cherry picking and category expansion.

To isolate the impact of cherry picking on yardstick competition, we proceed by assuming that

upcoding is not possible (ᾱ= 0) but providers may engage in patient cherry picking if it is profitable

to do so (i.e., they may choose to drop a proportion of high-complexity patients 0≤ γi ≤ γ̄). If the

HO implements yardstick competition without differentiating between major or minor treatments

(i.e., pays the providers on the basis of a single DRG, where the payment is given by pMi = pmi = c̄i

as defined in (3)), the providers engage in a simultaneous move game. Each provider’s strategy is

characterized by the tuple (γi, ci, δi).
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Before we characterize the equilibrium of this game, it is convenient to define the costs ce1, δe1

as the unique solutions to the equations

− d

dc
Rc(c) = λq(1−hγ̄), − d

dδ
Rδ(δ) = λqh(1− γ̄), (6)

respectively. These are the cost levels that the HO would have chosen for a provider who engages

fully in lemon dropping (i.e., given the provider’s decision to drop γ̄ high-complexity patients,

these cost levels maximize welfare). For this reason, we will refer to them as the cherry-picking-best

costs.

Note that the cherry-picking-best variable costs are higher than first-best variable costs (i.e.,

ce1 > c∗ and δe1 > δ∗) – this is a consequence of the fact that a provider that engages in lemon

dropping will treat fewer patients, and, because investment in cost reduction is characterized by

economies of scale, the provider will find it optimal to invest less compared to first best. Although

in theory it could be possible for the cost distortions associated with lemon dropping to be so

extreme that they render lemon dropping unprofitable (i.e., lemon dropping becomes unprofitable

if the average cost of a major treatment at cherry-picking-best costs is greater than the cost of a

major treatment at first-best cost, ce1 + δe1h 1−γ̄
1−hγ̄ ≥ c

∗+ δ∗), for ease of exposition we will make the

assumption that this is not the case. (We explore the implications of such extreme cherry-picking-

best costs in Appendix A2.2.)

Proposition 2 In the absence of upcoding (ᾱ = 0), if the HO implements yardstick competition

based on a single DRG and cherry-picking-best costs are not too extreme (i.e., ce1 + δe1h 1−γ̄
1−hγ̄ <

c∗+ δ∗), then there exists a unique Nash equilibrium which is symmetric. Providers drop as many

patients as possible and invest in cherry-picking-best costs (i.e., all providers choose (γ̄, ce1, δe1),

and ce1 > c∗, δe1 > δ∗). All providers break even.

In sharp contrast to the case in which cherry picking was not possible (see Proposition 2), when

providers have the ability to select patients based on their cost of treatment, the use of yardstick

competition payments with a single coarse DRG is problematic in the sense that it encourages

providers to drop high-complexity patients and underinvestment in cost reduction. The crux of the

problem is cost heterogeneity within a DRG. Providers are reimbursed with a single fee for treating

patients, irrespective of the patients’ needs. This single fee is designed to cover the average cost

of providing treatment and, as a result, a provider makes a profit when treating low-complexity

patients and a loss when treating high-complexity patients. This naturally generates strong cherry-

picking and lemon-dropping incentives. Furthermore, the best response of a provider who knows

that all other providers will drop the maximum number of patients possible is to also drop as
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many patients as possible – yardstick competition does nothing to ameliorate such an incentive.

Nevertheless, yardstick competition still provides incentives for cost reduction – given the providers’

cherry picking behavior the cost levels chosen by the providers (ce1, δe1) are those that the HO

would have chosen. Finally, in the symmetric equilibrium all providers receive a transfer payment

(equal to the investment cost of other providers) and, thus, they break even.

We next investigate whether expanding the number of DRGs, as has been done in practice,

can improve the equilibrium outcome. More specifically, the HO may use two distinct DRGs: one

associated with the major and another with the minor treatment according to pMi = c̄Mi, pmi = c̄mi

as defined in (4). In this case the DRG expansion is able to completely remove ex ante cost

heterogeneity within DRGs.

Before we characterize the equilibrium outcome of this competition, we define the following two

quantities:

v1 := λq(h(δe1 + ce1− δ∗− c∗) + (1−h)(ce1− c∗)) +Rc(c
e1) +Rδ(δ

e1)−Rc(c∗)−Rδ(δ∗)

u1 := λq(h(1− γ̄)(δ∗+ c∗− δe1− ce1) + (1−h)(c∗− ce1)) +Rc(c
∗) +Rδ(δ

∗)−Rc(ce1)−Rδ(δe1)

The quantity v1 is the profit of a provider who is paid according to yardstick competition based

on two DRGs and chooses (0, c∗, δ∗) when all other providers choose (γ̄, ce1, δe1) and vice versa for

the quantity u1. Note that v1 > 0 and u1 > 0 (see proof of Proposition 4).

Proposition 3 In the absence of upcoding (ᾱ = 0), if the HO implements yardstick competition

based on two DRGs, there exists a unique Nash equilibrium which is asymmetric: N − θ1 providers

drop as many patients as possible and choose cherry-picking-best costs (i.e., these providers choose

(γ̄, ce1, δe1) and ce1 > c∗, δe1 > δ∗) and θ1 providers do not drop patients and invest efficiently (first-

best) in cost reduction (i.e., these providers choose (0, c∗, δ∗)). The number of efficient providers

θ1 is the unique integer in the interval
[

(N−1)v1
v1+u1

, Nv1+u1
v1+u1

]
. All providers receive a positive rent and

total welfare is higher under two DRG compared to one DRG.

The proposition shows that expanding the number of DRGs associated with a condition has a

desirable effect. Compared to the equilibrium outcome when the HO used a single DRG, the sym-

metric equilibrium where all providers engage in lemon dropping and underinvest in cost reduction

(see Proposition 3) disappears. Nevertheless, and quite surprisingly, eliminating cost heterogene-

ity is not completely effective in eliminating lemon dropping or restoring first-best investment

incentives across the whole market – some providers will find it optimal to continue dropping

high-complexity patients and underinvest in cost reduction.

First, we will explain why no symmetric equilibrium exists despite the fact that all providers

are identical and are subject to a symmetric payment mechanism. The explanation is also a rough
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sketch of the proof of Proposition 4. In a symmetric equilibrium, had one existed, all providers

would have chosen the same costs (c, δ) and to drop the same proportion of high-complexity patients

(γ). In contrast to the case where the HO deployed one coarse DRG definition, in this case the

use of two DRGs eliminates cost heterogeneity within DRG and ensures that, in any symmetric

equilibrium, providers will be paid a higher fee for treating high-complexity patients compared

to low-complexity patients (i.e., pM > pm), and that these fees will cover the costs of providing

treatment for both types of patients (i.e., pm = c and pM = c+ δ). The transfer payment would

ensure that all providers break even. Note that, in any symmetric equilibrium candidate where

providers drop patients (i.e., γ > 0), there would be underinvestment in cost reduction compared to

first best (i.e., c > c∗ and δ > δ∗) – this is a consequence of the fact that investment in cost reduction

is characterized by economies of scale. A symmetric equilibrium where providers drop patients (i.e.,

γ > 0, c > c∗, and δ > δ∗) can be ruled out, as at least one provider will find it profitable to deviate.

Note that deviating to any action will not change the fees the provider is paid (these only depend

on the actions of other providers). Furthermore, since treating high-complexity patients is not loss

making (i.e., pM = c+ δ), if a deviating provider stopped dropping patients their profit would not

change. But this deviating provider is now treating more patients so they would also find it optimal

to invest more in cost reduction (to benefit from economies of scale) which would in turn increase

their profit. Therefore, the only symmetric equilibrium candidate that survives such deviation is

one where all providers take first-best actions (i.e., all providers choose γ = 0, c= c∗, and δ = δ∗).

Nevertheless, this is not an equilibrium outcome either because the best response of a provider that

knows that everyone else will not drop patients and invest in first-best cost reduction is to drop

some high-complexity patients and underinvest in cost reduction compared to first best. Again,

such a deviation will not change the fees the provider is paid (as these depend on the actions of

other providers only). Therefore, this provider, who will now operate at a higher cost than everyone

else, will experience a loss in treating any patient that they do not drop. Nevertheless, this loss is

more than offset by the lower investment cost. Since such a deviation is profitable, first-best actions

by all providers cannot be sustained as a symmetric equilibrium outcome and, more generally, no

symmetric equilibrium outcome exists.

Instead, what emerges is an asymmetric equilibrium where the market for providing care bifur-

cates into two distinct groups. The first group of ‘specialist’ providers drops the maximum number

of high-complexity patients and focuses in treating low-complexity patients. As a result of treating

fewer patients than first best, these providers underinvest in cost reduction compared to first best.

The second group of ‘generalist’ providers treat both low- and high-complexity patients (i.e., do not

drop any patients) and invest optimally in cost reduction. The source of profit for these two groups

are diametrically opposed. Since the generalists have a lower treatment cost than the specialists,
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and since the fee per patient is equal to the average cost across the market, generalists are making

a profit from treating patients and specialists are making a loss. This explains why specialists drop

patients and generalists do not. In contrast, since specialists invest less in cost reduction compared

to generalists, and the transfer payment is equal to the average investment cost across the market,

specialists experience an investment profit and generalists an investment loss. Naturally, the more

specialist providers (i.e., the smaller θ1) the higher the fee-per-patient will be and the lower the

transfer payment – this favours the generalists who treat patients profitably and harms the spe-

cialists who draw their profit from the transfer payments. As a result, the equilibrium number of

providers is reached when the profit of providers in each of the two groups are roughly equal – or

to be more precise, sufficiently close so that none of the providers find it optimal to deviate to the

other group.

Despite the fact that expanding the number of DRGs does not restore first-best outcomes, total

welfare is clearly higher if the HO uses two DRGs instead of one. This observation follows from

the fact that, in contrast to the case of one DRG where all providers engaged in lemon dropping

and underinvest in cost reduction, in this case only a fraction 1− θ1
N

does so.

Interestingly, Proposition 3 may provide an additional and complementary explanation for the

relatively recent emergence of specialized providers. Such providers are often found to cherry-

pick low-complexity patients (and actively avoid treating patients with comorbidities and other

complications that are expensive to treat) compared to generalist providers who treat everyone

(Shactman 2005, Greenwald et al. 2006, KC and Terwiesch 2011). While benefits of focus and

scope may certainly play a role in the emergence of such providers (e.g., as described in the case

of the Shouldice Hospital, a specialist provider of hernia operations, the focus on treating low-

complexity patients has allowed the hospital to implement process standardization that generates

cost efficiency and better patient outcomes (Heskett 2003), see also Freeman et al. (2020) for more

large-scale empirical evidence) the result above suggests that it may be the rational response of

the market to the increase in the number of DRGs associated with a given condition. Specialist

providers in our model do not need to have an advantage over generalist providers in order to

emerge as an equilibrium outcome. Furthermore, they generate a deadweight loss for the HO (both

because they underinvest in cost reduction and because dropped patients have to be treated at an

higher cost cout).

In summary, the preceding analysis only partially confirms the rationale behind the progressive

increase in the number of DRGs observed in multiple health systems over the previous years –

removing cost heterogeneity within DRGs improves incentives but is not a panacea.
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4.3. Cost-based yardstick competition with patient cherry picking and upcoding

We proceed by examining the case where, in addition to lemon dropping, providers may also engage

in patient upcoding (i.e., 0≤ γi ≤ γ̄, 0≤ αi ≤ ᾱ). Clearly, upcoding is meaningless in the case where

there is only one coarse DRG definition as there is no higher-paying DRG code to upcode to and

the results of Proposition 3 would apply. For this reason, we will focus on the case where the HO

uses two distinct DRGs. The presence of two DRGs, one of which is reimbursed at a higher rate,

should generate incentives for providers to upcode. What is less clear is how upcoding interacts

with cherry-picking incentives.

Each provider’s strategy is characterized by the 4-tuple (αi, γi, ci, δi). Before we present results,

we first define the costs δe2, δe3 as the unique solution to the equations

− d

dδ
Rδ(δ) = λq(h(1− γ̄) + (1−h)ᾱβ),− d

dδ
Rδ(δ) = λq(h+ (1−h)ᾱβ),

respectively. The costs (ce1, δe2) represent the costs levels that maximize welfare for a provider who

engages fully in both upcoding and lemon dropping. For this reason we will refer to these costs as

‘cherry-picking-upcoding-best’ (CPU-best) costs. In contrast, the ”upcoding-best” costs (c∗, δe3)

correspond to the cost levels that maximize welfare for a provider who engages only in upcoding.

It is important to note that, unlike lemon dropping, upcoding does not affect the cost of the minor

treatment. Therefore, the CPU-best cost ce1 is the same as the one defined earlier for the case

where no providers engaged in upcoding. Similarly, the upcoding-best cost c∗ is the same as the

first best case where no providers engage in either upcoding or lemon dropping. Finally, it is worth

mentioning that the welfare-maximizing cost of the major component of treatment in the presence

of upcoding is lower than the corresponding value in the absence of upcoding, i.e., δe3 < δ∗ and

δe2 < δe1.

With these definitions in place, we are in a position to examine the basic economics of upcoding

under yardstick competition. On the one hand, if a provider chooses to upcode a patient, they will

receive a fee equal to the average cost of treating major patients at other providers instead of a

fee equal to the average cost of treating minor patients at other providers. Therefore, upcoding

will generate an additional revenue which depends on how cost efficient other providers are – the

more other providers invest in cost reduction for the major treatment, the lower this additional

revenue will be. On the other hand, by upcoding a patient, a provider will incur the additional

cost associated with overtreatment (βδi). This additional cost depends on how cost efficient the

upcoding provider is – the less they invest in cost reduction the higher this additional cost will

be. It is conceivable that a provider may be so inefficient compared to other providers, so that the

net effect of upcoding would be negative. Such a provider would not engage in upcoding. Since
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we want to focus on upcoding, we would like to rule out such scenarios. The following inequality

ensures that this is the case

β <
hδe3

hδe1 + (δe1− δe3)(1−h)ᾱ
. (7)

Clearly, this is always satisfied if upcoding is primarily due to overbilling as opposed to overtreat-

ment (i.e., β is sufficiently close to 0). For the rest of this section we assume this inequality holds.

We also define the following two quantities:

v2 := λq

(
(h+ (1−h)ᾱ)

(h(1− γ̄) + (1−h)ᾱβ)

h(1− γ̄) + (1−h)ᾱ
δe2− (h+ (1−h)ᾱβ)δe3 + ce1− c∗

)
+ Rc(c

e1) +Rδ(δ
e2)−Rc(c∗)−Rδ(δe3),

u2 := λq

(
δe3(h+ (1−h)ᾱβ)

h(1− γ̄) + (1−h)ᾱ

h+ (1−h)ᾱ
− (h(1− γ̄) + (1−h)ᾱβ)δe2 + (1− γ̄h)(c∗− ce1)

)
+ Rc(c

∗) +Rδ(δ
e3)−Rc(ce1)−Rδ(δe2).

The quantity v2 is the profit of a provider who is paid according to yardstick competition with two

DRGs and chooses (ᾱ,0, c∗, δe3) when all other providers choose (ᾱ, γ̄, ce1, δe2) and vice versa for

the quantity u2. Note that in this case u2 > 0, but the sign of v2 will depend on model parameters

(see Proof of Proposition 4).

Finally, we will call the CPU-best costs as ‘comparable’ to upcoding-best costs if either of the

following two conditions hold:

• The upcoding-best cost is not less than the CPU-best costs (i.e., c∗ + δe3 > ce1 +

δe2 h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
).

• The profit of a provider who is paid according to yardstick competition based on two DRGs

and chooses (ᾱ,0, c∗, δe3) when all other providers choose (ᾱ, γ̄, ce1, δe2) is negative (i.e., v2 < 0).

Proposition 4 If both cherry picking and upcoding are possible, if the HO implements yardstick

competition based on two DRGs, then there exists a unique Nash equilibrium:

A. If CPU-best costs are comparable to upcoding-best costs, then the equilibrium is symmetric.

Providers upcode and lemon drop as many patients as possible and invest in upcoding-cherry-

picking-best costs (i.e., all providers choose (ᾱ, γ̄, ce1, δe2)). Furthermore, there is underinvestment

in cost reduction compared to first best for the minor treatment (ce1 > c∗) and if β < h
1−h γ̄ᾱ then

there is also underinvestment for the major treatment (δe2 > δ∗), otherwise there is overinvestment.

All providers break even.

B. Otherwise, the equilibrium is asymmetric: N−θ2 providers upcode and drop as many patients

as possible and choose cherry-picking-upcoding-best costs (i.e., these providers choose (ᾱ, γ̄, ce1, δe2))

and θ2 providers upcode as many patients as possible but do not engage in lemon dropping and

invest in upcoding best costs (i.e., these providers choose (ᾱ,0, c∗, δe3)). The number θ2 is the only

integer in the interval
[

(N−1)v2
u2+v2

, Nv2+u2
u2+v2

]
. All providers receive positive rents.
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The proposition above shows that upcoding is deeply problematic. Not surprisingly, if upcoding

is possible, providers will fully engage in it – yardstick competition does nothing to curtail the

providers’ incentives to upcode patients. What is more interesting is the finding that, in the presence

of upcoding, increasing the number of DRGs does little to restrain providers from lemon dropping.

We discuss why below.

Depending on model parameters, the structure of the equilibrium outcome in the presence of

upcoding (Proposition 4) is sometimes similar to that of the symmetric equilibrium of Proposition

2 (Case A), and sometimes similar to the asymmetric equilibrium of Proposition 3 (Case B).

In the first case (Case A), which emerges whenever the CPU-best costs are not too extreme, all

providers engage in upcoding low-complexity patients and lemon-droping high-complexity patients,

despite the fact that the HO uses two DRGs. This result occurs because upcoding essentially mixes

low-complexity patients into the high-cost major treatment category. As a result of this mixing, the

average cost of patients treated under the major DRG is reduced to a level below the cost of treating

high-complexity patients. And since under yardstick competition the payment is, in equilibrium,

equal to the average cost (see Equation (4)), the payment will not be enough to cover the cost

of treating high-complexity patients (i.e., since β < 1, for any γ ≥ 0 the payment for providing

the major treatment c+ δ h(1−γ)+(1−h)ᾱβ

h(1−γ)+(1−h)ᾱ
is lower than the cost of treating high-complexity patients

c+ δ). Therefore, dropping high-complexity patients is now profitable. In other words, upcoding

reintroduces cost heterogeneity within DRGs and, therefore, reinstates the incentive for patient

lemon dropping. Furthermore, the practice of lemon dropping and upcoding also distort providers’

investment incentives. For the minor component of the treatment the distortion is always towards

underinvestment – since in equilibrium hγ̄ patients are dropped there is a corresponding reduction

in the minor component of the treatment administered and, since investment is characterized by

economies of scale, there will be less investment in cost reduction. For the major component of the

treatment, lemon dropping and upcoding interact in a more complex manner. On the one hand, hγ̄

fewer major patients will be treated leading to a reduction in activity. On the other hand, (1−h)ᾱ

minor patients will receive a fraction β of the major treatment, leading to an increase in activity.

Naturally, if the aggregate impact is a decrease in major activity (i.e., hγ̄ > (1−h)ᾱβ) then there

will be underinvestment compared to first best and vice versa. Note that, all things being equal,

when upcoding is largely due to overbilling (i.e., β is sufficiently low) the equilibrium outcome will

be characterised by underinvestment.

In the second case (case B) of Proposition 4, where provider costs are inflated by lemon dropping

to a high degree (i.e., CPU-best costs are no longer comparable to upcoding-best costs), the

symmetric outcome described above is no longer sustained in equilibrium. The best response of

a provider that knows that all other providers will drop the maximum number of patients and
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underinvest in cost reduction will be to invest heavily in cost reduction so that they no longer make

a loss when treating patients requiring the major treatment. Instead the market bifurcates into

two groups of providers, as was the case when upcoding was not possible (see Proposition 3). All

providers will continue to upcode low-complexity patients as much as possible, and some (N − θ2)

will also continue to lemon-drop high-complexity patients while the rest (θ2) will find it optimal to

treat everyone and invest even more than first-best in cost reduction. Compared to the first group

of providers, the second group will make a profit out of treating patients, but this profit will be

largely eroded by the the inflated investment in cost reduction. As in the case of Proposition 3,

the number of providers in each group is set so that their profits are roughly equal.

In contrast to the case where upcoding is not possible, the results of Proposition 4 cast doubt

on whether it is useful to expand the number of DRGs in the presence of upcoding. It seems

that, in addition to the welfare loss associated with upcoding itself, upcoding reinstates providers’

lemon-dropping incentives that the DRG expansion was meant to eliminate. We examine this more

formally with the proposition below.

Proposition 5 If both cherry picking and upcoding are possible and if cherry-picking-best costs are

not too extreme (i.e., ce1 + δe1h 1−γ̄
1−hγ̄ < c

∗+ δ∗) and CPU-best-costs are comparable to upcoding-best

costs, then total welfare is (weakly) higher if the HO implements yardstick competition based on

one DRG instead of two DRGs.

Proposition 5 confirms that, in the presence of upcoding, the HO is better off with coarser DRG

definitions, at least for the case where the cost distortions associated with cherry picking and

upcoding are not too extreme (i.e., when the equilibria are symmetric). Although coarser DRG

definitions do nothing to curtail cherry picking, at least they do not incentivize upcoding.

5. Numerical Example

In this section we illustrate the inefficiencies associated with lemon dropping and upcoding using

a numerical example. We use publicly available data7 and we focus on the DRGs associated with

concussion, which were briefly mentioned in the introduction. In 2020 there were three DRGs

associated with concussion: 088, 089, and 090 with weights 1.3891, 0.9863, and 0.8483, and with

753, 1887, and 605 discharges, respectively. The last two DRGs (089 and 090) refer to patients with

at most one CC, and since they have relatively similar weights we will treat them as the minor

treatment, with a volume weighted DRG weight of 0.9469 and a total number of discharges of 2640.

DRG 088 refers to patients with multiple CCs and, therefore, we will treat it as the major treatment,

7 We use Tables 5 and 7 reported here https://www.medpac.gov/wp-content/uploads/2021/11/medpac_payment_

basics_21_hospital_final_sec.pdf

https://www.medpac.gov/wp-content/uploads/2021/11/medpac_payment_basics_21_hospital_final_sec.pdf
https://www.medpac.gov/wp-content/uploads/2021/11/medpac_payment_basics_21_hospital_final_sec.pdf
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with 753 discharges. Assuming no cherry picking or upcoding, this suggests that the proportion of

high complexity patients is h= 18.64%. There are 62.6 million Medicare enrolles, which suggests

that the rate of concussion per year is q= 0.0052%. There are N = 5,141 US hospitals which serve

on average λ = 62,000 patients each. Turning to costs, the Medicare base rate is $6,555, which

implies the average cost for the minor treatment is $6,197 and the additional cost for the major

treatment is $2,894. We take these to be the first best costs under yardstick competition and

assume that in the absence of yardstick competition the costs would have been m times higher (i.e.,

c0 = mc∗ and δ0 = mδ∗). The cost-multiplier m> 1 is a measure of the efficiency gains that can

be achieved via yardstick competition (e.g., when m= 1 there is no need to implement yardstick

competition). We parameterize the cost functions with Rc(c) = ζc(c− c0)2 and Rδ(δ) = ζδ(δ− δ0)2

as in Savva et al. (2019). This specification implies that ζc = λq
2(c0−c∗)

and ζδ = λqh
2(δ0−δ∗)

. In the base

case, we set γ̄ = 0.2, ᾱ= 0.2, β = 0.2, and m= 1.5, but we vary these parameters in the following

intervals γ̄ ∈ [0.01,0.4], α ∈ [0.01,0.25], β ∈ [0.01,0.22], m ∈ [1.2,4]. The range of parameters was

chosen to be as wide as possible around the base-case without violating the condition (7). For all

parameters, cherry-picking-best costs are not extreme (see Proposition 2).
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Figure 2 Numerical example: total welfare as a function of the patient maximum lemon-dropping rate γ̄ under different

scenarios (see figure legend). All other parameters are set to base value.

We normalize the utility from receiving treatment to zero (U0 = 0), therefore the total welfare

(per provider) depicted in Figures 2 and 3 is equivalent to costs. From Figure 2, it is clear that
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if lemon dropping is possible (i.e., if γ̄ > 0) using one DRG generates a welfare loss which is

increasing in γ̄. This loss is reduced but not eliminated if the HO uses two DRGs, but only in the

absence of upcoding (i.e., if ᾱ = 0). In this case, most providers are generalists (θ1 =86%) (i.e.,

treat everyone and invest optimally in cost reduction) while the rest are specialists (i.e., lemon

drop high-complexity patients and undervest in cost reduction). In the presence of upcoding, using

two DRGs is counterproductive – the resulting equilibrium is symmetric and all providers upcode

and, as a result, lemon drop as much as possible (i.e., θ2 = 0).
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Figure 3 Numerical example: total welfare as a function of the patient maximum upcoding rate (ᾱ), cost of upcoding

(β), and cost multiplier (m). All other parameters are set to base value.
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Figure 4 Numerical example: Number of efficient providers (θ2) as a function of the patient maximum upcoding rate

ᾱ. All other parameters are set to base value.

Figure 3 confirms that the welfare lost due to upcoding and lemon dropping increases as i)

the maximum proportion of patient upcoding (ᾱ) increases; ii) the cost of upcoding patients (β)

increases; iii) the cost multiplier (m) increases. Interestingly, the slope of the total welfare with

respect to ᾱ is larger when ᾱ is small and decreases at larger values of ᾱ. This happens because
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when ᾱ is small, the equilibrium is asymmetric – most providers are efficient generalists that

do not lemon drop patients and only a fraction of providers are innefficient specialists. As ᾱ

increases, welfare decreases for two reasons. First, the inefficient providers upcode more patients

which reduces welfare. Second, the equilibrium number of inefficient providers increases which also

reduces welfare. This is depicted in Figure 4, where we show the number of efficient generalist

providers (θ2) as a function of ᾱ. When ᾱ is sufficiently high (about 0.017 in this example), the

equilibrium becomes symmetric and all providers are inefficient. As a result, as ᾱ increases further

welfare reduces due to the first mechanism (i.e., inefficient providers become more inefficient) but

not the second (as all providers are inefficient).

6. Potential Solution: Yardstick based on input statistics

Clearly, expanding the number of DRGs so that costs become more homogeneous within a DRG

provides only a partial solution to the problem of cherry picking and only in the absence of upcoding.

Upcoding reintroduces heterogeneity by mixing low-complexity patients into the DRG for the

major treatment. This heterogeneity reduces the average cost and, in a yardstick competition

world, also reduces the payment associated with the major treatment to a level that is below the

cost of treating high-complexity patients. One obvious solution to this problem is to rigorously

audit reimbursement to correct for upcoding ex post and impose penalties to deter it ex ante. This

should also reduce (but not eliminate) cherry picking. A second solution is to move away from

reimbursement based on average cost benchmarks (yardstick competition). For example, as we

demonstrated in the Appendix A2.0, returning to a cost-of-service reimbursement model (similarly

to how CMS used to reimburse hospitals before 1983), where providers are paid according to their

reported costs, completely removes incentives for patient cherry picking and upcoding. However,

cost-of-service reimbursement also removes incentives for cost reduction.

A more promising solution that does not increase the HO’s informational burden is to implement

yardstick competition based on input statistics – that is, monitor the number of patients treated for

each DRG and link the providers’ reimbursement to these numbers. If providers are indeed identical

(or differ from each other in a number of observable features) then they should, on average, treat

a similar composition of majors and minors (perhaps after controlling for observable differences in

catchment size and patient composition). Any difference could be a sign of patient cherry picking

or upcoding and penalties could be placed to discourage such behavior. We note that yardstick

competition based on input statistics is similar in spirit to the HRRP implemented by CMS in 2012.

The observed readmission rate of each hospital in a number of monitored conditions is compared

to the expected readmission rate, which is estimated using data from all eligible US hospitals.

Hospitals whose readmission rate is higher than the expected rate are then penalized (Chen and

Savva 2018).
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Using this idea, we can show that there exists a relatively simple mechanism that eliminates the

problem of upcoding and could potentially also resolve the problem of cherry picking. In the case

of two DRGs, this can be achieved by augmenting the cost-based yardstick competition payments

(pmi = c̄mi, pMi = c̄Mi as defined in Equation (4)) with the following payment Si for provider i:

Si = κi(Mi− M̄i) +φi(mi− m̄i), (8)

where Mi and mi, are the number of major and minor patients treated by provider i, respectively,

and M̄i, m̄i is the average number of major and minor patients treated by all other providers,

respectively. In other words, the HO awards a bonus (penalty) to any provider that treats more

(fewer) patients than expected in each DRG based on a benchmark estimated using input statistics

from other providers. The parameters κi and φi need to be chosen such that κi ≥ 0 and φi− κi =

δ̄i− ε, where 0< ε< βδe3 and δ̄i := c̄Mi− c̄mi.

Before we characterize the equilibrium outcome of the proposed scheme, we define

κ̄ := min

{
ce1 + δe1− c∗− δ∗, u1

λqhγ̄

}
.

Proposition 6 Under the two-DRG payment scheme with input statistics described above, with

κi = κ for all i, there exists a unique Nash equilibrium:

• If κ> κ̄, the equilibrium is symmetric in which all providers choose first-best actions (i.e., all

providers choose (0,0, c∗, δ∗)).

• If 0 ≤ κ ≤ κ̄, the equilibrium is asymmetric. No provider engages in upcoding and N −

θ3 providers drop as many patients as possible and choose cherry-picking-best costs (i.e., these

providers choose (0, γ̄, ce1, δe1) and ce1 > c∗, δe1 > δ∗) and θ3 providers do not engage in cherry

picking and choose first-best costs (i.e., these providers choose (0,0, c∗, δ∗)). The number of efficient

providers is the only integer in the interval [ (N−1)(v1+λqhγ̄κ)

v1+u1
, Nv1+u1+(N−1)λqhγ̄κ

v1+u1
], satisfies θ3 ≥ θ1 and

is non-decreasing in κ.

Intuitively, the additional yardstick competition payment creates indirect competition between

providers in one additional dimension – the number of patients treated. More specifically, no

provider wants to treat fewer patients than average in each DRG, as doing so will trigger a penalty;

conversely, every provider wants to treat more patients than average in each DRG, as doing so

will trigger a bonus payment. By choosing the parameters (κi, φi) wisely, the HO can eliminate

upcoding and reduce if not completely eliminate cherry picking.

To understand how this works, and how high these parameters need to be set, let’s consider an

equilibrium outcome where no provider engages in upcoding. If a provider i decided to deviate

from this outcome by upcoding one low-complexity patient, then, on the negative side they would
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incur the additional cost associated with upcoding (βδi) and, since they would be providing one

fewer minor treatment than anyone else, they would incur a penalty φi. On the positive side, they

would receive the additional reimbursement associated with the major treatment (δ̄i = c̄Mi− c̄mi)

and, since they are providing one additional major treatment, they would also receive a bonus

κi. So, provided that φi > κi + δ̄i− βδi, then there is no incentive to upcode. The HO can always

ensure that this is the case by setting φi >κi + δ̄i− βδe3 (since in equilibrium δi ≥ δe3). Therefore

the scheme proposed above eliminates incentives to upcode.

As the discussion above makes clear, by choosing the parameter φi appropriately, the HO can

eliminate upcoding. Therefore, by setting κi = 0 for all i the regulator can achieve the results

of Proposition 4 (where upcoding was not possible), which are already better from a welfare

perspective than the results of Proposition 5 (where upcoding was possible). However, the regulator

can do even better by increasing κi. To see why consider that, for every patient dropped by provider

i, on the one hand, they would have to pay a penalty κi and would forgo a fee of pMi. On the other

hand, they would not incur the costs ci + δi. Therefore, increasing the parameter κi reduces the

value of dropping high-complexity patients. As a result, if κi = κ for all providers, then by increasing

κ from 0 to κ̄ for all providers, the asymmetric equilibrium will involve more providers who choose

not to lemon drop patients and invest in first-best cost reduction (i.e., θ3 is non-decreasing in κ).

When κ exceeds the threshold κ̄, all providers choose not to lemon drop and to implement first-best

investment in cost reduction and the equilibrium becomes symmetric.

It is important to note that the HO can eliminate upcoding (by setting the parameter φi appro-

priately) without using any information not already available – relative benchmarks ensure that

no provider wants to treat fewer minor patients than everyone else. Furthermore, in equilibrium,

the solution to the upcoding problem is free. No penalties or rewards would have to be paid –

the threat of such penalties (promise of rewards) is enough to discourage upcoding. In contrast,

to ensure that the penalty κi is set sufficiently high to eliminate lemon dropping, the HO would

need to be able to calculate κ̄, which in turn depends on the providers’ cost functions Rc(.) and

Rδ(.) that the HO does not have access to. Therefore, one should treat the parameter κi as a lever

which could be set by the HO at a tentative level – any κ> 0 improves the equilibrium outcome in

the sense that more providers choose not to lemon drop compared to setting κ= 0. Furthermore,

in the asymmetric equilibrium (i.e., if κ≤ κ̄) there will be penalties applied to inefficient providers

and bonuses paid to efficient providers, while in the symmetric equilibrium (i.e., if κ> κ̄) no such

penalties (or bonuses) will actually need to be paid.

A potential concern with this scheme is that it may incentivize providers to downcode patients

(i.e., provide the major treatment to high-complexity patients and then code them as having

received the minor treatment for reimbursement purposes). This would be the case if the difference
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φi − κi > δ̄i, as in this case the bonus associated with treating one additional minor patient is

greater than the penalty associated with treating one fewer major patient. Nevertheless, this can

be avoided by ensuring that φi − κi = δ̄i − ε where ε > 0. If in addition ε < βδe3, then upcoding

continues not to be optimal. We prove this more rigorously in Appendix A2.1.

A drawback of yardstick competition based on input statistics is that it adds complexity to

an already complex system. Particularly, if hospitals are serving catchment areas of different size

and with substantial case mix heterogeneity, taking the average number of patients treated in

other hospitals may not be a sensible benchmark. Nevertheless, if these differences are based

on observable and exogenous characteristics – for example due to differences in the catchment

areas in terms of demographics, size, or prevalence of complications and comorbidities – then

appropriate adjustments could be accommodated. More specifically, the benchmarks m̄i and M̄i

could be estimated using information about the number of patients of all providers as well as other

observable covariates that may influence the number of patients and the mixture between minor

and major cases that seek care in provider i. To the extent that these covariates successfully account

for heterogeneity and cannot be directly influenced by the provider (i.e., they are exogenous), then

the reimbursement scheme proposed in the section would provide the right incentives (see Shleifer

(1985) and Savva et al. (2019) for more formal arguments). We note that such adjustments are often

used in practice in different yardstick competition schemes to account for provider heterogeneity

– for example hospital benchmark costs used in IPPS are adjusted for local market conditions

(CMS.gov 2021a), the benchmark readmission rate used in HRRP is adjusted for patient risk

factors (CMS.gov 2021b).

7. Conclusions

The creation of DRGs is arguably one the most impactful innovations to have come out of an

Operations Research group since World War II – the use of DRGs, coupled with payments based

on relative benchmarks, has been credited with saving Medicare billions in the US (Fetter 1991)

and has been copied extensively in Europe and elsewhere (Busse et al. 2013). Over the past 30

years, as more data and better coding practices became available, the system has been refined to

increase the number of patient categories. At least in part, the motivation behind these successive

refinements has been a desire to reduce patient cherry picking incentives; with a larger number of

DRGs the cost heterogeneity within a DRG is reduced, leaving no ‘cherries’ for providers to pick

or ‘lemons’ to drop. This work casts doubt on the effectiveness of these successive expansions in

reducing cherry picking incentives. In particular, we show that increasing the number of DRGs

leads to the market bifurcating into two groups of providers – one that treats patients efficiently

(as proponents of increase in the number of DRGs intended) and another that drops expensive
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patients and underinvests in cost reduction. In addition, if providers engage in upcoding, where

low-complexity patients are coded as belonging to a more expensive (and therefore higher reward)

category, they effectively reintroduce cost heterogeneity within a DRG, thus exacerbating patient

cherry-picking incentives. Finally, this work has proposed a potential solution based on input

statistics. While the solution requires little additional information to that already collected, it will

certainly increase the complexity of the reimbursement system and, if implemented, should be

carefully monitored to ensure it does not induce any unintended adverse effects.

In an online Appendix we extend the main model to show that under realistic conditions down-

coding is not optimal and also to allow for i) continuous increasing costs of upcoding and cherry

picking; ii) the absence of a transfer payment; iii) asymmetric providers. The main conclusion con-

tinues to hold; expanding the number of DRGs to tackle the problem of cherry picking improves

welfare but is less effective in the presence of patient upcoding. Moreover, we show that yardstick

competition based on input statistics provides a solution in these cases as well.
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Appendix 1: Proofs of Propositions

Proof of Proposition 1: If there is no upcoding or cherry picking the profit of provider i is given

by

πi(ci, δi,0,0) = λq [h(pMi− δi− ci) + (1−h)(pmi− ci)]−Rc(ci)−Rδ(δi) +Ti

(see Equation (1)). Since the provider’s choice of ci and δi does not affect the reimbursement

received, and this is true irrespective of the number of DRGs used by the HO, the profit-maximizing

choice of the provider is given by

− d

dc
Rc(ci) = λq, − d

dδ
Rδ(δi) = λqh.

Any values of ci and δi that satisfy these 2×N conditions are equilibria. Naturally, if all providers

choose ci = c∗ and δi = δ∗ the conditions above are identical for all providers, and in fact reduce to

the first order conditions of the welfare-maximization problem. In addition, the transfer payment

ensures that all providers break even. Therefore, the first-best investment decisions constitute a

symmetric Nash equilibrium that achieves first-best investment in cost reduction. Furthermore,

since R′′c > 0 and R′′δ > 0, the symmetric equilibrium is unique and no asymmetric equilibrium

exists.�

Proof of Proposition 2: In the absence of upcoding (ᾱ= 0), under the yardstick competition

scheme with a single DRG, the profit of provider i is given by

πi(ci, δi,0, γi) = λq [(1−hγi)c̄i− δih(1− γi)− c(1−hγi)]−Rc(ci)−Rδ(δi) + R̄i,

where c̄i = 1
N−1

∑
j 6=i

[
cj + δj

h(1−γj)
1−hγj

]
and R̄i := 1

N−1

∑
j 6=i [Rc(cj) +Rδ(δj)] as defined in §4. The

derivatives of the profit function of provider i are given by:

∂

∂γi
πi = λqh(ci + δi− c̄i), (9)

∂

∂ci
πi = − d

dc
Rc(ci)−λq(1−hγi), (10)

∂

∂δi
πi = − d

dδ
Rδ(δi)−λqh(1− γi). (11)

In any equilibrium outcome the last two conditions will be equal to zero for all providers. Otherwise

the provider for whom one of these conditions is not zero could increase their profit by changing

ci or δi. Furthermore, the conditions above imply that any two providers with γi = γj will have

the same costs ci = cj and δi = δj. Furthermore, since R′′c > 0 and R′′δ > 0, if a provider has γi > γj

then ci > cj, δi > δj and the converse is also true – if a provider has costs such that δi > δj (or

ci > cj) then γi >γj. Furthermore, since 0≤ γi ≤ γ̄, from (10) and (11), provider costs must satisfy

c∗ ≤ ci ≤ ce1, δ∗ ≤ δi ≤ δe1.



Savva, Debo and Shumsky Cherry Picking and Upcoding in Hospital Reimbursement 35

Consider a symmetric equilibrium where all providers choose (γ, c, δ). In such a symmetric equi-

librium then ∂
∂γi
πi = λqhδ 1−h

1−hγ > 0. Therefore, γ = γ̄ which also implies that c= ce1, δ = δe1 would

constitute a candidate for a symmetric equilibrium. Furthermore, since R′′c > 0 and R′′δ > 0 the

symmetric equilibrium candidate is unique. We note that in this symmetric equilibrium candidate,

the transfer payment ensures that all providers break even (i.e., make a profit of zero). For this to

be an equilibrium outcome no provider must find it profitable to unilaterally deviate to a different

strategy. Consider the payoff of one provider (labeled j) that chooses to deviate to a different strat-

egy (γj, cj, δj) when all other providers choose (γ̄, ce1, δe1). The derivative of the profit function of

provider j with respect to γj is given by ∂
∂γi
πi = λqh(cj +δj−ce1−δe1 h(1−γ̄)

1−hγ̄ ). Since cj +δj ≥ c∗+δ∗

then if c∗ + δ∗ > ce1 + δe1 h(1−γ̄)

1−hγ̄ (i.e., if cherry-picking-best costs are not too extreme) which we

have assumed to be the case, then choosing γj < γ̄ cannot be a profitable deviation. Therefore,

(γ̄, ce1, δe1) is the unique symmetric equilibrium.

We will next investigate the existence of asymmetric equilibria. If an asymmetric equilibrium

exists, then at least one provider (labeled j) would have the highest (γj, cj, δj) (i.e., γj ≥ γi for all i

and the inequality is strict for at least one i, and similarly for cj, δj). Therefore, cj + δj > c̄j (recall

that c̄j is the average cost of all other providers and at least some of these providers will have

lower costs). From (9), this implies that γj = γ̄, which also implies that the costs cj = ce1, δj = δe1.

Therefore, in any asymmetric equilibrium, some providers (at least one) will choose (γ̄, ce1, δe1). The

rest of the providers will have γk < γ̄, ck < c
e1, δk < δ

e1. For this to be an equilibrium outcome, from

(9) it must be the case that ck+δk− c̄k ≤ 0. If it was not the case then ∂
∂γk

πk > 0, implying that the

provider’s profit could increase by increasing γk which is a contradiction. Consider a provider with

ck + δk − c̄k = 0. The profit of this provider can be written as [λq [−δkh− ck]−Rc(ck)−Rδ(δk)]−

λqγkh(c̄k−δk−ck)+C, where C is an exogenous constant. Note that the first term is independent of

γi and is maximized at c∗ and δ∗. Consider a deviation from (γk, ck, δk) to (0, c∗, δ∗). This deviation

does not affect the second term (it is zero under both strategies) and increases the first term (the

first term is maximized at c∗, δ∗). Therefore this deviation is profitable. This suggests than no

provider with costs ck + δk− c̄k = 0 can exist, which implies that any provider with cost other that

ce1, δe1 must satisfy ck + δk− c̄k < 0, which implies ∂
∂γk

πk < 0. Therefore, this provider must choose

(0, c∗, δ∗) (any other choice of γk > 0 cannot be an equilibrium outcome as provider k can increase

their profit by reducing γ). Therefore the condition ck + δk− c̄k < 0 becomes c∗+ δ∗ < c̄k, and note

that c̄k > ce1 + δe1 h(1−γ̄)

1−hγ̄ . In words, in any asymmetric equilibrium, providers will divide in two

groups, θ0 providers will not drop any patients and choose to operate at a cost as low as first best

(0, c∗, δ∗), and N −θ0 providers will drop the maximum number of patients and operate at a higher

cost compared to first best (γ̄, ce1, δe1).
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Consider one of the θ0 low-cost providers. The fee per patient treated by this provider will be given

by c̄k = θ0−1
N−1

(c∗+hδ∗) + N−θ0
N−1

(ce1 +h 1−γ̄
1−γ̄hδ

e1). The condition ck + δk− c̄k < 0 implies that c∗+ δ∗ <

ν(c∗ + hδ∗) + (1− ν)(ce1 + h 1−γ̄
1−γ̄hδ

e1), for ν = θ0−1
N−1

. This is a contradiction as c∗ + δ∗ > (c∗ + hδ∗)

and since we have assume that cherry-picking-best costs are not extreme, c∗+ δ∗ > ce1 +h 1−γ̄
1−γ̄hδ

e1.

Therefore, an asymmetric equilibrium cannot exist. �

Proof of Proposition 3: In the absence of upcoding (ᾱ= 0), under the yardstick competition

scheme with two DRGs, the profit of provider i is given by

πi(ci, δi,0, γi) = λq [h(1− γi)(c̄Mi− δi− ci) + (1−h)(c̄mi− ci)]−Rc(ci)−Rδ(δi) + R̄i,

where c̄Mi := 1
N−1

∑
j 6=i [cj + δj], c̄mi := 1

N−1

∑
j 6=i cj, and R̄i := 1

N−1

∑
j 6=i [Rc(cj) +Rδ(δj)] as defined

in §4. The derivatives of the profit function of provider i are given by:

∂

∂γi
πi = λqh(ci + δi− c̄Mi), (12)

∂

∂ci
πi = − d

dc
Rc(ci)−λq(1−hγi), (13)

∂

∂δi
πi = − d

dδ
Rδ(δi)−λqh(1− γi). (14)

In any equilibrium outcome, the last two conditions will be equal to zero for all providers. Otherwise

the provider for whom one of these conditions is not zero could increase their profit by changing ci

or δi. Furthermore, the conditions above imply that any two providers with γi = γj will have the

same costs ci = cj and δi = δj. Since R′′c > 0 and R′′δ > 0, if a provider has γi >γj then ci > cj, δi > δj

and the converse is also true – if a provider has costs such that δi > δj (or ci > cj) then γi > γj.

Furthermore, since 0≤ γi ≤ γ̄, from (13) and (14), provider costs satisfy c∗ ≤ ci ≤ ce1, δ∗ ≤ δi ≤ δe1.

Clearly, in any symmetric equilibrium ∂
∂γi
πi = 0. Therefore, any γi = γ where 0≤ γ ≤ γ̄ along with

ci = c and δi = δ such that − d
dc
Rc(c) = λq(1−hγ), − d

dδ
Rδ(δ) = λqh(1−γ) would be a candidate for a

symmetric equilibrium outcome. For any such γ, the values of c and δ are unique and are increasing

in γ (since R′′c > 0 and R′′δ > 0). Now consider any such symmetric equilibrium candidate where γ > 0

and consider the profit of provider i which will be given by πi = [−λq(hδi + ci)−Rc(ci)−Rδ(δi)]−

λqhγi(c̄Mi−δi− ci)+C, where C is an exogenous constant. Note that the first term is independent

of γi and is maximized at c∗ and δ∗. Consider a deviation from the symmetric equilibrium candidate

(γ, c, δ) to (0, c∗, δ∗). This deviation will be profitable for provider i as it would increase the first term

and leave the second term unaffected (it is zero under both strategies). Therefore, γ > 0 cannot be a

symmetric equilibrium outcome. Therefore, the only symmetric equilibrium candidate that survives

is (0, c∗, δ∗). For this to be an equilibrium outcome, no provider must find it profitable to unilaterally

deviate to a different strategy. Consider the payoff of one provider (labeled j) that chooses to
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deviate to a different strategy (γj, cj, δj) when all other providers choose (0, c∗, δ∗). The derivative

of the profit function of provider j with respect to γj is given by ∂
∂γj
πj = λqh(cj + δj− c∗− δ∗)> 0.

Therefore, this provider can improve their profit by deviating to a strategy where they drop some

patients (i.e., γj > 0) and invest less in cost reduction, (i.e., cj > c
∗, δj > δ

∗). Therefore no symmetric

equilibrium outcome can exist.

We will now turn to asymmetric equilibria. In any asymmetric equilibrium, at least one provider

(labeled j) would have the highest (γj, cj, δj) (i.e., γj ≥ γi for all i and the inequality is strict for

at least one i, and similarly for cj, δj). Therefore, cj + δj > c̄Mj (recall that c̄Mj is the average

cost of all other providers and at least some of these providers will have lower costs). From (12),

this implies that γj = γ̄, which also implies that the costs cj = ce1, δj = δe1. Conversely, at least

one provider (labeled k) will have the lowest ck, δk, γk (i.e., ck ≤ ci for all i and the inequality is

strict for at least one i, and similarly for δk, γk). Therefore, ck + δk < c̄Mk (recall that c̄Mk is the

average cost of all other providers and at least some of these providers will have higher costs).

This implies that this provider will choose γk = 0 and ck = c∗, δk = δ∗. Furthermore, consider a

provider with costs other than c∗ or ce1, which we label as provider s. This provider must have

costs cs and δs such that cs+ δs = c̄Ms and a corresponding γs. Consider the profit of this provider,

which can be written as πs = [−λq(hδs + cs)−Rc(cs)−Rδ(δs)]− λqhγs(c̄Ms − δs − cs) +C, where

C is an exogenous constant. Note that the first term is independent of γs and is maximized at

cs = c∗ and δs = δ∗. Consider a deviation from (γs, cs, δs) to (0, c∗, δ∗). This deviation does not

affect the second term (it is zero under both strategies) and increases the first term. Therefore this

deviation is profitable. This suggests than no provider with costs γs, cs, δs can exist. In words, in

any asymmetric equilibrium, providers will divide in two groups: θ1 providers will not drop any

patients and choose to operate at a cost as low as first best (0, c∗, δ∗) and N−θ1 providers will drop

the maximum number of patients and operate at a higher cost compared to first best (γ̄, ce1, δe1).

For such an asymmetric equilibrium to exist, the profit of the θ1 low-cost providers and the profit

of the N−θ1 high-cost providers need to be non-negative. Consider one of the θ1 low-cost providers.

The fee for providing the major treatment is given by c̄Mk = N−θ1
N−1

(δe1 + ce1) + θ1−1
N−1

(δ∗ + c∗), the

minor treatment is given by c̄mk = N−θ1
N−1

ce1 + θ1−1
N−1

(c∗), and the transfer payment they will receive

is given by T̄k = N−θ1
N−1

(Rδ(δ
e1) +Rc(c

e1)) + θ1−1
N−1

(Rδ(δ
∗) +Rc(c

∗)). After some algebra, the profit of

the efficient provider can be written as N−θ1
N−1

v1, where

v1 := λq(h(δe1 + ce1− δ∗− c∗) + (1−h)(ce1− c∗)) +Rc(c
e1) +Rδ(δ

e1)−Rc(c∗)−Rδ(δ∗).

Note that the expression −λq(h(δ + c) + (1 − h)c) − Rc(c) − Rδ(δ)) is maximized at c = c∗ and

δ= δ∗, therefore v1 > 0. Similarly, the profit of one of the N −θ1 high cost providers can be written

as θ1
N−1

u1, where

u1 := λq(h(1− γ̄)(δ∗+ c∗− δe1− ce1) + (1−h)(c∗− ce1)) +Rc(c
∗) +Rδ(δ

∗)−Rc(ce1)−Rδ(δe1).
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Note that the expression −λq(h(1− γ̄)(δ+ c) + (1− h)c)−Rc(c)−Rδ(δ)) is maximized at c= ce1

and δ= δe1, therefore u1 > 0.

We will next determine the value of θ1. For this to be an equilibrium outcome, it must be the

case that the profit one of the low-cost providers makes by being low cost is greater than the profit

they would make if they deviated to being a high-cost provider. After some algebra, this condition

can be written as
N − θ1

N − 1
v1 ≥

θ1− 1

N − 1
u1.

Conversely, the profit of one of the high-cost providers must be greater than the payoff they would

make if they deviated to being an low-cost provider. After some algebra, this condition reduces to

θ1

N − 1
u1 ≥

N − θ1− 1

N − 1
v1.

Together the last two inequalities imply that the number of efficient providers must satisfy

(N − 1)v1

v1 +u1

≤ θ1 ≤
Nv1 +u1

v1 +u1

.

Note that this interval contains exactly 1 integer as the difference Nv1+u1
v1+u1

− (N−1)v1
v1+u1

= 1. Further-

more, since Nv1+u1
v1+u1

<N , this integer is always less than N . �

Proof of Proposition 4: Under the yardstick competition scheme with two DRGs, the profit

of provider i is given by

πi(ci, δi, αi, γi) = λq{[h(1− γi) + (1−h)αi]c̄Mi + (1−h)(1−αi)c̄mi

− [(h(1− γi) + (1−h)αiβ)δi + (1−hγi)ci]}−Rc(ci)−Rδ(δi) + R̄i,

where c̄Mi := 1
N−1

∑
j 6=i

[
cj + δj

h(1−γj)+(1−h)αjβ

h(1−γj)+(1−h)αj

]
, c̄mi := 1

N−1

∑
j 6=i cj, and R̄i :=

1
N−1

∑
j 6=i [Rc(cj) +Rδ(δj)] as defined in §4. The derivatives of the profit function of provider i are

given by:

∂

∂αi
πi = λq(1−h)(c̄Mi− c̄mi−βδi), (15)

∂

∂γi
πi = λqh(ci + δi− c̄Mi), (16)

∂

∂ci
πi = − d

dc
Rc(ci)−λq(1−hγi), (17)

∂

∂δi
πi = − d

dδ
Rδ(δi)−λq[h(1− γi) + (1−h)αiβ]. (18)

In any equilibrium outcome, the last two conditions will be equal to zero for all providers. Otherwise

the provider for whom one of these conditions is not zero could increase their profit by changing

ci or δi. Furthermore, since 0 ≤ γi ≤ γ̄, 0 ≤ αi ≤ ᾱ, and R′′c > 0 and R′′δ > 0, from (17) and (18)
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provider costs satisfy c∗ ≤ ci ≤ ce1, δe3 ≤ δi ≤ δe1, where δe3 is the unique solution to − d
dδ
Rδ(δi) =

λq[h+ (1−h)ᾱβ].

Turning to (15), this condition will be positive for provider i if 1
N−1

∑
j 6=i

[
δj
h(1−γj)+(1−h)αjβ

h(1−γj)+(1−h)αj

]
>

βδi. Note that the LHS is minimized when all providers other than i choose γj = 0, αj = ᾱ, δj = δe3.

The RHS is maximized if provider i chooses δi = δe1. Therefore, a sufficient condition for (15) to

be positive for all providers i is

β <
hδe3

hδe1 + (δe1− δe3)(1−h)ᾱ
, (19)

which we have assumed holds. Therefore, in any equilibrium outcome, all providers will choose

αi = ᾱ. Furthermore, (17) and (18) imply that any two providers with γi = γj will have the same

costs ci = cj and δi = δj. Since R′′c > 0 and R′′δ > 0, if a provider has γi >γj then ci > cj, δi > δj and

the converse is also true – if a provider has costs such that δi > δj (or ci > cj) then γi >γj.

Consider a symmetric equilibrium such that αi = α, γi = γ, ci = c and δi = δ for all i. In any

symmetric equilibrium c̄Mi − c̄mi − βδ = δ h(1−γ)(1−β)

h(1−γ)+(1−h)α
> 0, which implies ∂

∂αi
πi > 0. Therefore, in

any symmetric equilibrium αi = ᾱ for all i. This, implies that c+ δ− c̄Mi = (1−h)(1−β)δᾱ

h(1−γ)+(1−h)ᾱ
> 0, which

also implies that ∂
∂γi
πi > 0. Therefore in any symmetric equilibrium γ = γ̄ for all i. The values of

c= ce1 and δ= δe2 are the solution to − d
dc
Rc(c) = λq(1−hγ̄), − d

dδ
Rδ(δ) = λq[h(1− γ̄)+(1−h)ᾱβ]),

and they are unique (since R′′c > 0 and R′′δ > 0). In addition, the transfer payment ensures that

all providers break even. Furthermore, since (1− hγ̄)< 1, this implies that ce1 > c∗. If h(1− γ̄) +

(1− h)ᾱβ < h then δe2 > δ∗, otherwise the opposite holds. For this to be an equilibrium outcome,

no provider must find it profitable to unilaterally deviate to a different strategy. Consider the

payoff of one provider (labeled j) that chooses to deviate to a different strategy (αj, γj, cj, δj) when

all other providers choose (ᾱ, γ̄, ce1, δe2). Due to condition (7), it is not profitable to choose any

αj < ᾱ. The derivative of the profit function of provider j with respect to γj is given by ∂
∂γj
πj =

λqh(cj +δj−ce1−δe2 h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
). Since cj +δj ≥ c∗+δe3 then if c∗+δe3 ≥ ce1 +δe2 h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ

then choosing γj < γ̄ cannot be a profitable deviation. Therefore, (ᾱ, γ̄, ce1, δe2) will constitute a

symmetric equilibrium. If however, c∗ + δe3 ≤ ce1 + δe2 h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
then it may be profitable to

deviate to (ᾱ,0, c∗, δe3). For this to be the case, it must be the case that the profit of the provider

who deviates to (ᾱ,0, c∗, δe3) when all other providers choose (ᾱ, γ̄, ce1, δe2) is non-negative (as the

profit associated with not deviating is zero). This condition can be written as v2 ≥ 0, where

v2 := λq

(
(h+ (1−h)ᾱ)

(h(1− γ̄) + (1−h)ᾱβ)

h(1− γ̄) + (1−h)ᾱ
δe2− (h+ (1−h)ᾱβ)δe3 + ce1− c∗

)
+ Rc(c

e1) +Rδ(δ
e2)−Rc(c∗)−Rδ(δe3).

We will then consider asymmetric equilibria. Due to condition (7), in any asymmetric equilibrium,

all providers will choose αj = ᾱ. At least one provider (labeled j) would have the highest (γj, cj, δj)
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(i.e., γj ≥ γi for all i and the inequality is strict for at least one i, and similarly for cj, δj). Therefore,

cj + δj > c̄Mj (recall that c̄Mj is the average cost of all other providers and at least some of these

providers will have lower costs). From (16), this implies that γj = γ̄, which also implies that the

costs cj = ce1, δj = δe2. Conversely, at least one provider (labeled k) will have the lowest (γk, ck, δk)

(i.e., γk ≤ γi for all i and the inequality is strict for at least one i, and similarly for ck, δk). Therefore,

ck + δk < c̄Mk (recall that c̄Mk is the average cost of all other providers and at least some of these

providers will have higher costs). From (16), this implies that γk = 0 and ck = c∗, δk = δe3. For this

to be possible, it must be the case that c∗+ δe3 < ce1 + δe2 h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
.

Furthermore, consider a provider with γs other than 0 or γ̄, which we label as provider s.

Due to condition (7), this provider will still have αs = ᾱ, and from (16) must have costs cs and

δs such that cs + δs = c̄Ms. Consider the profit of this provider, which can be written as πs =

[−λq(hδs + cs)−Rc(cs)−Rδ(δs)]− λqhγs(c̄Ms− δs− cs) +C, where C is a constant that does not

depend on (γs, cs, δs). Note that the first term is independent of γs and is maximized at cs = c∗ and

δs = δ∗. Consider a deviation from (γs, cs, δs) to (0, c∗, δ∗). This deviation does not affect the second

term (it is zero under both strategies) and increases the first term. Therefore this deviation is

profitable. This suggests than no provider with costs γs, cs, δs can exist. In words, in any asymmetric

equilibrium, providers will divide in two groups: θ2 providers will upcode the maximum number

of patients, will not drop any patients and choose to operate at relatively low costs (ᾱ,0, c∗, δe3)

and N − θ2 providers that will upcode the maximum number of patients, will drop the maximum

number of patients and operate at a higher cost (ᾱ, γ̄, ce1, δe2).

For such an asymmetric equilibrium to exist, the profit of the θ2 low-cost providers and the profit

of the N−θ2 high-cost providers need to be non-negative. Consider one of the θ2 low-cost providers.

The fee they are paid for providing the major treatment is given by c̄Mk = N−θ2
N−1

(δe2 h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
+

ce1) + θ2−1
N−1

(δe3 h+(1−h)ᾱβ

h+(1−h)ᾱ
+ c∗), the fee for the minor treatment is given by c̄mk = N−θ2

N−1
ce1 + θ2−1

N−1
c∗,

and the transfer payment they will receive is given by T̄k = N−θ2
N−1

(Rδ(δ
e2)+Rc(c

e1))+ θ2−1
N−1

(Rδ(δ
e3)+

Rc(c
∗)). The profit of this provider will be given by N−θ2

N−1
v2. Similar algebra shows that the profit

of one of the high-cost providers will be given by θ2
N−θ2

u2, where

u2 := λq(δe3(h+ (1−h)ᾱβ)
h(1− γ̄) + (1−h)ᾱ

h+ (1−h)ᾱ
− (h(1− γ̄) + (1−h)ᾱβ)δe2 + (1− γ̄h)(c∗− ce1))

+ Rc(c
∗) +Rδ(δ

e3)−Rc(ce1)−Rδ(δe2).

Therefore, for the asymmetric equilibrium to exist, it must be the case that v2 ≥ 0 and u2 ≥ 0.

Note that u2 > 0. To see this, note that u2 can be written as

u2 =
[
−λq

(
(1− γ̄h)ce1 + ((1− γ̄)h+ (1−h)ᾱβ)δe2

)
−Rc(ce1)−Rδ(δe2)

]
+
[
λq
(
(1− γ̄h)c∗+ ((1− γ̄)h+ (1−h)ᾱβ)δe3

)
−Rc(c∗)−Rδ(δe3)

]
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+ h(1−h)
ᾱγ̄(1−β)

h+ (1−h)ᾱ
δ∗.

Note that the expression [−λq [(1− γ̄h)c+ ((1− γ̄)h+ (1−h)ᾱβ)δ]−Rc(c)−Rδ(δ)] is maximized

at ce1, δe2, therefore the sum of the terms in the first two brackets is positive. The third term is

also positive, which implies that u2 > 0. The sign of v2 will depend on model parameters.

We next determine the value of θ2. If one of the θ2 low-cost providers was to deviate and become

a high-cost provider then their profit would be given by θ2−1
N−1

u2 and if one of the N − θ2 high-cost

providers was to deviate and become a low-cost provider it would be N−θ2−1
N−1

v2. In the symmetric

equilibrium it must be the case that these deviations are not profitable. Therefore, N−θ2
N−1

v2 >
θ2−1
N−1

u2

and θ2
N−1

u2 ≥ N−θ2−1
N−1

v2. These conditions imply that θ2 satisfies (N−1)v2
u2+v2

≤ θ2 ≤ Nv2+u2
u2+v2

. If v2 ≥ 0,

this interval contains exactly 1 integer as the difference between the RHS and the LHS of the

inequalities is Nv2+u2
u2+v2

− (N−1)v2
u2+v2

= 1 and this integer is always less than N . �

Proof of Proposition 5: Under one DRG, if upcoding is possible (i.e., ᾱ > 0) the derivative of

the profit of any provider with respect to αi is given by ∂
∂αi
πi =−λq(1− h)βδi < 0. Therefore, in

equilibrium no provider would choose to upcode and the equilibrium outcome is identical to that

presented in Proposition 3 – namely, given the condition ce1 + δe1h 1−γ̄
1−hγ̄ < c∗ + δ∗ the symmetric

equilibrium is characterized by all providers choosing (0, γ̄, ce1, δe1). Note that this is equivalent to

the solution that maximizes total welfare (i.e., maximizes the objective of the HO as defined in

(2)) under the constraint γ = γ̄. Under two DRGs, the equilibrium outcome is given by Proposition

5. Namely, given that CPU-best costs are comparable to upcoding best costs, the equilibrium is

symmetric and characterized by all providers choosing (ᾱ, γ̄, ce1, δe2). Note that this is the solution

that maximizes total welfare (i.e., maximizes the objective of the HO as defined in (2)) under the

constraints γ = γ̄ and α = ᾱ. Note that the feasible region of this welfare-maximization problem

is a subset of the feasible region of the pervious welfare-maximization problem. Therefore welfare

under two-DRG symmetric equilibrium cannot be greater than the welfare under the one-DRG

equilibrium.�

Proof of Proposition 6: Under this yardstick competition scheme, the profit of provider i is

given by

πi(ci, δi, αi, γi) = λq ([h(1− γi) + (1−h)αi]c̄Mi + (1−h)(1−αi)c̄mi

− [(h(1− γi) + (1−h)αiβ)δi + (1−hγi)ci] )

− Rc(c)−Rδ(δ) + R̄i +κ(Mi− M̄i) +φi(mi− m̄i),

where Mi = λq(h(1−γi)+(1−h)αi), mi = λq(1−h)(1−αi), κ≥ 0, φi−κ> δ̄i−βδe3, δ̄i := c̄Mi− c̄mi,

c̄Mi = 1
N−1

∑
j 6=i

[
cj + δj

h(1−γj)+(1−h)αjβ

h(1−γj)+(1−h)αj

]
, c̄mi = 1

N−1

∑
j 6=i cj, and R̄i = 1

N−1

∑
j 6=i [Rc(cj) +Rδ(δj)].
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The derivatives of the profit function of provider i are given by:

∂

∂αi
πi = λq(1−h)(−βδi + δ̄i +κ−φi), (20)

∂

∂γi
πi = λqh(ci + δi− c̄Mi−κ), (21)

∂

∂ci
πi = − d

dc
Rc(ci)−λq(1−hγi), (22)

∂

∂δi
πi = − d

dδ
Rδ(δi)−λq[h(1− γi) + (1−h)αiβ]. (23)

In any equilibrium outcome, the expressions (22) and (23) have to be equal to zero for all

providers. Otherwise the provider for whom one of these is not zero could increase their profit by

changing ci or δi. Furthermore, since 0≤ γi ≤ γ̄ and 0≤ αi ≤ ᾱ, from (22) and (23) provider costs

satisfy c∗ ≤ ci ≤ ce1, δe3 ≤ δi ≤ δe1. Turning to (20), since φi − κ > δ̄i − βδe3, in any equilibrium

∂
∂αi
πi < 0 which implies that αi = 0 for all i. This implies that any two providers with γi = γj will

have the same costs ci = cj and δi = δj and since R′′c > 0 and R′′δ > 0, if a provider has γi > γj

then ci > cj, δi > δj and the converse is also true – if a provider has costs such that δi > δj (or

ci > cj) then γi >γj. Furthermore, since αi = 0 for all i we can use (23) to narrow down the range

of possible costs δi to δ∗ ≤ δi ≤ δe1.

In any symmetric equilibrium ∂
∂γi
πi = −κ < 0, therefore γi = 0, and δi = δ∗ and ci = c∗ for all

i. Therefore, the strategy (0,0, c∗, δ∗) is the only candidate for a symmetric equilibrium outcome.

For this to be an equilibrium outcome no provider must find it profitable to unilaterally deviate

to a different strategy. Consider the payoff of one provider (labeled j) that chooses to deviate to

a different strategy (0, γj, cj, δj) when all other providers choose (0,0, c∗, δ∗). The derivative of the

profit function of provider j with respect to γj is given by ∂
∂γj
πj = λqh(cj + δj − c∗ − δ∗ − κ). If

κ > ce1 + δe1 − c∗ − δ∗ then no profitable deviation can exist, therefore the strategy (0,0, c∗, δ∗) is

the unique symmetric equilibrium outcome. Otherwise, provider j may find it profitable to deviate

to (0, γ̄, ce1, δe1). In this case, the profit of provider j needs to be non-negative

u4 := λq(h(1− γ̄)(δ∗+ c∗− δe1− ce1) + (1−h)(c∗− ce1)) +Rc(c
∗) +Rδ(δ

∗)−Rc(ce1)−Rδ(δe1)−λqhγ̄κ

= u1−λqhγ̄κ.

Note that u1 > 0 (see Proof of Proposition 4). Therefore, if κ<min{ce1 + δe1− c∗− δ∗, u1
λqhγ̄
} then

a profitable deviation will exist and no symmetric equilibrium outcome can exist.

We now turn to asymmetric equilibria. As shown above, in any asymmetric equilibrium αi = 0 for

all i. Therefore, if κ= 0 for all i, then the problem of finding asymmetric equilibria reduces to that

of finding equilibria in the case where there is cherry picking but not upcoding (see Proposition 4).

We will consider the case where κ> 0. In this case, the provider with the highest γj will also be the
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provider with the highest costs cj and δj (see similar argument given in the Proof of Proposition

4). Consider one such provider. From (21), ∂
∂γj
πj = λqh(cj + δj− c̄Mj−κj). Note that cj + δj > c̄Mj,

nevertheless, if κ≥ ce1 +δe1−c∗−δ∗ then ∂
∂γj
πj < 0, suggesting that lowering γj would increase the

provider’s profit. Therefore, for sufficiently high κ there cannot exist a provider with higher rate γi

or higher costs than other providers, suggesting that an asymmetric equilibrium does not exist. If

κ< ce1 +δe1−c∗−δ∗, then γj = γ̄, which also implies that the costs cj = ce1, δj = δe1. Conversely, at

least one provider (labeled k) will have the lowest ck, δk, γk (i.e., ck ≤ ci for all i and the inequality

is strict for at least one i, and similarly for δk, γk). Therefore, ck + δk < c̄Mk (recall that c̄Mk is the

average cost of all other providers and at least some of these providers will have higher costs). This

implies that this provider will choose γk = 0 and ck = c∗, δk = δ∗. Furthermore, consider a provider

with costs other than c∗ or ce1, which we label as provider s. This provider must have costs cs

and δs such that cs + δs = c̄Ms + κ and a corresponding γs. Consider the profit of this provider,

which can be written as πs = [−λq(hδs + cs)−Rc(cs)−Rδ(δs)]−λqhγs(c̄Ms−δs−cs+κ)+C, where

C is an exogenous constant. Note that the first term is independent of γs and is maximized at

cs = c∗ and δs = δ∗. Consider a deviation from (0, γs, cs, δs) to (0,0, c∗, δ∗). This deviation does not

affect the second term (it is zero under both strategies) and increases the first term. Therefore

this deviation is profitable. This suggests than no provider with costs γs, cs, δs can exist. In words,

in any asymmetric equilibrium providers will divide in two groups: θ3 providers will not drop any

patients and choose to operate at a cost as low as first best (0,0, c∗, δ∗) and N − θ3 providers

will drop the maximum number of patients and operate at a higher cost compared to first best

(0, γ̄, ce1, δe1).

For such an asymmetric equilibrium to exist, the profit of the θ3 low-cost providers and the

profit of the N − θ3 high-cost providers need to be non-negative. Consider one of the θ3 low-cost

providers. The fee for providing the major treatment is given by c̄Mk = N−θ1
N−1

(δe1 + ce1) + θ1−1
N−1

(δ∗+

c∗), the minor treatment is given by c̄mk = N−θ1
N−1

ce1 + θ1−1
N−1

(c∗), the number of major treatments

provided by others M̄i = λq
(
N−θ1
N−1

h(1− γ̄) + θ1−1
N−1

h
)
, the number of minor treatments provided

by others m̄i = λq
(
N−θ1
N−1

(1−hγ̄) + θ1−1
N−1

)
, and the transfer payment they will receive is given by

T̄k = N−θ1
N−1

(Rδ(δ
e1)+Rc(c

e1))+ θ1−1
N−1

(Rδ(δ
∗)+Rc(c

∗)). After some algebra, the profit of the low-cost

provider can be written as N−θ1
N−1

v4, where

v4 := λq(h(δe1 + ce1− δ∗− c∗) + (1−h)(ce1− c∗) +hγ̄κ) +Rc(c
e1) +Rδ(δ

e1)−Rc(c∗)−Rδ(δ∗)

= v1 +λqhγ̄κ.

Note that v1 > 0 (see Proof of Proposition 4), therefore, v4 > 0. Similarly, the profit of one of the

N − θ3 high-cost providers can be written as θ3
N−1

u4, where u4 := u1−λqhγ̄κ. Note that u1 > 0 (see
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Proof of Proposition 4). Therefore, for the asymmetric equilibrium to exist, it must be the case

that κ< u1
λqhγ̄

.

We will next determine the value of θ3. For this to be an equilibrium outcome the profit one of

the low-cost providers makes by being low cost must be greater than the profit they would make

if they deviated to being a high-cost provider. After some algebra this condition can be written as

N − θ3

N − 1
v4 ≥

θ3− 1

N − 1
u4.

Conversely, the profit of one of the high-cost providers must be greater than the payoff they would

make if they deviated to being a low-cost provider. After some algebra this condition reduces to

θ3

N − 1
u4 ≥

N − θ3− 1

N − 1
v4.

Together the last two inequalities imply that the number of low-cost providers must satisfy

(N − 1)(v1 +λqhγ̄κ)

v1 +u1

≤ θ3 ≤
Nv1 +u1 + (N − 1)λqhγ̄κ

v1 +u1

.

Note that this interval contains exactly 1 integer as the difference between the RHS and the LHS

of the inequalities is 1. Furthermore, θ3 is non-decreasing in κ. Since θ3 = θ1 when κ= 0, it follows

that θ3 ≥ θ1. �

Appendix 2: Cherry picking and Upcoding under Alternative
Assumptions

In this Appendix we examine how patient cherry picking and upcoding affect the DRG design

problem under cost-of-service regulation and under alternative assumptions.

A2.0. Cost of service regulation

Under cost-of-service regulation, the HO observes the chosen costs of the providers and sets reim-

bursement on the basis of these observed costs. This is similar to how hospitals used to be reim-

bursed by Medicare until 1983 (Dranove 1987). For this section will assume that the status quo,

where costs are c0, δ0 and there is no upcoding or lemon dropping (α = γ = 0), are going to be

the chosen equilibrium outcome unless there is an incentive to deviate – in other words, there is

an implicit cost of managerial effort in changing the cost structure and/or finding ways to lemon

drop some patients and upcode others that breaks ties in favour of the status quo. We need to

distinguish two possibilities. In the first, the HO covers the provider’s costs by paying a single fee

per patient episode (p) irrespective of the treatment provided (i.e., pm = pM = p) – this is equivalent

to assuming that there is only one coarse DRG associated with the condition. The fee per patient

episode will be set equal to the ex post observed average cost of treating patients reduces to:

p= c+ δ
h(1− γ) + (1−h)αβ

1−hγ
. (24)
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Alternately, the HO could break the condition into two distinct DRGs – one for the minor and

another one for the major condition – and cover the provider’s costs by paying two distinct fees,

one for each DRG. This type of cost-of-service payment is more akin to fee-for-service, where the

payment depends on the volume and intensity of services the provider offers to patients. In this

case, the fee for the minor and the major condition will be set equal to the ex post average cost of

treating patients, which are given by

pm = c and pM = c+ δ
h(1− γ) + (1−h)αβ

h(1− γ) + (1−h)α
, (25)

respectively. In order to cover any investment cost incurred by the provider, in addition to the fees

described above, the provider also receives a transfer payment equal to the observed investment

costs T =Rc(c) +Rδ(δ). All payments depend on the cost levels c, δ and/or the degree of upcoding

and lemon dropping α,γ, all of which are all chosen by the provider. Furthermore, although the HO

can observe the realized costs and the number of patients treated, they are not able to observe if the

cost investments made by the providers are optimal (because they do not know the cost functions

Rc(.) and Rδ(.)) and are not in a position to ascertain whether patient selection or upcoding are

taking place. We characterize the providers’ optimal actions with the proposition below.

Proposition 7 Under cost-of-service regulation, irrespective of the number of DRGs used, i) the

provider does not upcode or lemon drop (i.e., chooses α= γ = 0); ii) the provider makes no invest-

ment in cost reduction (i.e., chooses costs c0, δ0).

On the downside, the proposition shows that, because payments are linked to costs, providers have

no incentive to invest in any cost reduction as any such cost reduction will result in a lower fee per

treatment. This result is well known in the literature (see Shleifer 1985, Ma 1994). On the upside,

the proposition shows that cost-of-service regulation is effective in curtailing patient upcoding and

cherry picking practices. That it does so irrespective of the number of DRGs specified is a little

surprising. For example, if the HO uses one DRG then the payment per patient will, by definition,

be greater than the cost of treating low-complexity patients (c) but lower than the cost of treating

high-complexity patients (c+δ) – see Equation (24). Nevertheless, the provider has no incentive to

cherry pick low-complexity patients or lemon drop high-complexity patients – if they did that, the

average cost of treating patients and, therefore, the payment received per patient would be reduced

accordingly. Similarly, if the HO were to use two DRGs, then the payment for the major treatment

would be greater than the payment for the minor treatment (see Equation (25)). Nevertheless, the

provider has no incentive to upcode low-complexity patients because such upcoding would reduce

the average cost of providing the major treatment and, as a result, the payment for the major

treatment would be reduced accordingly.
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At a high level, the proposition suggests that in situations where the main concern is not to

incentivize investment in cost reduction (e.g., because costs are largely fixed and exogenous to the

providers’ efforts) but instead to incentivize providers to prescribe the right treatment (i.e., solve

the credence-goods problem), cost-of-service regulation, where providers are reimbursed for their

costs of providing the service, performs well.

A2.1. Provider downcoding

In the main paper we had assume that providers were not able to undertreat patients (because of

ethical and liability considerations). We had also assumed that providers do not downcode patients.

That is, providers never code a high-complexity patient that was given the major treatment as

having received the minor treatment for reimbursement purposes. In this section we relax this

assumption and allow providers to downcode a proportion 1−ζ of the non-dropped high complexity

patients. We assume that the rate of downcoding is bounded from above by 1− ζ̄ ≥ 0. The updated

model is shown in Figure 5. We will focus on the case where the regulator is using two DRGs as

downcoding is not possible/meaningful otherwise.
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Figure 5 In this Appendix in addition to the assumptions made in the main paper (see Figure 1), providers may decide

that a proportion 1− ζ of the high-complexity patients that they do not lemon-drop will be downcoded. These patients still

cost c+ δ to treat (as they receive the major treatment) but will be reimbursed at the minor rate Pm.

We first examine the case of cost-of-service regulation. In this case, provider reimbursement for

the minor and the major condition are given by the average cost of providing treatment:

pm = c+ δ
h(1− γ)(1− ζ)

h(1− γ)(1− ζ) + (1−h)(1−α)
, and pM = c+ δ

h(1− γ)ζ + (1−h)αβ

h(1− γ)ζ + (1−h)α
. (26)
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Note that if ζ = 1 (i.e., providers do not downcode) these equations reduce to those of (25).

Proposition 7d: Under cost-of-service regulation providers never find it optimal to downcode

(ζ = 1), and the optimal outcome is given by Proposition 1.

Turning to the case where the regulator uses yardstick competition to reimburse providers, the

realized average costs for major and minor treatments at all other providers besides provider i, are

given by:

c̄Mi :=
1

N − 1

∑
j 6=i

[
cj + δj

h(1− γj)ζj + (1−h)αjβ

h(1− γj)ζj + (1−h)αj

]
,

c̄mi :=
1

N − 1

∑
j 6=i

cj + δj
h(1− γj)(1− ζj)

h(1− γj)(1− ζj) + (1−h)(1−αj)
,

respectively. Again, note that if ζ = 1 (i.e., providers do not downcode) these equations reduce to

those of (4)).

We characterize the equilibrium outcome when providers can upcode, downcode, and lemon drop

patients with the proposition below, which extends the results of Proposition 4 of the main paper.

Proposition 4d: If the HO implements yardstick competion based on two DRGs, then in any

equilibrium providers do not engage in downcoding if c̄Mi− c̄mi > 0 for all i. A sufficient condition

for this to be true is ζ̄ > ᾱ. If this condition holds the equilibrium outcome is given by Proposition

4.

The proposition suggests that under very mild conditions (i.e., as long as the reimbursement for

the major treatment is higher than the reimbursement for the minor treatment) then providers

find it optimal not to engage in downcoding. A sufficient condition based on model primitives for

this to hold is that for every provider the proportion of high complexity patients that are coded

correctly (ζi) is not lower than the proportion of low complexity patients that are upcoded (αi).

Next we turn our attention to the case where the HO uses input statistics as described in §6.

The following proposition extends the results of Proposition 6 of the main paper to the case where

providers can downcode.

Proposition 6d: Under the two-DRG payment scheme with input statistics, in any equilibrium

providers do not engage in downcoding if c̄Mi− c̄mi > 0 for all i. A sufficient condition for this to

be true is ζ̄ > ᾱ. If this condition holds the equilibrium outcome is given by Proposition 6.

A2.2. Extreme Cherry-Picking-Best costs

In this section we extend the results of Proposition 2 to the case where cherry-picking-best costs

are extreme (i.e., c∗+ δ∗ ≤ ce1 + δe1 h(1−γ̄)

1−hγ̄ ). We will define the following two quantities:

v0 : = λq

[
ce1− c∗+h(

1− γ̄
1− γ̄h

δe1− δ∗)
]

+Rc(c
e1) +Rδ(δ

e1)−Rc(c∗)−Rδ(δ∗),
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u0 : = λq
[
(1− γ̄h)(c∗− ce1) +h(δ∗− δe1) + γ̄h(δe1−hδ∗)

]
+Rc(c

∗) +Rδ(δ
∗)−Rc(ce1)−Rδ(δe1).

The quantity v0 is the profit of a provider who is paid according to yardstick competition and

chooses (0, c∗, δ∗) when all other providers choose (γ̄, ce1, δe1), and vice versa for u0.

The following proposition describes equilibrium outcomes when cherry-picking-best costs are

extreme and complements the results presented in Proposition 2.

Proposition 8 In the absence of upcoding (ᾱ = 0) if cherry-picking-best costs are extreme (i.e.,

c∗+ δ∗ ≤ ce1 + δe1 h(1−γ̄)

1−hγ̄ ), then if the HO implements yardstick competition based on a single DRG,

then there exists a unique Nash equilibrium:

• If v0 < 0 the equilibrium is symmetric and is given by Proposition 2.

• Otherwise, the equilibrium is asymmetric, where N − θ0 providers drop as many patients as

possible and choose cherry-picking-best costs (i.e., these providers choose (γ̄, ce1, δe1), and ce1 > c∗,

δe1 > δ∗) and θ0 providers do not engage in cherry picking and invest in cost reduction as much

as in first best (i.e., these providers choose (0, c∗, δ∗)). The number of efficient providers θ0 is the

only integer in the interval
[

(N−1)v0
u0+v0

, Nv0+u0
u0+v0

]
and θ1 ≥ θ0. All providers receive a positive rent.

The proposition shows that even if costs are extreme (i.e., c∗+δ∗ ≤ ce1 +δe1 h(1−γ̄)

1−hγ̄ ) the equilibrium

might still be the same as that described in Proposition 2 (this is the case if v0 < 0) where all

providers drop as many high-complexity patients as possible and underinvest in cost reduction

compared to first best. Otherwise, if v0 ≥ 0 the equilibrium is asymmetric. Some providers choose

to drop high-complexity patients and underinvest in cost reduction while other providers treat all

patients and invest optimally in cost reduction. This result is similar to the case where the provider

uses two DRGs (see Proposition 3). Nevertheless, the number of efficient providers is lower under

one DRG compared to two DRGs, suggesting that, in all cases, the equilibrium outcome with two

DRGs dominates in terms of welfare compared to that with one DRG.

A2.3. Continuous increasing cost of patient upcoding and cherry picking

For the main paper we assumed that if providers choose to upcode or drop patients, they can do

so without any cost up to the predetermined maximum amount of upcoding rate ᾱ and patient

lemon-dropping rate γ̄, after which we have implicitly assumed that the cost of additional upcoding

or lemon dropping becomes infinite. In this Appendix we investigate the case of continuously

increasing cost in engaging with patient upcoding and cherry picking. More specifically, we assume

that when the provider decides to upcode (or drop) a proportion of patients α (γ), the provider

incurs a cost Eα(α) (Eγ(γ)). Furthermore, we assume that the cost functions Eγ(.) and Eα(.)

are positive, increasing, convex, and ‘sufficiently’ well-behaved (see conditions A and B imposed

below) with Eα(0) = Eγ(0) = 0 and limx→1Eα(x) = limx→1Eγ(x) =∞. These assumptions reflect
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the situation where it is relatively cheap for the provider to upcode (or drop) a small number of

patients, but as they engage more in this practice, the costs start to increase (in a convex manner).

They also ensure that the chosen rate of upcoding/dropping is in the [0,1) interval. (Alternately,

one could view the cost as the expected penalty that the provider may incur if caught engaging

in this practice, and that the size of the penalty and/or the probability of getting caught are

increasing in proportion to the amount of upcoding/lemon dropping that takes place.)

In this case, the profit of the provider is as defined in §3.2 minus the cost of engaging in upcod-

ing and overtreatment Eα(αi) +Eγ(γi). We note that, under these alternative assumptions, the

first-best solution remains unchanged – the HO would still find it optimal not to engage in any

lemon dropping or upcoding. Similarly, cost-of-service regulation would continue to provide the

right incentives for providers not to engage in lemon dropping or upcoding but at the expense of

eliminating incentives to invest in cost reduction.

Under yardstick competition, providers would be reimbursed with per-patient fees given by (3)

or (4), if the HO uses one or two DRGs, respectively. We also assume that the transfer payment

is now going to be equal to Ti = R̄i +Eαi +Eγi, where the last two terms are the average cost of

upcoding and cherry picking at other providers (i.e., Eαi =
∑

j 6=i
Eα(αj)

N−1
and similarly for Eγi). This

assumption is consistent with the case where the HO can only measure total investment cost and

is not able to distinguish whether the investment was made to reduce costs or to upcode/cherry

pick patients. (This assumption is not critical for any of our results, as the transfer payment does

not affect incentives other than participation.)

We analyze the case where the HO uses one DRG and upcoding is not possible (αi = 0 for all i).

This is the equivalent of Proposition 2.

Proposition 2c: In the absence of upcoding (αi = 0 for all i), if the HO implements yardstick

competition based on a single DRG and if Conditions A hold, then there exists a unique symmetric

Nash equilibrium where providers choose (γc, cc, δc) with γc > 0, cc > c∗, δc > δ∗.

Conditions A: Let c(γ) and δ(γ) be the implicit functions defined by the unique solutions to

−R′c(c)−λq(1−hγ) = 0, R′δ(δ)−λqh(1− γ) = 0, respectively.

• The following inequality holds for all 0≤ γ < 1: (λqh)2
(

1
R′′
δ

(δ(γ))
+ 1

R′′c (c(γ))

)
−E′′γ (γ)< 0.

• If γc is the unique solution to λqhδ(γc) 1−h
1−γch − E′γ(γ

c) = 0 then λqh(c∗ + δ∗ − c(γc) −
hδ(γc) 1−γc

1−γch)−E′γ(0)> 0.

Clearly, using one DRG continues to be an issue – providers will choose to drop patients and

investment in cost reduction will be reduced accordingly. We now turn our attention to the case

where the HO uses two DRGs.

Proposition 3c: In the absence of upcoding (αi = 0 for all i), if the HO implements yardstick

competition based on two DRGs and if Conditions A hold, then there exists a unique symmetric

Nash equilibrium where providers choose (0, c∗, δ∗).
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The results confirm that expanding the number of DRGs is helpful, at least in the absence of

upcoding. If cherry picking costs are increasing at a sufficiently high rate, there exists a unique

symmetric equilibrium where providers choose not to upcode.

Turning to the case where upcoding is possible, the following proposition summarizes the main

results.

Proposition 4c: If the HO implements yardstick competition based on two DRGs and if Con-

ditions B hold, then there exists a unique symmetric Nash equilibrium where providers choose

(αd, γd, cd, δd) with αd > 0, γd > 0, cd > c∗. If β < h
1−hγ

dαd then there is underinvestment for the

major treatment (δd > δ∗), otherwise there is overinvestment (δd < δ∗).

Conditions B: Let c(γ), δ(α,γ) be the implicit functions defined by the unique solutions to

−R′c(c)−λq(1−hγ) = 0, R′δ(δ)−λq(h(1− γ) + (1−h)α) = 0, respectively. Let

π(α,γ) = −λq((h(1− γ) + (1−h)αβ)δ(α,γ) + (1−hγ)c(γ))

− Rc(c(γ))−Rδ(δ(α,γ))−Eγ(γ)−Eα(α).

Also define αd and γd as the unique solutions to the system of two equations:

λqhδ(αd, γd) h(1−β)(1−γd)

h(1−γd)+(1−h)αd
−E′α(αd) = 0, λqhδ(αd, γd) (1−h)(1−β)αd

h(1−γd)+(1−h)αd
−E′γ(γd) = 0. The following

relationships hold:

• The Hessian of π(α,γ) is negative definite,

• λqh(δ(αd, γd)h(1−γd)+(1−h)αdβ

h(1−γd)+(1−h)αd
−βδ∗)−E′α(0)> 0,

• λqh(c∗+ δ∗− cd− δ(αd, γd)h(1−γd)+(1−h)αdβ

h(1−γd)+(1−h)αd
)−E′γ(0)> 0.

The result described above mirrors the results of Proposition 4 – the presence of upcoding

reintroduces incentives for providers to engage in cherry picking. There is, however, one difference

worth outlining. In contrast to the case where cherry picking and upcoding were costless, where

welfare was best served by not increasing the number of DRGs, in this case increasing the number

of DRGs may confer welfare benefits. This is particularly the case if upcoding is relatively expensive

compared to dropping patients. In this case, providers will not engage in too much upcoding

and, as a result, the amount of heterogeneity in the high-cost DRG will be limited, thus reducing

the financial benefit of dropping high-complexity patients. As a result, providers will only drop

a limited number of high-complexity patients, and welfare under two DRGs may be higher than

welfare under one DRG.

Turning to the solution with input statistics, the following proposition characterizes the equilib-

rium outcome.

Proposition 6c Under the two-DRG payment scheme with input statistics described in §6, if

Conditions A are satisfied and if κi ≥ 0 there exists a unique symmetric Nash equilibrium where

all providers choose first-best actions (i.e., (0,0, c∗, δ∗)).
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Importantly for the purposes of this research, yardstick competition based on input statistics as

described in the main paper would eliminate incentives to cherry pick and upcode patients and

restore first-best investments. To see why this is the case, consider that payments based on input

statistics remove incentives to upcode, even when doing so is costless. When it is costly to do so,

the incentives to upcode cannot be any greater. Once upcoding has been eliminated so has the

heterogeneity in costs within DRG, leading to a drastic reduction in incentives to cherry pick.

In fact, as Proposition 6c suggests, if the cost of cherry picking is rising sufficiently fast (as per

Conditions A), then the cherry picking is eliminated too for any κi ≥ 0.

A2.4. No transfer payments

In the main paper we had assumed that the HO was able to pay a fee per patient episode and

a transfer payment. The role of the former was to reimburse providers for the variable cost of

treating patients and the role of the latter was to reimburse for the investment in cost reduction.

In several healthcare systems, for example, Medicare in the US, providers are paid only a fee per

patient episode which has to cover both the variable cost of treatment and the fixed investment

cost.

We note that in classic yardstick competition literature (Shleifer 1985), where demand was

endogenous to prices, the lack of a transfer payments was inherently problematic. Since patients

would have to pay inflated prices (i.e., higher than the marginal cost of treatment) some patients

whom the HO would have found optimal to treat will decide not to seek treatment. Furthermore,

as a result of this inefficient reduction in demand, providers would find it optimal to invest less

in cost reduction. In our case, since demand is exogenous, the impact of the absence of a transfer

payment, if any, will be through the way it affects upcoding and cherry-picking incentives.

In the absence of transfer payments, if the HO wanted to implement yardstick competition on

the basis of a single DRG, then the payment per patient to hospital i will be given by the average

total cost of providing care in all other hospitals:

p=
1

N − 1

∑
j 6=i

[
cj + δj

h(1− γj) + (1−h)αjβ

1− γjh
+
Rc(cj) +Rδ(δj)

(1− γjh)λq

]
. (27)

The first term in the sum represents the average cost for the minor treatment (offered to all patients

who are not dropped). The second term represents the average cost of the major treatment (offered

to high-complexity patients who are not dropped and to low-complexity patients who are upcoded).

The third term represents the average investment cost amortized proportionally on all patients

receiving treatment. Clearly, since in this case there is only one DRG, the provider has no incentive

to upcode. Furthermore, because the per-patient-episode payment is now inflated by the investment

cost, the providers’ incentives to lemon drop are diluted in the sense that the additional profit
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associated with lemon dropping a patient is less in the absence of transfer payments compared to

the case where transfer payments are allowed. Nevertheless, the results of Proposition 3 remain

largely unchanged.

More specifically, define

v′0 : = v0 +
γ̄h

1− γ̄h
(Rc(c

e1) +Rδ(δ
e1)),

u′0 : = u0− γ̄h(Rc(c
∗) +Rδ(δ

∗)).

The quantity v′0 is the profit of a provider who is paid according to yardstick competition and

chooses (0, c∗, δ∗) when all other providers choose (γ̄, ce1, δe1) when transfer payments are not

allowed, and vice versa for u0. We will call the cherry-picking-best costs as comparable to first-best

costs if either of the following conditions hold:

• c∗+ δ∗ ≥ ce1 + δe1h 1−γ̄
1−hγ̄ + Rc(c

e1)+Rδ(δe1)

λq(1−γ̄h)

• v′0 ≤ 0 or u′0 ≤ 0.

The following proposition is the equivalent to Propositions 3 and 8 in the absence of transfer

payments.

Proposition 2n In the absence of upcoding (ᾱ= 0), if the HO implements yardstick competition

based on a single DRG, then there exists a unique Nash equilibrium:

• If cherry-picking-best costs are ‘comparable’ to first-best costs (as defined above), the equilib-

rium is symmetric. Providers drop as many patients as possible and invest in cherry-picking-best

costs (i.e., all providers choose (γ̄, ce1, δe1), and ce1 > c∗, δe1 > δ∗).

• Otherwise, the equilibrium is asymmetric, where N − θ′0 providers drop as many patients as

possible and choose cherry-picking-best costs (i.e., these providers choose (γ̄, ce1, δe1), and ce1 > c∗,

δe1 > δ∗) and θ′0 providers do not engage in cherry picking and invest in cost reduction as much

as in first best (i.e., these providers choose (0, c∗, δ∗)). The number of efficient providers θ′0 is the

only integer in the interval
[

(N−1)v′0
u′0+v′0

,
Nv′0+u′0
u′0+v′0

]
. Furthermore, θ′0 ≥ θ0.

The proposition suggests that, in the absence of transfer payments, then i) the inefficient sym-

metric equilibrium (where all providers choose to drop the maximum number of patients and

underinvest in cost reduction) is the outcome for a smaller set of parameter values; and ii) the

asymmetric equilibrium is more efficient in the sense that more providers choose not to engage in

cherry picking and invest optimally in cost reduction.

Turning to the case where the HO splits the condition into two DRGs for reimbursement pur-

poses, the payments for the major and the minor condition, set at the average (treatment and

investment) cost of all other providers, are given by

p̄Mi =
1

N − 1

∑
j 6=i

[
cj + δj

h(1− γj) + (1−h)αjβ

h(1− γj) + (1−h)αj
+
Rδ(δj) +Rc(cj)

λq(1−hγj)

]
, (28)
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p̄mi =
1

N − 1

∑
j 6=i

[
cj +

Rδ(δj) +Rc(cj)

λq(1−hγj)

]
, (29)

respectively.

Before we characterize the equilibrium outcome of this competition, we define the following two

quantities:

v′1 := v1 +
hγ̄

1−hγ̄
(Rδ(δ

e1 +Rc(c
e1)),

u′1 := u1−hγ̄(Rδ(δ
∗) +Rc(c

∗)).

As in the case with transfer payments, the quantity v′1 is the profit of a provider who is paid

according to yardstick competition based on two DRGs in the absence of transfer payments and

who chooses (0, c∗, δ∗) when all other providers choose (γ̄, ce1, δe1), and vice versa for the quantity

u′1. Note that in this case v′2 > 0 while the sign of u′1 depends on model parameters.

In the absence of transfer payments under two DRGs, we will call the cherry-picking-best costs

comparable to first-best costs if either of the following two conditions hold:

• λq(ce1 + δe1− c∗− δ∗)≤Rδ(δ∗) +Rc(c
∗).

• u′1 ≤ 0.

Proposition 3n In the absence of upcoding (ᾱ= 0), if the HO implements yardstick competition

based on two DRGs without transfer payments, then there exists a unique Nash equilibrium:

• If cherry-picking-best costs are ‘comparable’ to first-best costs (as defined above), the equilib-

rium is symmetric. Providers will not engage in cherry picking and invest in cost reduction as

much as first best (i.e., all providers choose (0, c∗, δ∗)).

• Otherwise, the equilibrium is asymmetric, where N − θ′1 providers drop as many patients as

possible and choose cherry-picking-best costs (i.e., these providers choose (γ̄, ce1, δe1), and ce1 > c∗,

δe1 > δ∗) and θ′1 providers do not engage in cherry picking and invest in cost reduction as much

as in first best (i.e., these providers choose (0, c∗, δ∗)). The number of efficient providers θ1 is the

only integer in the interval
[

(N−1)v′0
u′0+v′0

,
Nv′0+u′0
u′0+v′0

]
. Furthermore, θ′1 ≥ θ1.

Again, the proposition demonstrates that the absence of transfer payments reduces providers’

incentives to lemon drop. In contrast to the case with transfer payments, there may exist a sym-

metric equilibrium where all providers engage in first-best actions. Even if such an equilibrium

does not exist, the number of providers that will choose to be inefficient is smaller in the absence

of transfer payments compared to the case with transfers.

Turning to the case where the HO uses two DRGs and upcoding is possible, note that the absence

of a transfer payment does not affect the value of upcoding – the difference in payment between
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a low-complexity patient who is upcoded and that of a low-complexity patient who is not remains

the same whether transfer payments are used or not. Therefore, condition (7)

β <
hδe3

hδe1 + (δe1− δe3)(1−h)ᾱ

continues to ensure that providers will find upcoding profitable and will engage in it fully. Define

v′2 := v2 +
hγ̄

1−hγ̄
(Rδ(δ

e2) +Rc(c
e1)),

u′2 := u2−hγ̄(Rδ(δ
e3) +Rc(c

∗)).

The quantity v′2 is the profit of a provider who is paid according to yardstick competition and

chooses (ᾱ,0, c∗, δe3) when all other providers choose (ᾱ, γ̄, ce1, δe2) when transfer payments are

not allowed, and vice versa for u′2. We will call the cherry-picking-upcoding-best (CPU-best) costs

comparable to upcoding-best costs if any of the following conditions hold:

• λq(c∗+ δe3− ce1− δe2 h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
)≥ Rδ(δe2)+Rc(c

e1)

λq(1−hγ̄)
,

• v′2 ≤ 0 or u′2 ≤ 0.

Proposition 4n If both patient cherry picking and upcoding are possible, if the HO implements

yardstick competition based on two DRGs without transfer payments, then there exists a unique

Nash equilibrium:

• If CPU-best costs are ‘comparable’ to upcoding-best costs (as defined above), then the equilib-

rium is symmetric. Providers upcode and drop as many patients as possible and invest in CPU-best

costs (i.e., all providers choose (ᾱ, γ̄, ce1, δe2)). Furthermore, there is underinvestment in cost reduc-

tion compared to first best for the minor condition (ce1 > c∗) and if β < h
1−h γ̄ᾱ then there is also

underinvestment for the major condition (δe2 > δ∗), otherwise there is overinvestment.

• Otherwise, the equilibrium is asymmetric. N − θ′2 providers upcode and drop as many patients

as possible and choose CPU-best costs (i.e., these providers choose (ᾱ, γ̄, ce1, δe2)) and θ′2 providers

upcode as many patients as possible but do not engage in cherry picking and invest in upcoding-best

costs (i.e., these providers choose (ᾱ,0, c∗, δe3)). The number of low-cost providers θ2 is the only

integer in the interval
[

(N−1)v′2
u′2+v′2

,
Nv′2+u′2
u′2+v′2

]
. Furthermore, θ′2 ≥ θ2.

The proposition demonstrates that the presence of upcoding strengthens incentives to drop high-

complexity patients, even in the absence of a transfer payment.

Turning to yardstick competition with input statistics, we find it convenient to define

κ̄′ := min{ce1 + δe1− c∗− δ∗− Rδ(δ
∗) +Rc(c

∗)

λq
,
u′1
λqhγ̄

}

Proposition 6n Under the two-DRG payment scheme with input statistics described in §6, with

κi = κ for all i then there exists a unique Nash equilibrium:
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• If κ > κ̄′, the equilibrium is symmetric in which all providers choose first-best actions (i.e.,

(0,0, c∗, δ∗)).

• If 0 ≤ κ ≤ κ̄′, the equilibrium is asymmetric. No provider engages in upcoding and N −
θ3 providers drop as many patients as possible and choose cherry-picking-best costs (i.e., these

providers choose (0, γ̄, ce1, δe1) and ce1 > c∗, δe1 > δ∗) and θ′3 providers do not engage in cherry pick-

ing and invest in cost reduction as much as in first best (i.e., these providers choose (0,0, c∗, δ∗)).

The number of efficient providers θ′3 ≥ θ′1 and is non-decreasing in κ′. Furthermore, κ̄′ ≤ κ̄.

The proposition suggests that, compared to the case where transfer payments are allowed, in

their absence yardstick competition based on input statistics continues to be effective in eliminating

the problem of upcoding, and is even more effective in alleviating the problem of cherry picking.

Collectively, the results of this appendix suggest that the absence of transfer payments helps

reduce the problem of cherry picking but does nothing to alleviate the problem of upcoding. In a

setting where investment costs are relatively small compared to variable costs, the results of the

main paper persist in the absence of transfer fees. According to CMS, for the fiscal year 2022,

“operating base payments,” which are meant to reimburse “labor and supply costs,” were estimated

to $6,122 and “capital base payments,” which are meant to reimburse capital expenditures such as

“costs for depreciation, interest, rent, and property related insurance and taxes,” were estimated

to $473.8 Therefore, upcoding and patient dropping are likely to remain an issue in the hospital

reimbursement setting.

Proofs of results appearing in Appendix 2

Proof of Proposition 7: Under cost-of-service regulation, and irrespective of the number of DRGs

used, the provider’s payoff is equal to zero. Therefore, the provider resorts to selecting the status

quo – zero upcoding and cherry picking and zero investment in cost reduction (i.e., the provider

will choose α= γ = 0, c= c0, δ= δ0). �

Proof of Proposition 7d: Under cost-of-service regulation the provider’s profit is zero, there-

fore the provider has no incentive to downcode. The proof proceeds as that of Proposition 7.�

Proof of Proposition 4d: The derivative of a provider’s profit with respect to ζi is given by

∂

∂ζi
πi = λqh(1− γi)(c̄Mi− c̄mi).

This implies that ∂
∂ζi
πi > 0 if c̄Mi− c̄mi > 0 which suggests that providers will find it optimal not

to downcode (ζi = 1). Note that

c̄Mi− c̄mi =
1

N − 1

∑
j 6=i

δj

[
h(1− γj)ζj + (1−h)αjβ

h(1− γj)ζj + (1−h)αj
− h(1− γj)(1− ζj)
h(1− γj)(1− ζj) + (1−h)(1−αj)

]
8 See https://www.medpac.gov/wp-content/uploads/2021/11/medpac_payment_basics_21_hospital_final_sec.

pdf

https://www.medpac.gov/wp-content/uploads/2021/11/medpac_payment_basics_21_hospital_final_sec.pdf
https://www.medpac.gov/wp-content/uploads/2021/11/medpac_payment_basics_21_hospital_final_sec.pdf
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=
1

N − 1

∑
j 6=i

δj

[
h(1− γj)

(
ζj

h(1− γj)ζj + (1−h)αj
− 1− ζj
h(1− γj)(1− ζj) + (1−h)(1−αj)

)
+

(1−h)αjβ

h(1− γj)ζj + (1−h)αj

]
.

This is positive if
ζj

h(1−γj)ζj+(1−h)αj
− 1−ζj

h(1−γj)(1−ζj)+(1−h)(1−αj)
, which is always the case if ζi > αi.

Since ζi ≥ ζ̄ and αi ≤ ᾱ, then c̄Mi− c̄mi > 0 if ζ̄ > ᾱ. The rest of the proof proceeds as Proposition

4. �

Proof of Proposition 6d: The derivative of a provider’s profit with respect to ζi is given by

∂

∂ζi
πi = λqh(1− γi)(c̄Mi− c̄mi +κ−φi)> 0.

Since φi − κ < c̄Mi − c̄mi, this implies that if c̄Mi − c̄mi > 0 then ∂
∂ζi
πi > 0 which suggests that

providers will find it optimal not to downcode (ζi = 1). Sufficient conditions for c̄Mi− c̄mi > 0 are

derived in the proof of Proposition 4d and the rest of the proof proceeds as that of Proposition 6.�

Proof of Proposition 8: This proof continues from the proof of Proposition 2, where we have

shown that if c∗+δ∗ > ce1 +δe1 h(1−γ̄)

1−hγ̄ then there exists a symmetric equilibrium where all providers

choose (γ̄, ce1, δe1). In contrast, if this condition is not satisfied, then a provider that knows all

providers choose (γ̄, ce1, δe1) may find it profitable to deviate to (0, c∗, δ∗). For this to be the case,

the profit of the provider who deviates to (0, c∗, δ∗) when all other providers choose (γ̄, ce1, δe1) must

be positive (as the profit associated with not deviating is zero). After some algebra, this condition

can be written as v0 ≥ 0. If this is not satisfied (i.e. if v0 < 0), the equilibrium is symmetric and is

as given in Proposition 2. Otherwise (i.e. if v0 ≥ 0) then no symmetric equilibrium exists.

Turning to the case of asymmetric equilibria, in the Proof of Proposition 2 we have ruled out

their existence if c∗ + δ∗ > ce1 + δe1 h(1−γ̄)

1−hγ̄ . If this condition is not satisfied then an asymmetric

equilibrium will exist if the profit of the θ0 low-cost providers and the profit of the N −θ0 high-cost

providers are non-negative. The profit of a low-cost provider will be N−θ0
N−1

v0. Similarly, the profit of

a high-cost provider will be given by θ0
N−1

u0. Therefore, for the asymmetric equilibrium to exist it

must be the case that v0 ≥ 0 and u0 ≥ 0. Note that u0 > 0. To see this, note that u0 can be written

as

u0 =
[
−λq

(
(1− γ̄h)ce1 + (1− γ̄)hδe1

)
−Rc(ce1)−Rδ(δe1)

]
+ [λq ((1− γ̄h)c∗+ (1− γ̄)hδ∗) +Rc(c

∗) +Rδ(δ
∗)]

+ γ̄h(1−h)δ∗.

Note that the expression [−λq [(1− γ̄h)c+ (1− γ̄)hδ]−Rc(c)−Rδ(δ)] is maximized at ce1, δe1,
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therefore the sum of the terms in the first two brackets is positive. The third term is also positive,

which implies that u0 > 0. For v0 ≥ 0 it must be the case that

λq(ce1− c∗+h[
1− γ̄

1− γ̄h
δe1− δ∗])≥Rc(c∗) +Rδ(δ

∗)−Rc(ce1)−Rδ(δe1). (30)

We will next determine the value of θ0. If one of the θ0 low-cost providers was to deviate and become

a high-cost provider, then their profit would be given by θ0−1
N−1

u0. If one of the N − θ0 high-cost

providers was to deviate and become a low-cost provider it would be N−θ0−1
N−1

v0. In the asymmetric

equilibrium it must be the case that these deviations are not profitable. Therefore, N−θ0
N−1

v0 >
θ0−1
N−1

u0

and θ0
N−1

u0 ≥ N−θ0−1
N−1

v0. These conditions imply that θ0 satisfies (N−1)v0
u0+v0

≤ θ0 ≤ Nv0+u0
u0+v0

. If condition

(30) is satisfied, this interval contains exactly 1 integer as the difference Nv0+u0
u0+v0

− (N−1)v0
u0+v0

= 1.

Furthermore, this integer is always less than N .

We will then compare θ1 and θ0. Note that v1 − v0 = λqh(1− h) γ̄
1−γ̄hδ

e1 > 0, therefore v1 > v0.

Also, u1− u0 =−λqγ̄h(1− h)δ∗ < 0, therefore u1 < u0. It follows that v1
u1
> v0

u0
, which implies that

v1
v1+u1

> v0
v0+u0

. Since θ1 is the first integer higher than (N −1) v1
v1+u1

and θ0 is the first integer higher

than (N − 1) v0
v0+u0

, it follows that θ1 ≥ θ0. �

Proof of Proposition 2c: In the absence of upcoding (αi = 0), under the yardstick competition

scheme with a single DRG the profit of provider i is given by

πi(ci, δi,0, γi) = λq [(1−hγi)c̄i− δih(1− γi)− c(1−hγi)]−Rc(ci)−Rδ(δi)−Eγ(γi) + R̄i,

where c̄i = 1
N−1

∑
j 6=i

[
cj + δj

h(1−γj)
1−hγj

]
, and R̄i := 1

N−1

∑
j 6=i [Rc(cj) +Rδ(δj)] as defined in §4. The

derivatives of the profit function of provider i are given by:

∂

∂γi
πi = λqh(ci + δi− c̄i)−E′γ(γi), (31)

∂

∂ci
πi = − d

dc
Rc(ci)−λq(1−hγi), (32)

∂

∂δi
πi = − d

dδ
Rδ(δi)−λqh(1− γi). (33)

In any equilibrium outcome, the last two conditions, which do not depend on the actions of other

providers, will have to be equal to zero for all providers. Otherwise the provider for whom one of

these conditions is not zero could increase their profit by changing ci or δi.

Consider a symmetric equilibrium where all providers choose (γc, cc, δc). From (31)–(33), these

values should satisfy λqhδc 1−h
1−γch−E

′
γ(γ

c) = 0, −R′c(cc)−λq(1−hγc) = 0, and R′δ(δ
c)−λqh(1−γc) =

0. Consider a provider that chooses (γi, ci, δi) when all other providers choose (γc, cc, δc). We will

show that this provider will also choose (γc, cc, δc). The derivative of the provider’s profit is given

by ∂
∂γi
πi = λqh(ci+δi−cc−hδc 1−γc

1−γch)−E′γ(γi). Clearly, the derivative is zero if γi = γc. A sufficient
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condition for this to be the unique maximizer is ∂2

∂γ2i
πi = (λqh)2

(
1

R′′
δ

(δc)
+ 1

R′′c (δc)

)
−E′′γ (γc)< 0. A

necessary condition for the solution to be in the interval (0,1] is λqh(c∗ + δ∗ − cc − hδc 1−γc
1−γch)−

E′γ(0)> 0. If these conditions hold, (γc, cc, δc) is the unique symmetric equilibrium. Note that these

conditions are a subset of Conditions A.

The proof above does not rule out asymmetric equilibria, which may exist.�

Proof of Proposition 3c: In the absence of upcoding (αi = 0), under the yardstick competition

scheme with two DRGs the profit of provider i is given by

πi(ci, δi,0, γi) = λq [h(1− γi)(c̄Mi− δi− ci) + (1−h)(c̄mi− ci)]−Rc(ci)−Rδ(δi)−Eγ(γi) + R̄i,

where c̄Mi := 1
N−1

∑
j 6=i [cj + δj], c̄mi := 1

N−1

∑
j 6=i cj, and R̄i := 1

N−1

∑
j 6=i [Rc(cj) +Rδ(δj)] as defined

in §4. The derivatives of the profit function of provider i are given by:

∂

∂γi
πi = λqh(ci + δi− c̄Mi)−E′γ(γi), (34)

∂

∂ci
πi = − d

dc
Rc(ci)−λq(1−hγi), (35)

∂

∂δi
πi = − d

dδ
Rδ(δi)−λqh(1− γi). (36)

In any equilibrium outcome, the last two conditions have to be equal to zero for all providers.

Otherwise the provider for whom one of these conditions is not zero could increase their profit by

changing ci or δi.

Consider a symmetric equilibrium where all providers choose (γc, cc, δc). Equation (34) implies

that ∂
∂γi
πi =− d

dγi
Eγ(γi)< 0, therefore γc = 0, which also implies cc = c∗, δc = δ∗. Consider a provider

that chooses (γi, ci, δi) when all other providers choose (0, c∗, δ∗). We will show that this provider

will also choose (0, c∗, δ∗). The derivative of the provider’s profit is given by ∂
∂γi
πi = λqh(ci + δi−

c∗− δ∗)− d
dγi
Eγ(γi). At γi = 0 this derivative is negative. Furthermore, if (λqh)2

(
1

R′′
δ

(δc)
+ 1

R′′c (δc)

)
−

E′′γ (γc)< 0 for all all γc such that −R′c(cc)−λq(1−hγc) = 0, R′δ(δ
c)−λqh(1−γc) = 0, then ∂

∂γi
πi < 0

for all γc. This implies that no profitable deviation exists and (0, c∗, δ∗) is the unique symmetric

equilibrium. Note that these conditions are a subset of Conditions A.

The proof above does not rule out asymmetric equilibria, which may exist. �

Proof of Proposition 4c: Under the yardstick competition scheme with two DRGs the profit

of provider i is given by

πi(ci, δi, αi, γi) = λq{[h(1− γi) + (1−h)αi]c̄Mi + (1−h)(1−αi)c̄mi

− [(h(1− γi) + (1−h)αiβ)δi + (1−hγi)ci]}

− Rc(c)−Rδ(δ)−Eγ(γi)−Eα(αi) + R̄i,



Savva, Debo and Shumsky Cherry Picking and Upcoding in Hospital Reimbursement 59

where c̄Mi := 1
N−1

∑
j 6=i

[
cj + δj

h(1−γj)+(1−h)αjβ

h(1−γj)+(1−h)αj

]
, c̄mi := 1

N−1

∑
j 6=i cj, and R̄i :=

1
N−1

∑
j 6=i [Rc(cj) +Rδ(δj)] as defined in §4. The derivatives of the profit function of provider i are

given by:

∂

∂αi
πi = λq(1−h)(c̄Mi− c̄mi−βδi)−E′α(αi), (37)

∂

∂γi
πi = λqh(ci + δi− c̄Mi)−E′γ(γi), (38)

∂

∂ci
πi = − d

dc
Rc(ci)−λq(1−hγi), (39)

∂

∂δi
πi = − d

dδ
Rδ(δi)−λq[h(1− γi) + (1−h)αiβ]. (40)

In any equilibrium outcome, the last two conditions have to be equal to zero for all providers.

Otherwise the provider for whom one of these conditions is not zero could increase their profit by

changing ci or δi.

Consider a symmetric equilibrium where all providers choose (αd, γd, cd, δd). From (37)–(40),

these values should satisfy λqhδd h(1−β)(1−γd)

h(1−γd)+(1−h)αd
−E′α(αd) = 0, λqhδd (1−h)(1−β)αd

h(1−γd)+(1−h)αd
−E′γ(γd) = 0,

−R′d(cd)− λq(1− hγd) = 0, and R′δ(δ
d)− λq(h(1− γd) + (1− h)βαd) = 0. Consider the payoff of

a provider that chooses (αi, γi, ci, δi) when all other providers choose (αd, γd, cd, δd). We will show

that this provider will also choose (αd, γd, cd, δd). The derivative of the provider’s profit is given by

∂
∂αi
πi = λqh(δd h(1−γd)+(1−h)αdβ

h(1−γd)+(1−h)αd
−βδi)− d

dαi
Eα(αi) and ∂

∂γi
πi = λqh(ci+δi−cd−δd h(1−γd)+(1−h)αdβ

h(1−γd)+(1−h)αd
)−

d
dγi
Eγ(γi). Clearly, both derivatives are zero if αi = αd, γi = γd. A sufficient condition for this to

be the unique maximizer is the Hessian of the profit with respect to αi and γi (when −R′d(ci)−

λq(1− hγi) = 0, and R′δ(δi)− λq(h(1− γi) + (1− h)βαi) = 0) to be negative definite. Necessary

conditions for the solution to be in the interval (0,1] are λqh(δd h(1−γd)+(1−h)αdβ

h(1−γd)+(1−h)αd
−βδ∗)−E′α(0)> 0

and λqh(c∗+ δ∗− cd− δd h(1−γd)+(1−h)αdβ

h(1−γd)+(1−h)αd
)−E′γ(0)> 0. If these conditions hold, (αd, γd, cd, δd) is the

unique symmetric equilibrium. These conditions are summarized by Conditions B. Furthermore,

from (39) and since γd > 0 it follows that cd > c∗. From (40), if h(1− γd) + (1− h)αdβ > h there

will be overinvestment in the major treatment δd > δ∗, otherwise underinvestment.

The proof above does not rule out asymmetric equilibria, which may exist.�

Proof of Proposition 6c: Under the yardstick competition scheme with two DRGs with input

statistics the profit of provider i is given by

πi(ci, δi, αi, γi) = λq{[h(1− γi) + (1−h)αi]c̄Mi + (1−h)(1−αi)c̄mi

− [(h(1− γi) + (1−h)αiβ)δi + (1−hγi)ci]}

− Rc(c)−Rδ(δ)−Eγ(γi)−Eα(αi) + R̄i +κi(Mi− M̄i) +φi(mi− m̄i),
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where Mi = λq(h(1 − γi) + (1 − h)αi), mi = λq(1 − h)(1 − αi), κi ≥ 0, φi − κi > δ̄i −

βδe3, δ̄i := c̄Mi − c̄mi, c̄Mi = 1
N−1

∑
j 6=i

[
cj + δj

h(1−γj)+(1−h)αjβ

h(1−γj)+(1−h)αj

]
, c̄mi = 1

N−1

∑
j 6=i cj, and R̄i =

1
N−1

∑
j 6=i [Rc(cj) +Rδ(δj)].

The derivatives of the profit function of provider i are given by:

∂

∂αi
πi = λq(1−h)(−βδi + δ̄i +κi−φi)−E′α(αi), (41)

∂

∂γi
πi = λqh(ci + δi− c̄Mi−κi)−E′γ(γi), (42)

∂

∂ci
πi = − d

dc
Rc(ci)−λq(1−hγi), (43)

∂

∂δi
πi = − d

dδ
Rδ(δi)−λq[h(1− γi) + (1−h)αiβ]. (44)

In any equilibrium, ∂
∂αi
πi < 0, which implies that αi = 0 for all i. In any symmetric equilibrium,

∂
∂γi
πi < 0, therefore a symmetric equilibrium candidate is (0,0, c∗, δ∗). The rest of the proof proceeds

identically to the Proof of Proposition 4c. �

Proof of Proposition 2n: The proof proceeds similarly to the proofs of Propositions 2 and 8,

with the updated notation for cost being comparable and v′0. The result that θ′0 ≥ θ0 follows from

the observation that v′0 > v0 and u′0 <u0. �

Proof of Proposition 3n: The proof proceeds similarly to the proof of Proposition 3, with the

updated notation for cost being comparable. The result that θ′1 ≥ θ1 follows from the observation

that v′1 > v1 and u′1 <u1. �

Proof of Proposition 4n: The proof proceeds similarly to the proof of Proposition 4, with the

updated notation for cost being comparable. The result that θ′2 ≥ θ2 follows from the observation

that v′2 > v2 and u′2 <u2. �

Proof of Proposition 6n: The proof proceeds similarly to the proof of Proposition 6. The

result that κ̄′ ≤ κ̄ follows from the observation that u′1 <u1 and Rδ(δ
∗) +Rc(c

∗)> 0.�

Appendix 3: The case of two asymmetric providers

In the main analysis we assume that providers are symmetric and have argued that any scheme

that achieves first best in the case of symmetric providers can be modified to account for provider

heterogeneity based on factors that are observable by the HO and exogenous to the provider. In

this section we extent the analysis to examine the case where there is heterogeneity that the HO

does not account for in the reimbursement scheme (e.g., because it is not observable or because

the HO is not sophisticated enough to make the necessary adjustments). Naturally, the results in

this case will depend on the exact way in which providers are asymmetric, but to gain insights on

the impact of asymmetry on equilibrium outcomes we will focus on the case where there are two

providers (N = 2) that differ in the number of patients and in the proportion of high-complexity
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patients they treat. More specifically we assume that λ1q1 = λq and λ2q2 = ηλq, where η > 1 and

h1 = h, h2 = ξh where ξ > 1. This specification ensures that Provider 2 treats more patients in total

and more high-complexity patients than Provider 1. Naturally, we require that hξ < 1 (i.e., the

proportion of high complexity patients of Provider 2 is less than 1). We continue to assume that

providers have access to the same cost reduction technology (i.e., Rc(.) and Rδ(.) are identical)

but, given their different size, they may decide to invest differently in cost reduction. Providers

may choose to lemon drop a proportion γi ≤ γ̄ of their high-complexity patients and upcode a

proportion αi ≤ ᾱ of their low-complexity patients.

In this case, the first best actions of Provider 1 are given by the same conditions as the main

text:

γ∗1 = α∗1 = 0,− d

dc
Rc(c

∗
1) = λq,− d

dδ
Rδ(δ

∗
1) = λqh,

while the first best actions of Provider 2 become

γ∗2 = α∗2 = 0,− d

dc
Rc(c

∗
2) = λqη,− d

dδ
Rδ(δ

∗
2) = λqhηξ.

Given the properties of Rc(.) and Rδ(.) and since η > 1, ξ > 1, it follows that c∗1 > c∗2 and δ∗1 > δ∗2

(i.e., since the larger Provider 2 treats more patients, they find it optimal to invest more heavily

in cost reduction and operate at lower cost levels compared to the smaller Provider 1).

Under cost-based yardstick competition, if the HO uses one DRG the fees per patient for each

provider are given by pM1 = pm1 = c̄1 and pM2 = pm2 = c̄2, where c̄i is the average treatment cost of

the other provider:

c̄1 := c2 + δ2

hξ(1− γ2) + (1−hξ)α2β

1−hξγ2

, (45)

c̄2 := c1 + δ1

h(1− γ1) + (1−h)α1β

1−hγ1

.

If the HO breaks the condition into two distinct DRGs the fees per patient episode for the major

and the minor condition for each provider are given by pMi = c̄Mi and pmi = c̄mi, respectively, where

c̄M1 := c2 + δ2

hξ(1− γ2) + (1−hξ)α2β

hξ(1− γ2) + (1−hξ)α2

and c̄m1 := c2, (46)

c̄M2 := c1 + δ1

h(1− γ1) + (1−h)α1β

h(1− γ1) + (1−h)α1

and c̄m2 := c1.

In both cases, the transfer payment for each provider is given by

R̄1 := Rc(c2) +Rδ(δ2), (47)

R̄2 := Rc(c1) +Rδ(δ1).



62 Savva, Debo and Shumsky Cherry Picking and Upcoding in Hospital Reimbursement

We will analyse the equilibrium outcome for different cases below. In all the analysis we focus

on the provider’s actions and how they compare to first-best actions. In doing so, we will not

impose participation constraints, i.e., we will allow equilibria where one of the two providers may

be receiving a negative rent. (If participation constraints apply then in those cases where at least

one of the providers receives a negative rent no equilibrium would exist.)

We start by looking at the case were there is no upcoding or cherry picking. The following

proposition summarizes the equilibrium actions of the providers.

Proposition 1A: Under yardstick competition, and irrespective of the number of DRGs used

(one or two), in the absence of patient lemon dropping and upcoding (γ̄ = ᾱ= 0) providers invest

in cost reduction optimally.

Proposition 1A shows that yardstick competition scheme is effective in providing first-best incen-

tives for cost reduction even if the providers are asymmetric. This is the case even if the HO does

not adjust for this asymmetry.

We will next examine the case were providers may lemon drop a proportion γi ≤ γ̄ patients but

cannot upcode. We find it convenient to define cherry-picking-best costs (ce11 , δ
e1
1 ) for Provider 1 as

the solutions to

− d

dc
Rc(c

e1
1 ) = λq(1− γ̄h),− d

dδ
Rδ(δ

e2
1 ) = λqh(1− γ̄),

respectively, and (ce12 , δ
e1
2 ) for Provider 2 as the solutions to

− d

dc
Rc(c

e2
2 ) = λqη(1− γ̄ξh),− d

dδ
Rδ(δ

e2
2 ) = λqηξh(1− γ̄),

respectively. Due to economies of scale (i.e., R′′c (.) > 0, R′′δ (.) > 0), cherry-picking-best costs are

higher than first best costs for both providers (i.e., ce1i > c∗i and δe1i > δ∗i ).

Proposition 2A: In the absence of upcoding (ᾱ= 0), if the HO implements yardstick competition

based on a single DRG, then

• There exists a Nash equilibrium where Provider 1 drops as many patients as possible (γ1 = γ̄),

chooses cherry-picking-best costs (ce11 , δ
e1
1 ). If ce11 + δe11 h

1−γ̄
1−hγ̄ < c∗2 + δ∗2 , then Provider 2 also drops

as many patients as possible (γ2 = γ̄) and chooses cherry-picking-best costs (ce12 , δ
e1
2 ). If c∗2 + δ∗2 <

ce11 + δe11
h(1−γ̄)

1−hγ̄ then Provider 2 does not drop any patients (γ2 = 0) and invest optimally in cost

reduction (i.e. chooses costs c∗2, δ∗2). Otherwise, Provider 2 drops an intermediate proportion γv2 of

patients, where 0<γv2 < γ̄ and chooses intermediate costs (cv2, δ
v
2), where ce12 > cv2 > c

∗
2, δe12 > δv2 > δ

∗
2 .

• If c∗1 + δ∗1 < ce12 + δe12
hξ(1−γ̄)

1−hξγ̄ then there exists a second Nash equilibrium in which Provider

2 drops as many patients as possible (γ2 = γ̄), and chooses cherry-picking-best costs (ce12 , δ
e1
2 ). If

c∗1 + δ∗1h < ce12 + δe12 then Provider 1 does not drop any patients (γ1 = 0) and invests optimally in
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cost reduction (i.e. chooses costs c∗1, δ
∗
1), otherwise Provider 1 drops an intermediate proportion

γm1 of patients, where 0 < γm1 < γ̄ and chooses intermediate costs (cm1 , δ
m
1 ), where ce11 > cm1 > c∗1,

δe11 > δm1 > δ∗.

This proposition is equivalent to Propositions 2 and 8 of the symmetric case. It shows that if

lemon dropping is possible then at least one or both providers will engage in it. As a result of

lemon dropping, providers will also underinvest in cost reduction. More specifically, the symmetric

equilibrium of Proposition 2, where both providers exercised maximum lemon dropping, still exists

and is “symmetric” in the sense that providers still exercise maximum lemon dropping but it is no

longer symmetric in the sense that providers choose to operate at different cost levels. Similarly, the

asymmetric equilibrium of Proposition 8, where only one provider engaged in lemon dropping, still

exists but in this case the provider who engages in lemon dropping could be the larger or, under

some conditions, the smaller provider. It is notable that there are no model parameters where the

equilibrium does not involve at least some lemon dropping.

We turn to the case where the HO uses two DRGs next.

Proposition 3A:In the absence of upcoding (ᾱ= 0), if the HO implements yardstick competition

based on two DRGs, there exists a Nash equilibrium in which Provider 1 drops as many patients

as possible and underinvests in cost reduction compared to first best, Provider 2 does not drop

any patients and invests optimally in cost reduction. In addition, if ce22 + δe22 − c∗1 − δ∗1 ≥ 0, then

there exists a second Nash equilibrium in which Provider 2 drops as many patients as possible and

underinvests in cost reduction compared to first best, Provider 1 does not drop any patients and

invests optimally in cost reduction.

This result echoes that of Proposition 3 of the symmetric case. Expanding the number of DRGs is

helpful in the sense that now one of the two providers acts optimally. If the providers are sufficiently

asymmetric (e.g., even if the larger Provider 2 drops as many patients as possible it still treats

more patients that Provider 1 treats if they do not drop any patient, or, to be more precise, so that

the first-best cost of the smaller provider are larger than the cherry-picking-best costs of the larger

provider) then the equilibrium is unique and the larger Provider 2 is the one that acts optimally.

If however the providers are relatively similar an additional equilibrium will emerge the smaller

Provider 1 is the one that acts optimally. Therefore, just like in the case of symmetric providers,

DRG expansion is not a panacea in this case either.

We turn to the case were in addition to lemon dropping providers can also upcode. Before we

present results, we first define the costs (δe21 , δ
e3
1 ) as the unique solutions to the equations

− d

dδ
Rδ(δ) = λq(h(1− γ̄) + (1−h)ᾱβ),− d

dδ
Rδ(δ) = λq(h+ (1−h)ᾱβ),
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respectively, and the costs (δe22 , δ
e3
2 ) as the unique solutions to the equations

− d

dδ
Rδ(δ) = λqη(ξh(1− γ̄) + (1− ξh)ᾱβ),− d

dδ
Rδ(δ) = λqη(ξh+ (1− ξh)ᾱβ),

respectively. Note that since η > 1, ξ > 1, hξ < 1 it follows that δe22 < δe21 , δe32 < δe31 , δ∗i > δe3i and

δe2i > δe3i . To focus on cases where upcoding is profitable for both providers, we make the following

assumptions that are equivalent to condition (7) of the main text (see discussion in the main text

for an explanation as to why these conditions ensure that upcoding is profitable):

δe32

ξh+ (1−hξ)ᾱβ
ξh+ (1−hξ)ᾱ

> βδe11 , δ
e3
1

h+ (1−h)ᾱβ

h+ (1−h)ᾱ
> βδe12 . (48)

For the rest of the analysis we will assume that these two conditions hold.

Proposition 4A: If both lemon dropping and upcoding are possible, if the HO implements yard-

stick competition based on two DRG,

• There exists a Nash equilibrium where Provider 1 upcodes and drops as many patients as

possible (α1 = ᾱ, γ1 = γ̄) and chooses costs (ce11 , δ
e2
1 ). If ce12 + δe22 > ce11 + δe21

h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
, then

Provider 2 also upcodes and drops as many patients as possible (α2 = ᾱ, γ2 = γ̄) and chooses costs

(ce12 , δ
e1
2 ). If c∗2 + δe32 < ce11 + δe21

h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
then Provider 2 upcodes as much as possible does not

drop any patients (α2 = ᾱ, γ2 = 0) and chooses costs (c∗2, δ
e1
2 ). Otherwise, Provider 2 upcodes as

much as possible (α2 = ᾱ), drops an intermediate proportion (γv2 ) of patients, where 0<γv2 < γ̄ and

chooses intermediate costs (cv2, δ
v
2), where ce12 > cv2 > c

∗
2, δe32 > δv2 > δ

∗
2 .

• If c∗1 + δe31 < ce12 + δe22
ξh(1−γ̄)+(1−hξ)ᾱβ
ξh(1−γ̄)+(1−hξ)ᾱ then there exists a second Nash equilibrium in which

Provider 2 upcodes as many patients as possible (α2 = ᾱ) drops as many patients as possible

(γ2 = γ̄), and chooses costs (ce12 , δ
e2
2 ). If ce22 + δe22 > c∗1 + δe31

h+(1−h)ᾱβ

h+(1−h)ᾱ
then Provider 1 upcodes as

many patients as possible (α1 = ᾱ) does not drop any patients (γ1 = 0) and chooses costs (c∗1, δ
e3
1 ),

otherwise Provider 1 drops an intermediate proportion (γm1 ) of patients 0 < γm1 < γ̄ and chooses

intermediate costs (cm1 , δ
m
1 ), where ce11 > cm1 > c∗1, δe11 > δm1 > δe31 .

The results presented in Proposition 4A minor that of Proposition 4 in the symmetric case. If

upcoding is possible providers will engage fully in it and, even worse, upcoding will make it optimal

for one or both providers to also engage in lemon dropping.

Collectively, this section demonstrates that in the case of two providers that are asymmetric

in the number of patients they treat and/or in the proportion of high complexity patients, the

results of the symmetric case continue to apply. Namely, in the absence of upcoding, expanding the

number of DRGs eliminates lemon dropping incentives only for one of the two providers (usually

the larger). The other provider will continue to lemon drop patients. If upcoding is possible then

this will, in most cases, reinstate lemon dropping incentives for both provider as well.
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Proofs of results appearing in Appendix 3

Proof of Proposition 1A: If there is no upcoding or cherry picking the profit of each provider

is given by

π1(c1, δ1,0,0) = λq [h(pM1− δ1− c1) + (1−h)(pm1− c1)]−Rc(c1)−Rδ(δ1) +Rc(c2) +Rδ(δ2)

π2(c2, δ2,0,0) = λqη [hξ(pM2− δ2− c2) + (1−hξ)(pm2− c2)]−Rc(c2)−Rδ(δ2) +Rc(c1) +Rδ(δ1)

Since the provider’s choice of ci and δi does not affect the reimbursement received, and this

is true irrespective of the number of DRGs used by the HO, the profit-maximizing choice of the

provider is given by

− d

dc
Rc(c1) = λq, − d

dδ
Rδ(δ1) = λqh, − d

dc
Rc(c2) = λqη, − d

dδ
Rδ(δ2) = λqhηξ.

These conditions are identical to the first order conditions of the welfare-maximization problem.

Therefore, the first-best investment decisions constitute a Nash equilibrium. Furthermore, since

R′′c > 0 and R′′δ > 0 these values are unique. �

Proof of Proposition 2A: In the absence of upcoding and if the HO uses a single DRG, the

profit of each provider is given by

π1 = λq [(1−hγ1)c̄1− δ1h(1− γ1)− c1(1−hγ1)]−Rc(c1)−Rδ(δ1) +Rc(c2) +Rδ(δ2)

π2 = λqη [(1−hξγ2)c̄2− δ2hξ(1− γ2)− c2(1−hξγ2)]−Rc(c2)−Rδ(δ2) +Rc(c1) +Rδ(δ1),

with c̄1 = c2 + δ2
hξ(1−γ2)

1−hξγ2
, c̄2 = c1 + δ1

h(1−γ1)

1−hγ1
. The derivatives of the profit function of Provider 1 are

given by:

∂

∂γ1

π1 = λqh(c1 + δ1− c̄1), (49)

∂

∂c1

π1 = − d

dc
Rc(c1)−λq(1−hγ1), (50)

∂

∂δ1

π1 = − d

dδ
Rδ(δ1)−λqh(1− γ1), (51)

and for Provider 2

∂

∂γ2

π2 = λqηhξ(c2 + δ2− c̄2), (52)

∂

∂c2

π2 = − d

dc
Rc(c2)−λqη(1−hξγ2), (53)

∂

∂δ2

π2 = − d

dδ
Rδ(δ2)−λqηhξ(1− γ2). (54)

In equilibrium the conditions (50), (51), (53), (54) must all be equal to zero, otherwise the provider

for whom one of these conditions is not zero could improve their profits.

Turning to (49), we need to check three cases.
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• First, if at the optimal solution (49) is positive, i.e., c1 +δ1−c2−δ2hξ
1−γ2

1−hξγ2
> 0, then ∂

∂γ1
π1 > 0,

therefore Provider 1 must find it optimal to choose γ1 = γ̄ and c1 = ce11 , δ1 = δe11 . Turning to (52)

we will examine three subcases:

— First, if at the optimal solution c2 + δ2 > ce11 + δe11
h(1−γ̄)

1−hγ̄ then ∂
∂γ2
π2 > 0, therefore Provider

2 must find it optimal to choose γ2 = γ̄ and c2 = ce12 , δ2 = δe12 . At these choices, the condition on

(49) is indeed satisfied. However, for the condition on (52) to be satisfied the following condition

must hold ce12 + δe12 > ce11 + δe11
h(1−γ̄)

1−hγ̄ .

— Second, if at the optimal solution c2 + δ2 < c
e1
1 + δe11

h(1−γ̄)

1−hγ̄ then ∂
∂γ2
π2 < 0 therefore Provider

2 finds it optimal to choose γ2 = 0 and c2 = c∗2, δ2 = δ∗2 . At these choices, the condition on (49) is

indeed satisfied. However, for the condition on (52) to be satisfied the following condition must

hold c∗2 + δ∗2 < c
e1
1 + δe11

h(1−γ̄)

1−hγ̄ .

— Third, if at the optimal solution c2 +δ2 = ce11 +δe11
h(1−γ̄)

1−hγ̄ then ∂
∂γ2
π2 = 0. Therefore, Provider

2 will find it optimal to choose γ2 = γv2 , where 0< γv2 < γ̄ with cv2 and δv2 such that (53) and (54)

are equal to zero. γv2 is such that cv2 + δv2 = ce11 + δe11
h(1−γ̄)

1−hγ̄ . At these choices the condition on (49) is

satisfied.

• Second, if at the optimal solution (49) is negative, i.e., c1 + δ1 − c2 − δ2hξ
1−γ2

1−hξγ2
< 0 then

∂
∂γ1
π1 ≤ 0, suggesting that Provider 1 would find it optimal to choose γ1 = 0 and c1 = c∗1, δ1 = δ∗1 .

Turning to (52) we will examine three subcases:

— First, if c2 + δ2 < c∗1 + δ∗1h then ∂
∂γ2
π2 < 0 therefore Provider 2 finds it optimal to choose

γ2 = 0 and c2 = c∗2, δ2 = δ∗2 . At these choices, the condition on (49) cannot be satisfied, leading to

a contradiction. Therefore, this cannot be an equilibrium outcome.

— Second, if c2 + δ2 > c∗1 + δ∗1h then ∂
∂γ2
π2 > 0 therefore Provider 2 finds it optimal to choose

γ2 = γ̄ and c2 = ce12 , δ2 = δe12 . At these choices, the conditions on (49) and (52) are both satisfied if

c∗1 + δ∗1 < c
e1
2 + δe12

hξ(1−γ̄)

1−hξγ̄ and ce12 + δe12 > c∗1 + δ∗1h.

— Third, if c2 +δ2 = c∗1 +δ∗1h then ∂
∂γ2
π2 = 0. Therefore, Provider 2 will find it optimal to choose

γ2 = γvv, where 0<γvv2 < γ̄ with cvv2 and δvv2 such that (53) and (54) are equal to zero. γvv2 is such

that c∗1 + δ∗1h= cvv2 + δvv2 . At these choices condition (49) becomes cvv2 + δvv2
hξ(1−γvv2 )

1−hξγvv2
> c∗1 + δ∗1 . At

these choices, adding up (49) and (52) gives δvv2
1−hξ

1−hξγvv2
+ δ∗1(1−h)< 0, leading to a contradiction.

Therefore, this cannot be an equilibrium outcome.

• Third, if at the optimal solution (49) is equal to zero, i.e., c1 + δ1 − c2 − δ2hξ
1−γ2

1−hξγ2
= 0 then

∂
∂γ1
π1 = 0, suggesting that Provider 1 would find it optimal to choose γ1 = γm1 and c1 = cm1 , δ1 = δm1

such that conditions (50), (51) are equal to zero. Turning to (52) we will examine three subcases:

— First, if c2 + δ2 > cm1 + δm1 h
1−γm1

1−hγm1
then ∂

∂γ2
π2 > 0 therefore Provider 2 finds it optimal to

choose γ2 = γ̄ and c2 = ce12 , δ2 = δe22 . At these choices, the condition on (52) implies that ce12 + δe12 >

cm1 +δm1 h
1−γm1

1−hγm1
. Given the condition on (49), this can be written as δm1

1−h
1−hγm1

+δe12
1−hξ

1−hξγ̄ > 0, which is
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always satisfied. Turning to the condition on (49), there will exist a γm1 < γ̄ to satisfy this condition

only if c∗1 + δ∗1 < c
e1
2 + δe12

hξ(1−γ̄)

1−hξγ̄ .

— Second, if c2 + δ2 < cm1 + δm1 h
1−γm1

1−hγm1
then ∂

∂γ2
π2 < 0 therefore Provider 2 finds it optimal

to choose γ2 = 0 and c2 = c∗2, δ2 = δ∗2 . At these choices, the condition on (49) becomes cm1 + δm1 =

c∗2 +δ∗2hξ. This cannot be true as cm1 > c∗2, δm1 > δ∗2 and hξ < 1, leading to a contradiction. Therefore,

this cannot be an equilibrium outcome.

— Third, if c2 + δ2 = cm1 + δm1 h
1−γm1

1−hγm1
then ∂

∂γ2
π2 = 0. Therefore, Provider 2 will find it optimal

to choose γ2 = γmm2 , where 0< γmm2 < γ̄ with cmm2 and δmm2 such that (53) and (54) are equal to

zero. γmm2 is such that cmm2 +δmm2 = cm1 +δm1
h(1−γm1 )

1−hγm1
. At these choices, adding up (49) and (52) gives

δmm2
1−hξ

1−hξγmm2
+ δm1

1−h
1−hγmm1

= 0, leading to a contradiction. Therefore, this cannot be an equilibrium

outcome.

Collectively, these cases describe the two equilibria presented in the Proposition.�

Proof of Proposition 3A: In the absence of upcoding (ᾱ= 0), under the yardstick competition

scheme with two DRGs, the profit of each provider is given by

π1 = λq [h(1− γ1)(c̄M1− δ1− c1) + (1−h)(c̄m1− c1)]−Rc(c1)−Rδ(δ1) +Rc(c2) +Rδ(δ2),

π2 = λqη [hξ(1− γ2)(c̄M2− δ2− c2) + (1−hξ)(c̄m2− c2)]−Rc(c2)−Rδ(δ2) +Rc(c1) +Rδ(δ1),

where c̄M1 := c2 + δ2, c̄m1 := c2, c̄M2 := c1 + δ1, c̄m2 := c1. The derivatives of the profit function of

Provider 1 are given by:

∂

∂γ1

π1 = λqh(c1 + δ1− c̄M1), (55)

∂

∂c1

π1 = − d

dc
Rc(c1)−λq(1−hγ1), (56)

∂

∂δ1

π1 = − d

dδ
Rδ(δ1)−λqh(1− γ1), (57)

and for Provider 2 by

∂

∂γ2

π2 = λqhηξ(c2 + δ2− c̄M2), (58)

∂

∂c2

π2 = − d

dc
Rc(c2)−λqη(1−hξγ2), (59)

∂

∂δ2

π2 = − d

dδ
Rδ(δ2)−λqhηξ(1− γ2). (60)

In equilibrium the conditions (56), (57), (59), (60) must all be equal to zero, otherwise the provider

for whom one of these conditions is not zero could improve their profits.

Turning to (55), if c1 + δ1 − c2 − δ2 > 0 then ∂
∂γ1
π1 > 0, which suggests that Provider 1 would

find it optimal to choose γ1 = γ̄ and c1 = ce11 , δ1 = δe11 and from (58) then ∂
∂γ2
π2 < 0, which suggests
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that Provider 2 would find it optimal to choose γ2 = 0, c2 = c∗2, δ2 = δ∗. Given the optimal choices,

the condition c1 + δ1− c2− δ2 > 0 is indeed satisfied.

If c1 + δ1 − c2 − δ2 ≤ 0 then ∂
∂γ1
π1 ≤ 0, which suggests that Provider 1 would find it optimal to

choose γ1 = 0 and c1 = c∗1, δ1 = δ∗1 and (58) would imply that ∂
∂γ2
π2 ≥ 0 which in turn suggests that

Provider 2 would find it optimal to choose γ2 = γ̄, c2 = ce12 , δ2 = δe1. Given the optimal choices, the

condition c1 + δ1− c2− δ2 < 0 can only be satisfied if c∗1 + δ∗1 − ce12 − δ1
2 < 0. �

Proof of Proposition 4A: In the presence of upcoding, under the yardstick competition scheme

with two DRGs, the profit of each provider is given by

π1 = λq [(h(1− γ1) + (1−h)α1)c̄M1 + (1−h)(1−α1)c̄m1−h(1− γ1)δ1− (1− γ1h)c1]

− Rc(c1)−Rδ(δ1) +Rc(c2) +Rδ(δ2),

π2 = λqη [(hξ(1− γ2) + (1−hξ)α2)c̄M2 + (1−hξ)(1−α2)c̄m2−hξ(1− γ2)δ2− (1− γ2hξ)c2]

− Rc(c2)−Rδ(δ2) +Rc(c1) +Rδ(δ1),

where c̄M1 := c2 +δ2
ξh(1−γ2)+(1−hξ)α2β

ξh(1−γ2)+(1−hξ)α2
, c̄m1 := c2, c̄M2 := c1 +δ1

h(1−γ1)+(1−h)α1β

h(1−γ1)+(1−h)α1
, c̄m2 := c1. The deriva-

tives of the profit function of Provider 1 are given by:

∂

∂α1

π1 = λqh(c̄M1− c̄m1−βδ1), (61)

∂

∂γ1

π1 = λqh(c1 + δ1− c̄M1), (62)

∂

∂c1

π1 = − d

dc
Rc(c1)−λq(1−hγ1), (63)

∂

∂δ1

π1 = − d

dδ
Rδ(δ1)−λq[h(1− γ1) + (1−h)α1β], (64)

and for Provider 2 by

∂

∂γ2

π2 = λqhηξ(c̄M2− c̄m2−βδ2), (65)

∂

∂γ2

π2 = λqhηξ(c2 + δ2− c̄M2), (66)

∂

∂c2

π2 = − d

dc
Rc(c2)−λqη(1−hξγ2), (67)

∂

∂δ2

π2 = − d

dδ
Rδ(δ2)−λqη[hξ(1− γ2) + (1−hξ)α2β]. (68)

In equilibrium the conditions (63), (64), (67), (68) must all be equal to zero, otherwise the provider

for whom one of these conditions is not zero could improve their profits. Condition (61) can be

written as ∂
∂α1

π1 = δ2
ξh(1−γ2)+(1−hξ)α2β

ξh(1−γ2)+(1−hξ)α2
− βδ1. Note that the first term is minimized at γ2 = 0 and

the second term is maximized at δe21 . Therefore, (61) is positive if (48) holds and this implies that

α1 = ᾱ. A similar argument shows that if (48) holds then α2 = ᾱ.

Turning to condition (62), this can be written as ∂
∂γ1
π1 = c1 + δ1 − c2 − δ2

ξh(1−γ2)+(1−hξ)ᾱβ
ξh(1−γ2)+(1−hξ)ᾱ . We

need to check 3 cases.
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• First, if at the optimal solution (62) is positive, i.e., c1 + δ1− c2− δ2
ξh(1−γ2)+(1−hξ)ᾱβ
ξh(1−γ2)+(1−hξ)ᾱ > 0, then

∂
∂γ1
π1 > 0, therefore Provider 1 must find it optimal to choose γ1 = γ̄ and c1 = ce11 , δ1 = δe21 . Turning

to (66) we will examine three subcases:

— First, if at the optimal solution c2 + δ2 > ce11 + δe21
h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
then ∂

∂γ2
π2 > 0, therefore

Provider 2 must find it optimal to choose γ2 = γ̄ and c2 = ce12 , δ2 = δe22 . Since β < 1, at these choices

the condition on (62) is indeed satisfied. However, for the condition on (66) to be satisfied the

following condition must hold ce12 + δe22 > ce11 + δe21
h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
.

— Second, if at the optimal solution c2 + δ2 < ce11 + δe21
h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
then ∂

∂γ2
π2 < 0 therefore

Provider 2 finds it optimal to choose γ2 = 0 and c2 = c∗2, δ2 = δe32 . At these choices, the condition on

(62) is indeed satisfied. However, for the condition on (66) to be satisfied the following condition

must hold c∗2 + δe32 < ce11 + δe21
h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
.

— Third, if at the optimal solution c2 + δ2 = ce11 + δe21
h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
then ∂

∂γ2
π2 = 0. Therefore,

Provider 2 will find it optimal to choose γ2 = γv2 , where 0< γv2 < γ̄ with cv2 and δv2 such that (67)

and (68) are equal to zero. γv2 is such that cv2 + δv2 = ce11 + δe21
h(1−γ̄)+(1−h)ᾱβ

h(1−γ̄)+(1−h)ᾱ
. At these choices the

condition on (62) is satisfied.

• Second, if at the optimal solution (62) is negative, i.e., c1 + δ1 − c2 − δ2
ξh(1−γ2)+(1−hξ)ᾱβ
ξh(1−γ2)+(1−hξ)ᾱ < 0

then ∂
∂γ1
π1 ≤ 0, suggesting that Provider 1 would find it optimal to choose γ1 = 0 and c1 = c∗1,

δ1 = δe31 . Turning to (66) we will examine three subcases:

— First, if c2 + δ2 < c∗1 + δe31
h+(1−h)ᾱβ

h+(1−h)ᾱ
then ∂

∂γ2
π2 < 0 therefore Provider 2 finds it optimal to

choose γ2 = 0 and c2 = c∗2, δ2 = δe32 . At these choices, the condition on (62) cannot be satisfied,

leading to a contradiction. Therefore, this cannot be an equilibrium outcome.

— Second, if c2 + δ2 > c∗1 + δe31
h+(1−h)ᾱβ

h+(1−h)ᾱ
then ∂

∂γ2
π2 > 0 therefore Provider 2 finds it optimal

to choose γ2 = γ̄ and c2 = ce12 , δ2 = δe22 . At these choices, the conditions on (62) and (66) are both

satisfied if c∗1 + δe31 < ce12 + δe22
ξh(1−γ̄)+(1−hξ)ᾱβ
ξh(1−γ̄)+(1−hξ)ᾱ and ce22 + δe22 > c∗1 + δe31

h+(1−h)ᾱβ

h+(1−h)ᾱ
.

— Third, if c2 + δ2 = c∗1 + δe31
h+(1−h)ᾱβ

h+(1−h)ᾱ
then ∂

∂γ2
π2 = 0. Therefore, Provider 2 will find it opti-

mal to choose γ2 = γvv, where 0 < γvv2 < γ̄ with cvv2 and δvv2 such that (67) and (68) are equal

to zero. γvv2 is such that c∗1 + δe31
h+(1−h)ᾱβ

h+(1−h)ᾱ
= cvv2 + δvv2 . At these choices condition (62) becomes

cvv2 + δvv2
hξ(1−γvv)+(1−hξ)ᾱβ
hξ(1−γvv)+(1−hξ)ᾱ > c∗1 + δe31 . At these choices, adding up (62) and (66) gives δvv2 (1 −

hξ(1−γvv)+(1−hξ)ᾱβ
hξ(1−γvv)+(1−hξ)ᾱ )+ δe31 (1− h+(1−h)ᾱβ

h+(1−h)ᾱ
)< 0, leading to a contradiction. Therefore, this cannot be an

equilibrium outcome.

• Third, if at the optimal solution (62) is equal to zero, i.e., c1 + δ1− c2− δ2
ξh(1−γ2)+(1−hξ)ᾱβ
ξh(1−γ2)+(1−hξ)ᾱ = 0

then ∂
∂γ1
π1 = 0, suggesting that Provider 1 would find it optimal to choose γ1 = γm1 and c1 = cm1 ,

δ1 = δm1 such that conditions (63), (64) are equal to zero. Turning to (66) we will examine three

subcases:
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— First, if c2 + δ2 > cm1 + δm1
h(1−γm1 )+(1−h)ᾱβ

h(1−γm1 )+(1−h)ᾱ
then ∂

∂γ2
π2 > 0 therefore Provider 2 finds it opti-

mal to choose γ2 = γ̄ and c2 = ce12 , δ2 = δe22 . At these choices, the condition on (66) implies that

ce12 + δe22 > cm1 + δm1
h(1−γm1 )+(1−h)ᾱβ

h(1−γm1 )+(1−h)ᾱ
. Given the condition on (62), this can be written as δm1 (1 −

h(1−γm1 )+(1−h)ᾱβ

h(1−γm1 )+(1−h)ᾱ
) + δe22 (1− ξh(1−γ̄)+(1−hξ)ᾱβ

ξh(1−γ̄)+(1−hξ)ᾱ )> 0, which is always satisfied. Turning to the condition

on (62), there will exist a γm1 < γ̄ to satisfy this condition only if c∗1 + δe31 < ce12 + δe22
ξh(1−γ̄)+(1−hξ)ᾱβ
ξh(1−γ̄)+(1−hξ)ᾱ .

— Second, if c2 + δ2 < cm1 + δm1
h(1−γm1 )+(1−h)ᾱβ

h(1−γm1 )+(1−h)ᾱ
then ∂

∂γ2
π2 < 0 therefore Provider 2 finds it

optimal to choose γ2 = 0 and c2 = c∗2, δ2 = δ∗2 . At these choices, the condition on (62) becomes

cm1 + δm1 = c∗2 + δe32
ξh+(1−hξ)ᾱβ
ξh+(1−hξ)ᾱ . This cannot be true as cm1 > c∗2, δm1 > δe32 , leading to a contradiction.

Therefore, this cannot be an equilibrium outcome.

— Third, if c2 + δ2 = cm1 + δm1
h(1−γm1 )+(1−h)ᾱβ

h(1−γm1 )+(1−h)ᾱ
then ∂

∂γ2
π2 = 0. Therefore, Provider 2 will find it

optimal to choose γ2 = γmm2 , where 0<γmm2 < γ̄ with cmm2 and δmm2 such that (67) and (68) are equal

to zero. γmm2 is such that cmm2 + δmm2 = cm1 + δm1
h(1−γm1 )+(1−h)ᾱβ

h(1−γm1 )+(1−h)ᾱ
. At these choices, adding up (62)

and (66) gives δmm2 (1− hξ(1−γm2 )+(1−hξ)ᾱβ
hξ(1−γm2 )+(1−hξ)ᾱ ) + δm1 (1− h(1−γm1 )+(1−h)ᾱβ

h(1−γm1 )+(1−h)ᾱ
) = 0, leading to a contradiction.

Therefore, this cannot be an equilibrium outcome.

Collectively, these cases describe the two equilibria presented in the Proposition.�
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