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GOODHART’S LAW AND MACHINE LEARNING: A STRUCTURAL
PERSPECTIVE∗

By Christopher A. Hennessy and Charles A. E. Goodhart

London Business School, UK; London School of Economics, UK

We develop a simple structural model to illustrate how penalized regressions generate Goodhart bias when
training data are clean but covariates are manipulated at known cost by future agents. With quadratic (ex-
tremely steep) manipulation costs, bias is proportional to Ridge (Lasso) penalization. If costs depend on abso-
lute or percentage manipulation, the following algorithm yields manipulation-proof prediction: Within training
data, evaluate candidate coefficients at their respective incentive-compatible manipulation configuration. We
derive analytical coefficient adjustments: slopes (intercept) shift downward if costs depend on percentage (ab-
solute) manipulation. Statisticians ignoring manipulation costs select socially suboptimal penalization. Model
averaging reduces these manipulation costs.

1. introduction

Recent years have witnessed increased use of machine learning (ML) in allocating re-
sources. For example, ML is used to predict corporate defaults. Scoring algorithms are used to
allocate consumer credit. ML is used to predict trading patterns, risk premia, and valuations.
Big data are used in forecasting insurer outlays. Browsing history is used to predict consumer
behavior. Importantly, such usage of ML brings it directly into tension with Goodhart’s law
that states:

Any observed statistical regularity will tend to collapse once pressure is placed upon it for con-
trol purposes.

In this article, we develop a structural framework for analyzing Goodhart’s law in penalized
regressions. How does Goodhart bias relate to underlying functional forms? Does penaliza-
tion mitigate Goodhart bias? How can Goodhart bias be corrected—and how does the cor-
rection vary with functional forms? Finally, what are the welfare implications of alternative
ML procedures?

We consider a statistician with clean training data. The statistician acts as a Stackelberg
leader, performing penalized regression to develop a public prediction model for future
agents who maximize the difference between their predicted outcome and manipulation costs.
Costs can depend on absolute manipulation or relative (percentage) manipulation.

We first analyze naive prediction that fails to directly account for manipulation. With
quadratic absolute manipulation costs, Goodhart bias and manipulation costs are proportional
to the sum of squared regression coefficients. Bias converges to the sum of the absolute value
of coefficients as cost functions become steeper. Thus, tighter Ridge/Lasso coefficient con-
straints represent a rough method for mitigating Goodhart bias.
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2 hennessy and goodhart

We next solve for Stackelberg equilibria in which the statistician estimates on clean data
and then develops a manipulation-proof model that predicts equally well against manipulated
covariates. Here, the intercept of the manipulation-proof model shifts downward to account
for gaming of covariates featuring absolute manipulation costs, with slope coefficients mov-
ing downward to account for gaming of covariates featuring relative manipulation costs. As
shown, these corrections emerge from a general algorithm for addressing Goodhart’s law: (1)
Fix candidate coefficients. (2) Impute to training data agents’ incentive compatible manipula-
tion. (3) Choose coefficients to minimize the objective given manipulation.

We also highlight an externality: Statisticians ignore costs incurred by agents and choose
smaller penalty parameters than a planner who places weight on manipulation costs. Ulti-
mately, the economy is trapped in an inefficient equilibrium where agents engage in wasteful
data manipulation despite the manipulation being futile. However, model averaging reduces
manipulation costs, with greater reductions the greater the distance between averaged models.

Frankel and Kartik (2022) consider a variant on Frankel and Kartik (2019) where agents
manipulate and heterogeneity prevents elimination of bias. They show that a principal should
precommit to ex post inefficiency. They consider univariate Ordinary Least Squares (OLS),
whereas we speak to ML prediction with arbitrary penalization and potentially more covari-
ates than observations. In addition, we provide analytical formulas for coefficient adjustments
under a broader set of technologies. Finally, we analyze how model averaging affects welfare.
Ball (2022) considers a multivariate setting in which the principal commits to underweight
some covariates to deter manipulation but overweights others, so the score is correct on av-
erage.

Björkegren et al. (2020) consider absolute quadratic manipulation costs demonstrating their
method with Monte Carlo simulations. We present a host of complementary analytical results:
linking Ridge and Lasso penalization to Goodhart bias, analytic expressions for manipulation-
proof coefficients under both absolute and relative cost functions, and cost reductions under
model averaging. Conversely, they offer real-world experimental implementation.

Bruckner and Scheffner (2011) and Hardt et al. (2015) analyze binary classifier problems,
whereas we analyze continuous outcomes. This gives rise to different manipulation strategies
and equilibria. Our setting yields closed-form bias expressions that we map to ML penaliza-
tion. Further, Bruckner and Scheffner consider only quadratic costs, whereas Hardt et al. only
consider costs expressible as max{0, g(x2) − f (x1)}.

Dekel et al. (2010) and Chen et al. (2018) identify mechanisms inducing truthful reporting
in training data. Our article considers the opposite scenario where historical training data are
clean and future data are manipulated. Eliaz and Spiegler (2019) consider a setting in which
incentives would seem to be aligned because the principal’s objective is to predict the agent’s
most preferred outcome. Nevertheless, with Lasso, the agent may have an incentive to misre-
port, given that his report only matters if the covariate’s coefficient is not zero.

Kay and King (2020) write, “The availability of what are now called ‘big data’–the very
large databases permitted by the power of modern computers–increases these dangers. The
existence of a historic data set does not yield a basis for calculating a future probability distri-
bution.” Our article is intended to give a simple formal articulation of such dangers expressed
in the language of ML.

Fernández-Villaverde (2021) identifies three significant challenges to ML: data require-
ments; eliciting truthful revelation; and the critique of Lucas (1976). On the final challenge, he
anticipates our approach in writing, “Thus, any variation in policy renders previous observa-
tions useless, unless we have a structural model (i.e. an economic model that is explicit about
preferences, technology, and information sets) the researcher can use to recompute the opti-
mal responses to the new policy.” Essentially, our article provides an illustration of how this
prescription can be made operational in ML. Here it is worth noting that, rather than tak-
ing head-on the second challenge of eliciting truthful revelation, our proposed algorithm an-
ticipates optimal dishonest responses and undoes manipulation by adjusting intercept and/or
slope coefficients depending on cost functional forms.
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goodhart’s law and machine learning 3

The article is organized as follows: Section 2 describes the setting. Section 3 (4) considers
absolute (relative) manipulation costs. Section 5 considers auxiliary implications.

2. the economic setting

Agents live for one period. There is one historical cohort and one future cohort. A linear
prediction model will be developed using training data from the historical cohort and applied
to the future agents. Both cohorts consist of M agents with member m. The outcome for agent
m is ym. The set of covariates has dimension J, with x jm denoting the true covariate j for agent
m, whereas X denotes the M × J true covariate matrix. For both cohorts, the data-generating
process is:

y = Xβ + ε,(1)

ε ∼ N (0, σ 2I).

The statistician observes y and X for the historical cohort. For the future cohort, the statisti-
cian only observes the respective x̃ jm representing the manipulated covariate:

x̃ jm ≡ x jm + a jm,(2)

where a jm is manipulation. There is a known convex cost Cj to manipulating each covariate j.
We consider a Stackelberg game where the statistician acts as first mover by posting a pre-

diction model mapping manipulated covariates x̃m into predicted outcomes:

ŷm ≡
⎡⎣β p +

J∑
j=1

β
p
j x̃ jm

⎤⎦.(3)

A Stackelberg equilibrium (a∗, β p, β̂) satisfies three criteria. First, for all possible x j, manip-
ulation a∗ is incentive compatible, maximizing the difference between the predicted outcome
and manipulation costs:

a∗(β p) ∈ arg max
a

β p +
J∑

j=1

β
p
j (x j + a j ) −

J∑
j=1

Cj(x j, a j ).(4)

Second, for all possible x j, the posted model β p is manipulation proof in delivering identical
predictions against manipulated covariates as that delivered by the training data model β̂ de-
fined over true covariates:

β p +
J∑

j=1

β
p
j (x j + a∗

j ) = β̂ +
J∑

j=1

β̂ jx jm.(5)

Finally, β̂ is an optimal training data model given observed (y, X) for the historical cohort:

β̂ ∈ arg min
B

⎧⎪⎨⎪⎩
M∑

m=1

⎛⎝ym − B −
J∑

j=1

Bjx jm

⎞⎠2

+ P(B; λ)

⎫⎪⎬⎪⎭.(6)
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4 hennessy and goodhart

The preceding penalized regression objective (6) can be motivated under the assumption
that the statistician is a Bayesian or a frequentist. 1 For example, consider Ridge and Lasso
penalization, respectively:

P(B; λR) ≡ λR

J∑
j=1

B2
j ,(7)

P(B; λL) ≡ λL

J∑
j=1

∣∣Bj
∣∣.

From a Bayesian perspective, Ridge delivers the maximum a posteriori probability given the
prior

β ∼ N
(

0,
σ 2

λR
I
)

.

Alternatively, Lasso delivers the posterior mode under a double exponential prior centered
at zero.

Ridge and Lasso penalization can be motivated from a frequentist perspective since there
exist optimal tuning parameters (λR, λL) such that Ridge and Lasso deliver lower mean-
squared prediction (MSPE) error than OLS. Since OLS is BLUE, Ridge and Lasso achieve
this by introducing bias to reduce estimate variance. A model is said to be overfitted if sub-
optimal penalization results in low bias but high estimator variance, resulting in large MSPE.

Finally, it is worth stressing that implicit in this definition of Stackelberg equilibrium is that
the penalty parameter λ in Equation (6) is not a free variable. Rather, if the statistician is a
Bayesian, then λ is fixed by her prior over β. If the statistician is a frequentist, the penalty pa-
rameter λ in Equation (6) must be understood as being set at its optimal (equilibrium) value,
for example, λ minimizes MSPE. 2

3. absolute manipulation costs

This section considers absolute manipulation cost functions:

Cj(a) ≡ c j

γ
|a|γ where c j > 0 and γ > 1.

Confronted with model β p, agent m solves program (4). From the first-order conditions, it
follows:3

β
p
j ≥ 0 ⇒ a∗

j =
(

β
p
j

c j

) 1
γ−1

,(8)

β
p
j < 0 ⇒ a∗

j = −
(

−
β

p
j

c j

) 1
γ−1

.

Note that the preceding equation implies that, ceteris paribus, agents have a stronger incen-
tive to manipulate those covariates entering the prediction model with larger loadings.

1 See Parviero (2017).
2 See Parviero (2017) for a detailed discussion of empirical approaches to optimal tuning.
3 Convex costs imply concavity of the objective function.
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goodhart’s law and machine learning 5

3.1. Goodhart Bias. Consider first the Goodhart bias that emerges if the statisticians were
to utilize a naive prediction model such that:

ŷm = ŷnaive
m ≡ β̂ +

J∑
j=1

β̂ j x̃ jm.

That is, a naive prediction model takes the coefficients obtained from the clean training data
(Equation (6)) reflecting true covariates x, and reflexively applies them to the future cohort’s
manipulated covariates x̃. From Equation (8) and the fact that with naive prediction β p = β̂,
we obtain the following lemma:

Lemma 1 (Absolute Costs). If the future cohort faces a naive prediction model parameter-
ized with the coefficients β̂ obtained from the historical cohort, the prediction for agent m will
be

ŷm =
⎡⎣β̂ +

J∑
j=1

β̂ jx jm

⎤⎦ +
J∑

j=1

(
1
c j

) 1
γ−1 ∣∣β̂ j

∣∣( γ

γ−1 )(9)

and each agent incurs manipulation costs equal to

1
γ

J∑
j=1

(
1
c j

) 1
γ−1 ∣∣β̂ j

∣∣( γ

γ−1 )
.(10)

Notice that the square bracketed term in Equation (9) captures the prediction the naive
statistician believes she is making, mapping true xjm into predicted values as she did in the
training data. The final term captures Goodhart bias.

With Lemma 1 in mind, recall that Ridge and Lasso coefficients can be expressed as:

β̂R ∈ arg min
B

⎧⎪⎨⎪⎩
M∑

m=1

⎛⎝ym − B −
J∑

j=1

Bjx jm

⎞⎠2
⎫⎪⎬⎪⎭ s.t.

J∑
j=1

B2
j ≤ tR(11)

β̂L ∈ arg min
B

⎧⎪⎨⎪⎩
M∑

m=1

⎛⎝ym − B −
J∑

j=1

Bjx jm

⎞⎠2
⎫⎪⎬⎪⎭ s.t.

J∑
j=1

∣∣Bj
∣∣ ≤ tL.

In fact, there is a one-to-one mapping between the respective penalty parameters λ in Equa-
tion (6) and the constraint tuning parameters t in Equation (11).

From Lemma 1, we have the following proposition expressing Goodhart bias in terms of
Ridge and Lasso constraint tuning parameters:

Proposition 1 (Absolute Costs). Suppose manipulation costs are quadratic and c j = c for
all j. Then under naive Ridge regression:

ŷm = β̂ +
J∑

j=1

β̂ jx jm + tR
c

,(12)
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6 hennessy and goodhart

and each future cohort agent will incur manipulation costs equal to tR/γ c. If, instead, naive
Lasso regression with constraint tuning parameter tL is employed and c j = 1 for all j, then in
the limit as γ approaches infinity:

ŷm = β̂ +
J∑

j=1

β̂ jx jm + tL.(13)

Recall that the frequentist motivation for opting for penalized regressions is achieving
lower MSPE by reducing model variance (overfitting) in exchange for bias arising from de-
parting from OLS. However, from the preceding proposition, it follows true MSPE for the fu-
ture cohort is:

MSPE ≡ E
{

(ŷ − E[y])2
}

(14)

= E

⎡⎢⎣
⎛⎝β̂ +

J∑
j=1

β̂ jx j − E[y]

⎞⎠2
⎤⎥⎦ + 2

(
t
c

)
E

⎡⎣β̂ +
J∑

j=1

β̂ jx j − E[y]

⎤⎦ +
(

t
c

)2

.

The first term immediately above captures MSPE absent data manipulation. Standard formu-
lations of optimal tuning select t to minimize this first term. The second and third terms cap-
ture the effect of Goodhart bias (t/c) on MSPE. Evidently, with data manipulation, there is
an added benefit to choosing lower coefficient constraints t, aside from reduction of variance:
reduction in the Goodhart bias component of MSPE. This argument notwithstanding the next
subsection shows how Goodhart bias can be directly eliminated, with no need for adjustment
of tuning parameters.

3.2. Equilibrium. Under absolute costs, manipulation is independent of true covariates.
With this in mind, we conjecture and verify a Stackelberg equilibrium in which the statisti-
cian corrects Goodhart bias by making an adjustment to the prediction model intercept while
utilizing the slopes from the original penalized regression program (6). Under this conjecture,
the prediction for future cohort agents will be:

ŷm = β p +
J∑

j=1

β̂ j[x jm + a∗
jm](15)

=
⎡⎣β p +

J∑
j=1

(
1
c j

) 1
γ−1 ∣∣β̂ j

∣∣( γ

γ−1 )

⎤⎦ +
J∑

j=1

β̂ jx jm.

Notice, the preceding equation implies that manipulation proofness (5) will be achieved if the
term in squared brackets is equal to the training data intercept β̂. We thus have the following
proposition:

Proposition 2 (Absolute Costs). Let β̂ be the coefficient vector obtained from the training
data according to Equation (6). There is a Stackelberg equilibrium in which statisticians form
predictions for the future cohort according to

ŷm = β p +
J∑

j=1

β
p
j x̃ jm,(16)
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goodhart’s law and machine learning 7

with slopes β
p
j = β̂ j ∀ j = 1, . . . , J and intercept:

β p = β̂ −
J∑

j=1

(
1
c j

) 1
γ−1 ∣∣β̂ j

∣∣( γ

γ−1 )
.(17)

Notice that the preceding proposition implies that as one moves from clean training data to
future data, data manipulation will cause regression intercepts to shift downward. Further, the
downward shift is increasing in the absolute value of historical slope coefficients. Intuitively,
historical slopes will carry over to the future, and the incentive for future manipulation is in-
creasing in the absolute value of the slopes. Thus, the intercept must shift down by a greater
amount to counteract more severe data manipulation.

3.3. Social Welfare and Model Tuning. Consider a statistician who uses Ridge regression
with the objective of minimizing the MSPE. As shown in Proposition 2, even with manipula-
tion, in equilibrium, it is as-if the statistician observes the true covariate matrix X. With this in
mind, MSPE is:

MSPE(λ, β) = σ 2tr[X�λ(X′X)−1�′
λX′] + β ′(�λ − IJ )′X′X(�λ − IJ )β

�λ ≡ [IJ + λ(X′X)−1]−1.(18)

The privately optimal penalty parameter λ∗
R minimizes MSPE.4 Assuming the objective in the

preceding program is globally convex, the first-order condition pins down λ∗
R:

∂MSPE(λ∗
R, β)

∂λ
= 0.

Consider instead a planner who computes social losses as a weighted sum of the MSPE plus
manipulation costs. Proposition 1 allows us to write the social planner’s program as

λ∗∗
R ∈ arg min

λ
ωEMSPE(λ, β) + ωC

tR(λ)
γ c

(19)

⇒ ∂MSPE(λ∗∗
R , β)

∂λ
= −ωC

ωE

t ′R(λ∗∗
R )

γ c
> 0

⇒ λ∗∗
R > λ∗

R.

The first > sign above follows from t ′R < 0. The final > sign above follows from convexity of
the MSPE function. We thus have the following proposition:

Proposition 3. Suppose agents face homogeneous absolute manipulation cost functions, with
the statistician minimizing MSPE under Ridge regression, whereas the social planner minimizes
a weighted sum of the MSPE and manipulation costs. Then the privately optimal penalty pa-
rameter is less than the socially optimal penalty parameter.

4. relative manipulation costs

In many contexts, for example, financial statements, it might be more reasonable to assume
that costs depend on the magnitude of manipulation relative to true covariates. With this in

4 In practice, plug-ins (e.g., OLS) are used to estimate β. For brevity, we consider theoretical optima.
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8 hennessy and goodhart

mind, this section assumes that true covariate (xjm) values are positive and considers that
agents face relative manipulation cost functions:

Cj(a) ≡ c j

γ

∣∣∣a
x

∣∣∣γ x.(20)

c j > 0 and γ > 1.

4.1. Naive Prediction. With relative manipulation costs, the first-order conditions for each
agent’s program (4) imply that:5

β
p
j ≥ 0 ⇒ a∗

j =
(

β
p
j

c j

) 1
γ−1

x j(21)

β
p
j < 0 ⇒ a∗

j = −
(

−
β

p
j

c j

) 1
γ−1

x j.

Notice that manipulation here is similar to that under absolute manipulation costs (8), but
now manipulation is scaled by the true covariate.

Once again, let us begin by considering naive prediction in which the original training data
regression coefficients β̂ are carried over directly in making predictions for the future cohort.
Under relative manipulation costs, we have:

ŷnaive
m ≡ β̂ +

J∑
j=1

β̂ j(x jm + a∗
jm)(22)

= β̂ +
J∑

j=1

β̂ jx jm +
J∑

j=1

(
1
c j

) 1
γ−1 ∣∣β̂ j

∣∣ γ

γ−1 x jm.

The first two terms in the preceding equation capture the prediction a naive statistician be-
lieves she is making, mapping true covariates into predicted values just as she did in the train-
ing data. The final term captures Goodhart bias. Notice that here Goodhart bias is less closely
related to standard regression penalization functions, in contrast to Lemma 1.

4.2. Equilibrium Redux. To begin, suppose we once again conjecture an equilibrium in
which each β

p
j = β̂ j. Under this conjecture, Equation (21) implies:

x jm =
⎡⎣1 +

(
β̂+

j

c j

) 1
γ−1

−
(

−
β̂−

j

c j

) 1
γ−1

⎤⎦−1

x̃ jm.(23)

Substituting the preceding equation into the manipulation-proofness condition (5) yields:

β̂ +
J∑

j=1

β̂ jx jm = β̂ +
J∑

j=1

[
β̂ j +

(
1
c j

) 1
γ−1 ∣∣β̂ j

∣∣ γ

γ−1

]−1

x̃ jm.(24)

But notice that the preceding condition is inconsistent with our initial conjecture that the
coefficients on the manipulated covariates will satisfy β

p
j = β̂ j. Apparently, under relative ma-

5 Convex costs imply concavity of the objective function.
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goodhart’s law and machine learning 9

nipulation costs, we must adjust slopes to eliminate Goodhart bias—after all, here manipula-
tion is linear in true covariates. Nevertheless, the fact that manipulation is proportional im-
plies that a relatively simple adjustment of slope coefficients suffices to correct the bias, as
shown by the following proposition:

Proposition 4 (Relative Costs). Let β̂ be the coefficient vector obtained from the historical
data according to Equation (6), and let each β̃ j be a real solution to

β̂ j ≡ β̃ j +
(

1
c j

) 1
γ−1 ∣∣β̃ j

∣∣ γ

γ−1 .(25)

Then there is a Stackelberg equilibrium in which statisticians form predictions for the future co-
hort according to

ŷm = β̃ p +
J∑

j=1

β̃
p
j x̃ jm,

where β̃ p = β̂ and β̃
p
j = β̃ j ∀ j = 1, . . . , J.

To prove the proposition, it suffices to verify that the manipulation proofness (5) condition
is satisfied. Using the incentive condition (21), we have

ŷm = β̃ p +
J∑

j=1

β̃
p
j x̃ jm(26)

= β̂ +
J∑

j=1

[
β̃ j +

(
1
c j

) 1
γ−1 ∣∣β̃ j

∣∣ γ

γ−1

]
x jm

= β̂ +
J∑

j=1

β̂ jx jm.

Intuitively, each β̃ j solves:

β̂ jx jm = β̃ j x̃ jm(β̃ j ).(27)

Therefore, the contribution of each manipulated covariate x̃ jm to the prediction model ŷm is
just equal to the true covariate xjm contribution to the training model’s predicted ŷm.

It is readily verified that Equation (25) might not have a real-valued solution, or might have
multiple solutions. For example, with quadratic manipulation costs (γ = 2), Equation (25)
gives rise to a quadratic equation that may have no real solution, a unique real solution, or
two distinct real solutions.

Proposition 4 can also be viewed from a positive perspective, delivering a prediction regard-
ing how regression coefficients will evolve as one moves from historical training data to future
data. In particular, the proposition predicts that under relative manipulation costs, slope coef-
ficients will shift downward, with:

β̃
p
j = β̂ j −

(
1
c j

) 1
γ−1 ∣∣∣β̃ p

j

∣∣∣ γ

γ−1 ≤ β̂ j.(28)
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10 hennessy and goodhart

5. extensions

This section considers some extensions and implications of the preceding analysis.

5.1. Algorithmic Perspective. Propositions 2 and 4 used a conjecture and verify approach
to evaluating Goodhart bias corrections. This section considers whether there might be a
more robust approach for addressing Goodhart bias, one with the potential to address the
problem of strategic manipulation in other settings, for example, alternative manipulation cost
functions or heterogeneity in agent-level parameters.6

We propose the following general algorithm: Make the historical training data mimic the fu-
ture manipulation-riddled data by imputing to the training data the manipulated covariates x̃
one would observe if the training data agents were to face the candidate prediction model. As
an informal test of this algorithm, we next evaluate how it would fare against both absolute
and relative cost functions.

To begin, suppose agents face absolute manipulation cost functions. Now let B denote a
candidate coefficient vector to be evaluated within the training data. From Equation (8), it
follows that for each candidate coefficient vector, each training data covariate xjm can be con-
verted to an imputed manipulated covariate as follows:

x̃ jm = x jm +
(

B+
j

c j

) 1
γ−1

−
(

−
B−

j

c j

) 1
γ−1

.(29)

Next, within the training data, coefficients mapping the imputed manipulated covariates
into predicted y values can be computed by finding:

β̃ ≡ min
B

⎧⎪⎨⎪⎩
M∑

m=1

⎛⎝ym − B −
J∑

j=1

Bjx̃ jm

⎞⎠2

+ P(B; λ)

⎫⎪⎬⎪⎭(30)

= min
B

⎧⎪⎨⎪⎩
M∑

m=1

⎡⎣ym −
⎛⎝B +

J∑
j=1

(
1
c j

) 1
γ−1 ∣∣Bj

∣∣( γ

γ−1 )

⎞⎠ −
J∑

j=1

Bjx jm

⎤⎦2

+ P(B; λ)

⎫⎪⎬⎪⎭.

But notice that the solution to the preceding program is the same as that offered in Propo-
sition 2. In particular, slopes are unaffected by manipulation, whereas the intercept is shifted
downward just as Proposition 2 prescribes.

Consider next relative manipulation costs. Fixing a candidate B and using condition (21),
imputed covariates are:

β p = B ⇒ x̃ jm =
⎡⎣1 +

(
B+

j

c j

) 1
γ−1

−
(

−
B−

j

c j

) 1
γ−1

⎤⎦x jm.(31)

It follows that within training data, we can generate coefficients mapping imputed manipu-
lated covariates to predicted outcomes as follows:

β̃ ≡ min
B

⎧⎪⎨⎪⎩
M∑

m=1

⎛⎝ym − B −
J∑

j=1

Bjx̃ jm

⎞⎠2

+ P(B; λ)

⎫⎪⎬⎪⎭(32)

6 See the Online Appendix for illustrations.
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goodhart’s law and machine learning 11

= min
B

⎧⎪⎨⎪⎩
M∑

m=1

⎛⎝ym − B −
J∑

j=1

[
Bj +

(
1
c j

) 1
γ−1 ∣∣Bj

∣∣ γ

γ−1

]
x jm

⎞⎠2

+ P(B; λ)

⎫⎪⎬⎪⎭.

The second line in the preceding equation leads us back to Proposition 4. In particular, one
can solve the canonical minimization program (Equation (6)) on the original training data to
obtain the vector β̂ of coefficients on true x. Next, the second line in Equation (32) implies the
slope adjustment (25) converting β̂ into isomorphic coefficients on manipulated covariates.

5.2. Model Averaging and Welfare. Bagging is a common procedure intended to reduce
model variance, and with it, MSPE. Bagging splits test data into B bootstrap samples with
replacement, performing estimation, and then taking averages over the B predictions ŷ. An-
other method of model averaging is ensemble estimation in which different procedures are
applied, say Lasso in one estimation and Ridge in another. With linear models, these proce-
dures are equivalent to averaging the constituent model regression coefficients.

It is readily verified that model averaging can reduce data manipulation costs. To illustrate,
suppose agents have quadratic absolute adjustment cost functions. Now suppose the statis-
tician estimates Equation (6) using two bootstrap samples or two alternative estimators, re-
sulting in coefficient vectors β̂ and β̃. Suppose also that the two estimations generate equal
sum of squared regression coefficients, implying equal manipulation costs (Lemma 1). It fol-
lows that the difference between manipulation costs without model averaging (MC) and with
model averaging (MC) is given by

MC − MC = 1
2

1
γ c

⎡⎣ J∑
j=1

(β̂2
j + β̃2

j )

⎤⎦ − 1
γ c

J∑
j=1

[
1
2

(
β̂ j + β̃ j

)]2

(33)

= 1
4

(
1
γ c

) J∑
j=1

(
β̂ j − β̃ j

)2
.

Notice that the preceding difference is positive, provided that the prediction models are not
identical. In fact, the reduction in manipulation costs is larger, the larger the distance be-
tween the slope coefficients of the two models. The maximal feasible reduction in manipula-
tion costs would occur if the two prediction models had different active sets. With different ac-
tive sets, the preceding equation implies MC = MC/2. Although nonintersecting active sets is
a zero probability event under Ridge, it occurs frequently under Lasso in settings with sparse
data.

6. conclusion

This article provides a simple analytical framework illustrating how Goodhart’s law relates
to basic tools of ML prediction. It was shown that tighter coefficient constraints serve not only
to mitigate overfitting, as recognized in the ML literature, but also to mitigate Goodhart bias.
Similarly, it was shown that, in addition to improving fit, model averaging can reduce welfare
costs of data manipulation. Finally, in addition to proposing specific Goodhart bias correc-
tions against a broad class of manipulation cost functions, it was shown that imputing incen-
tive problems to training data represents a potentially fruitful means of developing more ro-
bust prediction models. Having only explored canonical ML prediction techniques, much re-
mains to be done.
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