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Electronic Companion for the paper “Minkowski Centers via
Robust Optimization: Computation and Applications”

EC.1. Analytic or Chebyshev centers are not Helly centers

Proof For Chebyshev centers, in dimension n, we consider the polytope P defined as the convex

hull of the 1-norm ball B1 = {x : kxk1  1} and the point u= te1 where t > 0 is a positive scalar

and e1 is the first vector of the canonical basis. A Chebyshev center of P is xCheb = 0. Consider

the cord [u,v] with v=�e1. Then,
kxCheb�vk

ku�vk
= 1

t+1
<

1
n+1

if we take t > n.

For the analytic center, in dimension n, we describe B1 as B1 = {x :�ex e, 8j 2 [m], x1 
1}, where the constraint x1  1 is redundantly added m times. The analytic center of B1 hence-

described is xa =� m

m+2
e1. If we consider the chord [u,v] = [e1,�e1], we get kxa�vk

ku�vk
= 1

m+2
<

1
n+1

if

m>n. ⇤

EC.2. Robust perspective on Minkowski centers: Omitted proofs

This section details the proof of some of the results presented in Section 2.

EC.2.1. Proof of Proposition 2

Proof Consider a chord [u,v] passing through x. Then, by definition of the symmetry measure

(see Bertsimas et al. 2011b, for a formal proof)

sym(x,C)min

✓
kx�uk
kx�vk ,

kx�vk
kx�uk

◆
 1.

Assume without loss of generality that r :=
kx�uk
kx�vk  1, then

kx�uk
kv�uk =

r

1+ r
. Since r 2 [1/n,1]

and r 7! r/(1+ r) is increasing in r,

1

1+n
 kx�uk

kv�uk  1

2
 n

n+1
.

In other words, x is a Helly center of C. ⇤

EC.2.2. Proof of Proposition 5

Proof We reformulate each constraint in (3) separately. By convexity

w��y 2 C,8y 2 C () w��xi 2 C,8i2 [m].

We can enforce the ith constraint by introducing additional variables ⌫i satisfying w � �xi =
P

j2[m] ⌫
i

j
xj. In particular, such a constraint ensures that

w

1+�
=

�

1+�
xi +

X

j2[m]

⌫
i

j

1+�
xj 2 conv {x1, . . . ,xm}= C.

⇤
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EC.2.3. Proof of Proposition 6

Proof First, remark that B+
p
is permutation-invariant. According to Lemma (2), we can search

for solutions of the form w= te without loss of optimality. Hence, we solve

max
��0,t�0

� s.t. n

✓
t

1+�

◆p

 1,

te��y 2B+
p
,8y 2B+

p
.

Evaluating the robust constraint at y= (1,0, ...,0) and y= 0, we get t� � and nt
p  1 respectively,

which leads to �  (1/n)1/p. Hence, we must have �
?  (1/n)1/p. Finally, we verify that (�, t) =⇣

1
n1/p ,

1
n1/p

⌘
is feasible. Indeed,

t

1+�
=

1

n1/p +1
 1

n1/p
,

and for every y 2B+
p
,

t��yi � t��= 0, and
X

i2[n]

(t��yi)
p = �

p
X

i2[n]

(1� yi)
p  �

p
n= 1,

so te��y 2B+
p
. ⇤

EC.2.4. Proof of Proposition 7

Proof Let (�,w) be an optimal solution for (3) for C = P. The robust constraints can be

reformulated as
(
w� �y, 8y 2P
Aw �Ay+ b, 8y 2P

()
(
w� �y?

Aw b
,

where the equivalence follows by evaluating each constraint at the worst-case scenario (y? and 0

respectively). By the non-negativity of A, �Ay? Aw so �Ay?  b and � �
? (as defined in the

statement of Proposition 7). Hence, �? constitutes an upper bound on the Minkowski measure of

P. It remains to prove that this bound is achievable.

To do so, it su�ces to show that (�?
,w?) is feasible for (3):

w?

1+�?
� 0,

A
w?

1+�?
=

�
?

1+�?
Ay?  1

1+�?
b b.

Also, for every y 2P, w? ��
?y�w? ��

?y? = 0 and A(w? ��
?y) �

?Ay? ��
?A0 �

?Ay?  b

by definition of �?. ⇤
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EC.2.5. Minkowski measure for a class of generalized ellipsoids

Proposition EC.1. Consider E+
p
:= {x� 0 | kAxk

p
 1} with A2Rm⇥n

+ . For i2 [n], define

y
?

i
:= max

y2E
+
p

e>

i y=
1

kA>eikp
.

Let �
? =

1

kAy?kp
and w? = �

?y?. Then, (�?
,w?) are the Minkowski measure and a scaled

Minkowski center of E+
p
.

Proof The proof structure is analogous to the proof of Proposition 7. Let (�,w) be an optimal

solution of (3). We first provide an upper bound on the value of �. By evaluating the robust (non-

negativity) constraint in (3) at y = y?, we obtain wi � �y
?

i
for every i 2 [n]. Since the entries of

A are non-negative, we get Aw � �Ay? and �kAy?kp  kAwkp. Evaluating the robust (p-norm)

constraint in (3) at y= 0 yields kAwkp  1 so � �
?.

Finally, we verify that the proposed solution (�?
,w?) is feasible. Obviously, w?

/(1+�
?)� 0.

����A
w?

1+�?

����
p

=
�
?

1+�?
kAy?kp =

1

1+�?
 1.

Finally, for any y 2 E+
p
, w? ��

?y�w? ��
?y? = 0 and

kA (w? ��
?y)k

p
 kAw?kp = 1.

⇤

EC.3. Pseudo-codes and algorithmic details

We report here the detailed pseudocode of the hit-and-run algorithm and the random polyhedron

generation methodology.

EC.3.1. Hit-and-Run

Algorithm 2 describes the hit-and-run algorithm for a polyhedron defined as the intersection of

halfspaces, P = {x|Ax b}.

EC.3.2. Random polyhedron generation

Algorithm 3 presents the methodology we use to generate a random polyhedron circumscribed to a

sphere of radius R. To avoid generating unbounded polyhedra, we add the constraints �RxR.

In our experiments, we typically take R= 1000, n2 {10,20,50,100}, and p2 {10,20,30,40,50}.
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Algorithm 2: Hit-and-run (HAR) algorithm

Input: A polytope P = {x | Ax b}, a starting point x0 2P, number of iterations m2N
Output: Sample path x1, . . . ,xm 2P

1 Initialize x0 2P

2 for i= 0,1, ...,m� 1 do
3 Generate a random direction on the hypersphere di =

ui

kuik2
where ui ⇠N (0n,In).

4 Let �k =
bk�A>

k
xi

A>
k
di

for each constraint k.

5 Set �+ =min{�k | �k � 0}, �� =max{�k | �k  0}.

6 Define xi+1 =xi +�di, with �⇠ U([��
,�

+]).

Algorithm 3: Generation of a polyhedron circumscribed to a sphere
Input: Dimension n, number of tangents p, radius R

Output: Polyhedron P = {x2Rn | �RxR; c>
i
x di,8i2 [p]}

1 for i= 1, ..., p do
2 Generate a random direction on the hypersphere ci =R

ũi

kũik2
where ũi ⇠N (0n,In).

3 Set di =R.

EC.3.3. Projection of polyhedra: Separation oracle for the algorithm of Zeng and Zhao

(2013)

For a given (w,�), the adjustable robust constraint 8(y,zy) 2 P, 9z : (w� �y,z) 2 P in (6) can

be expressed as

max
(y,zy)2P

min
z:
Ax(w��y)+Azz=b
Cx(w��y)+Czzd

0  0,

where the value of saddle-point max-min problem is either 0 if (w,�) and +1 otherwise. Alterna-

tively, we can introduce dual variables p (resp. q� 0) associated with the equality (resp. inequality)

constraints in P and, by strong duality, reformulate the saddle-point problem as a non-convex

maximization problem:

max
(y,zy)2P

max
q�0,p:A>

z p�C>
z q=0

p>(b�Axw+�Axy)� q>(d+Cxw��Cxy). (EC.1)

The maximization problem above is non-convex due to bilinear products of decision variables

in the objective and can be solved by spatial branch-and-bound (in our implementation, we will

simply used the the commercial solver Gurobi), as a mixed-integer optimization problem, or via

an alternating minimization heuristic (Bertsimas et al. 2012).
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EC.3.4. Projection of polyhedra: Semidefinite approximation for quadratic decision rules

In this section, we consider the problem of finding a Minkowski center of the projection of a

polyhedron, as in Section 4, and use quadratic decision rules for approximating the adjustable

robust optimization problem. For ease of notations, we consider a polyhedron described by linear

inequalities only, i.e., Px = {x2Rnx | 9z 2Rnz : Cxx+Czz  d}.
We restrict our attention to adjustable variables z in (6) that are quadratic functions of (y,zy).

Hence, without loss of generality, we assume that z can be expressed as an a�ne function of !

and ⌦, where ! 2P is simply the concatenation of y and zy, and ⌦=!!>. Formally, we restrict

our attention to adjustable variables of the form

z = z0 +Y !+
nzX

i=1

hFi,⌦iei,

where z0, Y , and the Fi’s are decision variables that parametrize the quadratic policy.

Let us consider one particular constraint, j 2 [m], defining P. We want that

8! 2P,⌦=!!>
, e>

j

 
Cxw��Cx!x +Czz0 +CzY !+

nzX

i=1

hFi,⌦iCzei

!
 e>

j
d,

which we concisely write

e>

j
Cxw+ e>

j
Czz0 + sup

!2P,⌦=!!>

�
a>!+ hA,⌦i

 
 e>

j
d, (EC.2)

with a> :=��e>

j
Cx + e>

j
CzY , and A :=

P
nz

i=1 e
>

j
Czei.

The inner-maximization problem is challenging due to the non-convex constraints ⌦ = !!>.

Instead, we relax this constraint by imposing the semidefinite constraint ⌦ ⌫ !!>. In addition,

the vector ! must satisfy C! d, which in turns yield a linear constraint on (!,⌦):

(d�C!)(d�C!)> = dd> � (C!d> +d!>C>)+C⌦C> � 0.

Formally, we replace the robust constraint (EC.2) by the following safe approximation

e>

j
Cxw+ e>

j
Czz0 + sup

(!,⌦)2O

�
a>!+ hA,⌦i

 
 e>

j
d,

with

O :=

8
<

:(!,⌦)

������

d �C!
⌦ ⌫!!>

dd> � (C!d> +d!>C>)�C⌦C>

9
=

; .

Finally, by weak duality, the inner maximization problem can be upper bounded by its dual:

min0

@ R r

r> r0

1

A⌫0

min
p�0
Q�0

r0 +d>p+ hdd>
,Qi s.t. C>q+(Q+Q>)C>d= a+2r

C>QC =A+R.

We then solve the overall robust optimization by adding the dual variables as additional decision

variables in our original problem in (w,�).
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EC.4. Additional numerical results

In this section, we provide additional supporting evidence to our numerical experiments.

EC.4.1. Convergence of the Hit-And-Run algorithm

In Section 3.2, we quantify the benefit from using a Minkowski center on the convergence of the

HAR algorithm. In particular, we compute the number of iterations m required for the DB-test to

achieve a p-value of 0.05.

Table EC.1 reports the average number of additional iterations required when using a Chebyshev

center vs. a Minkowski center. Table EC.2 reports the results from a regression analysis predicting

the additional number of iterations required (in log terms) when using the analytic and Chebyshev

center as a function of the problem size, i.e., the dimension n and the number of halfspaces defining

the polyhedron p.

Table EC.1 Number of additional iterations required by Algorithm 2 when initialized with a Chebyshev center

vs. a Minkowski center. We report the average number over 20 random polyhedra (and standard errors).

# halfspaces (p)
Dimension (n) 10 20 30 40 50

10 1.5 (0.5) 1.4 (0.5) 0.0 (0.4) 0.4 (0.6) 0.2 (0.7)
20 6.1 (1.3) 7.5 (1.3) 6.4 (1.1) 3.9 (1.2) 2.6 (0.9)
50 58.4 (3.8) 78.0 (4.8) 69.9 (6.6) 70.8 (5.6) 61.2 (5.2)
100 284.1 (9.4) 381.7 (5.4) 389.8 (6.6) 395.8 (5.6) 397.0 (4.7)

Table EC.2 Regression analysis of the benefit from using the Minkowski center to initialize Algorithm 2. The

outcome variable is the number of iterations saved (in log terms).

Analytic Chebyshev
Coe�cient (SE) p-value Coe�cient (SE) p-value

(Intercept) 2.542 (0.043) < 10�16 2.651 (0.029) < 10�16

Dimension n 0.035 (0.001) < 10�16 0.033 (0.003) < 10�16

# halfspaces p -0.004 (0.001) 2 · 10�4

Adjusted R
2 0.9374 0.9668

Number of observations: 400

EC.4.2. Convergence of the Cutting-Plane Method

Figure 3 in Section 3.3 displays a convergence profile in terms of the number of iterations of the

CPM with di↵erent query point methods. However, since computing Minkowski centers requires 1

to 2 orders of magnitude more time and since the query function is invoked at each iteration of the

algorithm, a reduction in number of iterations might not translate into a reduction in computational
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time. Figure EC.1 displays the same convergence plot as in Figure 3, except that convergence is

measured in terms of computational time. We observe that AC-CPM is systematically faster than

MC-CPM, although MC-CPM requires less iterations. MC-CPM, on the other hand, improves over

CC-CPM whenver the number of SOC constraints k > 0.

(a) k= 0 (b) k= 10

Figure EC.1 Convergence profile (in terms of computational time) of the CPM for di↵erent query points. Results

are averaged over 20 random instances in dimension n= 20 with m= 100 linear pieces.

In Section 3.3, we observed that initializing the CPM with a Minkowski center provides generally

faster convergence in terms of number of iterations than with an analytic or Chebyshev center,

but that using an analytic center is typically the fastest in terms of overall compuational time. To

better understand how the dimension of the space n, the number of linear pieces in the objective m,

and the number of SOC constraints in the feasible space k impact the convergence and scalability

of each approach, we report the number of iterations and computational time required to achieve

a 10�2 optimality gap, for all values of n and m and for all three query methods, for k= 0 in Table

EC.3 and k= 10 in Table EC.4. Performance metrics are averaged over 20 random replications of

the same instance.
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# Iterations Time (in s)
m n Analytic Chebyshev Minkowski Analytic Chebyshev Minkowski

10
100 197.25 46.2 59.6 3.11 1.78 4.03
200 321.45 47.25 53.95 8.25 0.43 8.69
500 643.25 47.8 49.85 32.01 0.8 37.87

20
100 213.65 59.65 95.65 3.72 0.68 11.81
200 340.05 60.35 81.3 10.17 0.76 27.93
500 661.2 61.1 70.35 38.11 1.65 123.4

50
100 281.44 97.22 354.44 6.4 2.93 131.46
200 387.85 90.8 172.55 14.14 2.24 197.14
500 718.8 89.0 125.95 48.65 4.17 770.18

Table EC.3 Number of iterations and computational time for CPM to achieve 10�2 optimality gap, on

instances with k= 0, for di↵erent types of query points

# Iterations Time (in s)
m n Analytic Chebyshev Minkowski Analytic Chebyshev Minkowski

10
100 214.25 3113.05 62.95 3.59 74.64 4.67
200 336.65 4190.7 59.7 8.78 125.88 10.07
500 656.45 2688.8 58.25 33.36 92.15 43.54

20
100 247.95 4565.65 114.3 4.97 169.32 20.23
200 371.55 4351.9 100.6 11.01 184.0 41.48
500 696.05 3853.2 93.15 40.32 211.74 167.45

50
100 349.65 13001.3 419.0 10.05 1255.26 996.22
200 460.55 13431.25 332.2 17.95 1241.44 1010.27
500 788.35 12033.85 251.1 58.53 1335.14 2101.95

Table EC.4 Number of iterations and computational time for CPM to achieve 10�2 optimality gap, on

instances with k= 10, for di↵erent types of query points

EC.4.3. Approximation for projections of polyhedra

In Section 4.4, we evaluate numerically the relevance of our approximation to the center of a

polytopic projection. Our method provides both a lower and an upper bound on the true symmetry

of the projection, sym(Px).

On small instances (n= 10,m= 10), we were able to compute exactly a Minkowski center of Px

by first obtaining an explicit description of this polyhedron via FME and then solving (4). Following

the approach in Zhen et al. (2018), we implement an iterative FME procedure with two steps: a

variable elimination step that eliminates the nx + 1th variable from all the constraints, followed

by a screening step that removes redundant constraints. Table EC.5 reports the computational

time and the number of constraints created by the FME procedure. As displayed in Table EC.5,

the redundant constraint screening step is computationally expensive but drastically reduces the

number of constraints in our formulation, which would otherwise exponentially grow with n�nx.

We also implemented the column-and-constraint generation of Zeng and Zhao (2013) with 1,000

(resp. 2,000) iterations and a spatial branch-and-bound solver (resp. a linearization heuristic)
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Table EC.5 Average number of constraints and runtime for after each step of the FME procedure. Results are

averaged over 20 iterations.

Variable Elimination Redundant Constraint Screening
nx # New Constraints Runtime # New Constraints Runtime

9 34.0 2.9 32.1 4.6
8 264.9 0.2 71.0 15.0
7 1219.6 0.0 66.6 219.4
6 980.0 0.0 26.9 95.1
5 213.4 0.0 5.4 9.4
4 34.0 0.0 1.0 1.0
3 2.0 0.0 0.0 0.0
2 1.0 0.0 0.0 0.0
1 1.0 0.0 0.0 0.0
0 1.0 0.0 0.0 0.2

Figure EC.2 Fraction of instances solved by optimality by the column-and-constraint generation approach of

Zeng and Zhao (2013).

as the oracle. Figure EC.2 represents the proportion of instances solved for di↵erent projected

dimension nx. We observe that, even in these 10-dimensional examples, the C&CG algorithm fails

to systematically converge within the allocated iteration budget for nx > 3. For nx � 5, for example,

termination rate for both implementations does not exceed 10%.

Figure EC.3 displays the distance between the approximate Minkowski center obtained by solving

(8) to one Minkowski center of Px, for di↵erent values of nx and n= 10. The distance is normalized

by the depth of the original polyhedron P, i.e., the radius of the inscribed sphere in this case.

Comparing Figure EC.3 with Figure 5 partially corroborates the intuition that the quality of our

approximation in terms of symmetry measure (i.e., the width of the interval [�⇤

LDR
,�

⇤

HGK
]) is

related with the quality of the approximation in terms of Minkowski center.

To further quantify the dependency of our adaptivity gap (�⇤

HGK
� �

⇤

LDR
)/�⇤

HGK
on charac-

teristics of the polyhedron P and its projection Px, we conduct further experiments in higher
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Figure EC.3 Average distance between the solution of (8) and a Minkowski center of Px. The distance is nor-

malized by the depth of the original polyhedron P.

dimensions, n2 {10,20,50}, and for polyhedra defined with p2 {10,20,30,40,50} inequalities. We

perform a regression analysis, regressing (�⇤

HGK
� �

⇤

LDR
)/�⇤

HGK
over the dimensions of the prob-

lem, and report its results in Table EC.6. We observe that the gap generally increases with the

dimension n and the number of inequalities defining the polyhedron m. Yet, the fraction of pro-

jected dimensions nx/n seems to have a non-monotonous impact on the gap, first increasing then

decreasing, thus confirming the behavior depicted in Figure 6.

Table EC.6 Regression analysis of the adaptivity gap (�⇤
HGK ��⇤

LDR)/�
⇤
HGK depending on characteristics of

the polyhedron.

Coe�cient p-value

(Intercept) -0.249 < 10�16

Dimension n 0.002 < 10�16

# halfspaces p 0.002 < 10�16

nx/n 0.891 < 10�16

(nx/n)2 -0.722 < 10�16

Adjusted R
2 0.478

Number of observations: 3,000

Finally, Tables EC.7 and EC.8 summarize the average computational time required for solving

(8) (the lower bound) and (7) (the upper bound) respectively, for varying input sizes.

EC.5. Intersection of ellipsoids: Omitted proofs

We detail the proofs of Section 5 in this section.



e-companion to den Hertog, Pauphilet and Soali: Minkowski Center via Robust Optimization ec11

Table EC.7 Average computational time (in seconds) for solving (8) as a funtion of n and nx/n. Results are

averaged over 20⇥ 5 = 100 polyhedra.

n nx/n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.098 0.156 0.199 0.163 0.175 0.149 0.134 0.088 0.078
20 0.797 0.523 0.548 0.439 0.381 0.416 0.309 0.337 0.375
50 26.315 18.842 14.932 15.044 12.382 10.916 10.178 8.689 5.3

Table EC.8 Average computational time (in seconds) for solving (7) as a funtion of n and p. Results are

averaged over 20⇥ 10 = 200 polyhedra.

m

n 10 20 30 40 50

10 0.065 0.161 0.306 0.522 0.807
20 0.195 0.516 1.049 1.807 2.721
50 1.56 4.413 8.334 13.47 20.12

EC.5.1. Proof of Lemma 5

Proof Problem (2) is equivalent to

max
w,��0

� s.t.
w

1+�
2 Ei, 8i2 {1,2},

max
y2E1\E2

kD1/2
i

(w��y�xi)k2  1,8i2 {1,2}.

First, let us reformulate the membership constraints. Fix i2 {1,2}.

w

1+�
2 Ei ()

����
1

1+�
D1/2

i
w�D1/2

i
xi

����
2

 1

() 1

(1+�)2

X

j2[n]

di,jw
2
j
� 2

1+�
x>

i
Diw+x>

i
Dixi  1

() 1

(1+�)

X

j2[n]

di,jw
2
j
� 2x>

i
Di| {z }

b>
i

w+(1+�)x>

i
Dixi| {z }
ci

 (1+�).

To obtain the final formulation, we encode the quantity 1
1+�

w
2
j
by the additional variable ⇠j satis-

fying w
2
j
 (1+�)⇠j. Note that the latter constraint is second-order cone representable as

����
wj

⇠j�(1+�)

2

����
⇠j +(1+�)

2
.

Second, let us reformulate the robust constraints. Fix i2 {1,2} and consider the constraint

max
y2E1\E2

kD1/2
i

(w��y�xi)k2  1. (EC.3)

We expand the norm-square term in the objective of the maximization problem in (EC.3):

kD1/2
i

(w��y�xi)k2 = kD1/2
i

(w�xi)k2 � 2�(w�xi)
>Diy+�

2kD1/2
i

yk2

= kD1/2
i

(w�xi)k2 � 2�(w�xi)
>Diy+�

2
X

j2[n]

di,jy
2
j
.
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Similarly, the constraint y 2 Ek, for k= 1,2, write as follows

kD1/2
k

(y�xk)k2  1 () kD1/2
k

yk2 � 2x>

k
Dky+ kD1/2

k
xkk2  1

()
X

j2[n]

dk,jy
2
j
� 2x>

k
Dk| {z }

b>
k

y 1�x>

k
Dkxk| {z }
ck

.

Hence, (EC.3) is equivalent to kD1/2
i

(w�xi)k2 + ⌘
?

i
(w,�) 1, with

⌘
?

i
(w,�) =max

y
�
2
X

j2[n]

di,jy
2
j
� 2�(w�xi)

>Diy s.t.
X

j2[n]

dk,jy
2
j
� 2b>

k
y 1� ck, 8k 2 {1,2}.

Introducing additional variables zj’s such that zj = y
2
j
, 8j 2 [n] yields the desired formulation. ⇤

EC.5.2. Proof of Proposition 11

Proof Let us consider an optimal solution of (11), (y?
,z?). For any j 2 [n], let us consider tj 2R

such that z
?

j
= (y?

j
)2 + t

2
j
. According to Lemma 7, we can assume without loss of generality that

kD1/2
i

tk2 > 0. For any �, consider the vector y(�) = y? +�t. For � = 0,

�
2kD1/2

i
y(0)k2 � 2�(w�xi)

>Diy(0) �
2d>

i
z? � 2�(w�xi)

>Diy
? = ⌘i(w,�),

while for �!1,

�
2kD1/2

i
y(�)k2 � 2�(w�xi)

>Diy(�)⇠ kD1/2
i

tk2�2 !+1.

So there must exist a value of � such that

�
2kD1/2

i
y(�)k2 � 2�(w�xi)

>Diy(�) = ⌘i(w,�). (EC.4)

We fix � to this value in the remainder of the proof. We can now follow a similar construction

as Xia et al. (2021, Theorem 8). Define u1 = 1/
p
1+�2, u2 = �/

p
1+�2, s1 = u1y? + u2t, and

s2 = u2y? �u1t. In particular, for any j 2 [p],

s
2
1,j + s

2
2,j = (y?

j
)2 + t

2
j
= z

?

j
and u1s1,j +u2s2,j = (y?

j
).

Note that Xia et al. (2021) consider the case of balls, i.e., isotropic quadratic form. As a result,

they can use the weaker relationships: s>

1 s1 + s>

2 s2 = z and u1s1 +u2s2 = y?.

With these notations, we get

�
2

����D
1/2
i

sk

uk

����
2

� 2�(w�xi)
>Di

sk

uk

= ⌘i(w,�), (EC.5)

for any k 2 {1,2}. Indeed, for k= 1 we have

(EC.4) () �
2

����D
1/2
i

s1

u1

����
2

� 2�(w�xi)
>Di

s1

u1
= ⌘i(w,�),
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and for k= 2,

�
2
X

j

di,jz
?2
j
� 2�(w�xi)

>Diy
? = ⌘i(w,�)

() �
2kD1/2

i
s1k2 � 2u1�(w�xi)

>Dis1 +�
2kD1/2

i
s2k2 � 2u2�(w�xi)

>Dis2 = ⌘i(w,�)

() u
2
1⌘i(w,�)+�

2kD1/2
i

s2k2 � 2u2�(w�xi)
>Dis2 = ⌘i(w,�)

() �
2

����D
1/2
i

s2

u2

����
2

� 2�(w�xi)
>Di

s2

u2
= ⌘i(w,�).

Then, from the feasibility of (y?
,z?), we have, for any k 2 {1,2},

kD1/2
k

s1 �u1D
1/2
k

xkk2 + kD1/2
k

s2 �u2D
1/2
k

xkk2  1� ck + kD1/2
k

xkk2 = 1.

Consequently,

min

⇢
max

k

1

u
2
1

kD1/2
k

s1 �u1D
1/2
k

xkk2, max
k

1

u
2
2

kD1/2
k

s2 �u2D
1/2
k

xkk2
�
min

⇢
1

u
2
1

,
1

u
2
2

�
 2.

So there exists `2 {1,2} such that

kD1/2
k

(s`/u`)�D1/2
k

xkk 
p
2, 8k 2 {1,2}.

Finally, we define

ȳ=

(
s`/ul if � 2�(w�xi)>Dis` � 0,

�s`/ul otherwise.

For k 2 {1,2},

kD1/2
k

ȳ�D1/2
k

xkk max
n
kD1/2

k
(s`/ul)�D1/2

k
xkk,kD1/2

k
(�s`/ul)�D1/2

k
xkk

o


p
2+2kD1/2

k
xkk.

So for any ⌧ 2 [0,1],

kD1/2
k

⌧ ȳ�D1/2
k

xkk=
���⌧

⇣
D1/2

k
ȳ�D1/2

k
xk

⌘
+(1� ⌧)D1/2

k
xk

���

 ⌧

⇣p
2+2kD1/2

k
xkk

⌘
+(1� ⌧)kD1/2

k
xkk

= kD1/2
k

xkk+ ⌧

⇣p
2+ kD1/2

k
xkk

⌘
.

Hence, ⌧ ȳ is feasible if

⌧  min
k2{1,2}

1�kD1/2
k

xkkp
2+ kD1/2

k
xkk

=
1�maxk kD1/2

k
xkkp

2+maxk kD1/2
k

xkk
.



ec14 e-companion to den Hertog, Pauphilet and Soali: Minkowski Center via Robust Optimization

In addition, ⌧ 2 [0,1], we have

�
2kD1/2

i
⌧ ȳk2 � 2⌧�(w�xi)

>Diȳ= ⌧
2

����D
1/2
i

s`

u`

����
2

+2⌧�

����(w�xi)
>Di

s`

u`

����

� ⌧
2

 ����D
1/2
i

s`

u`

����
2

+2�

����(w�xi)
>Di

s`

u`

����

!

� ⌧
2

 ����D
1/2
i

s`

u`

����
2

� 2�(w�xi)
>Di

s`

u`

!

= ⌧
2
⌘i(w,�).

Denoting � =maxk kD1/2
k

xkk=maxk

p
ck and fixing ⌧ =

1� �p
2+ �

yields the result. Note that since

we assume that 0 is in the relative interior of E1 \ E2, we have � 2 [0,1). ⇤
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