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Appendix 1: Proofs of Propositions
Proof of Proposition 1: If there is no upcoding or cherry picking the profit of provider i is given
by

mi(ci,6:,0,0) = Aq [A(par; — 6 — ¢i) + (1 = h) (Dmi — )] — Re(ci) — Rs(6:) + T

(see Equation (1)). Since the provider’s choice of ¢; and d; does not affect the reimbursement
received, and this is true irrespective of the number of DRGs used by the HO, the profit-maximizing
choice of the provider is given by

d
— = Rs(5) = Agh.

Any values of ¢; and §; that satisfy these 2 x N conditions are equilibria. Naturally, if all providers
choose ¢; = ¢* and §; = §* the conditions above are identical for all providers, and in fact reduce to
the first order conditions of the welfare-maximization problem. In addition, the transfer payment
ensures that all providers break even. Therefore, the first-best investment decisions constitute a
symmetric Nash equilibrium that achieves first-best investment in cost reduction. Furthermore,
since R” >0 and RJ > 0, the symmetric equilibrium is unique and no asymmetric equilibrium
exists.ld

Proof of Proposition 2: In the absence of upcoding (@ =0), under the yardstick competition

scheme with a single DRG, the profit of provider ¢ is given by
mi(€iy05,0,7%;) = Aq [(1 — hyi)e; — 8;h(1 — ;) — e(1 — hy;)] — R.(¢;) — Rs(8:) + Ry,

where & = g5 20, [cj —1—54’7’(1—_@] and R; := 552, [Re(¢;) + Rs5(9;)] as defined in §4. The

J 1—h’)’j

derivatives of the profit function of provider i are given by:

0

a—%’ﬂ‘i = )\qh(Cz-f—(Sz —CZ'), (9)
B d

a—ciﬂ = —d—cRc(Cz‘) _)\Q(l_h%‘)7 (10)
9 = L Ri(6) = Agh(1— ) (11)
96, T o o\ A=)

In any equilibrium outcome the last two conditions will be equal to zero for all providers. Otherwise
the provider for whom one of these conditions is not zero could increase their profit by changing
¢; or 0;. Furthermore, the conditions above imply that any two providers with 7, =~; will have
the same costs ¢; = ¢; and 0; = §;. Furthermore, since R, >0 and Rj > 0, if a provider has ~; > ~;
then ¢; > ¢;, §; > 0; and the converse is also true — if a provider has costs such that 6, > ¢; (or
¢; > ¢;) then 7; > ;. Furthermore, since 0 <~; <#, from (10) and (11), provider costs must satisfy
¢ < <ot < <o
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Consider a symmetric equilibrium where all providers choose (7, ¢,d). In such a symmetric equi-

> 0. Therefore, v =4 which also implies that ¢ =c*',§ = §*' would

librium then 8%_71'1- = Aghd =L

hy
constitute a candidate for a symmetric equilibrium. Furthermore, since R > 0 and Rj > 0 the
symmetric equilibrium candidate is unique. We note that in this symmetric equilibrium candidate,
the transfer payment ensures that all providers break even (i.e., make a profit of zero). For this to
be an equilibrium outcome no provider must find it profitable to unilaterally deviate to a different
strategy. Consider the payoff of one provider (labeled j) that chooses to deviate to a different strat-
egy (v;,¢;,0;) when all other providers choose (7,c¢*',6%!). The derivative of the profit function of
provider j with respect to ; is given by %ﬂ'i =Agh(c;+8; —c — 551hl(i—;?). Since ¢; +6; > ¢* +6*
then if ¢* + §* > ¢ + 5elhl(i—;? (i.e., if cherry-picking-best costs are not too extreme) which we
have assumed to be the case, then choosing v; < ¥ cannot be a profitable deviation. Therefore,
(7,cct,6°) is the unique symmetric equilibrium.

We will next investigate the existence of asymmetric equilibria. If an asymmetric equilibrium
exists, then at least one provider (labeled j) would have the highest (v;,¢;,d;) (i.e., y; >~; for all ¢
and the inequality is strict for at least one ¢, and similarly for ¢;,d;). Therefore, ¢; +§; > ¢; (recall
that ¢; is the average cost of all other providers and at least some of these providers will have
lower costs). From (9), this implies that v; =4, which also implies that the costs ¢; = ¢, d; = 5.

Therefore, in any asymmetric equilibrium, some providers (at least one) will choose (7, c?*,§°!). The

rest of the providers will have v, <7, ¢, < ¢, 8, < 6°L. For this to be an equilibrium outcome, from

(9) it must be the case that ¢+, — ¢ < 0. If it was not the case then 82k m, > 0, implying that the
provider’s profit could increase by increasing -, which is a contradiction. Consider a provider with
¢, + 0x — &, = 0. The profit of this provider can be written as [Aq[—dih — cx] — R.(cx) — Rs(0)] —
AqYeh(Gx — 6x — i) +C, where C is an exogenous constant. Note that the first term is independent of
~; and is maximized at ¢* and 0*. Consider a deviation from (v, cx,dx) to (0,c*,6*). This deviation
does not affect the second term (it is zero under both strategies) and increases the first term (the
first term is maximized at c¢*,0*). Therefore this deviation is profitable. This suggests than no
provider with costs ¢ + &, — ¢, = 0 can exist, which implies that any provider with cost other that
¢, 6¢t must satisfy ¢, + d; — &, < 0, which implies %kﬁk < 0. Therefore, this provider must choose
(0,¢*,6*) (any other choice of ;> 0 cannot be an equilibrium outcome as provider k can increase
their profit by reducing ). Therefore the condition ¢; + 6 — & < 0 becomes ¢* + §* < ¢, and note
that ¢, > ¢! + 661}’1(1—;;’). In words, in any asymmetric equilibrium, providers will divide in two
groups, 0 providers will not drop any patients and choose to operate at a cost as low as first best

(0,¢*,6%), and N — 6, providers will drop the maximum number of patients and operate at a higher

cost compared to first best (7,ct,0%!).
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Consider one of the 8y low-cost providers. The fee per patient treated by this provider will be given

by & = %=1 (¢* + hd*) + 522 (¢t +h11_;$h561). The condition ¢, + 6, — & < 0 implies that ¢* +§* <

v(c* +ho*) + (1 —v) (et + h2=16°Y), for v = %=L, This is a contradiction as ¢* 4 6* > (¢* + ho*)

1—5h N-1"

and since we have assume that cherry-picking-best costs are not extreme, ¢* + §* > ¢! + hllj—ghéel.
Therefore, an asymmetric equilibrium cannot exist. [
Proof of Proposition 3: In the absence of upcoding (@ =0), under the yardstick competition

scheme with two DRGs, the profit of provider 7 is given by

7i(Ciy 6i50,7:) = Aq [M(1 — i) (€nri — 6 — ¢i) + (1 = h)(Cmi — )] — Re(ci) — Rs(8i) + R,

where Cyri = 55 20 (65 4+ 03], Cni = 7 200G and Ry = 55 30 [Ro(c;) 4+ Rs(6;)] as defined

in §4. The derivatives of the profit function of provider ¢ are given by:

0

a—%m = Aqgh(c; +0; — Cari)s (12)
19} d

6_07;7“ - _d_CRc(Ci)_AQ(l_h%)7 (13)
9 = L Ri6) = Agh(1— ) (14)
85@'7(1 - d5 s\Vi q Yi)-

In any equilibrium outcome, the last two conditions will be equal to zero for all providers. Otherwise
the provider for whom one of these conditions is not zero could increase their profit by changing c;
or §;. Furthermore, the conditions above imply that any two providers with v; =+, will have the
same costs ¢; = ¢; and §; = 0;. Since R! >0 and Rj > 0, if a provider has v, > v; then ¢; > ¢;, 4; > §;
and the converse is also true — if a provider has costs such that §; > J; (or ¢; > ¢;) then ~; > ;.

Furthermore, since 0 <+; <7, from (13) and (14), provider costs satisfy ¢* <¢; < ¢, 6* < §; <6°L.

0
0v;

¢; =cand §; = 0 such that —£ R.(c) = Ag(1—h7), —% Rs(8) = Agh(1 —~) would be a candidate for a

Clearly, in any symmetric equilibrium -=m; = 0. Therefore, any 7; = v where 0 <~ <4 along with
symmetric equilibrium outcome. For any such «, the values of ¢ and § are unique and are increasing
in 7 (since R” > 0 and R} > 0). Now consider any such symmetric equilibrium candidate where v > 0
and consider the profit of provider i which will be given by m; = [-Aq(hd; + ¢;) — R.(¢;) — Rs(9;)] —
Aqghv;(Epi — 0; — ¢;) + C, where C' is an exogenous constant. Note that the first term is independent
of v; and is maximized at ¢* and 6*. Consider a deviation from the symmetric equilibrium candidate
(7,¢,0) to (0,c*,6*). This deviation will be profitable for provider ¢ as it would increase the first term
and leave the second term unaffected (it is zero under both strategies). Therefore, v > 0 cannot be a
symmetric equilibrium outcome. Therefore, the only symmetric equilibrium candidate that survives
is (0, ¢*,6*). For this to be an equilibrium outcome, no provider must find it profitable to unilaterally

deviate to a different strategy. Consider the payoff of one provider (labeled j) that chooses to
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deviate to a different strategy (7;,c¢;,d;) when all other providers choose (0,c*,6*). The derivative
of the profit function of provider j with respect to «; is given by a%jﬂ'j =Agh(c;+9; —c*—06%)>0.
Therefore, this provider can improve their profit by deviating to a strategy where they drop some
patients (i.e., 7; > 0) and invest less in cost reduction, (i.e., ¢; > ¢*,d; > 6*). Therefore no symmetric
equilibrium outcome can exist.

We will now turn to asymmetric equilibria. In any asymmetric equilibrium, at least one provider
(labeled j) would have the highest (v;,c¢;,0;) (i.e., 7; > for all i and the inequality is strict for
at least one 4, and similarly for ¢;,d;). Therefore, ¢; + d; > ¢y (recall that ¢, is the average
cost of all other providers and at least some of these providers will have lower costs). From (12),
this implies that 7; =, which also implies that the costs ¢; = ¢!, d; = §°'. Conversely, at least
one provider (labeled k) will have the lowest ¢, dx, v (i.e., ¢, <¢; for all ¢ and the inequality is
strict for at least one 4, and similarly for d;, 7). Therefore, ¢;, + i, < Cprr (recall that ¢y is the
average cost of all other providers and at least some of these providers will have higher costs).
This implies that this provider will choose v, =0 and ¢, = ¢*, 0, = §*. Furthermore, consider a
provider with costs other than c* or ¢!, which we label as provider s. This provider must have
costs ¢, and d, such that ¢, +d, = ¢, and a corresponding ,. Consider the profit of this provider,
which can be written as my = [-Aq(hds + ¢5) — Re(cs) — Rs(0s)] — Aghvs(Cars — 05 — ¢5) + C, where
C is an exogenous constant. Note that the first term is independent of ~, and is maximized at
¢, =c* and §, = §*. Consider a deviation from (7,,cq,ds) to (0,c¢*,6*). This deviation does not
affect the second term (it is zero under both strategies) and increases the first term. Therefore this
deviation is profitable. This suggests than no provider with costs =, ¢y, d, can exist. In words, in
any asymmetric equilibrium, providers will divide in two groups: #; providers will not drop any
patients and choose to operate at a cost as low as first best (0,¢*,0*) and N —6; providers will drop
the maximum number of patients and operate at a higher cost compared to first best (7, ct,5).

For such an asymmetric equilibrium to exist, the profit of the 6, low-cost providers and the profit
of the N — 6, high-cost providers need to be non-negative. Consider one of the 6; low-cost providers.
The fee for providing the major treatment is given by ¢y, = ]}7\,—_011 (0! + ¢ + i}—j@* +¢*), the
minor treatment is given by ¢,,, = ]X[;_gllcel + %,1:—%(6*), and the transfer payment they will receive

is given by T, = 2% (R5(0") + R.(c°!)) + B=L(R5(6*) + R.(c*)). After some algebra, the profit of

N-1 N-1

the efficient provider can be written as ]X,—__ellvl, where

vy = Aq(h(0" 4+ ¢t —6* — ")+ (1 = h)(c*" = ¢*)) + Re(c®) + Rs(6) — R.(c*) — Rs(5%).

Note that the expression —Ag(h(d + ¢) + (1 — h)c) — R.(c) — R;(6)) is maximized at ¢ = ¢* and
6 = 0, therefore v; > 0. Similarly, the profit of one of the N — 6, high cost providers can be written

01
as N1 U1, where

uy = Ag(h(1 = 7)(0" + ¢ = 0% = ) (L= h)(c" — ) + Rele) + Ro(0") — Relc™) — Rs(5).
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Note that the expression —Aq(h(1—7)(d +c¢)+ (1 —h)c) — R.(c) — Rs(d)) is maximized at ¢ = ¢
and 6 = 6!, therefore u; > 0.

We will next determine the value of #,. For this to be an equilibrium outcome, it must be the
case that the profit one of the low-cost providers makes by being low cost is greater than the profit
they would make if they deviated to being a high-cost provider. After some algebra, this condition

can be written as
N —06, o > 0, —1
N_14=N_1"

Conversely, the profit of one of the high-cost providers must be greater than the payoff they would

make if they deviated to being an low-cost provider. After some algebra, this condition reduces to

6 N-6-1
N1 N_-1

V1.

Together the last two inequalities imply that the number of efficient providers must satisfy

(N — 1)'111
(%1 +’LL1

Nv, +u
Py
v+ Uuq

<6

Note that this interval contains exactly 1 integer as the difference ]\L ”‘1’1;:1 — (]:1113;’1 = 1. Further-

more, since % < N, this integer is always less than N. [
Proof of Proposition 4: Under the yardstick competition scheme with two DRGs, the profit

of provider i is given by

mi(Ciy 0iy iy ¥i) = Aq{[P(1 — i) + (1 — h)as]enri + (1 = h) (1 — ;)i
— [(h(1 =) + (1 = h); B)8; + (1 — hy)ei]} — Re(e;) — Rs(8;) + R,
_ h(1=~;)+(1—h)a; 3 _ _
where Gy = ﬁzj#i ¢; -HL-%], Coni = ﬁzj#cj, and R, :=

o7 2ji [Be(cy) + R5(;)] as defined in §4. The derivatives of the profit function of provider i are

given by:
) o
G = ML= h) (@i = s — 55), (15)
a%im = Agh(c; +6; — i), (16)
z%mz—%&mymﬂyww, (17)
a%m = L Ry(5) ~ MalA(1 )+ (1 ~ ). (18)

In any equilibrium outcome, the last two conditions will be equal to zero for all providers. Otherwise
the provider for whom one of these conditions is not zero could increase their profit by changing

¢; or §;. Furthermore, since 0 <~v; <%, 0<o; <@, and R’ >0 and R} >0, from (17) and (18)
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provider costs satisfy ¢* <¢; < ¢, < 4; < 5%, where §°° is the unique solution to —%R(;((Si) =
Aglh+ (1 - h)ag).

Turning to (15), this condition will be positive for provider 7 if 53, [5j hh((ll__vvj);ﬁl__hh))ﬂmf
4;. Note that the LHS is minimized when all providers other than 4 choose v; =0, a; = &, d; = §%.

>

The RHS is maximized if provider i chooses d; = 6*'. Therefore, a sufficient condition for (15) to

be positive for all providers i is

h563
héel 4 (61 —§3) (1 — h)a’

p< (19)

which we have assumed holds. Therefore, in any equilibrium outcome, all providers will choose
a; = a. Furthermore, (17) and (18) imply that any two providers with ~; =; will have the same
costs ¢; = ¢; and 6; =¢;. Since R >0 and Rj >0, if a provider has v; > ; then ¢; > ¢;, §; > 0; and
the converse is also true — if a provider has costs such that ¢; > J; (or ¢; > ¢;) then ~; > ;.

Consider a symmetric equilibrium such that a; = «, 3, =7, ¢; = ¢ and §; = for all i. In any

h(1=7)(1-5)

_d=y)U=F) 0
h(1—=7)+(1—h)a

5> > 0. Therefore, in
g

symmetric equilibrium ¢pz; — Gy — 80 =0 > 0, which implies

any symmetric equilibrium «; = & for all 7. This, implies that ¢+ — ¢y = % > 0, which
also implies that (%_m- > (. Therefore in any symmetric equilibrium v =4 for all i. The values of
c=c and 0 = §°? are the solution to —£ R, (c) = Aq(1—h7), —2Rs(8) = Aqlh(1—7)+ (1 —h)ap]),
and they are unique (since R! >0 and R} > 0). In addition, the transfer payment ensures that
all providers break even. Furthermore, since (1 — h¥) < 1, this implies that ¢** > ¢*. If h(1 —7) +
(1 —h)aB < h then §%* > ¢*, otherwise the opposite holds. For this to be an equilibrium outcome,
no provider must find it profitable to unilaterally deviate to a different strategy. Consider the
payoff of one provider (labeled j) that chooses to deviate to a different strategy (a;,7;,¢;,0;) when
all other providers choose (@,7,c*',%). Due to condition (7), it is not profitable to choose any
o < &. The derivative of the profit function of provider j with respect to 7, is given by %ﬂj =
Agh(c; +6; — ' — 562%). Since ¢; +6; > ¢* + 6 then if ¢* + 6% > ¢! +562%
then choosing 7; < ¥ cannot be a profitable deviation. Therefore, (&,%,c

h(1-y)+(1-h)as
h(1-7)+(1—-h)a

deviate to (@,0,c*,6%). For this to be the case, it must be the case that the profit of the provider

el %) will constitute a

symmetric equilibrium. If however, c* + 6% < ¢t + §%2 then it may be profitable to
who deviates to (a,0,c*,5°%) when all other providers choose (@, 7, c®,§°?) is non-negative (as the

profit associated with not deviating is zero). This condition can be written as v, > 0, where

B _(M1=7)+ (1 —-h)aB)
Vg = Aq <(h +(1-h)a) h(1—7)+(1—h)a

4 Ru(cY) + Rs(0°) — Ro(c*) — Ry(5%%).

52 — (h+ (1 —h)aB)s® + ' — c*)

We will then consider asymmetric equilibria. Due to condition (7), in any asymmetric equilibrium,

all providers will choose a; = @. At least one provider (labeled j) would have the highest (v;,¢;, ;)
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(i.e., 7v; >, for all 7 and the inequality is strict for at least one 4, and similarly for ¢;,d;). Therefore,
c; +0; > €py (recall that €y, is the average cost of all other providers and at least some of these
providers will have lower costs). From (16), this implies that v; =4, which also implies that the
costs ¢; = ', d; = 6°2. Conversely, at least one provider (labeled k) will have the lowest (7, ¢k, dy,)
(i.e., 7, <y for all i and the inequality is strict for at least one ¢, and similarly for ¢, dx ). Therefore,
¢+ 0 < Carr (recall that ¢,y is the average cost of all other providers and at least some of these
providers will have higher costs). From (16), this implies that v, =0 and ¢, = ¢*, 6, = §°3. For this
to be possible, it must be the case that c* + 5% < ¢! + 562%.

Furthermore, consider a provider with +, other than 0 or %, which we label as provider s.
Due to condition (7), this provider will still have a, = @, and from (16) must have costs ¢, and
0, such that ¢, + 6, = éurs. Consider the profit of this provider, which can be written as m, =
[—Aq(hds 4 cs) — Re(cs) — Rs(05)] — Aqhys(Cars — 05 — ¢5) + C, where C'is a constant that does not
depend on (74, ¢y, 05). Note that the first term is independent of v, and is maximized at ¢, = ¢* and
0, = 0*. Consider a deviation from (s, ¢, ds) to (0,c*,0*). This deviation does not affect the second
term (it is zero under both strategies) and increases the first term. Therefore this deviation is
profitable. This suggests than no provider with costs 74, ¢,, J, can exist. In words, in any asymmetric
equilibrium, providers will divide in two groups: 0y providers will upcode the maximum number
of patients, will not drop any patients and choose to operate at relatively low costs (@,0,c*, %)
and N — 6, providers that will upcode the maximum number of patients, will drop the maximum
number of patients and operate at a higher cost (a, 7, c®,5?).

For such an asymmetric equilibrium to exist, the profit of the 6, low-cost providers and the profit

of the N — 6, high-cost providers need to be non-negative. Consider one of the 8, low-cost providers.
N6y ( ge2 h(1=7)+(1=h)aB

N—12( h(1 PY’)/)+(1 h)a +

N 92

The fee they are paid for providing the major treatment is given by ¢y, =
02 1 *

) + 222 (62 hhtr((ll h,f)‘ff +¢*), the fee for the minor treatment is given by ¢,,, = 4

and the transfer payment they will receive is given by Tj, = =2 (Rs(5°2) + R.(c!)) + —2_—1 T (Rs (563)

R.(c*)). The profit of this provider will be given by 02 2v,. Similar algebra shows that the profit

of one of the high-cost providers will be given by muz, where

h(1-%)+(1—-h)a

uy == (6 (h+ (1 —h)aB) T ha

2 (B —7) + (1= h)ag)s” + (1 - h)(c — )
4 OR(e") + Rs(6°%) — R(cel) Rs(6°2).

Therefore, for the asymmetric equilibrium to exist, it must be the case that v, >0 and uy > 0.

Note that us > 0. To see this, note that u, can be written as

uy = [=Aq (1 =7h)et + (1 =F)h+ (1 = h)aB)s) — Re(c™) — Rs(6°)]
+ Mg ((A=h)c" + (1 =F)h+ (1 = h)aB)d?) — Re(c*) — Rs(6°°)]
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+ A1 h)ﬁ
Note that the expression [—Aq[(1—Fh)c+ ((1 —F)h+ (1 —h)aB)d] — Re(c) — Rs(d)] is maximized
at ct, 0%, therefore the sum of the terms in the first two brackets is positive. The third term is
also positive, which implies that us; > 0. The sign of v, will depend on model parameters.

We next determine the value of 8. If one of the 6, low-cost providers was to deviate and become

a high-cost provider then their profit would be given b; high-cost

providers was to deviate and become a low-cost provider it would be & N92 Lvs. In the symmetrlc

equilibrium it must be the case that these deviations are not profitable. Therefore, —21)2 > uz

and —2—u > _2_'02 These conditions imply that 6, satisfies % <@y < ]\Lﬂ#z If v, >0,

this interval contains exactly 1 integer as the difference between the RHS and the LHS of the

Nvodug — (N—Dwvgy __
ug+vg ugtve

inequalities is 1 and this integer is always less than N. [J

Proof of Proposition 5: Under one DRG, if upcoding is possible (i.e., @ > 0) the derivative of
the profit of any provider with respect to «; is given by o%im = —X\q(1 — h)BJ; < 0. Therefore, in
equilibrium no provider would choose to upcode and the equilibrium outcome is identical to that
presented in Proposition 3 — namely, given the condition c! + 581h11 ,7_ < ¢4 0" the symmetric
equilibrium is characterized by all providers choosing (0,7, c®',°!). Note that this is equivalent to
the solution that maximizes total welfare (i.e., maximizes the objective of the HO as defined in
(2)) under the constraint v = 4. Under two DRGs, the equilibrium outcome is given by Proposition
5. Namely, given that CPU-best costs are comparable to upcoding best costs, the equilibrium is
symmetric and characterized by all providers choosing (@, 7, c!, §¢%). Note that this is the solution
that maximizes total welfare (i.e., maximizes the objective of the HO as defined in (2)) under the
constraints v =4 and a = &. Note that the feasible region of this welfare-maximization problem
is a subset of the feasible region of the pervious welfare-maximization problem. Therefore welfare
under two-DRG symmetric equilibrium cannot be greater than the welfare under the one-DRG
equilibrium.]

Proof of Proposition 6: Under this yardstick competition scheme, the profit of provider i is

given by
mi(ci, 05, a5,7:) = Aq([P(1 =) + (1 = h)oylear + (1 = h)(1 — ;)G
= [(A(1 =) + (1 = h)a;B)d; + (1 — hvyi)ei] )

where M; = /\(J(h(l_%)+(1 _h)ai)v m; = AQ(l_h)(l _ai)9 k>0, ¢0;—K> Sz‘ —65637 gi = CMi— Cmi,
h(1 1-h)x _ =
Mi = N_1 27;&1 ¢+ JW% y» Cmi = ﬁ Zj;éz’ ¢j, and R; = ﬁ Zj;éi [Re(c;) + Rs(6)].
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The derivatives of the profit function of provider ¢ are given by:

0 _

%ﬂ’i =M1 —h)(—B6+ i+ Kk — i), (20)
0

8—%71'1‘ = Aqh(c; +0; — Cpi — K), (21)
0 d

(‘?_Cim = _d_CRc(Ci) - )\‘J(l - h%)v (22)
0 d

a—éiﬂ'i = _%Rd(ai) — Ag[h(1 =) + (1 — h)a;f]. (23)

In any equilibrium outcome, the expressions (22) and (23) have to be equal to zero for all
providers. Otherwise the provider for whom one of these is not zero could increase their profit by
changing ¢; or §;. Furthermore, since 0 <7, <% and 0 < a; < @, from (22) and (23) provider costs
satisfy ¢* < ¢; < ¢!, 6% < §; < 6°'. Turning to (20), since ¢; — k > &; — £, in any equilibrium
%m < 0 which implies that a; =0 for all <. This implies that any two providers with ~; =, will
have the same costs ¢; = ¢; and 0; = 0; and since R, >0 and R} > 0, if a provider has ~; > v;
then ¢; > ¢;, 0; > 0; and the converse is also true — if a provider has costs such that ¢; > d; (or
¢; > ¢;) then ~; > ;. Furthermore, since a; =0 for all 7 we can use (23) to narrow down the range
of possible costs §; to §* < §; < §¢L.

In any symmetric equilibrium a‘—zim = —k < 0, therefore 7, =0, and §; =" and ¢; = ¢* for all
i. Therefore, the strategy (0,0,c¢*,0*) is the only candidate for a symmetric equilibrium outcome.
For this to be an equilibrium outcome no provider must find it profitable to unilaterally deviate
to a different strategy. Consider the payoff of one provider (labeled j) that chooses to deviate to
a different strategy (0,7;,c;,d;) when all other providers choose (0,0,c*,6*). The derivative of the
profit function of provider j with respect to «; is given by a%jﬂj =Agh(c; +0; —c*— 0" — k). If
k> c®t + 6! — ¢* — §* then no profitable deviation can exist, therefore the strategy (0,0,c*,d*) is

the unique symmetric equilibrium outcome. Otherwise, provider j may find it profitable to deviate

to (0,7,ct,6°"). In this case, the profit of provider j needs to be non-negative

s = Ag(h(1 = 3) (6" +¢* — 8 — ) + (1= h)(¢" — ™)) + Ru(c*) + Rs(6") — Ro(c) — Ry(6°Y) — Aghyx

= u; — AghHkK.

Note that u; >0 (see Proof of Proposition 4). Therefore, if £ < min{c®! + §°* —c* — §*, o= then
a profitable deviation will exist and no symmetric equilibrium outcome can exist.

We now turn to asymmetric equilibria. As shown above, in any asymmetric equilibrium «; = 0 for
all i. Therefore, if x =0 for all 7, then the problem of finding asymmetric equilibria reduces to that
of finding equilibria in the case where there is cherry picking but not upcoding (see Proposition 4).

We will consider the case where £ > 0. In this case, the provider with the highest ; will also be the
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provider with the highest costs ¢; and 0, (see similar argument given in the Proof of Proposition

4). Consider one such provider. From (21), 3 7r] = Agh(c; +9; — Cuj — K;). Note that ¢; +6; > ¢y,
nevertheless, if k> ¢! + 5% —¢* —6* then 75— 7T] < 0, suggesting that lowermg ~v; would increase the
provider’s profit. Therefore, for sufﬁc1ently h1gh K there cannot exist a provider with higher rate -;
or higher costs than other providers, suggesting that an asymmetric equilibrium does not exist. If
K< ¢4 0% —¢* — 6%, then 7; =7, which also implies that the costs ¢; = ¢**,; = 6°'. Conversely, at
least one provider (labeled k) will have the lowest ¢, dx, i (i-e., ¢ <¢; for all i and the inequality
is strict for at least one i, and similarly for dy, vx). Therefore, c¢; 4 di, < éprx (recall that €p is the
average cost of all other providers and at least some of these providers will have higher costs). This
implies that this provider will choose v, =0 and ¢; = ¢*, §;,, = §*. Furthermore, consider a provider
with costs other than c¢* or ¢!, which we label as provider s. This provider must have costs c,
and §, such that ¢, + 0, = ¢ys + k and a corresponding ~,. Consider the profit of this provider,
which can be written as m, = [-Aq(hds + ¢5) — R.(¢s) — Rs(05)] — Aghys(Errs — 65 — cs + k) +C, where
C is an exogenous constant. Note that the first term is independent of ~, and is maximized at
¢s =c* and d; = ¢*. Consider a deviation from (0,7s, ¢, ds) to (0,0,c*,6*). This deviation does not
affect the second term (it is zero under both strategies) and increases the first term. Therefore
this deviation is profitable. This suggests than no provider with costs 7, c,,ds can exist. In words,
in any asymmetric equilibrium providers will divide in two groups: 63 providers will not drop any
patients and choose to operate at a cost as low as first best (0,0,¢*,6*) and N — 65 providers
will drop the maximum number of patients and operate at a higher cost compared to first best
(0,7, Cel)&el)'

For such an asymmetric equilibrium to exist, the profit of the 63 low-cost providers and the
profit of the N — 03 high-cost providers need to be non-negative. Consider one of the 65 low-cost
providers. The fee for providing the major treatment is given by = 521 (0 + 1) + £=1 (5" +
¢*), the minor treatment is given by €., = 5= N=lieet 4 01 8=1(c"), the number of major treatments
provided by others M, = \q (%;_allh(l —-3)+ 7\,1:—ih> , the number of minor treatments provided
by others m; = A\q (N—_el(l —hy)+ 21:_11) , and the transfer payment they will receive is given by
Ty, = 281 (R5(5Y) + R (1)) + &= (R5(6*) + R.(c*)). After some algebra, the profit of the low-cost

N-1

provider can be written as N—_gllv4, where

vy 1= Ag(h(0° + ¢t =8 — ")+ (1 = h) (' — ¢*) + hK) + Ro(c!) + R5(6°") — R.(c*) — Rs(5*)
= U1+)\Qh’71€

Note that v; >0 (see Proof of Proposition 4), therefore, v, > 0. Similarly, the profit of one of the

N — 63 high-cost providers can be written as Nﬂ;—lu% where uy := u; — A\gh7yk. Note that u; >0 (see
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Proof of Proposition 4). Therefore, for the asymmetric equilibrium to exist, it must be the case
that k < %

We will next determine the value of 3. For this to be an equilibrium outcome the profit one of
the low-cost providers makes by being low cost must be greater than the profit they would make
if they deviated to being a high-cost provider. After some algebra this condition can be written as

N — 931} S 03 —1
Ug.
N-1'"N-1"

Conversely, the profit of one of the high-cost providers must be greater than the payoff they would
make if they deviated to being a low-cost provider. After some algebra this condition reduces to

0, y N6 -1
N—-1*= N-1

Vy.

Together the last two inequalities imply that the number of low-cost providers must satisfy

(N —1)(v1 + A\ghyk) <
v+ Uy B

< Nvi+u; + (N —1)A\ghyk

0
8 U1+ Uy
Note that this interval contains exactly 1 integer as the difference between the RHS and the LHS

of the inequalities is 1. Furthermore, 65 is non-decreasing in . Since ;3 = 0; when k =0, it follows

that 93 > 91. O
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Appendix 2: Cherry picking and Upcoding under Alternative
Assumptions

In this Appendix we examine how patient cherry picking and upcoding affect the DRG design
problem under cost-of-service regulation and under alternative assumptions. The numbering of

equations continues from that of the main paper.

A2.0. Cost of service regulation

Under cost-of-service regulation, the HO observes the chosen costs of the providers and sets reim-
bursement on the basis of these observed costs. This is similar to how hospitals used to be reim-
bursed by Medicare until 1983 (Dranove 1987). For this section will assume that the status quo,
where costs are ¢g,dp and there is no upcoding or lemon dropping (o =+ = 0), are going to be
the chosen equilibrium outcome unless there is an incentive to deviate — in other words, there is
an implicit cost of managerial effort in changing the cost structure and/or finding ways to lemon
drop some patients and upcode others that breaks ties in favour of the status quo. We need to
distinguish two possibilities. In the first, the HO covers the provider’s costs by paying a single fee
per patient episode (p) irrespective of the treatment provided (i.e., p,, = par = p) — this is equivalent
to assuming that there is only one coarse DRG associated with the condition. The fee per patient
episode will be set equal to the ex post observed average cost of treating patients reduces to:

(1=7)+(1=h)as

—c+5h
p= 1—hy

(24)

Alternately, the HO could break the condition into two distinct DRGs — one for the minor and
another one for the major condition — and cover the provider’s costs by paying two distinct fees,
one for each DRG. This type of cost-of-service payment is more akin to fee-for-service, where the
payment depends on the volume and intensity of services the provider offers to patients. In this
case, the fee for the minor and the major condition will be set equal to the ex post average cost of
treating patients, which are given by
h(1—7)+(1—h)ap
h(1—7)+(1—h)a’

respectively. In order to cover any investment cost incurred by the provider, in addition to the fees

pm=cand py=c+9 (25)

described above, the provider also receives a transfer payment equal to the observed investment
costs T'= R.(c) + Rs(0). All payments depend on the cost levels ¢,d and/or the degree of upcoding
and lemon dropping «, -y, all of which are all chosen by the provider. Furthermore, although the HO
can observe the realized costs and the number of patients treated, they are not able to observe if the
cost investments made by the providers are optimal (because they do not know the cost functions
R.(.) and Rs(.)) and are not in a position to ascertain whether patient selection or upcoding are

taking place. We characterize the providers’ optimal actions with the proposition below.
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Proposition 7 Under cost-of-service requlation, irrespective of the number of DRGs used, i) the
provider does not upcode or lemon drop (i.e., chooses =~ =0); ii) the provider makes no invest-

ment in cost reduction (i.e., chooses costs cg, dp).

On the downside, the proposition shows that, because payments are linked to costs, providers have
no incentive to invest in any cost reduction as any such cost reduction will result in a lower fee per
treatment. This result is well known in the literature (see Shleifer 1985, Ma 1994). On the upside,
the proposition shows that cost-of-service regulation is effective in curtailing patient upcoding and
cherry picking practices. That it does so irrespective of the number of DRGs specified is a little
surprising. For example, if the HO uses one DRG then the payment per patient will, by definition,
be greater than the cost of treating low-complexity patients (¢) but lower than the cost of treating
high-complexity patients (c¢+ ) — see Equation (24). Nevertheless, the provider has no incentive to
cherry pick low-complexity patients or lemon drop high-complexity patients — if they did that, the
average cost of treating patients and, therefore, the payment received per patient would be reduced
accordingly. Similarly, if the HO were to use two DRGs, then the payment for the major treatment
would be greater than the payment for the minor treatment (see Equation (25)). Nevertheless, the
provider has no incentive to upcode low-complexity patients because such upcoding would reduce
the average cost of providing the major treatment and, as a result, the payment for the major
treatment would be reduced accordingly.

At a high level, the proposition suggests that in situations where the main concern is not to
incentivize investment in cost reduction (e.g., because costs are largely fixed and exogenous to the
providers’ efforts) but instead to incentivize providers to prescribe the right treatment (i.e., solve
the credence-goods problem), cost-of-service regulation, where providers are reimbursed for their

costs of providing the service, performs well.

A2.1. Provider downcoding

In the main paper we had assume that providers were not able to undertreat patients (because of
ethical and liability considerations). We had also assumed that providers do not downcode patients.
That is, providers never code a high-complexity patient that was given the major treatment as
having received the minor treatment for reimbursement purposes. In this section we relax this
assumption and allow providers to downcode a proportion 1 —( of the non-dropped high complexity
patients. We assume that the rate of downcoding is bounded from above by 1 —¢ > 0. The updated
model is shown in Figure 5. We will focus on the case where the regulator is using two DRGs as

downcoding is not possible/meaningful otherwise.
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Patients Provider Health Organization
. Treatment/Coding Cost of I tment Cost of Payments to Provider
Volume Complexity Decision Treatment nvzsorsrtlen treatment  Fee per Patient  Transfer
l-o. minor ¢ ™M P, —
Low
1-h a upcode c+BS B
¢ d d (o)
B owncode o R.(c
16 ¢ = +Rs(5) B, = T
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\ g major  ¢+8 By
Y
drop
0 Cout 0
Figure 5 In this Appendix in addition to the assumptions made in the main paper (see Figure 1), providers may decide

that a proportion 1 — ¢ of the high-complexity patients that they do not lemon-drop will be downcoded. These patients still

cost ¢+ 4 to treat (as they receive the major treatment) but will be reimbursed at the minor rate P,.

We first examine the case of cost-of-service regulation. In this case, provider reimbursement for
the minor and the major condition are given by the average cost of providing treatment:
h(1 =) =) h(1=7)¢+ A —=h)ap
h(1=7)1=¢)+(1-h)(1-a) h(1=7)¢+ (1= h)a
Note that if ( =1 (i.e., providers do not downcode) these equations reduce to those of (25).

prrL:C+5

and pyr =c+9 (26)

Proposition 7d: Under cost-of-service regulation providers never find it optimal to downcode
(C=1), and the optimal outcome is given by Proposition 1.
Turning to the case where the regulator uses yardstick competition to reimburse providers, the

realized average costs for major and minor treatments at all other providers besides provider i, are

given by:
o1 s M =)G+ (A —h)oyB
o N—1; [C]-HSJ h(1=7;)G + (L =h)ey |’
1 s h(1—~;)(1—-¢)
ot N—l;Q+5jh(1—’Yj)(l—Cj)‘i‘(l—h)(l—Oéj)’

respectively. Again, note that if ( =1 (i.e., providers do not downcode) these equations reduce to
those of (4)).
We characterize the equilibrium outcome when providers can upcode, downcode, and lemon drop
patients with the proposition below, which extends the results of Proposition 4 of the main paper.
Proposition 4d: If the HO implements yardstick competion based on two DRGSs, then in any

equilibrium providers do mot engage in downcoding if €xr; — €mi >0 for all i. A sufficient condition
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for this to be true is ¢ > a. If this condition holds the equilibrium outcome is given by Proposition
4.

The proposition suggests that under very mild conditions (i.e., as long as the reimbursement for
the major treatment is higher than the reimbursement for the minor treatment) then providers
find it optimal not to engage in downcoding. A sufficient condition based on model primitives for
this to hold is that for every provider the proportion of high complexity patients that are coded
correctly ((;) is not lower than the proportion of low complexity patients that are upcoded (o).

Next we turn our attention to the case where the HO uses input statistics as described in §6.
The following proposition extends the results of Proposition 6 of the main paper to the case where
providers can downcode.

Proposition 6d: Under the two-DRG payment scheme with input statistics, in any equilibrium
providers do not engage in downcoding if €yr; — Cms > 0 for all i. A sufficient condition for this to

be true is ¢ > a. If this condition holds the equilibrium outcome is given by Proposition 6.

A2.2. Extreme Cherry-Picking-Best costs
In this section we extend the results of Proposition 2 to the case where cherry-picking-best costs
are extreme (i.e., ¢* +0* < ¢! 5 A 7)) We will define the following two quantities:

1—
vo: = Mg | = ¢ +h( Pyhépl 5°)| + Re(c™) + Rs(6°") — R.(c*) — R5(87),

uos = Aq [(1-3h) (e —cﬂ) +R(8 = 07) + FR(6 ~h6)] + Re(e") + Rs(5) = Rel) = Ry(6°),

The quantity vy is the profit of a provider who is paid according to yardstick competition and
chooses (0,c*,d*) when all other providers choose (7,c¢', '), and vice versa for ug.
The following proposition describes equilibrium outcomes when cherry-picking-best costs are

extreme and complements the results presented in Proposition 2.

Proposition 8 In the absence of upcoding (& =0) if cherry-picking-best costs are extreme (i.e.,
46" <t + 5 h(l 7)) then if the HO implements yardstick competition based on a single DRG,
then there exists a unique Nash equilibrium:

o [fvg <0 the equilibrium is symmetric and is given by Proposition 2.

o Otherwise, the equilibrium is asymmetric, where N — 0y providers drop as many patients as
possible and choose cherry-picking-best costs (i.e., these providers choose (3,c¢?, 6, and ' > ¢*,
§1 > 6*) and 0y providers do not engage in cherry picking and invest in cost reduction as much
as in first best (i.e., these providers choose (0,c*,6*)). The number of efficient providers 0y is the

only integer in the interval [%, Nf’;%] and 0, > 0y. All providers receive a positive rent.
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The proposition shows that even if costs are extreme (i.e., ¢* +§* < ¢! 4§ hﬁ—;?) the equilibrium
might still be the same as that described in Proposition 2 (this is the case if vy < 0) where all
providers drop as many high-complexity patients as possible and underinvest in cost reduction
compared to first best. Otherwise, if vy > 0 the equilibrium is asymmetric. Some providers choose
to drop high-complexity patients and underinvest in cost reduction while other providers treat all
patients and invest optimally in cost reduction. This result is similar to the case where the provider
uses two DRGs (see Proposition 3). Nevertheless, the number of efficient providers is lower under
one DRG compared to two DRGs, suggesting that, in all cases, the equilibrium outcome with two

DRGs dominates in terms of welfare compared to that with one DRG.

A2.3. Continuous increasing cost of patient upcoding and cherry picking

For the main paper we assumed that if providers choose to upcode or drop patients, they can do
so without any cost up to the predetermined maximum amount of upcoding rate & and patient
lemon-dropping rate 7, after which we have implicitly assumed that the cost of additional upcoding
or lemon dropping becomes infinite. In this Appendix we investigate the case of continuously
increasing cost in engaging with patient upcoding and cherry picking. More specifically, we assume
that when the provider decides to upcode (or drop) a proportion of patients « (7), the provider
incurs a cost E,(a) (E,(7)). Furthermore, we assume that the cost functions E,(.) and E,(.)
are positive, increasing, convex, and ‘sufficiently’ well-behaved (see conditions A and B imposed
below) with E,(0) = £,(0) =0 and lim, ,; E,(z) =lim,_,; E(z) = co. These assumptions reflect
the situation where it is relatively cheap for the provider to upcode (or drop) a small number of
patients, but as they engage more in this practice, the costs start to increase (in a convex manner).
They also ensure that the chosen rate of upcoding/dropping is in the [0,1) interval. (Alternately,
one could view the cost as the expected penalty that the provider may incur if caught engaging
in this practice, and that the size of the penalty and/or the probability of getting caught are
increasing in proportion to the amount of upcoding/lemon dropping that takes place.)

In this case, the profit of the provider is as defined in §3.2 minus the cost of engaging in upcod-
ing and overtreatment E,(a;) + E,(7y;). We note that, under these alternative assumptions, the
first-best solution remains unchanged — the HO would still find it optimal not to engage in any
lemon dropping or upcoding. Similarly, cost-of-service regulation would continue to provide the
right incentives for providers not to engage in lemon dropping or upcoding but at the expense of
eliminating incentives to invest in cost reduction.

Under yardstick competition, providers would be reimbursed with per-patient fees given by (3)
or (4), if the HO uses one or two DRGs, respectively. We also assume that the transfer payment

is now going to be equal to T; = R; + E,; +E_w where the last two terms are the average cost of
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upcoding and cherry picking at other providers (i.e., Ey; = it % and similarly for E_.,z) This
assumption is consistent with the case where the HO can only measure total investment cost and
is not able to distinguish whether the investment was made to reduce costs or to upcode/cherry
pick patients. (This assumption is not critical for any of our results, as the transfer payment does
not affect incentives other than participation.)

We analyze the case where the HO uses one DRG and upcoding is not possible («; = 0 for all 7).
This is the equivalent of Proposition 2.

Proposition 2c: In the absence of upcoding (c; =0 for all i), if the HO implements yardstick
competition based on a single DRG and if Conditions A hold, then there exists a unique symmetric
Nash equilibrium where providers choose (v¢,c¢%,0¢) with v¢ > 0,¢° > ¢*, 6° > 0*.

Conditions A: Let ¢(y) and §(y) be the implicit functions defined by the unique solutions to
—R/(c) — Ag(1 —hv) =0, R5(5) — Agh(1 —~) =0, respectively.

e The following inequality holds for all 0 <~ < 1: (Agh)? <R,5/((1;(7)> + RQ’(i('y))) — Ef(v) <0.

e If ~“ is the unique solution to Aghd(~) 11__7}5',1 — E/(7) = 0 then Agh(c* + 6% — () —
hd(7)1=%;) — B (0) > 0.

1—~¢h

Clearly, using one DRG continues to be an issue — providers will choose to drop patients and
investment in cost reduction will be reduced accordingly. We now turn our attention to the case
where the HO uses two DRGs.

Proposition 3c: In the absence of upcoding (a; =0 for all i), if the HO implements yardstick
competition based on two DRGs and if Conditions A hold, then there exists a unique symmetric
Nash equilibrium where providers choose (0,c*,6*).

The results confirm that expanding the number of DRGs is helpful, at least in the absence of
upcoding. If cherry picking costs are increasing at a sufficiently high rate, there exists a unique
symmetric equilibrium where providers choose not to upcode.

Turning to the case where upcoding is possible, the following proposition summarizes the main
results.

Proposition 4c: If the HO implements yardstick competition based on two DRGs and if Con-
ditions B hold, then there erists a unique symmetric Nash equilibrium where providers choose
(a4, ¢4, 6%) with a > 0,74 > 0,¢* > ¢*. If B < {-v%at then there is underinvestment for the
magjor treatment (5 > 6% ), otherwise there is overinvestment (6% < §*).

Conditions B: Let ¢(7),0(a,v) be the implicit functions defined by the unique solutions to
—R/(¢) = Aqg(1 = hy) =0, R;(0) — Ag(h(1 —v) + (1 — h)a) = 0, respectively. Let

m(e,7) = =Aq((h(1 =7) + (1 = h)apB)d(a,v) + (1 = hy)e(v))
— Re(c(7)) = Rs(6(a, 7)) — E5(7) — Eo(a).
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Also define o and ~? as the unique solutions to the system of two equations:
Aqhé(ad,vd)%m — E! (a?) =0, Aqhé(ad,vd)% — E! (%) = 0. The following
relationships hold:

e The Hessian of 7(«,7) is negative definite,

o Agh(d(a ) ST — 50" = B4(0) > 0,

o Agh(c® +8" — e — 5o,y B QAT B (0) > 0.

The result described above mirrors the results of Proposition 4 — the presence of upcoding
reintroduces incentives for providers to engage in cherry picking. There is, however, one difference
worth outlining. In contrast to the case where cherry picking and upcoding were costless, where
welfare was best served by not increasing the number of DRGs, in this case increasing the number
of DRGs may confer welfare benefits. This is particularly the case if upcoding is relatively expensive
compared to dropping patients. In this case, providers will not engage in too much upcoding
and, as a result, the amount of heterogeneity in the high-cost DRG will be limited, thus reducing
the financial benefit of dropping high-complexity patients. As a result, providers will only drop
a limited number of high-complexity patients, and welfare under two DRGs may be higher than
welfare under one DRG.

Turning to the solution with input statistics, the following proposition characterizes the equilib-
rium outcome.

Proposition 6¢c Under the two-DRG payment scheme with input statistics described in §6, if
Conditions A are satisfied and if k; > 0 there exists a unique symmetric Nash equilibrium where
all providers choose first-best actions (i.e., (0,0,c*,)).

Importantly for the purposes of this research, yardstick competition based on input statistics as
described in the main paper would eliminate incentives to cherry pick and upcode patients and
restore first-best investments. To see why this is the case, consider that payments based on input
statistics remove incentives to upcode, even when doing so is costless. When it is costly to do so,
the incentives to upcode cannot be any greater. Once upcoding has been eliminated so has the
heterogeneity in costs within DRG, leading to a drastic reduction in incentives to cherry pick.
In fact, as Proposition 6¢ suggests, if the cost of cherry picking is rising sufficiently fast (as per

Conditions A), then the cherry picking is eliminated too for any &; > 0.

A2.4. No transfer payments

In the main paper we had assumed that the HO was able to pay a fee per patient episode and
a transfer payment. The role of the former was to reimburse providers for the variable cost of
treating patients and the role of the latter was to reimburse for the investment in cost reduction.

In several healthcare systems, for example, Medicare in the US, providers are paid only a fee per
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patient episode which has to cover both the variable cost of treatment and the fixed investment
cost.

We note that in classic yardstick competition literature (Shleifer 1985), where demand was
endogenous to prices, the lack of a transfer payments was inherently problematic. Since patients
would have to pay inflated prices (i.e., higher than the marginal cost of treatment) some patients
whom the HO would have found optimal to treat will decide not to seek treatment. Furthermore,
as a result of this inefficient reduction in demand, providers would find it optimal to invest less
in cost reduction. In our case, since demand is exogenous, the impact of the absence of a transfer
payment, if any, will be through the way it affects upcoding and cherry-picking incentives.

In the absence of transfer payments, if the HO wanted to implement yardstick competition on
the basis of a single DRG, then the payment per patient to hospital ¢ will be given by the average
total cost of providing care in all other hospitals:

po 3 [cj +5jh(1 —u)+ (kB | Relej) + Rs(0)) | (27)

N -1 oy 1—n,h (1 —~;h)Aq

The first term in the sum represents the average cost for the minor treatment (offered to all patients
who are not dropped). The second term represents the average cost of the major treatment (offered
to high-complexity patients who are not dropped and to low-complexity patients who are upcoded).
The third term represents the average investment cost amortized proportionally on all patients
receiving treatment. Clearly, since in this case there is only one DRG, the provider has no incentive
to upcode. Furthermore, because the per-patient-episode payment is now inflated by the investment
cost, the providers’ incentives to lemon drop are diluted in the sense that the additional profit
associated with lemon dropping a patient is less in the absence of transfer payments compared to
the case where transfer payments are allowed. Nevertheless, the results of Proposition 3 remain
largely unchanged.
More specifically, define

ﬁh el el
T (R + Rs(67))

uy: = ug — Yh(R.(c") + Rs(0¥)).

/
Vi = o+

The quantity v is the profit of a provider who is paid according to yardstick competition and
chooses (0,c*,0*) when all other providers choose (7,c¢!,d°") when transfer payments are not
allowed, and vice versa for uy. We will call the cherry-picking-best costs as comparable to first-best
costs if either of the following conditions hold:

* * el ely, 1=3 | Re(c®H+Rs(sh)
® " H0" =" +0ThiE+ SaTh)

e vy <0oru;<0.
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The following proposition is the equivalent to Propositions 3 and 8 in the absence of transfer
payments.

Proposition 2n In the absence of upcoding (& =0), if the HO implements yardstick competition
based on a single DRG, then there exists a unique Nash equilibrium:

e If cherry-picking-best costs are ‘comparable’ to first-best costs (as defined above), the equilib-
rium is symmetric. Providers drop as many patients as possible and invest in cherry-picking-best
costs (i.e., all providers choose (y,c',0%), and c** > c¢*, 6 > §*).

o Otherwise, the equilibrium is asymmetric, where N — 0 providers drop as many patients as
possible and choose cherry-picking-best costs (i.e., these providers choose (3,c',6"), and c* > c*,
§°t > §*) and 0 providers do not engage in cherry picking and invest in cost reduction as much
as in first best (i.e., these providers choose (0,c*,6*)). The number of efficient providers 0, is the
only integer in the interval [%{l, NTZ‘/%] Furthermore, 0 > 0.

The proposition suggests that, in the absence of transfer payments, then i) the inefficient sym-
metric equilibrium (where all providers choose to drop the maximum number of patients and
underinvest in cost reduction) is the outcome for a smaller set of parameter values; and ii) the
asymmetric equilibrium is more efficient in the sense that more providers choose not to engage in
cherry picking and invest optimally in cost reduction.

Turning to the case where the HO splits the condition into two DRGs for reimbursement pur-

poses, the payments for the major and the minor condition, set at the average (treatment and

investment) cost of all other providers, are given by
1 Z |:Cj 5 h(l_’yj)'i_(l_h)ajﬁ+R5(5j)+Rc(Cj) (28)

PN [T )+ (=R T Ma(=hy) |
_ 1 R(g((sj)—FRc(Cj)
Pmi = N—1 ; |:cj + A(J(l - hfyj) 7 (29)

respectively.
Before we characterize the equilibrium outcome of this competition, we define the following two

quantities:

! h’? € €
v =ty —hW(Ré((S Y+ R.(c)),

u) = ug — hy(Rs(0%) + Re(c")).

As in the case with transfer payments, the quantity v] is the profit of a provider who is paid
according to yardstick competition based on two DRGs in the absence of transfer payments and
who chooses (0,c*,d*) when all other providers choose (7,c!,§°"), and vice versa for the quantity
u}. Note that in this case v} > 0 while the sign of u] depends on model parameters.

In the absence of transfer payments under two DRGs, we will call the cherry-picking-best costs

comparable to first-best costs if either of the following two conditions hold:
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o (et + ¢t —¢* —0%) < Rs(6*) + Re(c*).

o u} <0.

Proposition 3n In the absence of upcoding (& =0), if the HO implements yardstick competition
based on two DRGs without transfer payments, then there exists a unique Nash equilibrium:

o If cherry-picking-best costs are ‘comparable’ to first-best costs (as defined above), the equilib-
rium is symmetric. Providers will not engage in cherry picking and invest in cost reduction as
much as first best (i.e., all providers choose (0,c*,d*)).

o Otherwise, the equilibrium is asymmetric, where N — 0] providers drop as many patients as
possible and choose cherry-picking-best costs (i.e., these providers choose (7,ct,0%), and ¢** > c*,
§° > 6% ) and 0} providers do not engage in cherry picking and invest in cost reduction as much
as in first best (i.e., these providers choose (0,c*,6*)). The number of efficient providers 0y is the
only integer in the interval [%, NfZJ%?] Furthermore, 0] > 6.

Again, the proposition demonstrates that the absence of transfer payments reduces providers’
incentives to lemon drop. In contrast to the case with transfer payments, there may exist a sym-
metric equilibrium where all providers engage in first-best actions. Even if such an equilibrium
does not exist, the number of providers that will choose to be inefficient is smaller in the absence
of transfer payments compared to the case with transfers.

Turning to the case where the HO uses two DRGs and upcoding is possible, note that the absence
of a transfer payment does not affect the value of upcoding — the difference in payment between
a low-complexity patient who is upcoded and that of a low-complexity patient who is not remains
the same whether transfer payments are used or not. Therefore, condition (7)

- hé‘eS
hoel + (35— 09)(1 — h)a

8

continues to ensure that providers will find upcoding profitable and will engage in it fully. Define

h
vh = 0ot s (R(07) + Rel(e),

uhy = uy — hy(Rs(5°%) + R.(c")).

The quantity v} is the profit of a provider who is paid according to yardstick competition and
chooses (@,0,c*,0°) when all other providers choose (&,%,c!,§°?) when transfer payments are
not allowed, and vice versa for u}. We will call the cherry-picking-upcoding-best (CPU-best) costs

comparable to upcoding-best costs if any of the following conditions hold:

* e3 el e2 h(1-3)+(1—h)ap R (662)+RC(661)
° /\q(C +0% —ct -4 R(1—7)+(1-h)a )2 . Aq(1—h7) ?

e v, <0 or up <O0.
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Proposition 4n If both patient cherry picking and upcoding are possible, if the HO implements
yardstick competition based on two DRGs without transfer payments, then there exists a unique
Nash equilibrium.:

o [If CPU-best costs are ‘comparable’ to upcoding-best costs (as defined above), then the equilib-
rium is symmetric. Providers upcode and drop as many patients as possible and invest in CPU-best
costs (i.e., all providers choose (a,7,c',6°%) ). Furthermore, there is underinvestment in cost reduc-
tion compared to first best for the minor condition (c°* > c*) and if 8 < ﬁ"yd then there is also
underinvestment for the major condition (6% > ), otherwise there is overinvestment.

o Otherwise, the equilibrium is asymmetric. N — 60, providers upcode and drop as many patients
as possible and choose CPU-best costs (i.e., these providers choose (a,7,c®,6%?)) and 6, providers
upcode as many patients as possible but do not engage in cherry picking and invest in upcoding-best
costs (i.e., these providers choose (a,0,c*,5°)). The number of low-cost providers 0, is the only
integer in the interval %ﬁ, NTZéJ:rTZZ . Furthermore, 6, > 0,.

The proposition demonstrates that the presence of upcoding strengthens incentives to drop high-
complexity patients, even in the absence of a transfer payment.

Turning to yardstick competition with input statistics, we find it convenient to define
R;(0*) + R.(c*)

g :=min{c® + 6 — ¢ — §* — v , /\qh"y}

Proposition 6n Under the two-DRG payment scheme with input statistics described in §6, with
ki = Kk for all i then there exists a unique Nash equilibrium.:

o If k>R, the equilibrium is symmetric in which all providers choose first-best actions (i.e.,
(0,0,c*,0%)).

o If 0 <k <F, the equilibrium is asymmetric. No provider engages in upcoding and N —
03 providers drop as many patients as possible and choose cherry-picking-best costs (i.e., these
providers choose (0,7, ¢, 6Y) and ¢! > ¢*, §' > 6*) and 0} providers do not engage in cherry pick-
ing and invest in cost reduction as much as in first best (i.e., these providers choose (0,0,c*,6*)).
The number of efficient providers 04 > 0 and is non-decreasing in k'. Furthermore, &' <E&.

The proposition suggests that, compared to the case where transfer payments are allowed, in
their absence yardstick competition based on input statistics continues to be effective in eliminating
the problem of upcoding, and is even more effective in alleviating the problem of cherry picking.

Collectively, the results of this appendix suggest that the absence of transfer payments helps
reduce the problem of cherry picking but does nothing to alleviate the problem of upcoding. In a
setting where investment costs are relatively small compared to variable costs, the results of the

main paper persist in the absence of transfer fees. According to CMS, for the fiscal year 2022,
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“operating base payments,” which are meant to reimburse “labor and supply costs,” were estimated

”

to $6,122 and “capital base payments,” which are meant to reimburse capital expenditures such as
“costs for depreciation, interest, rent, and property related insurance and taxes,” were estimated
to $473.% Therefore, upcoding and patient dropping are likely to remain an issue in the hospital

reimbursement setting.

Proofs of results appearing in Appendix 2
Proof of Proposition 7: Under cost-of-service regulation, and irrespective of the number of DRGs
used, the provider’s payoff is equal to zero. Therefore, the provider resorts to selecting the status
quo — zero upcoding and cherry picking and zero investment in cost reduction (i.e., the provider
will choose a =y =0, c=c¢y, d =dp). O
Proof of Proposition 7d: Under cost-of-service regulation the provider’s profit is zero, there-
fore the provider has no incentive to downcode. The proof proceeds as that of Proposition 7.1
Proof of Proposition 4d: The derivative of a provider’s profit with respect to (; is given by

0 _ _
a—cim = Agh(1 =) (Crri — Cpmi)-

This implies that a%m > 0 if €ar; — Cmi > 0 which suggests that providers will find it optimal not
to downcode (¢; =1). Note that

P — 1 hl—jj—l-l—hozj hl—jl—j
cM,I-,—c,m——Z@V )G+ (1= hayf (=701 -¢) }

N1 A= )G+ (A =h)ay h(1=) (1= )+ (1= h)(1-ay)

_ 1 _ . G B 1-¢
a N—lz(sJ [h(l ) (h(l—%)CjJr(l—h)%' h(l—%)(l—Cj)+(1—h)(1—%‘)>

i
(1-h)o;fB ]
h(1=)G+ (1= h)ay |-

G5 . 1-¢;
h(1—7;)Cj+(1-h)a; h(1=v;)(1=¢;)+(1—h)(1—ay)’

Since ¢; > Z and a; < @, then é;; — ¢,,; >0 if f > a. The rest of the proof proceeds as Proposition

4.0

This is positive if

which is always the case if (; > «;.

Proof of Proposition 6d: The derivative of a provider’s profit with respect to (; is given by

8%»7” = Agh(1 =) (Crri — Coi + £ — ;) > 0.

Since ¢; — Kk < gy — G, this implies that if ¢y — € > 0 then -2

9¢;
providers will find it optimal not to downcode ((; =1). Sufficient conditions for ¢y;; — ¢,,; > 0 are

m; > 0 which suggests that

derived in the proof of Proposition 4d and the rest of the proof proceeds as that of Proposition 6.1

8 See https://www.medpac.gov/wp-content/uploads/2021/11/medpac_payment_basics_21_hospital_final_sec.
pdf
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Proof of Proposition 8: This proof continues from the proof of Proposition 2, where we have
shown that if ¢* +§* > ¢! + et =—2 h(l 7) then there exists a symmetric equilibrium where all providers
choose (7,c', ). In contrast, 1f thls condition is not satisfied, then a provider that knows all
providers choose (7,¢!,§°') may find it profitable to deviate to (0,c*,d8*). For this to be the case,
the profit of the provider who deviates to (0,c*,d*) when all other providers choose (7, ¢!, §°!) must
be positive (as the profit associated with not deviating is zero). After some algebra, this condition
can be written as v > 0. If this is not satisfied (i.e. if vy < 0), the equilibrium is symmetric and is
as given in Proposition 2. Otherwise (i.e. if vy > 0) then no symmetric equilibrium exists.

Turning to the case of asymmetric equilibria, in the Proof of Proposition 2 we have ruled out
their existence if ¢* + §* > ¢! + 5“}‘(1 hf) If this condition is not satisfied then an asymmetric
equilibrium will exist if the profit of the 6, low-cost providers and the profit of the N — 6, high-cost
providers are non-negative. The proﬁt of a low-cost provider will be @vo. Similarly, the profit of
a high-cost provider will be given by 25 ug. Therefore, for the asymmetric equilibrium to exist it
must be the case that vy > 0 and uy > 0. Note that ug > 0. To see this, note that uy can be written

as

ug = [=Aq ((1=7h)c™ + (1 =H)hd') — Ro(c™") — Rs(6")]
+ Mg (A =7h)c" + (1 = 7)hé") + Re(c") + Rs(67)]
+ h(1—h)d".

Note that the expression [—Ag[(1—7h)c+ (1 —7)hd] — R.(c) — Rs(d)] is maximized at ¢, 5%,
therefore the sum of the terms in the first two brackets is positive. The third term is also positive,
which implies that uy > 0. For vy > 0 it must be the case that

Ag(et =" +h[ h5€1 6"]) = Re(c") + R5(8") = Re(c™) — Rs(3). (30)

We will next determine the value of 6. If one of the 8, low-cost providers was to deviate and become
a high-cost provider, then their profit would be given by eLzluO. If one of the N — 6, high-cost

providers was to deviate and become a low-cost provider it would be u’—vo In the asymmetric
90 1

equilibrium it must be the case that these deviations are not profitable. Therefore, & i 1 N1 V0 > N Uo
and ﬁuo > %vo. These conditions imply that 6, satisfies % 0, < %@ If condition

Nwvg+ug _ (N—1)vg — 1

(30) is satisfied, this interval contains exactly 1 integer as the difference =
0+vo ug-+vo

Furthermore, this integer is always less than N.

We will then compare 6; and 6. Note that v; — vy = Agh(1 — h)1—77(5€1 > 0, therefore v; > vyq.

Also, uy —ug = —Agyh(1 — h)o* <0, therefore u; < uy. It follows that % > Z—%, which implies that
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Ul—ila > ﬁuLU Since 6, is the first integer higher than (N — l)ﬁ and 6, is the first integer higher
than (IV — 1),00”%%, it follows that 8, > 6,. O
Proof of Proposition 2c: In the absence of upcoding («; = 0), under the yardstick competition

scheme with a single DRG the profit of provider 7 is given by

7i(ci,6:,0,7:) = Ag[(1 — hy:) & — 6:h(1 — ;) — e(1 — hy;)] — Re(e:) — Rs(6;) — B, (i) + R,

where ¢ = 317 >, [cj +6; hl(iaj)], and R; := 55 >, [Re(c;) + Rs(9;)] as defined in §4. The

derivatives of the profit function of provider ¢ are given by:

0

0 d

8—Ci7Ti = —d—cRc(Cz‘)_)\Q(l_h%)’ (32)
9 = 4 R — Aqh(1— ) (33)
852‘7Tl - d5 A q Yi)-

In any equilibrium outcome, the last two conditions, which do not depend on the actions of other
providers, will have to be equal to zero for all providers. Otherwise the provider for whom one of
these conditions is not zero could increase their profit by changing c; or d;.

Consider a symmetric equilibrium where all providers choose (7¢, ¢, ). From (31)—(33), these

values should satisfy A\ghd®—== — E’ (y¢) =0, —R.(c¢) — Aq(1—h~¢) =0, and R5(5¢) — Agh(1—~¢) =

1—~¢h o

0. Consider a provider that chooses (v;,¢;,d;) when all other providers choose (7¢,¢¢, ). We will

show that this provider will also choose (7¢, ¢, ). The derivative of the provider’s profit is given

by a%im = Agh(c;+d; — c“ — ho° 11__,762) — B! (74). Clearly, the derivative is zero if 7; = v°. A sufficient
condition for this to be the unique maximizer is %ﬂ'i = (Agh)? <m + W) —EJ(v°) <0. A
necessary condition for the solution to be in the interval (0,1] is Agh(c* + §* — ¢ — héaﬁ) -
E!(0) > 0. If these conditions hold, (7¢,c¢,d¢) is the unique symmetric equilibrium. Note that these
conditions are a subset of Conditions A.

The proof above does not rule out asymmetric equilibria, which may exist.[]

Proof of Proposition 3c: In the absence of upcoding («a; = 0), under the yardstick competition

scheme with two DRGs the profit of provider i is given by
mi(ci,6i5,0,7) = Aq [M(1 =) (€nss — 03 — ¢) + (1 = h)(Cmi — )] — Re(ci) — Rs(0s) — Ey (i) + R;,

where Gy 1= 77 205 (65 5], Cni = w7 2052 G and Ry = 5 37 [Re(c;) + Rs(65)] as defined

in §4. The derivatives of the profit function of provider ¢ are given by:

0
8_’)/-7Ti = Agh(c; +6; — enri) — E. (i), (34)
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B d

B = ~ g ele) = a1 =), (35)
o __dp (8) — Agh(1 — ) (36)
g, = Tas o\ A=)

In any equilibrium outcome, the last two conditions have to be equal to zero for all providers.
Otherwise the provider for whom one of these conditions is not zero could increase their profit by
changing c¢; or 9;.

Consider a symmetric equilibrium where all providers choose (7¢,¢%,0°). Equation (34) implies
that %7@- = _di%Ew(% ) < 0, therefore v¢ = 0, which also implies ¢® = ¢*, §° = §*. Consider a provider
that chooses (v;,¢;,0;) when all other providers choose (0,c*,6*). We will show that this provider
will also choose (0,c*,5*). The derivative of the provider’s profit is given by 8%1-7” = Agh(c; + 9; —
¢t —0%)— di%Ev('yi). At ~y; =0 this derivative is negative. Furthermore, if (Agh)? <W + W) —
E!(y¢) <0 for all all 7, such that —R.(c®) — Ag(1—h~¢) =0, R5(6°) — A\gh(1—~°) =0, then a%im <0
for all ~.. This implies that no profitable deviation exists and (0,c*,¢*) is the unique symmetric
equilibrium. Note that these conditions are a subset of Conditions A.

The proof above does not rule out asymmetric equilibria, which may exist. [J

Proof of Proposition 4c: Under the yardstick competition scheme with two DRGs the profit

of provider i is given by

mi(ciy 0iy i, vi) = Aq{[R(1 — i) + (1 = h)ailénri + (1 — h) (1 — a;)Emi
— [(A(L =) + (1 = h)a;B)6; + (1 — hys)ei] }
— R.(c) = Rs(6) — Ey(vi) — Ea(a;) + Ri,

- ._ 1 h(l—vj)+(—h)a;pB - L 1 D .
where Cpyg = N_1 Zj;éi (& + 5j h(l—;j)-f-(l—h)o(j , Chmi = N_1 Zj;&q’, Cj, and Rz =

o1 2o [Re(c;) + Rs(85)] as defined in §4. The derivatives of the profit function of provider i are

given by:
9 — _
Fa ™ = M1 = B e =i = B8) = o), (37)
%w = Aqh(ci +6; — i) — EL (vi), (35)
2 ey - .
%m = —%Ra(@)—/\q[h(l—’yi)—k(l—h)aim. (40)

In any equilibrium outcome, the last two conditions have to be equal to zero for all providers.
Otherwise the provider for whom one of these conditions is not zero could increase their profit by

changing c¢; or 9;.
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Consider a symmetric equilibrium where all providers choose (a4,~v%,c?,6?). From (37)—(40),
these values should satisfy Aqhéd% — E/ (a?) =0, Aqh&d% - E/(v") =0,
—Rh(c?) — Aq(1 — hy?) =0, and R;(6) — Aq(h(1 —~%) + (1 — h)Ba?) = 0. Consider the payoff of
a provider that chooses (a,7i,c;,d;) when all other providers choose (a?,v¢,c?,d). We will show
that this provider will also choose (a?,~v%, ¢, §%). The derivative of the provider’s profit is given by
s, = Aqh(§* BRI 55— B (o) and g, = Agh(c; 48, — ¢! — AU ety
di%Ew(%)~ Clearly, both derivatives are zero if a; = a,~; = y?. A sufficient condition for this to
be the unique maximizer is the Hessian of the profit with respect to «; and ~; (when —R/(c;) —
Aq(1 — hvy;) =0, and Rj5(0;) — Ag(h(1 — ;) + (1 — h)Ba;) = 0) to be negative definite. Necessary
conditions for the solution to be in the interval (0, 1] are Aqh(éd% — 36*)—E/(0)>0
and \gh(c*+6* —c?— 5‘1%) — EZ(0) > 0. If these conditions hold, (a,v%,¢?,d?) is the
unique symmetric equilibrium. These conditions are summarized by Conditions B. Furthermore,
from (39) and since v* > 0 it follows that ¢? > ¢*. From (40), if h(1 —~%) + (1 — h)a?B > h there
will be overinvestment in the major treatment §¢ > §*, otherwise underinvestment.

The proof above does not rule out asymmetric equilibria, which may exist.[]

Proof of Proposition 6c¢: Under the yardstick competition scheme with two DRGs with input

statistics the profit of provider i is given by

mi(ci, 0y a,7:) = Ag{[h(1 — %) + (1 = h)ag)éars + (1 —h) (1 — ay)Cms
— [(A(L =) + (1 = h)a;B)6; + (1 — hyi)ei] }
— R.(¢) = R5(8) — E,(v;) — Ea(a) + Ry + ki(M; — M;) + ¢;(m; — m;),

where M, = Ag(h(1 — 7)) + (1 — R)a), m; = A(1 — h)(1 — «a;), ki >0, ¢ — K > 6 —
e3 5 . = = = h(1—v;)+(1—h)a;B = 5o
55 37 5L = Cpmi — Cmiy CMi = ﬁzj;él |:Cj+6j h(l—';j)-ﬁ-(l—h)aj ]7 Cmi = ﬁzj';éicj: and Rz —
ﬁ Zj;ﬁi [RC(CJ') + R5(67)]
The derivatives of the profit function of provider ¢ are given by:

0

am = )\q(l_h)(_ﬁéi+gi+’{'i_¢i) _E;(ai)v (41)
0

a—fyﬁi = Agh(c; +0; — Cari — ki) — B (%), (42)
0 d

a_cim = —d—CRc(Ci)—AQ(l—h%), (43)
0 d

G_&Wi = —%Ré(@) = Aq[h(1 =) + (1= h)eu . (44)

In any equilibrium, %7@- < 0, which implies that a; =0 for all ¢. In any symmetric equilibrium,

Ch
i

identically to the Proof of Proposition 4c. [J

7; < 0, therefore a symmetric equilibrium candidate is (0,0, ¢*,6*). The rest of the proof proceeds
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Proof of Proposition 2n: The proof proceeds similarly to the proofs of Propositions 2 and 8,
with the updated notation for cost being comparable and vj. The result that 6 > 6, follows from
the observation that v > vy and uj < uy. O

Proof of Proposition 3n: The proof proceeds similarly to the proof of Proposition 3, with the
updated notation for cost being comparable. The result that 6] > 6; follows from the observation
that v > v, and u} <wuy. O

Proof of Proposition 4n: The proof proceeds similarly to the proof of Proposition 4, with the
updated notation for cost being comparable. The result that 8, > 6, follows from the observation
that v} > ve and uh < ug. U

Proof of Proposition 6n: The proof proceeds similarly to the proof of Proposition 6. The
result that &' <& follows from the observation that v} <wu; and Rs(6*) + R.(c*) > 0.0

Appendix 3: The case of two asymmetric providers
In the main analysis we assume that providers are symmetric and have argued that any scheme
that achieves first best in the case of symmetric providers can be modified to account for provider
heterogeneity based on factors that are observable by the HO and exogenous to the provider. In
this section we extent the analysis to examine the case where there is heterogeneity that the HO
does not account for in the reimbursement scheme (e.g., because it is not observable or because
the HO is not sophisticated enough to make the necessary adjustments). Naturally, the results in
this case will depend on the exact way in which providers are asymmetric, but to gain insights on
the impact of asymmetry on equilibrium outcomes we will focus on the case where there are two
providers (N = 2) that differ in the number of patients and in the proportion of high-complexity
patients they treat. More specifically we assume that A;q; = Aq and A2q2 = nAq, where > 1 and
hy = h, hy = &h where £ > 1. This specification ensures that Provider 2 treats more patients in total
and more high-complexity patients than Provider 1. Naturally, we require that h{ <1 (i.e., the
proportion of high complexity patients of Provider 2 is less than 1). We continue to assume that
providers have access to the same cost reduction technology (i.e., R.(.) and Rs(.) are identical)
but, given their different size, they may decide to invest differently in cost reduction. Providers
may choose to lemon drop a proportion v; <4 of their high-complexity patients and upcode a
proportion a; < & of their low-complexity patients.

In this case, the first best actions of Provider 1 are given by the same conditions as the main

text:

Y1 =0 =0,—%Rc(01) = )‘%_%Ré(él) = Aqh,
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while the first best actions of Provider 2 become
d

d
dCRc(CS) = g1, ——=Rs(83) = Aghné.

Vo =a;=0,— T
Given the properties of R.(.) and Rs(.) and since n > 1,£ > 1, it follows that ¢; > ¢; and §7 > 03
(i.e., since the larger Provider 2 treats more patients, they find it optimal to invest more heavily
in cost reduction and operate at lower cost levels compared to the smaller Provider 1).

Under cost-based yardstick competition, if the HO uses one DRG the fees per patient for each
provider are given by pyr1 = pm1 = €1 and paso = pma = C2, where ¢; is the average treatment cost of

the other provider:
RE(1 —72) 4+ (1 — hé)ay3

El = CQ+52 1 hf’y 9 (45)
- 2

_ h(1— +(1-h)x

Gy =+ 0 ( %1) ]E’Y ) 1/3.
- 1

If the HO breaks the condition into two distinct DRGs the fees per patient episode for the major

and the minor condition for each provider are given by pas; = € and p,; = G, respectively, where

RE(1 —72) + (1 — hé)as
h&(1 —~2) + (1 — h)as
h(1 =)+ (1—h)aj
h(1=~)+(1—=h)a

Cyi = Co + 0 and Cpy1 := ¢, (46)

EMQ =C +51 and Emz =C1.

In both cases, the transfer payment for each provider is given by

Rl = RC(CQ) + R5(52), (47)
Ry = R.(c1) + Rs(6,).

We will analyse the equilibrium outcome for different cases below. In all the analysis we focus
on the provider’s actions and how they compare to first-best actions. In doing so, we will not
impose participation constraints, i.e., we will allow equilibria where one of the two providers may
be receiving a negative rent. (If participation constraints apply then in those cases where at least
one of the providers receives a negative rent no equilibrium would exist.)

We start by looking at the case were there is no upcoding or cherry picking. The following
proposition summarizes the equilibrium actions of the providers.

Proposition 1A: Under yardstick competition, and irrespective of the number of DRGs used
(one or two), in the absence of patient lemon dropping and upcoding (7 = & =0) providers invest
in cost reduction optimally.

Proposition 1A shows that yardstick competition scheme is effective in providing first-best incen-
tives for cost reduction even if the providers are asymmetric. This is the case even if the HO does

not adjust for this asymmetry.
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We will next examine the case were providers may lemon drop a proportion 7; <4 patients but
cannot upcode. We find it convenient to define cherry-picking-best costs (c§t,d¢) for Provider 1 as

the solutions to

d _ d . _
— o Re(el) = Aa(1 =), —535(512) = Aqh(1—7),

(4

respectively, and (c§',d5') for Provider 2 as the solutions to

d e2\ __ = _i e2\ __ -y
—chc(cg ) = Aqn(1—~&h), d535(52 ) = Aqn&h(1—7),

respectively. Due to economies of scale (i.e., R/(.) >0, Rj(.) > 0), cherry-picking-best costs are
higher than first best costs for both providers (i.e., ¢ > ¢; and §¢* > 67).

Proposition 2A: In the absence of upcoding (& =0), if the HO implements yardstick competition
based on a single DRG, then

e There exists a Nash equilibrium where Provider 1 drops as many patients as possible (y1 =7),
chooses cherry-picking-best costs (¢{*,0%'). If c§* + 5%%%‘% < ¢y + 03, then Provider 2 also drops
as many patients as possible (v, =7) and chooses cherry-picking-best costs (c5',05'). If c; + 05 <
e + 5?“’&—;32 then Provider 2 does not drop any patients (vo =0) and invest optimally in cost
reduction (i.e. chooses costs 3, 85 ). Otherwise, Provider 2 drops an intermediate proportion 3 of
patients, where 0 < vy <74 and chooses intermediate costs (s, 03 ), where ¢§t > b > c5, 551 > 6% > 0.

o If i+ 67 <8+ 551’1159—,:5? then there exists a second Nash equilibrium in which Provider
2 drops as many patients as possible (v2 =7), and chooses cherry-picking-best costs (c5',d5'). If
c+0th < gt + 05t then Provider 1 does not drop any patients (v; =0) and invests optimally in
cost reduction (i.e. chooses costs c;,07), otherwise Provider 1 drops an intermediate proportion
Y7 of patients, where 0 < ™ <7 and chooses intermediate costs (c',07), where ¢{* > ¢* > ¢},
ot >0 > 6t

This proposition is equivalent to Propositions 2 and 8 of the symmetric case. It shows that if
lemon dropping is possible then at least one or both providers will engage in it. As a result of
lemon dropping, providers will also underinvest in cost reduction. More specifically, the symmetric
equilibrium of Proposition 2, where both providers exercised maximum lemon dropping, still exists
and is “symmetric” in the sense that providers still exercise maximum lemon dropping but it is no
longer symmetric in the sense that providers choose to operate at different cost levels. Similarly, the
asymmetric equilibrium of Proposition 8, where only one provider engaged in lemon dropping, still
exists but in this case the provider who engages in lemon dropping could be the larger or, under

some conditions, the smaller provider. It is notable that there are no model parameters where the

equilibrium does not involve at least some lemon dropping.
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We turn to the case where the HO uses two DRGs next.

Proposition 3A:In the absence of upcoding (= 0), if the HO implements yardstick competition
based on two DRGS, there exists a Nash equilibrium in which Provider 1 drops as many patients
as possible and underinvests in cost reduction compared to first best, Provider 2 does not drop
any patients and invests optimally in cost reduction. In addition, if ¢S* + 052 — ¢; — 87 >0, then
there exists a second Nash equilibrium in which Provider 2 drops as many patients as possible and
underinvests in cost reduction compared to first best, Provider 1 does mot drop any patients and
invests optimally in cost reduction.

This result echoes that of Proposition 3 of the symmetric case. Expanding the number of DRGs is
helpful in the sense that now one of the two providers acts optimally. If the providers are sufficiently
asymmetric (e.g., even if the larger Provider 2 drops as many patients as possible it still treats
more patients that Provider 1 treats if they do not drop any patient, or, to be more precise, so that
the first-best cost of the smaller provider are larger than the cherry-picking-best costs of the larger
provider) then the equilibrium is unique and the larger Provider 2 is the one that acts optimally.
If however the providers are relatively similar an additional equilibrium will emerge the smaller
Provider 1 is the one that acts optimally. Therefore, just like in the case of symmetric providers,
DRG expansion is not a panacea in this case either.

We turn to the case were in addition to lemon dropping providers can also upcode. Before we

present results, we first define the costs (§¢%,¢%) as the unique solutions to the equations

L Ry(5) = Ma(h(1=7)+ (1 = R)aB), ~ S Bs(6) = Aa(h + (1~ B)ap),

respectively, and the costs (952, 05%) as the unique solutions to the equations

LRy (5) = Man(Eh(1—7) + (1~ €n)aB), 5 Ba(8) = Aan(eh + (1~ €h)aif),

respectively. Note that since n > 1,€ > 1,h€ < 1 it follows that 652 < §¢2, 653 < 63, 67 > 6% and
5¢2 > §¢3. To focus on cases where upcoding is profitable for both providers, we make the following
assumptions that are equivalent to condition (7) of the main text (see discussion in the main text
for an explanation as to why these conditions ensure that upcoding is profitable):

Eh+(1—h&ap
Eh+ (1—héa

h+(1—h)ap
h+(1—-h)a

5e3 > Bt 563 > Boet, (48)

For the rest of the analysis we will assume that these two conditions hold.
Proposition 4A: If both lemon dropping and upcoding are possible, if the HO implements yard-

stick competition based on two DRG,
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o There exists a Nash equilibrium where Provider 1 upcodes and drops as many patients as
; = = e e e e e e2 h(1—% —h)as
possible (ay =&, v =) and chooses costs (c{*,0¢%). If c5' + 052 > ¢ + 512%, then
Provider 2 also upcodes and drops as many patients as possible (ca =@, vo =7) and chooses costs
(c§t,85Y). If ¢ + 053 < et + 552% then Provider 2 upcodes as much as possible does not
drop any patients (ay = @, 72 =0) and chooses costs (c;,05"). Otherwise, Provider 2 upcodes as
much as possible (ay = &), drops an intermediate proportion (Vi) of patients, where 0 <4 <7 and
chooses intermediate costs (cy,dy ), where ¢§* > ¢ > c5, 65° > 835 > 0.
* e e e2 Eh(1—% 1-hé)a . g . .

o If i+ <5 + 522% then there exists a second Nash equilibrium in which

Provider 2 upcodes as many patients as possible (ay = &) drops as many patients as possible

h+(1—h)ap
ht(1—h)a

(v2=7), and chooses costs (c5',052). If ¢§* + 6% > ¢ + 6 then Provider 1 upcodes as
many patients as possible (a; =a) does not drop any patients (v =0) and chooses costs (c},07),
otherwise Provider 1 drops an intermediate proportion (v") of patients 0 < ~7* <7 and chooses
intermediate costs (¢",87"), where ¢i* > ¢" > ¢}, 071 > 87 > 053,

The results presented in Proposition 4A minor that of Proposition 4 in the symmetric case. If
upcoding is possible providers will engage fully in it and, even worse, upcoding will make it optimal
for one or both providers to also engage in lemon dropping.

Collectively, this section demonstrates that in the case of two providers that are asymmetric
in the number of patients they treat and/or in the proportion of high complexity patients, the
results of the symmetric case continue to apply. Namely, in the absence of upcoding, expanding the
number of DRGs eliminates lemon dropping incentives only for one of the two providers (usually
the larger). The other provider will continue to lemon drop patients. If upcoding is possible then

this will, in most cases, reinstate lemon dropping incentives for both provider as well.

Proofs of results appearing in Appendix 3
Proof of Proposition 1A: If there is no upcoding or cherry picking the profit of each provider

is given by
7'('1(61,51,0,0) = /\q [h(le — 51 — Cl) + (1 — h)(pml - C1)] — RC(Cl) — Ro(él) + RC(C2) + R5(52)

Ta(Ca,02,0,0) = Agn [AE(Parz — 02 — €2) + (1 — h&) (Pmz — ¢2)] — Re(cz) — Rs(d2) + Re(cr) + Rs(61)

Since the provider’s choice of ¢; and §; does not affect the reimbursement received, and this
is true irrespective of the number of DRGs used by the HO, the profit-maximizing choice of the
provider is given by

d d d d
_d_CRC(Cl) =g, — %35(51) = Agh, — d_cRC(CQ) =Aqn, — %Ra((Sz) = Aghng.
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These conditions are identical to the first order conditions of the welfare-maximization problem.
Therefore, the first-best investment decisions constitute a Nash equilibrium. Furthermore, since
R! >0 and R} >0 these values are unique. J

Proof of Proposition 2A: In the absence of upcoding and if the HO uses a single DRG, the

profit of each provider is given by
T = )\q [(1 — hf}/l)él — 51}1(1 — "}/1) — 01(1 — hf}/l)] — R(,(Cl) — R5(61) + RC(CQ) + R&((gg)

Ty = Aqn [(1 — h&v2)C — 02hE(1 — 72) — c2(1 — h&v2)] — Re(e2) — Rs(02) + Re(c1) + Rs(d1),

with ¢, = ¢y + 6y he(1—2) Co=c1+ 51M. The derivatives of the profit function of Provider 1 are

1—h&yg ? 1—hm
given by:
iﬂ’ = Agh(ci+ 6, — &) (49)
371 1= A4 1 1 1)
0 d
(9_017T1 = _d_CRC(Cl) —)\Q(l—h’h): (50)
0 = — 4 Ry5)) = Agh(1 =) (51)
35171’1 T 5(01 q 1),
and for Provider 2
0
— 1, = 0y —C 2
5727T2 Agnhé(ca + 02 — G2), (52)
O = LR (e = Agn(1— he) (53)
6027T2 = gt ) qan 1G7V2)s
0 d
3_(527T2 = —%R«S(fk) — Aqnh&(1— ). (54)

In equilibrium the conditions (50), (51), (53), (54) must all be equal to zero, otherwise the provider
for whom one of these conditions is not zero could improve their profits.
Turning to (49), we need to check three cases.

e First, if at the optimal solution (49) is positive, i.e., ¢; +6; — ¢y —52h§11_—7%27; > 0, then 0%1711 >0,

therefore Provider 1 must find it optimal to choose v; =74 and ¢; = ¢§', §; = 6¢'. Turning to (52)
we will examine three subcases:

— First, if at the optimal solution c, + dy > 5! + 5;1% then 8%2712 > 0, therefore Provider

2 must find it optimal to choose 75, =7 and ¢, = ¢§!, §; = d5'. At these choices, the condition on
(49) is indeed satisfied. However, for the condition on (52) to be satisfied the following condition

must hold ¢§' + 55! > ¢! + 5%”&—;3).

—Second, if at the optimal solution ;4 8 < ¢t + §e 1)

1—h%y
2 finds it optimal to choose v =0 and ¢; = ¢, d, = ;5. At these choices, the condition on (49) is

then 8%2772 < 0 therefore Provider

indeed satisfied. However, for the condition on (52) to be satisfied the following condition must

hold ¢} + 65 < ' + 5;1—}11(::;).
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— Third, if at the optimal solution ¢, +d; = ¢§! + ¢! hfl h:;) then —71'2 = 0. Therefore, Provider

2 will find it optimal to choose v, =%, where 0 <% <7 with ¢4 and 03 such that (53) and (54)

are equal to zero. 4 is such that ¢f + 0y = ' + 0¢ hl(l h:’) At these choices the condition on (49) is

satisfied.

e Second, if at the optimal solution (49) is negative, i.e., ¢; + ; — o — 52h§1 ;ny < 0 then

87 -—m; < 0, suggesting that Provider 1 would find it optimal to choose 7, =0 and ¢; =¢j, d; =47.
Turning to (52) we will examine three subcases:

— First, if ¢y + 62 < ¢ + 07h then 0%712 < 0 therefore Provider 2 finds it optimal to choose
72 =0 and ¢y = ¢}, 62 = ;5. At these choices, the condition on (49) cannot be satisfied, leading to
a contradiction. Therefore, this cannot be an equilibrium outcome.

—Second, if ¢y + 3 > ¢ + d7h then %772 > 0 therefore Provider 2 finds it optimal to choose
v2 =7 and ¢y = ¢, 0 = 05'. At these choices, the conditions on (49) and (52) are both satisfied if
c+ 07 <cgt 468! ’Lf(l}lﬁz) and c§' + 05 > c1 +07h

— Third, if co+ 3, = +07h then 5= 7r2 = 0. Therefore, Provider 2 will find it optimal to choose
Yo =", where 0 < 73" <% with c§¥ and 04¥ such that (53) and (54) are equal to zero. 73? is such
that ¢ +d7h = c5? 4+ 057, At these choices condition (49) becomes ¢3* 5“’% > ¢+ 67 At

these choices, adding up (49) and (52) gives 65" 5 Ih;ﬁ,l, +07(1—h) <0, leading to a contradiction.

Therefore, this cannot be an equilibrium outcome.

e Third, if at the optimal solution (49) is equal to zero, i.e., ¢; +0; — ¢2 — 52h£11 hz?y =0 then

m =0, suggesting that Provider 1 would find it optimal to choose v, =~7* and ¢; =¢*, 6, = 67"

)
71
such that conditions (50), (51) are equal to zero. Turning to (52) we will examine three subcases:

— First, if co + 62 > " + 5{”h11—,7177 then 0‘32 mo > 0 therefore Provider 2 finds it optimal to
choose vy, = '_y and ¢y = ¢§t, 0 = 052, At these choices, the condition on (52) implies that 5! + 05* >
+5mh

always ba‘mbﬁed. Turning to the condition on (49), there will exist a 7]" < ¥ to satisfy this condition

Given the condition on (49), this can be written as 67" —= h 4 5et =R~ 0 which is

1— I m- L 1—hy7 2 1—-hé¢y

only if ¢} + 67 < 5! + 05" 02

—Second, if ¢; + b2 < " + 5mh11 }jlm then 7 712 < 0 therefore Provider 2 finds it optimal
to choose 7, =0 and ¢, = ¢}, 62 = 0;. At these chomes, the condition on (49) becomes c}* 4 07" =
¢y +d5h€. This cannot be true as ¢* > ¢}, 67" > 65 and hé < 1, leading to a contradiction. Therefore,
this cannot be an equilibrium outcome
— Third, if co + 02 = T +5mh , m

to choose 7, = y5"™, where 0 < 45" <4 with cg’”” and 05" such that (53) and (54) are equal to

= 0. Therefore, Provider 2 will find it optimal

zero. y5*™ is such that ¢ 463" = c* + 07" hl(l h”}r) At these choices, adding up (49) and (52) gives

gmm 1_1}1235”,1 + o7 I 1}171;,,, =0, leading to a contradiction. Therefore, this cannot be an equilibrium
2

outcome.
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Collectively, these cases describe the two equilibria presented in the Proposition.[]
Proof of Proposition 3A: In the absence of upcoding (@ =0), under the yardstick competition

scheme with two DRGs, the profit of each provider is given by

m1=Aq[A(l =y )1 — 01 —c1) + (1 —h)(Gn1 — c1)] — Re(c1) — Rs(01) + Re(ca) + Rs(02),
7 = Aqn [RE(L —72) (Carz — 62 — €2) + (1 = hE) (Cn2 — c2)] — Re(ca) — Ris(02) + Re(er) + Ris(01),

where €y := ¢y 4 09, Gp1 := Ca, Cpro := €1 + 01, Co := ¢1. The derivatives of the profit function of

Provider 1 are given by:

ai%m = Agh(cy+ 0, — 1), (55)

aiqm = —%Rc(cl)—)\Q(l—h%)» (56)

8%17?1 = _%R(S((Sl) = Aqh(1—=m), (57)
and for Provider 2 by

%7’(2 = Aghn&(co+ 62 — Cara), (58)

8%2772 = —C%Rc(@) = Agn(1 = hér), (59)

a%wz = —%Ra((Sz) — Aghng(1 =) (60)

In equilibrium the conditions (56), (57), (59), (60) must all be equal to zero, otherwise the provider
for whom one of these conditions is not zero could improve their profits.

Turning to (55), if ¢; + 0, — ca — d9 > 0 then 6%1711 > 0, which suggests that Provider 1 would
find it optimal to choose 71 =% and ¢; = ¢§, §; = §¢* and from (58) then 0_32”2 < 0, which suggests
that Provider 2 would find it optimal to choose v =0, ca = ¢}, d, = §*. Given the optimal choices,
the condition ¢; + d; — ¢; — 5 > 0 is indeed satisfied.

If ¢y 4+ 01 —cy — 2 <0 then %m <0, which suggests that Provider 1 would find it optimal to
choose v, =0 and ¢; = ¢}, 6; =47 and (58) would imply that %772 >0 which in turn suggests that
Provider 2 would find it optimal to choose 75 =7, co = 5, § = 6°!. Given the optimal choices, the
condition ¢; 4+ d; — ¢a — 05 < 0 can only be satisfied if ¢ + 07 — c5' — 83 < 0. O

Proof of Proposition 4A: In the presence of upcoding, under the yardstick competition scheme

with two DRGs, the profit of each provider is given by

m = Aq[(h(1 =)+ (1 = h)ar)ern + (1 = h)(1 — a1)ém1 — h(1 =71)d1 — (1 = y1h)ei]
— R.(¢1) — Rs(01) + R.(¢2) + Rs(02),
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™y = Aqn [(hE(1 = 72) + (1 = h§)as)enrz + (1 = AE)(1 = @2)Cmz = hE(1 = 72)b2 — (1 = 12h&) o)
— Re(c2) = R5(82) + Re(c1) + Rs(6y),

_ h(1— 1-1 _ _ h(1— 1—1 _ .
where €31 :=Cco+ 05 i;f(l_”jg;:r((l_’,‘fg;’;f, Cm1 1= Ca, Car2 1= C1 +51%, Cmo := ¢;. The deriva-

tives of the profit function of Provider 1 are given by:

0
87“171'1 = Aqh(Crr1 — Cm1 — B01), (61)
a%lm = Agh(ci + 61 — Cun), (62)
0 d
3_(;17T1 = —%RC(Q)—)\Q(l—h’Yl)? (63)
0 d
3—6171'1 = _%Rﬁ(él)_AQ[h(]-_rYl)'i'(l_h)alﬁL (64)
and for Provider 2 by
0
8—71'2 = )\(]h’l’]f(EMQ — Emg — 652), (65)
Y2
0
8_7T2 = Aghné&(ca + 92 — ), (66)
Y2
o =~ Ry(er) ~ Aan(1 ~ hé) (67)
86271-2 - dC c\C2 q'] 1S72),
0 d
8_527T2 = —%Ra(%)—Aqn[hﬁ(l—v2)+(1—h§)azﬁ]- (68)

In equilibrium the conditions (63), (64), (67), (68) must all be equal to zero, otherwise the provider
for whom one of these conditions is not zero could improve their profits. Condition (61) can be

: o0 . _ ¢ Eh(l=yo)+(1-hfaap
written as =2-m = dq ey T D)y

day
the second term is maximized at §¢2. Therefore, (61) is positive if (48) holds and this implies that

— B6;. Note that the first term is minimized at v, =0 and

oy = &. A similar argument shows that if (48) holds then ay, = a.

Turning to condition (62), this can be written as 3%1771 =c +0; —cy— 0 ihh((ll__ 732);1(11__}2?;”; . We

need to check 3 cases.

Con - - TP h(1-y)+(1-h&)as
e First, if at the optimal solution (62) is positive, i.e., ¢; +0; — ¢z — 0o §h(1—~?2)+(1—h§)54 > 0, then
0

3,1 > 0, therefore Provider 1 must find it optimal to choose v; =7 and ¢, = ¢!, §; = 6¢%. Turning
to (66) we will examine three subcases:

— First, if at the optimal solution ¢y + d; > ¢f' + 5{2% then 6%2772 > 0, therefore

Provider 2 must find it optimal to choose 75, =7 and ¢; = ¢§*, §, = §5%. Since 8 < 1, at these choices

the condition on (62) is indeed satisfied. However, for the condition on (66) to be satisfied the

h(1-—%)+(1-h)aB
h(1I—v)+(1—h)a °
hA-3)+(1-h)ap
h(1—-%)+(1—h)a

following condition must hold ¢§' + d52 > c* + §¢2
— Second, if at the optimal solution ¢y + dy < ¢§* + 6¢2 then (,%27['2 < 0 therefore

Provider 2 finds it optimal to choose 7 =0 and ¢, = ¢}, d = §5>. At these choices, the condition on
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(62) is indeed satisfied. However, for the condition on (66) to be satisfied the following condition

must hold ¢ + 653 < ¢§' + 6{‘2% :

— Third, if at the optimal solution ¢y + d; = ¢§' + 5;2% then 8%27@ = 0. Therefore,

Provider 2 will find it optimal to choose v, =~3, where 0 <74 <% with ¢4 and 3 such that (67)

and (68) are equal to zero. 7¢ is such that cj + 6% = ¢! + 5?2%. At these choices the

condition on (62) is satisfied.

€h(1p)+(1-hE)ap
eh(i—ro)+(1-hea < U

then %m <0, suggesting that Provider 1 would find it optimal to choose v; =0 and ¢; = ¢f,

e Second, if at the optimal solution (62) is negative, i.e., ¢; +d; — ¢y — d

d; = 0¢3. Turning to (66) we will examine three subcases:

—First, if ¢ + 62 < ¢} + 5;3% then %71’2 < 0 therefore Provider 2 finds it optimal to

choose v, =0 and ¢, = ¢}, d; = §53. At these choices, the condition on (62) cannot be satisfied,

leading to a contradiction. Therefore, this cannot be an equilibrium outcome.

ht(d-h)as

—Second, if ¢; + 62 > ¢f + 07° T2

then 8—327@ > 0 therefore Provider 2 finds it optimal
to choose 7, =7 and ¢, = c§!, 8, = §52. At these choices, the conditions on (62) and (66) are both

satisfied if ¢f + 0% < 5! 4 652 LLDLCREI and o524 652 > ¢f + 552 LELAAE,

— Third, if ¢o + 85 = ¢} + 653 % then %7@ = 0. Therefore, Provider 2 will find it opti-

mal to choose vy, =", where 0 < 73" < with ¢5” and 5" such that (67) and (68) are equal

to zero. 73" is such that ¢} + 5?3% = 5" + 05", At these choices condition (62) becomes

ey’ + 05" }fg(ll_j::v);i(ll__’fgf‘; > ¢; + 7%, At these choices, adding up (62) and (66) gives 05"(1 —
he(1—v"")+(1—-h&)as e3(1 _ h+(1=h)aB
hE(1—yVV)+(1—hE&)a )+61 (1 h+(1—h)a

equilibrium outcome.

) <0, leading to a contradiction. Therefore, this cannot be an

£h(1-7p)+(1-h)a8 _
€n(1—)+(1-he)a

then 6—‘3,171'1 =0, suggesting that Provider 1 would find it optimal to choose 7, =~7* and ¢; = ¢}?,

e Third, if at the optimal solution (62) is equal to zero, i.e., ¢; +8; —ca — o

0, = 07" such that conditions (63), (64) are equal to zero. Turning to (66) we will examine three

subcases:

—FiI‘St, if Ccy + 52 > Cvln + 51 h(I—A7)+(1—h)a

then 0%2772 > 0 therefore Provider 2 finds it opti-
mal to choose v, =7 and ¢y, = ¢§!, §; = 65%. At these choices, the condition on (66) implies that

S+ 657>t + 5{”};((1—1__7717%—__’%&;. Given the condition on (62), this can be written as 67"(1 —
T ,

h(1—~{")+(1-h)ap 201 _ Eh(A=—F)+(1-h&)as PRI . ; ; 4
_l—h(l—'y{")-f(l—h)a )+ 05 (1 = 551 noa ) > 0, which is always satisfied. Turning to the condition

on (62), there will exist a 4" < 7 to satisfy this condition only if ¢} +§¢* < c§' + 5;2%.

_ : " mh(1=1")+(1-h)as _0 : L, !
Second, if ¢y + §y < " + 611_1—h(17—y{")+(17h)6¢ then 90y 2 < 0 therefore Provider 2 finds it

optimal to choose 2 =0 and ¢, = ¢}, d» = 05. At these choices, the condition on (62) becomes

ot =cs+ 553%. This cannot be true as ¢" > c3, 67" > §5°, leading to a contradiction.

Therefore, this cannot be an equilibrium outcome.
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— Third, if c;+ 6 =c* + 5{”% then 8;:2%2 = 0. Therefore, Provider 2 will find it

optimal to choose v = 5", where 0 < 73" < 7 with ¢5"™ and 65" such that (67) and (68) are equal

to zero. 75" is such that 5" 4 65" =" + 5?%. At these choices, adding up (62)
1

and (66) gives 05" (1 — h}fg((l:’ﬂiwz;i(llih,fg)a;) +o7(1— m%) =0, leading to a contradiction.

Therefore, this cannot be an equilibrium outcome.

Collectively, these cases describe the two equilibria presented in the Proposition.[]



