
LBS Research Online

D Bertsimas and J Pauphilet
Hospital-Wide Inpatient Flow Optimization
Article

This version is available in the LBS Research Online repository: https://lbsresearch.london.edu/
id/eprint/2851/

Bertsimas, D and Pauphilet, J

(2023)

Hospital-Wide Inpatient Flow Optimization.

Management Science.

ISSN 0025-1909

(In Press)

DOI: https://doi.org/10.1287/mnsc.2023.4933

INFORMS (Institute for Operations Research and Management Sciences)
https://pubsonline-informs-org.lbs.idm.oclc.org/do...

Users may download and/or print one copy of any article(s) in LBS Research Online for purposes of
research and/or private study. Further distribution of the material, or use for any commercial gain, is
not permitted.

https://lbsresearch.london.edu/view/lbs_authors/3651825.html
https://lbsresearch.london.edu/id/eprint/2851/
https://lbsresearch.london.edu/id/eprint/2851/
https://lbsresearch.london.edu/view/lbs_authors/3651825.html
https://doi.org/10.1287/mnsc.2023.4933
https://pubsonline-informs-org.lbs.idm.oclc.org/doi/10.1287/mnsc.2023.4933


Hospital-wide Inpatient Flow Optimization
Dimitris Bertsimas

Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, dbertsim@mit.edu

Jean Pauphilet
London Business School, London, NW1 4SA, jpauphilet@london.edu

An ideal that supports quality and delivery of care is to have hospital operations that are coordinated and

optimized across all services in real-time. As a step toward this goal, we propose a multistage adaptive robust

optimization approach combined with machine learning techniques. Informed by data and predictions, our

framework unifies the bed assignment process across the entire hospital and accounts for present and future

inpatient flows, discharges as well as bed requests – from the emergency department, scheduled surgeries and

admissions, and outside transfers. We evaluate our approach through simulations calibrated on historical

data from a large academic medical center. For the 600-bed institution, our optimization model was solved in

seconds, reduced off-service placement by 24% on average, and boarding delays in the emergency department

and post-anesthesia units by 35% and 18% respectively. We also illustrate the benefit from using adaptive

linear decision rules instead of static assignment decisions.

Key words : Hospital operations; flow management; machine learning; multistage robust optimization

1. Introduction

A majority of hospitals in developed countries operate under increasing financial and operational

stress. To improve the quality of care and alleviate the burden on clinicians and hospital staff,

healthcare operations practitioners widely agree on the need to shift from isolated improvement in

each individual unit to a global coordination scheme across the entire hospital (Rutherford et al.

2017). In this paper, we propose a system optimization approach combined with machine learning

techniques to achieve hospital-wide inpatient flow optimization. Based on historical data from a

large academic hospital, we conduct extensive simulations to assess the scalability of our approach

and evaluate its potential impact on admission delays and patient misplacement.

1.1. Patient flows at a large academic hospital

In this work, we study the dynamic allocation of patients to inpatient beds, including admissions

of scheduled and emergency patients. Our goal is to dynamically assign patients to beds while

1



2

Waiting Units

SA

UV

T

Inpatient Units

GC1

...

IC1

...

Figure 1 Schematic views of patient flows in a typical hospital. We divide incoming flows of patients into scheduled

admissions (SA), unscheduled visits (UV) and transfers (T). Once admitted, patients can flow between units

corresponding to general care (GC) or intensive care (IC) units.

accounting for future requests and discharges. We do so by formulating a robust multistage opti-

mization problem, calibrating it with predictions from machine learning models, and considering

affine decision rules to balance tractability and conservatism.

Figure 1 sketches the main patient flows in and out of a hospital within a day. New requests

for beds can come from three main channels: scheduled admissions (SA), which include scheduled

surgeries and other planned hospital stays; unscheduled visits (UV), i.e., emergency department

(ED) visits as well as outpatient visits that unexpectedly require admission; and transfers from

another institution (T). Current inpatients are allocated into the different inpatient units, each of

them corresponding to different medical specialties and levels of care. We consider here two levels

of care, namely intensive care (IC) and general care (GC). Each unit can serve different medical

specialties or services. Typically, each unit is assigned to at least one “primary service”. In some

cases, they can also welcome patients from a “secondary” specialty, outside of their main expertise.

Inpatients can either move to another inpatient unit –usually to change the level of care– or be

discharged out of the hospital. Note that, though stylized, this representation can capture almost

all relevant patient flows within a day, such as surgeries for currently admitted patients.

Our flow description reflects the practices at our (anonymous) partner institution, a large academic

medical center with nearly 600 licensed beds. In 2018, it received almost 55,000 visits to the ED,

admitted nearly 41,000 inpatients and performed 26,500 surgeries (c.50% ambulatory). We exclude

from our analysis Psychiatry and Obstetrics units because they manage admissions separately from

the rest of the hospital.

In this paper, a service refers to a medical specialty such as internal medicine, oncology, cardiology,

or surgery. We refer to a unit, or equivalently a ward or a floor, as a physical space composed of

rooms and beds. Our partner hospital, for instance, has 15 services spread over 31 units, divided
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Table 1 Description of inpatients unit on campus A at our partner hospital. The type is either GC (general care) or

IC (intensive care). The unit name follows the nomenclature: Campus-Type Number.

Name Type # Licensed beds # Private rooms Primary (secondary) services

A-GC 1 GC 36 8 Oncology (Internal Medicine)
A-GC 2 GC 43 8 Internal Medicine (Oncology)
A-GC 3 GC 24 8 Surgery (Orthopedics, Plastic Surgery)
A-GC 4 GC 28 18 Oncology
A-GC 5 GC 20 12 Orthopedics (Internal Medicine)
A-GC 6 GC 23 8 Internal Medicine
A-IC 1 IC 12 12 Surgery (Internal Medicine, Orthopedics)

Total 186 74

across two campuses. Table 1 lists some of these units, alongside their main characteristics. The full

list of units is given in the electronic companion (Table EC.1).

1.2. Approach and contributions

Our approach can be summarized as follows:

1. Tractable optimization model: We develop a tractable discrete optimization model to find

short-term bed allocations that satisfy patient-specific requirements, while accounting for future

bed requests and availability for all inpatient units in the hospital in the coming hours and days.

While no study is perfectly exhaustive, we believe our approach to this multifaceted issue is one

of the most comprehensive of its kind. On this aspect, our model lies between patient-level models

for bed assignment (Thompson et al. 2009, Thomas et al. 2013, Schäfer et al. 2019) that are often

myopic and face much greater challenges to scale up to large institutions, and unit-level stochastic

models (Kilinc et al. 2018, Dai and Shi 2019) that can inform the design of tactical admission rules

but fail to capture individual patient requirements in the short term (e.g., gender, isolation status).

2. Prediction-based robust optimization: To account for uncertainty in future patient flows,

we adopt a robust optimization approach, where the description of the uncertainty is based on ma-

chine learning predictions, instead of parametric assumptions employed in many queueing settings.

Our robust description of uncertainty connects with the cautious attitude prevailing in healthcare

management. Accordingly, we provide theoretical bounds on the probability of “disappointment”,

i.e., the probability that the decision maker will incur a higher cost than what the model estimated.

Our result relies on new large deviation bounds for the sum of correlated binomial random variables

that could be of independent interest. To mitigate the conservatism of our approach, we consider

affinely adaptive rules, which, to the best of our knowledge, have not been studied for multistage

optimization problems with discrete variables and uncertainty, let alone in a healthcare context.

3. Numerical validation: Finally, on extensive simulations, we verify that our proposed formu-

lation is tractable and estimate its potential operational benefit. On data from a 600-bed medical
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center over seven months, we solve the robust optimization problems in seconds and provide a bed

assignment policy that reduces off-service placement by 24% on average, boarding delays in the ED

and post-anesthesia units by 35% and 18% respectively, while keeping overall occupancy constant.

We also illustrate the additional benefit from using linear decision rules, which partially adapt fu-

ture decisions to the future realizations of patient arrivals/discharges. Because this adaptive model

describes future decisions with this additional (and realistic) flexibility, it yields first-stage decisions

that are more forward-looking, hence allowing for a more effective trade-off between waiting time

and off-service placement.

Structure: Section 2 presents the relevant literature and positions our contribution. In Section

3, we describe our modeling strategy and assumptions, and derive a first version of the Hospital-

wide Inpatient Flow Optimization (HIFO) problem. To account for uncertainty in future flows, we

propose a prediction-based robust optimization approach, derive a theoretical connection with a

risk-averse stochastic objective, and explore the use of affine decision rules in Section 4. Finally,

we assess the performance of our approach and the benefit from adaptive robust optimization on

numerical experiments in Section 5.

Notations: We reserve bold characters for vectors and uppercase characters for random variables.

Hence x, x,X, andX denote a scalar, a vector, a random variable, and a random vector respectively.

For any integer n, we define [n] := 1, . . . , n.

2. Literature review

We present relevant aspects of patient flow management which have received increased attention

recently and provide motivation for our work.

2.1. Patient flow analysis and modeling

Armony et al. (2015) conducted one of the first data-based analyses of patient flows at a hospital

level, emphasizing interactions between the emergency department (ED) and a subset of five inpa-

tient wards. A central performance metric in their analysis is delays. Indeed, delays can be used as

a measure of operational efficiency as well as quality of care. For instance, prolonged ED boarding

time –the time needed for an ED patient to be admitted to an inpatient bed– is associated with

negative health outcomes (Mathews et al. 2018, Chan et al. 2016b), and is usually due to lack of

available inpatient beds (Shi et al. 2016). Consequently, better understanding and modeling of dis-

charge patterns are needed. Dai and Shi (2021) analyze and compare two service time models which

have been recently proposed to capture non-stationarity in patient discharges: the two-timescale

model of Shi et al. (2016) and an inspection-delay service time model (Chan et al. 2016a, Dong and

Perry 2020). Beyond the ED, Johnson et al. (2013), Long and Mathews (2018), Oliveira et al. (2018)

empirically measure the negative consequences of prolonged Intensive Care Unit (ICU) boarding.
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A general insight of queueing theory is that resource pooling might produce better performance.

Due to heterogenity in patient needs however, Song et al. (2015) empirically find that pooling in the

ED increases waiting time and overall length-of-stay. In an inpatient context, pooling resources leads

to patient misplacement, also called off-service placement or patient overflow. Off-service placement

occurs when an incoming patient is placed in a different service than the one required by their

condition. Empirical studies have investigated the extent to which off-service placement increases

length of stay and readmission risk (Alameda and Suárez 2009, Stowell et al. 2013, Liu et al. 2014,

Stretch et al. 2018, Bai et al. 2018, Song et al. 2020). A related phenomenon is off-level placement,

i.e., when a patient needing an ICU is placed in a general care unit. Empirical evidence suggests

that off-level placement is also detrimental for the patient (Kim et al. 2015, Chan et al. 2018).

These empirical findings prominently demonstrate how operations impact on quality of care and

have motivated many efforts, including ours, to improve healthcare operations.

2.2. Patient flow optimization

Here, we highlight the main angles through which patient flows can be and have been improved.

Bed capacity planning Kao and Tung (1981), De Bruin et al. (2010), Boulton et al. (2016) apply

queueing theory tools to optimize the number of beds allocated to each ward. Kao and Tung (1981)

develop a two-scale model where baseline capacity is designed to satisfy yearly overall demand, while

monthly adjustments are considered to match month-in-month variability. Pinker and Tezcan (2013)

extend the analysis and differentiate between shared and private rooms. Izady and Mohamed (2019)

address the issue of off-service placement by dividing beds into two categories, specialty-specific and

specialty-agnostic, while defining optimal functional groups of beds or clusters. Ward dimensioning

decisions are revised on a yearly basis at best. In this work, we take the ward capacity as an input

to the patient flow optimization problem, hence providing complementary benefits.

Scheduled admission optimization Scheduled admissions are responsible for most of the

weekly variability in inpatient bed census (Helm and Van Oyen 2014). At a strategic level, Carnes

et al. (2011) formulate the allocation of surgical blocks to surgeon as a deterministic integer opti-

mization problem, so as to systematically reduce peak surgical census on Wednesdays. Bavafa et al.

(2019) construct an optimal portfolio of elective procedures to maximize profit, while taking into ac-

count the utilization of surgical and recovery beds. At a tactical level, Bekker and Koeleman (2011),

Helm and Van Oyen (2014) and Meng et al. (2015) optimize the scheduled admissions planning for

the upcoming weeks, and incorporate uncertain daily deviations due to ED patients and evolving

patient situations. To do so, Helm and Van Oyen (2014) propose a stochastic location process model

for resource needs of elective and unplanned patients, and estimate the number of untreated patients

using an Erlang loss model approximation. Meng et al. (2015) adopt a distributionally robust opti-

mization approach to minimize bed shortfall directly. In a complementary direction, we consider the
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operational problem of dynamically admitting new patients (both scheduled and emergent), while

accounting for future scheduled and unscheduled flows. In terms of modeling, per Meng et al. (2015),

we use a robust approach to capture uncertainty. Additionally, we study the impact of adaptive

(namely affine) rules.

Admissions of emergent patients For ED admissions, there is a trade-off between waiting

in the ED for the right bed to become available and immediately placing the patient in another

service. Kilinc et al. (2018) explore this trade-off using a queueing framework. In a stylized two-ward

setting, they prove that a threshold-based policy is optimal and propose a heuristic that reduces

cost by 14% and boarding time by 9% on simulations. However, their experiment only includes

patients who were admitted to the ED for chest pain or congestive heart failure, and is restricted

to two inpatient units. In addition, the edge of their policy shrinks as the number of inpatient beds

increases. Dai and Shi (2019) similarly formulate the overflow decision problem as a Markov decision

process (MDP) and propose an approximate dynamic programming algorithm which reduces the

overflow proportion by 20% on a simulated hospital with five services. However, as they acknowledge,

their model does not consider all units and cannot account for inter-unit transfers of inpatients.

Recently, Zhang et al. (2020) adopted a simulation-based approach to evaluate different overflow

strategies, that is predefined guidelines or protocol, to divert patients from their primary service

or unit to improve overall throughput. The scope of our study is wider: We do not restrict our

analysis to isolated units or a sub-network of units, but instead consider admissions to all inpatient

units, from different sources (ED, scheduled admissions, other hospitals), together with inter-unit

transfers. Our paper also differs in methodology and intent. While Kilinc et al. (2018), Dai and Shi

(2019) use stochastic queueing models and their fluid approximation to obtain structural properties

on the optimal admission rule, we provide patient-level feasible placement recommendations using

a discrete description of the decisions and the uncertainties.

Operational patient-bed assignment Thomas et al. (2013) automate the process of finding a

feasible bed assignment for each ED patient to reduce bed assignment waiting time. Using mixed-

integer optimization, they account for room type, gender or staff-to-patient ratio requirements,

and obtain a 23% reduction in ED request-to-bed-assignment times. However, their formulation

is myopic and assigns patients to beds without forecasting the future state of the hospital. This

limitation is partially addressed by Schäfer et al. (2019), who include future bed requests, either

scheduled or emergent. However, their resulting integer optimization formulation requires more

than 12 hours to solve instances with 96 beds and ≥ 3 time steps, and needs to adopt a greedy

look-ahead heuristic. On historical data from a German hospital, they achieve a 96% reduction in

overflow and a 5% increase in utilization. Besides the fact that such improvement benefits might be

unattainable for highly congested hospitals where utilization is already above 95%, their approach is
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also not protected against prediction errors: future admissions are assumed equal to their predictions.

Thompson et al. (2009) formulate an MDP problem to allocate heterogeneous patients to inpatient

beds dynamically and have successfully implemented their solution in a 130-bed community hospital

over an 18-day trial (+1% in revenues, −50% in boarding time). Even for a medium-size institution,

they require many approximations to make their approach scalable: multi-dimensional expectations

are approximated via sample average approximation, the policy space is reduced to a finite space

with at most 48 policies, and the optimization horizon is reduced to two periods.

3. Problem description and model

In this section, we introduce our modeling framework for inpatient flow optimization, emphasizing

the key modeling ingredients, assumptions, and flexibility. We describe the overall problem, its three

competing horizons, and our aggregation strategy in Section 3.1, and then derive a mathematical

formulation for each horizon in the subsequent sections.

3.1. A multi-horizon problem

When optimizing inpatient flows, hospital managers have to balance different objectives and time

horizons. Throughout the day, they constantly decide when to admit patients and to which unit/bed.

To do so, they should take into account the current state of the hospital (e.g., current demand and

availability of beds) and also consider its evolution in the near future. For instance, it might be worth

waiting for a bed in the right service to become available before admitting a patient. Alternatively,

some beds should be kept empty in the morning in anticipation of future admissions later in the

day. Such waiting and idling strategies are only justified in a multistage context. We formulate

inpatient flow management as a multistage optimization problem with three different timescales:

immediate, daily, and weekly horizon. A central aspect in our formulation is that we adjust the

level of granularity of the decision variables to the time horizon: the immediate problem considers

individual patient assignments, the daily timescale optimizes unit-level patient flow, and the weekly

objective controls overall hospital occupancy. Table 2 summarizes our modeling strategy.

Our model balances practical relevance and numerical tractability. In the short term, patient-

specific information is needed to find a feasible bed assignment. For instance, shared rooms should

be same-gender; and patients with a viral infection require a private room. Regarding future flows,

we consider aggregated statements on overall discharge and arrival volumes for each unit. In this

regard, our approach can be seen as a compromise between patient-level models for bed assignment

(Thompson et al. 2009, Thomas et al. 2013, Schäfer et al. 2019) that are often myopic and scale

poorly in the size of the institution, and unit-level stochastic models (Kilinc et al. 2018, Dai and Shi

2019) that can inform the design of tactical admission rules but fail to capture individual patient

requirements in the short term.
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Table 2 The three optimization horizons and the characteristics of their respective optimization formulation. EoD

stands for End of Day.
Horizon Immediate Daily Weekly
Multistage strategy 7 Folding horizon Rolling horizon
Period length 2 hours 2 hours 1 day
# Periods 1 Between 1 and 12 (EoD) 7
Decision level Patient Unit Hospital
Decision variable Patient assignment z1ij Patient flow f tjj′ Remaining capacity Cr

3.2. Immediate problem: individual patient placement

First, we consider current bed availability and requests - either by new patients or current inpatients

needing a new bed - and seek to assign patients to beds at minimal cost. Formally, let I and J

denote the number of patients and units respectively. For each patient i∈ [I], their current location

is encoded through binary variables z0ij ∈ {0,1}, j ∈ [J ], where z0ij = 1, if patient i is in unit j, 0

otherwise. Similarly, we define a decision variable z1 ∈ {0,1}I×J to describe the location of each

patient at time t = 1. The objective is to find a patient-unit allocation that minimizes cost, i.e.,

solve some optimization problem of the form

min
z1∈Z

∑
i,j

cijz
1
ij.

In the optimization problem above, the set Z captures physical and operational constraints on z1,

such as the fact that each patient can only be in one location, or that each unit has a fixed capacity.

The cost cij measures the disutility experienced from assigning patient i to unit j and depends

on the patients’ current location and need. Among others, cij captures both off-level and off-service

placement. We can also incorporate physical distance and ambulance costs, or how long the pa-

tient has been waiting for a bed. Section EC.2.1 details how cij’s can be computed based on the

organization of the hospital. Note that, for a large academic hospital like our partner, J ≈ 30 units

and I ≈ 600 patients, so this problem involves I × J ≈ 18,000 binary variables and I + J ≈ 630

constraints.

3.3. Daily problem: optimal patient flows

To incorporate near-term bed requests and availability, we extend the myopic single-stage problem

described in the previous section with a multistage component. We consider two-hour time periods

and optimize future patient flows until 6am. We later refer to 6am as “end of the day” (EoD)

because it corresponds to a low activity point and a transition time between night and day shifts.

Effectively, our formulation is a folding or receding horizon formulation: At 6:01am, we optimize

over T = 12 time periods until 6am the next day. At 8:01am, we optimize over T = 10 time periods,

and so on. The rationale behind a folding horizon is that bed requests cannot be left pending
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Figure 2 Historical proportion of patients satisfying the single-move assumption (Assumption 1) among all patients

that moved at least once, as a function of the horizon length.

indefinitely, especially for surgical and emergent patients, and that a bed assignment will have to

be made at some point. Using a folding horizon approach prevents postponing some bed assignment

decisions indefinitely. Furthermore, we chose to divide the horizon into two-hour blocks because, if

implemented in practice, we would need to leave enough time between two runs of the algorithm

for the care teams to implement the assignment decisions.

As previously mentioned, the main difference between the immediate and daily problems is the

level of granularity for the decision variables. For the multistage problem, we consider aggregated

patient flows: let f tj,j′ indicate the number of patients who stayed in unit j ∈ [J ] until t− 1 and

moved from unit j to unit j′ ∈ [J ] during period (t− 1, t]. In other words, we do not allow patients

to change units more than once until the end of the day, as stated in Assumption 1.

Assumption 1. Each patient can move at most once between t= 0 and the end of the day.

This assumption is validated empirically as shown in Figure 2. At 6:01am, the vast majority (> 85%)

of patients who will move at least once in the day will move only once. Naturally, throughout the

day, the horizon shrinks and this proportion increases to 100%. The main reason for introducing

Assumption 1 is to keep track of individual trajectories despite aggregation. Indeed, under this

assumption, we can divide patients’ flows depending on the unit they originated from, and connect

aggregated flows to the individual patients involved. For instance, we have f1
j,j′ =

∑
i z

1
ij′z

0
ij. Similar

to z1, f are integer-valued and satisfy flow-conservation, forbidden moves, and capacity constraints.

The latter can be expressed as:

z0j +
∑
τ∈[t]

∑
j′

f τj′,j −
∑
τ∈[t]

∑
j′

f τj,j′ ≤Ct
j , ∀j ∈ [J ], t∈ [T ], (1)
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where Ct
j is the floor capacity at time t. Note that capacity might not be constant over time and

might even be a decision variable (see Section EC.2.5).

To measure the quality of a patient flow routing f , we compare it with what patients need from

a medical standpoint. Let us consider gtj,j′ , the number of patients who were in j until t− 1 and

needed to be moved from unit j to j′ during (t− 1, t]. In other words, gtj,j′ corresponds to the total

demand for unit j′ at time t from patients currently in unit j, while f tj,j′ corresponds to the satisfied

demand. For the remainder of this section, we present our optimization formulation assuming that

the gtj,j′ are known. In the next section, however, we present a methodology to estimate them from

data under Assumption 1 and incorporate these predictions into the optimization problem.

A natural objective is to bring f as close as possible to g. For example, the number of patients

who requested to be moved from unit j to j′ but did not move can be expressed as ∑
t∈[T ]

gtj,j′ −
∑
t∈[T ]

f tj,j′

+

,

where (x)+ := max(x,0) denotes the positive part of x. Using the same logic, we construct a cost

function c(f ,g) to measure the difference between where patients need to be moved to and where

they are effectively moved to. Section EC.2.4 details the exact cost formula we used for our numerical

experiments. The key aspects are that c(f ,g) is piecewise linear, convex in (f ,g), and only penalizes

off-level placement. All in all, the daily problem can be written as

min
f∈F

c(f ,g)

s.t. z0j +
∑
τ∈[t]

∑
j′

f τj′,j −
∑
τ∈[t]

∑
j′

f τj,j′ ≤Ct
j , ∀j ∈ [J ], t∈ [T ], (1)

f tj,DIS = gtj,DIS, ∀j ∈GC ∪ IC, ∀t∈ [T ] (2)

where F denotes the set of feasible flows f and the last constraints enforce that the number of

patients discharged from unit j at time t is equal to the number of patients who need to be discharged

from j at time t.

3.4. Weekly problem: Target hospital occupancy level

Due to its finite horizon nature, the previous optimization formulation might lead to undesirable

end-game strategies and fill the hospital to capacity at the end of the day. To mitigate this effect,

we add a long-term objective that accounts for bed needs in the coming week (seven days). Let Cr
denote the number of beds available at the end of the day. Cr is a decision variable that depends

on the previous decisions through the following constraint:

Cr ≤
∑
j∈[J]

CT
j − z0j −

∑
t∈[T ]

∑
j′

f tj′,j +
∑
t∈[T ]

∑
j′

f tj,j′

 .
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We compute a target number of available beds for the next week Cw and minimize shortage with

respect to this target: minCr≥0 (Cw−Cr)+.

Although tactical planning of scheduled admission can help reduce intra-week admission volume

(Carnes et al. 2011, Helm and Van Oyen 2014, Meng et al. 2015, Bavafa et al. 2019), scheduled

admissions are not uniformly distributed over the week, with a peak weekly census around wednes-

days. Similarly, visits to the ED and discharge volumes exhibit strong weekly seasonality patterns.

Accordingly, Cw should vary depending on the day of the week and the known scheduled admissions.

For each of the seven following days, we estimate the total number of admissions (scheduled and

unscheduled) and discharges for the day. As a first approximation, these estimates could be taken

as day-of-the-week averages. Technology permitting, more sophisticated predictions using weather

forecasts or inpatient length-of-stay models (Bertsimas et al. 2021) could be used as well. The differ-

ence between expected admissions and discharge provide an estimate of the (potentially negative)

number of beds needed on that day. We set Cw equal to the actualized value of these future needs,

for some discount factor β: Cw =
∑

d∈[7] β
d(Admissionsd−Dischargesd).

3.5. Final formulation: Hospital-wide Inpatient Flow Optimization (HIFO)

Finally, combining the three optimization horizons, we obtain the HIFO formulation:

min
z1∈Z,f∈F,Cr

∑
i,j

cijz
1
ij + λ c(f ,g) +λw (Cw−Cr)+

s.t. z0j +
∑
τ∈[t]

∑
j′

f τj′,j −
∑
τ∈[t]

∑
j′

f τj,j′ ≤Ct
j , ∀j, t, (1)

f tj,DIS = gtj,DIS, ∀j, t, (2)

f1
j,j′ =

∑
i∈[I]

z1ij′z
0
ij, ∀j 6= j′, (3)

Cr ≤
∑
j∈[J]

CT
j − z0j −

∑
t∈[T ]

∑
j′

f tj′,j +
∑
t∈[T ]

∑
j′

f tj,j′

 , (4)

where λ,λw > 0 controls the degree of foresight. The coupling constraints (3)-(4) ensure that im-

mediate, daily, and weekly variables agree. Among other extensions, our formulation can provide

individual trajectories, ztij for t ∈ [T ] for some patients as well (Section EC.2.2) and include addi-

tional variables to model surge capacity decisions (EC.2.5).

3.6. Limitations

From a modeling standpoint, the main assumption our model relies on is Assumption 1. Without

this assumption, one would require a fixed cost for moving a patient from unit j to unit j′ to

avoid returning nonsensical solutions where patients are moved at each time period. Assumption

1 replaces such cost by a hard constraint. As previously discussed, it is a simplification because
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patients may visit multiple units within a day. However, we alleviate this issue by implementing

our policy in a close-loop fashion: At the beginning of each time period, the optimization model

HIFO is solved. Patients who have requested a bed are admitted as prescribed by z1. At the next

time period, the optimization model is resolved using the updated state of the hospital (i.e., data

on bed requests, scheduled admissions and procedures, and bed availability is updated), and new

decision variables z1 are computed and implemented. The longer-term decision variables f and Cr

are never implemented but we include them in the optimization so that the here-and-now decisions

are forward-looking and anticipate future flows. This implementation, which is referred to as ‘close-

loop’ in the control literature, creates feedback and improves the adjustability and the sensitivity of

the system to parameter errors, which will be crucial as we introduce uncertainty on future demand

(also referred to as medical trajectories) g. We refer to Dorf and Bishop (2008, chapter 3) for an

introduction to control and feedback loops, and Ben-Tal et al. (2009, chapter 14.4) for a robust

perspective on controllers. In addition, we need a close-loop implementation in practice because

only the first-stage decisions z1 are patient-level, hence directly actionable for the hospital. Previous

work has developed clustering techniques to predict more complex patient trajectories (Xu et al.

2016, Ranjan et al. 2017). Future work could investigate how to relax Assumption 1 in a tractable

fashion to incorporate more complex patient dynamics and flows, especially for the weekly planning

horizon.

A second limitation stems from the fact that our HIFO formulation requires the specification

of costs associated with each decision. Some of these costs can be estimated from actual hospital

expenditures or reimbursement costs, but most of them are implicit. For example, empirical evidence

suggests that off-service placement can be detrimental to the patient, in terms of length of stay or

readmission risk. Accordingly, we penalize off-service placement in our cost formula (c.f. EC.2.1), but

precisely calibrating a penalty value remains an open challenge, which we solved through discussion

with our partner hospital and iterative improvement of our model. Alternatively, Zhalechian et al.

(2020) focus on a single patient outcome (e.g., hospital readmission) and propose an online learning

approach to jointly learn and optimize for this particular objective. However, their approach applies

to simple admission policies and for a single outcome that is directly observable (within reasonable

time after the decision is made).

In our model, we do not incorporate the potential impact of the admission decisions recommended

on the flow dynamics, i.e., the validity of the model itself. In our case, this impact is limited by the

fact that, as discussed in our simulations in Section 5, a large fraction of the patient flows remain

unchanged by the optimization. However, we must acknowledge that switching to an optimization-

based approach might change the flow dynamics within the hospital and require some re-training
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of the predictive models we will present in the next section, in addition to other sources of non-

stationarity. Future work could investigate endogeneizing the impact of the decisions on the future

flow dynamics directly.

4. Uncertainty on medical trajectories

In practice, the medical trajectories g are uncertain. To make appropriate decisions under uncer-

tainty, two aspects ought to be taken into account: the degree to which the uncertainty can be

anticipated (predictability) and the inherent noise in any estimate (variability). To do so, we pro-

pose to combine machine learning predictions with a robust optimization approach. Namely, let G

denote the integer-value random vector, indexed by [J ]× [J ]× [T ], indicating future demand for

each unit. In Section 4.1, we develop a collection of predictive models to estimate E[G] = ĝ. Then, to

account for prediction errors, we construct an uncertainty set U around the point-wise predictions

ĝ, as described in Section 4.2. Finally, we solve a robust version of HIFO . Specifically, let us denote

R the set of recourse policies f : U →F that are non-anticipative, i.e., f tj,j′ should only depend on

g̃τu,u′ , u,u
′ ∈ [J ], with τ ≤ t. We consider the following problem:

min
z1∈Z,f(·)∈R,Cr(·)

c>z1 + max
g̃∈U

λ c(f(g̃), g̃) +λw (Cw−Cr(g̃))
+ (5)

s.t. z0j +
∑
τ∈[t]

∑
j′

f τj′,j(g̃)−
∑
τ∈[t]

∑
j′

f τj,j′(g̃)≤Ct
j , ∀j, t, ∀g̃ ∈ U ,

f tj,DIS(g̃) = g̃tj,DIS, ∀j, t, ∀g̃ ∈ U ,

f1
j,j′(g̃) =

∑
i∈[I]

z1ij′z
0
ij, ∀j 6= j′, ∀g̃ ∈ U ,

Cr(g̃)≤
∑
j∈[J]

CT
j − z0j −

∑
t∈[T ]

∑
j′

f tj′,j(g̃) +
∑
t∈[T ]

∑
j′

f tj,j′(g̃)

 , ∀g̃ ∈ U ,

∑
t,j′

f tj,j′(g̃) = z0j , ∀g̃ ∈ U .

We discuss the benefits of a robust approach to a stochastic description of the uncertainty in

Section 4.3 and theoretically connect the objective of our robust approach (i.e., worst-case cost) to

a stochastic notion of value-at-risk. Section 4.4 presents our model with static decision rules, and

explores the use of affine decision rules to alleviate conservatism.

4.1. Predictability: Machine learning to the rescue

We first use historical data and machine learning techniques to construct predictive models for key

aggregate demand quantities. In accordance with the single-move assumption (Assumption 1) and

our modeling framework, we consider the patients based on their unit of origin j and only predict the

next unit they will request to be admitted to. We now review the prediction strategies we adopted
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Table 3 Summary of out-of-sample performance for all prediction tasks, on their respective test set. We use optimal

classification trees (OCT) (Bertsimas and Dunn 2017) for classification tasks and regularized regression (Lasso)

(Tibshirani 1996) for regression tasks.

Patient category Prediction task Method Metric Value

Inpatients

Probability of discharge OCT AUC 0.810

Daily discharges OCT Median relative error 6.0%
R2 0.847

Probability of intensive care OCT AUC 0.973

ICU census OCT Median relative error 11.1%
R2 0.998

Unscheduled visits Bed requests Lasso
Median absolute error 3.67
Median relative error 14.0%
R2 0.910

Transfers Bed requests Lasso
Median absolute error 1.19
Median relative error 58.1%
R2 0.805

for each unit of origin. Table 3 summarizes the main out-of-sample predictive power of our models.

Details about the data, models, and training procedure are provided in EC.3.

For inpatient units, we separate the demand for beds in unit j′ at time t, as the aggregation

of individual patient needs. Mathematically, we decompose g̃tj,j′ into

g̃tj,j′ =
∑

i in unit j at t=0

ỹti,j′ ,

where ỹti,j′ ∈ {0,1} indicates whether patient i will request a bed in unit j′ at at time t. Following the

approach from Bertsimas et al. (2021), we build individual risk scores to predict the quantities ỹti,j′

using the rich information available from their electronic health records (EHRs). In particular, on

a daily basis (each day at 6am) and for each inpatient, we predict the probability to be discharged

by the end of the day and the probability to be in an ICU, i.e., the expected value of∑
t∈[T ]

ỹti,DIS and
∑

t∈[T ],j′ is an ICU

ỹti,j′ .

By properly summing over inpatients i, we can estimate the expected number of discharges and

ICU requests from any inpatient unit j as∑
t∈[T ]

g̃tj,DIS and
∑

t∈[T ],j′ is an ICU

ỹtj,j′ .

Observe that, because we aggregate patient-level risk scores, our unit-level predictions take into

account the patient mix of the unit in a very rich manner. A central operational challenge in practice

is that these estimates cannot easily be updated throughout a day. Because they rely on patient-level
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information available in the EHR system, data extraction and processing for all inpatients requires

time and is performed on a fixed schedule (e.g., once a day). For instance, at 6am, we estimate the

probability of discharge for each patient, P(discharge for patient i, as of 6am), which corresponds

to the probability that patient i will be discharged between 6am and EoD. However, as the day goes

by, we optimize patient flows from “now” (t= 0) onwards. So, if it is h o’clock at the beginning of

the time period (t= 0), we are interested in

P(discharge for patient i, as of t= 0) = P(discharge for patient i, as of h o’clock).

However, there is often little new information available to update these probabilities compared with

our initial estimate, P(discharge for patient i, as of 6am). We then simply estimate the updated

probability by αhP(discharge for patient i, as of 6am), where the scaling factor αh is calibrated

empirically on the training set. Intuitively, αhP(discharge for patient i, as of 6am) is the updated

probability for patient i to be discharged conditioned on the fact that they are still at the hospital

at h o’clock. Typically, αh is non-increasing, equal to 1 before 8am, and close to 0 after 10pm.

For scheduled admissions, we consider the latest schedule available at the beginning of each

time period and assume that there is no uncertainty. Hence, we do not explicitly model the risk of

cancellation in this version of the model. However, as soon as an admission is cancelled, it disappears

from the schedule. In other words, our model adapts to the state of the schedule and cancellations.

For surgeries, the schedule indicates the type of surgery performed, not the specific unit the patient

should be admitted to afterwards. We automatically learn the mapping between the type of surgery

and the required unit after surgery by training a decision tree model on historical data.

Unscheduled visits and transfers concern patients who, by definition, are not physically

present in the hospital and have not requested a bed yet, so no (or little) patient-level information

is available to predict future demand from these units. As a result, we build simple linear models

using date/time-related variables such as month number, day of the week, time of the day, weekend

or holiday indicator, and number of requests in previous time periods.

Note that, in our close-loop implementation, we resolve the robust optimization problem (5) at

every time step (every two hours in our case). Accordingly, between two resolves, we not only update

the status of the hospital for the immediate patient placement problem (e.g., number of patients in

each unit, number and information about the pending bed requests) but also our predictions about

future demand ĝ. In other words, we update the state of the hospital, which includes beliefs about

future arrivals and departures.



16

4.2. Variability: robust optimization to the rescue

Despite their accuracy, our predictive models cannot overcome the inherent variability in medical

trajectories, which we account for by adopting a robust optimization approach. Based on the pre-

dictions we computed in the previous section, ĝ, we construct a so-called uncertainty set U , and
restrict our attention to uncertain flows within U , i.e., g̃ ∈ U .
First, we impose structural constraints, similar to the ones satisfied by the physical flows f : The

variables gtj,j′ are integer; At t= 0, g0j,j′ equals the number of patients currently in unit j and who

need to go to unit j′; Flow conservation constraints, i.e.,
∑

t,j′ g
t
j,j′ ≥ z0j for j ∈ {SA,UV,T} (to

allow for future arrivals), while
∑

t,j′ g
t
j,j′ = z0j if j is an inpatient unit. Note that the last set of

constraints impose that the future demand also satisfy Assumption 1. Constraints
∑

t,j′ g
t
j,j′ ≤Mz0j

would translate the fact that each patient from unit j can generate no more than M requests on

average.

We then include constraints based on the outputs of our machine learning models and bound the

overall volume and intra-day distribution of future bed requests. For instance, for hospital discharges

we impose ∑
j∈[J],t∈[T ]

gtj,DIS close to
∑

j∈[J],t∈[T ]

ĝtj,DIS, (overall volume)

∑
j∈[J]

gtj,DIS

/ ∑
j∈[J],t∈[T ]

gtj,DIS close to β̂t, (intra-day distribution)

where β̂t corresponds to the average fraction of discharges which empirically occurred during [t, t+1)

(conditioned on the day of the week and hour of the day). This decomposition scheme into discharge

volume and intra-day distribution resembles the patient-level two-timescale model of Shi et al.

(2016), who decompose overall length of stay into days and hours. Similarly, we impose constraints

on the overall volume of discharges from each inpatient unit j, on the overall number of ICU bed

requests (from the entire hospital and each unit separately), and on the number of bed requests

from UV or T. We impose additional constraints on the intra-day distribution of bed requests, and

on the mix of requested units from UV/T. Namely, for j ∈ {UV,T}, we bound the ratios∑
j′∈[J]

gtj,j′

/ ∑
j′∈[J],t∈[T ]

gtj,j′ and
∑
t∈[T ]

gtj,j′

/ ∑
j′∈[J],t∈[T ]

gtj,j′ .

However, we do not control the intra-day distribution of ICU bed requests, which are mostly driven

by bed placement decisions, i.e., our decision variables. As previously mentioned, for scheduled

admissions, we impose future requests to be equal to their expected values: gtSA,j′ = ĝtSA,j′ .

Note that a robust approach of uncertainty allows for an easy control on overall demand levels

directly g̃tj,j′ and even aggregates of them over units or time. In contrast, in a stochastic or distribu-

tionally robust approach, demands would need to be modeled as correlated random variables with

the random variable G satisfying all these constraints above almost surely.
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4.3. Discussion: Modeling uncertainty

From a modeling perspective, we would like to comment on the benefits of using a robust description

of the uncertainty compared with stochastic models.

First, specifying distributions for inpatient flows is a complicated and largely open problem. Kim

and Whitt (2014) discuss challenges and solutions to fit a non-homogeneous Poisson process for

arrivals to the ED. By extension, it would be reasonable to consider independent Poisson random

variables Gt
j,j′ with respective parameter ĝtj,j′ to model the demands from j ∈ {UV,T}. For an in-

patient unit j, however, Dai and Shi (2021) highlight the deficiencies of standard queueing models

to capture the complex dynamics of patient flows. The most challenging aspect is that the random

variables Gt
j,j′ are not independent since they depend on the requests from the same patients (those

currently in unit j). The most reasonable assumption would be to decompose Gt
j,j′ as the sum of

patient-level demands Gt
j,j′ =

∑
i Y

t
i,j,j′ where the Yi’s are independent generalized Bernouilli ran-

dom variables. Doing so, however, would break the benefit from aggregation and involve intractable

multidimensional integration. In addition to tractability benefits, robust modeling theoretically re-

lates to stochastic modeling and we can connect the worst-case cost of a policy c? = maxg∈U c(f ,g)

with a value-at-risk statement. Formally, we restrict our attention to flows f that do not depend

on g̃. Under reasonable assumptions on the distribution of G, we provide theoretical bounds on

the quality of this pessimistic estimation in terms of disappointment, i.e., we elicit a threshold ε

such that the probability that the actual cost c(f ,G) exceeds c?, P (c(f ,G)≥ c?), is bounded by

ε. In other words, the robust objective c? can be viewed as an upper-bound on the value-at-risk for

c(f ,G) at a level 1− ε (see Föllmer and Schied 2002, for an introduction to risk measures). We

acknowledge the fact that minimizing value-at-risk is a risk-averse attitude that relates to the pre-

vailing carefulness in healthcare and hospital managers. Yet, risk-neutral decision makers in other

contexts might favor a stochastic modeling with the objective of minimizing the expected cost.

To do so, we leverage structural properties of the cost function and assume that c(f ,g) can be

decomposed as the sum of k pieces, where each piece k involves a distinct subset of units and time

periods, i.e.,

c(f ,g) =
∑
k∈[K]

ck ·

 ∑
(j,j′,t)∈Sk

gtj,j′ −
∑

(j,j′,t)∈Sk

f tj,j′

+

, (6)

where Sk ⊆ [J ]× [J ]× [T ] and ∀k 6= k′,Sk ∩Sk′ = ∅. Each piece penalizes the unsatisfied demand for

a particular set of origin units j, destination units j′ and time periods t. For instance, in the example

described in Section EC.2.4, one piece specifically penalizes the unmet demand for intensive care

from the ED (j = UV , j′ ∈ IC, t ∈ [T ]), another considers demand from outside transfers, and so

on. Finally, we make distributional assumptions on the random vector G: In accordance with the

queueing literature, we first assume that the flows follow a Poisson distribution:
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Assumption 2. The random variables
∑

(j,j′,t)∈Sk
Gt
j,j′ are independent Poisson random variables

with respective rates λk.

In practice, recall that we estimate ĝ =E[G] from data, so that the rates λk =
∑

(j,j′,t)∈Sk
E[Gt

j,j′ ]

can readily be estimated as well. Under this assumption, we provide the following guarantee:

Proposition 1. Fix f ∈F and let c? = maxg∈U c(f ,g). Denote c∞ = maxk ck and c̄=
∑

k λkck.

We introduce a measure of the size the uncertainty set U in terms of relative cost deviation Γc :=

[c?− c(f , ĝ)]/c̄. Under Assumption 2, we have

P(c(f ,G)≥ c?)≤ exp

(
− c̄

c∞

Γ2
c

1 + Γc

)
.

Proof of Proposition 1

P (c(f ,G)≥ c?) = P (c(f ,G)− c(f , ĝ)≥ c?− c(f , ĝ))

≤ P

∑
k∈[K]

ck

∣∣∣∣∣∣
∑

(j,j′,t)∈Sk

Gt
j,j′ −

∑
(j,j′,t)∈Sk

ĝtj,j′

∣∣∣∣∣∣≥ Γc

 .

The result then follows from a large deviation bound for the sum of independent Poisson random

variables (Lemma 1) that we derive in Section A.1. �

In Proposition 1, the quantity c̄/c∞ corresponds to a cost-adjusted average number of patients

to be treated - in particular, if the ck’s are identical, it simplifies to
∑

k λk. Hence, the right-

hand side in Proposition 1 decays exponentially in the total number of patients. Note, however,

that Proposition 1 is an a posteriori bound that can be computed for a specific solution f . To

approximate it uniformly over the set of all policies f , further assumptions are needed. For instance,

if c(f ,g) is linear and U = {g : ‖g − ĝ‖ ≤ Γ}, then c? ∝ c(f , ĝ) + c∞Γ and the exponential term

decays in −Γ2. Interestingly, Proposition 1 demonstrates that the worst-case approach relates to a

stochastic modeling of the uncertainty –yet, with a risk-averse lens, since the worst-case cost relates

to value-at-risk and not expected cost– despite the fact that the uncertainty sets considered are

bounded while the random variables G are Poisson, hence potentially unbounded.

Remark 1. While the Poisson assumption is pervasive in queueing theory, we acknowledge that

the independence assumption is restrictive. In particular, the sum
∑

k∈[K]

∑
(j,j′,t)∈Sk

Gt
j,j′ is bounded

by the total number of patients, which negates independence. Alternatively, we assume that patients

are independent, and that the flows Gt
j,j′ aggregate patient-level moves:

Assumption 3. The random variables Gt
j,j′ can be decomposed into Gt

j,j′ =
∑

i∈I Y
t
i,j,j′ where the

vectors Zi ∈ {0,1}J×J×T , i= 1, . . . , I are independent and satisfy
∑

(j,j′,t) Y
t
i,j,j′ ≤ 1.
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Note that we can still define a rate for
∑

(j,j′,t)∈Sk
Gt
j,j′ as λk := E

[∑
(j,j′,t)∈Sk

Gt
j,j′

]
=∑

i∈[I]
∑

(j,j′,t)∈Sk
E[Y t

i,j,j′ ]. Under Assumption 3, we derive a similar probabilistic guarantee as

Proposition 1 (see Section A.2 for statement and proof) that shares the same qualitative insights.

We should emphasize that, since these theoretical guarantees apply to the day-level flow decisions

f , they would correspond to the actual performance of the algorithm if implemented in an open-loop

fashion. In practice, however, we adopt a close-loop implementation where, at each time step, we

solve (5), implement z1/f 1 only, and then resolve (5) at the next time step. We will evaluate the

performance of the close-loop policy via simulations in Section 5 but deriving theoretical guarantees

for close-loop policy constitutes an interesting and open research direction.

A second benefit of a robust optimization approach is that it requires no distributional assump-

tions, thus avoiding the risk of model misspecification. Distributionally robust optimization could

be used to reconcile stochastic modeling with uncertainty (also called ambiguity in this context)

on the true underlying distributions. However, such methods are less tractable than standard ro-

bust approaches, even when relaxing the integrality constraints on the variables Gt
j,j′ . Also, the

robust approach can be interpreted as a lower bound on the objective of a distributionally robust

optimization problem: For any set of distributions P, we have

sup
P∈P

EG∼P [c(f ,G)]≥max
g̃∈U

c(f , g̃),

with U = {EG∼P [G] : P ∈ P}, by convexity of c and Jensen’s inequality. In other words, a distri-

butionally robust problem is at least as conservative as a robust problem whose uncertainty set is

the set of all possible average flows. Finally, as we will discuss in the following section and in the

numerical experiments, we observe that using adaptive decision rules f has a first-order impact

on the performance and is more important than the description of the uncertainty. In this regard,

opting for a tractable model of uncertainty that can be solved efficiently and be generalized to affine

decision rules without exploding computational time is important.

Finally, uncertainty on g̃ partly comes from inherent stochasticity in the arrival and request

process but can also come from deterministic biases in the estimation of future demand for beds

due to censoring. For instance, for predicting the probability that a current inpatient will need an

ICU bed, we do not have access to data about needs and only observe transfers to/out of the ICUs.

These internal transfers are indeed critical for the patient and often arranged informally (e.g., over

the phone) between physicians directly, without recording a formal bed request in the system. The

robust modeling of uncertainty is better suited to such deterministic deviations between the actual

vector of demand g̃ and their estimates ĝ than a distributionally robust model of ambiguity.
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4.4. Static and affine adaptive policies

As previously discussed, the future decision variables f are not readily implementable since they

represent unit-level flows. Instead, one should solve (5) at each time step and implement the patient-

level here-and-now decision variables z1. Accordingly, the decisions taken at time t will effectively

depend on the realization of demand g̃τjj′ for τ < t. To mimic this process as truthfully as possible,

we impose some structure on how future decision variables f in (5) should depend (or adapt) to the

state variables g and derive the robust equivalent of (5) for each level of adaptivity we impose.

First, we consider a static approximation and restrict our attention to flows f that do not depend

on g̃. In doing so, we observe that the equality constraints f tj,DIS = g̃tj,DIS, j ∈ [J ], t ∈ [T ] cannot

hold for all values of g̃ ∈ U . As a result, we conservatively replace them by inequality constraints

and solve the resulting optimization problem:

min
z1∈Z,f∈F,Cr

c>z1 + max
g̃∈U

λ c(f , g̃) +λw (Cw−Cr)+ (7)

s.t. z0j +
∑
τ∈[t]

∑
j′

f τj′,j −
∑
τ∈[t]

∑
j′

f τj,j′ ≤Ct
j , ∀j, t, ∀g̃ ∈ U ,

f tj,DIS ≤ g̃tj,DIS, ∀j, t, ∀g̃ ∈ U

f1
j,j′ =

∑
i∈[I]

z1ij′z
0
ij, ∀j 6= j′, ∀g̃ ∈ U ,

Cr ≤
∑
j∈[J]

CT
j − z0j −

∑
t∈[T ]

∑
j′

f tj′,j +
∑
t∈[T ]

∑
j′

f tj,j′

 , ∀g̃ ∈ U ,

∑
t,j′

f tj,j′ +
∑
t

g̃tj,DIS ≥ z0j , ∀j, ∀g̃ ∈ U .

Remember that c(f(g̃), g̃) is a piecewise linear convex function. To bound its worst-case value,

we can write c(·, ·) in epigraph formulation and robustify each constraint independently (Gorissen

and den Hertog 2013). In addition to obvious tractability benefits, the static approximation is

also theoretically appealing. Indeed, by solving (7), the decision maker has access to a pessimistic

estimate of the future daily cost, c? = maxg∈U c(f ,g) that, as we proved in the previous section,

can be interpreted as a bound on the value-at-risk for the random future cost c(f ,G).

To mitigate the conservatism of the static approach, we consider affinely adaptive decision rules

(Ben-Tal et al. 2004, Chen and Zhang 2009). Affine decision rules have been widely used in multistage

robust optimization and have proved optimal for some highly structured problems (Bertsimas et al.

2010, Iancu et al. 2013). However, to the best of our knowledge, their performance for robust prob-

lems with discrete decision variables and uncertainty has not been investigated, neither theoretically

nor numerically. First, let us observe that the equality constraints f tj,DIS(g̃) = g̃tj,DIS, ∀j, t, ∀(g̃)∈ U ,
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dictate how f tj,DIS should depend on g̃. As a result, we first replace the variables f tj,DIS(g̃) in (5)

by g̃tj,DIS, and then consider the following optimization problem:

min
z1∈Z,f(·)∈R,Cr(·)

c>z1 + max
g̃∈U

λ c(f(g̃), g̃) +λw (Cw−Cr(g̃))
+

s.t. z0j +
∑
τ∈[t]

∑
j′

f τj′,j(g̃)−
∑
τ∈[t]

∑
j′ 6=DIS

f τj,j′(g̃)−
∑
τ∈[t]

g̃τj,DIS ≤Ct
j , ∀j, t, ∀g̃ ∈ U ,

f1
j,j′(g̃) =

∑
i∈[I]

z1ij′z
0
ij, ∀j 6= j′, ∀g̃ ∈ U ,

Cr(g̃)≤
∑
j∈[J]

CT
j − z0j −

∑
t∈[T ]

∑
j′

f tj′,j(g̃) +
∑
t∈[T ]

∑
j′ 6=DIS

f tj,j′(g̃)−
∑
τ∈[t]

g̃τj,DIS

 , ∀g̃ ∈ U .

Then, we narrow our search to affine policies, i.e., flows of the form f tj,j′(g̃) = f̄ tj,j′ +∑
u,u′,τ≤tΦ

t,τ
j,j′,u,u′ g̃

τ
u,u′ , where the recourse matrix Φ is itself a decision variable to be computed

jointly with f̄ . However, the resulting number of decision variables increases from J2T to J4T 2 ≈ 108

and this simplifcation remains numerically intractable. Accordingly, we restrict our analysis to two

special cases:

1. First, a case where all the variability in discharges from unit j are directly reported on the

number of patients in unit j who stay in unit j throughout the day, i.e., impose the affine relationship

fTj,j = f̄Tj,j−
∑

t∈[T ] g̃
t
j,D ≥ 0. Other flows f tj,j′ are considered nonadaptive. In this approximation, the

recourse matrix Φ is imposed by design and we shall refer to it as the “affine with known recourse”

strategy. Also, in this policy, the future cost c(f(g̃),G) only involves coordinates of f(g̃) that are

nonadaptive so Proposition 1 still holds for this policy.

2. In the second approximation, which we call “restricted affine” policy, we assume that f tj,j′ ,

j 6= j′, only depends on g̃tj,j′ while f
T
j,j depends on g̃tj,DIS, t∈ [T ] i.e.,

f tj,j′ = f̄ tj,j + Φt
j,j′ g̃

t
j,j′ , for j 6= j′,

fTj,j = f̄Tj,j +
∑
t∈[T ]

Φt
j,j g̃

t
j,DIS.

Hence, in this model, the increase in the number of decision variables is linear in the number of

initial decision variables (instead of quadratic).

5. Numerical experiments

We now apply our methodology to historical data from our partner hospital, and assess its perfor-

mance.
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5.1. Evaluation methodology

We apply the HIFO approach on data collected between January and August 2019. For our sandbox

experiments to be as faithful as possible to real-world implementation, we developed a methodology

based on historical rather than simulated data. We detail the precise experimental procedure in

Section EC.4 but highlight its main assumptions here:

• We preserve the discharge patterns observed empirically. In other words, our simulation assumes

that the decisions we are making (i.e., bed assignments) only impact bed assignments, and not

length of stay or health outcomes. As previously mentioned, some empirical evidence suggests it

is not the case. Since we find that our optimization approach improves bed assignment, it should

reduce length of stay. As a result, keeping the empirical discharge patterns, as we do, leads to a

conservative estimate of the potential improvement. We investigate the impact our method could

have on length of stay via 212-day simulations in Section EC.4.4.

• To mitigate the aforementioned issue, we simulate the state of the hospital over small and non-

overlapping periods (ranging from one to seven days): At the beginning of each period, we initialize

the experiment with the historical state of the hospital at this point in time, and not what its state

would have been had the optimization model run the previous period as well.

• We assume that all bed assignment decisions made by HIFO at the beginning of a time period

are implemented and effective by the end of the time period, i.e., that delays between assignment

and actual placement do not exceed two hours.

• Finally, our experiments correspond to a hybrid simulation where some allocation decisions

are dictated by the optimization model and some are taken by hospital staff directly. Indeed, our

optimization algorithm runs every two hours. For every bed request that arose and got solved

between two optimization runs, we follow the decision from the hospital staff. This is notably the

case for high-acuity patients or emergent surgeries from current inpatients.

We measure the quality of the bed assignment policy by the number of off-service placements

made throughout the period and the waiting time of patients in the “scheduled admissions” and

“unplanned visits” category, also referred to as boarding time. In reality, boarding delays recorded

in the historical data may sometimes over-estimate actual delays (if a patient’s movement is entered

into the EHR system after it happened) or under-estimate them (if the movement is entered in the

system preemptively to hold a bed for a patient). In addition, our simulations might not capture

all the practical intricacies that generate delays between assignment and movement in practice, so

the delays obtained in our simulations may deviate from what could be achieved if implemented in

practice. To mitigate these issues, we measure historical and simulated delays in terms of number

of optimization periods (i.e., 2-hour periods), hence offering a more conservative comparison of our

optimization-based policy with the current state of practice. For these metrics, we either report
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their normalized values1 or the relative difference in performance of the optimization policy with

the historical decisions made by the hospital on the same period. In any case, the lower the value

the better. To ensure that improvement in off-service placement or delay is not due to the hospital

admitting fewer patients or going above capacity, we also report peak census during the period:

admission volume from unplanned visits and outside transfers.

5.2. Benchmarking the performance of HIFO

We first compare the behavior of the robust HIFO formulation, both static and affine (Section 4.4),

with:

• A fluid model where all future demand Gt
j,j′ are taken equal to their average value and flows f

are taken continuous and chosen so as to minimize the base-case cost c(f ,E[G]);

• A stochastic model where future demands from j ∈ {SA,UV,T} are assumed to follow non-

homogeneous Poisson distributions and demands from inpatient units j are decomposed as the

sum of independent generalized Bernouilli random variables. Gt
j,j′ for inpatient units. Expected

values are estimated via sample average approximation (SAA) with 100 scenarios, and we impose

the constraints for all scenarios. In EC.4.2, we verify that imposing the constraints in expectation

instead does not materially change the performance of the SAA model.

In this set of experiments, we consider a subset of N = 92 days from our historical data (March–May

2019) and perform simulations over one-day periods.

Computational time and scalability: In total, we solved 12× 92 = 1,104 instances, for 11 values

of λ and three values of λw. We report summary statistics in Table 4. In contrast to competitive

approaches from the literature, our optimization model is very tractable and can be solved in seconds

for a 600-bed institution. Using a robust approach to model prediction errors, in either its static

or known affine recourse version, does not yield any noticeable solve time increase compared to

the fluid approximation model and the stochastic (SAA) model. In addition, note that the SAA

model requires additional computational time for sampling scenarios – 30.7 seconds on average to

sample 100 scenarios in our simulations – and additional memory. The runtimes for the restricted

affine policy are approximately 30–40% higher than for the other three methods, but remain below

a minute for 99% of the instances. As a result, one could contemplate real-time implementation

to make bed assignment decisions in an online fashion. Yet, one has to keep in mind that the

time period width (here, two hours) needs to be long enough for the bed assignment policy to be

computed and implemented.

1 To preserve anonymity of our partner hospital and its actual performance, we divide the values of each metric by
the median of the same metric on the historical data.
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Table 4 Summary statistics of the solve time (in seconds) over 33× 1,104 = 36,432 instances for each method.
Percentile: 1st 25th 50th (median) 75th 99th Average
Fluid approximation 0.12 0.27 0.37 0.81 12.89 1.60
Sample average approximation 0.13 0.35 0.53 0.96 26.44 2.19
HIFO - Static 0.11 0.26 0.36 0.63 26.68 2.07
HIFO - Affine with known recourse 0.11 0.26 0.37 0.62 24.77 1.89
HIFO - Restricted affine 0.17 0.43 0.7 1.26 41.21 3.22

Impact on waiting time and off-service placement: There is an intuitive trade-off between time

a patient waits to be admitted and the quality of the assigned bed. In our model, we can control

this trade-off through the parameters λ and λw that balance the first-stage and the multistage

objectives. We illustrate this trade-off by considering 11 (resp. three) different values of λ (resp.

λw) and plotting the relative improvement compared with historical placements in terms of total

waiting time (from both scheduled and unscheduled admissions) vs. off-service placements in Figure

3. We make a few observations: First, all four methods lie on the negative orthant, hence improve

on both metrics compared to the current policy. Although there is a trade-off between these two

performance measures, our simulations suggest that there is an opportunity for hospitals to improve

on both simultaneously, by leveraging advanced prescriptive analytics. Second, the fluid approxima-

tion performs comparably with HIFO with static decisions on these average performance metrics

although its objective is essentially a value-at-risk (according to Proposition 1). In our view, the

good performance of robust approach in average terms is due to close-loop implementation, which

alleviates conservatism by updating the problem input parameters and re-optimizing at each time

period. Furthermore, using affine decision rules further and substantially increases the benefit from

optimization. Unlike the static (robust or stochastic) methods that consider one decision variable

f t for future decision, adaptive models consider multiple plans for the future, which will later be

chosen based on the realized level of arrivals and discharges. Since uncertainty directly affects the

set of feasible decisions (through discharges and capacity constraints), capturing such flexibility in

future decisions lead to more forward-looking first-stage decision. In particular, we observe that

HIFO with affine decision rules tends to admit more patients early in the day (10 a.m.-4 p.m.) than

the other policies, hence showing an anticipation of the daily discharges (see additional evidence in

EC.4.2)

5.3. Impact of HIFO on hospital performance

We now evaluate in more depth the potential benefit of the HIFO policy for the hospital. In this

set of experiments, we consider the whole N = 236 days from our historical data and perform

simulations over {1,3,5,7}-day periods. For simplicity, we only report results for HIFO with known

affine recourse, for λ= λw = 1.
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Figure 3 Trade-off between waiting time and off-service placements. Each point represents the average relative differ-

ence between the considered policy and historical placements. A negative value indicates an improvement.

We compare the performance of the proposed robust affine policies (red circles and stars) with the static

solution (green diamonds) and their fluid approximation (blue squares). The highlighted point corresponds

to the setting (λ= 1, λw = 1) used in the rest of the experiments.

Quality of the bed assignment Figure 4 summarizes the relative improvement of HIFO over the

current bed assignment strategy in terms of waiting time for (un)scheduled visits and off-service

placement, for the different simulation lengths. On the one-day experiments, we recover the results

observed in the previous section, namely the waiting time reduces by 20% and 11% on average

for unscheduled and scheduled patients respectively, while off-service placement reduces by 6%. In

addition, Figure 4 (and Figure EC.4) demonstrate that this is an improvement on average and also

a substantial distributional shift towards lower values for all three metrics. As the simulation length

increases from one to seven days, or as the optimization model is used on more consecutive days, the

edge of optimization further increases and we observe an average reduction of 35%, 18%, and 24% on

the same three metrics. Yet, the reduction in boarding time for patients in the post-anesthesia units

(part of scheduled admissions) ought to be taken with a pinch of salt. Indeed, for patients in the

post-anesthesia units (part of scheduled admissions) and for the HIFO policy, we take into account

bed requests from surgical patients as soon as they enter the post-anesthesia care unit (PACU) and

assume that the assignment can be implemented in the two hours following the decision. However,

after a surgery, a patient can often not be moved to an inpatient unit before they recover from the
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Figure 4 Box plot for the distribution of the relative difference between the HIFO policy over the historical bed as-

signment decisions in terms of three performance metrics: (from left to right) waiting time from unscheduled

visits, waiting time from scheduled admissions, and number of off-service placements. Results are reported

for different simulation lengths (1, 3, 5, and 7 days)

anesthesia and are physically fit to be discharged from the PACU. This time-to-recovery generates

delays for the historical policies, delays to which HIFO is currently oblivious.

Control for admission volumes: We also compare the peak census and admission volumes in Table

5. Overall, the results of these metrics are reassuring: The daily peak census at the hospital is largely

unchanged, negating the possibility that HIFO would reduce boarding time and off-service placement

by overcrowding units. Admission volumes from scheduled admissions remain constant because there

is no question about whether to admit patients from this category. However, for unscheduled visits,

HIFO admits 12% more patients than current practice. These admissions correspond to patients

who historically requested a bed, waited, and eventually exited the system without being admitted

(the reason for exiting the queue is unavailable in the data). For these patients, HIFO assigns a

bed faster. However, we observe that admissions from outside transfers decrease substantially on

one-day simulations. This observation suggests that HIFO tends to favor patients physically present

in the premises of the hospital over patients in another facility. Equivalently, it suggests that current

hospital practice neglects the impact that admitting external patients has on the rest of the system

when making their admission decisions. Our holistic approach integrates outside admission decisions

into an overall bed assignment decision tool and is able to quantitatively take into account these

effects. This constitutes a central contribution of the HIFO model. Furthermore, we observe that

this negative impact vanishes as the simulation length increases. Since each simulation starts with a

backlog of bed requests inherited from the historical policy, the observed trend supports the intuition

that HIFO helps manage and reduce the backlog in the short term, thus creating opportunities for

more outside transfer admissions in the long term.
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Table 5 Median and inter-quartile range for the relative difference between the HIFO policy over the historical bed

assignment decisions in terms of peak census and admission volume.

Metric 1-day simulation 3-day simulation 5-day simulation 7-day simulation

Peak census 0.91% (1.1%) 2.0% (1.31%) 2.64% (1.83%) 2.14% (1.63%)
TC volume -12.92% (187.18%) 12.0% (70.63%) 11.11% (39.16%) 13.21% (31.31%)
UV volume 18.18% (21.67%) 12.75% (11.19%) 12.77% (9.25%) 12.38% (7.25%)
SA volume 0.0% (0.0%) 0.0% (2.08%) 0.0% (1.85%) 1.16% (1.52%)

5.4. Discussion on practical implications

In summary, our simulations illustrate that: a discrete optimization approach for patient-bed assign-

ment is tractable, even for a hospital with 500+ beds; using adaptive decision rules has a first-order

effect on the algorithm performance (more important than the framework used to describe the un-

certainty); and an optimization-based patient-bed assignment process can simultaneously improve

waiting times and off-service placement.

The implementation of a prescriptive bed-assignment model in practice might raise concerns

related to fairness. We now compare how the decisions made historically by the hospital differ from

HIFO’s at a patient level. We consider all admissions of unscheduled visits and indicate whether

their waiting time and service placement improved/deteriorated/remained the same when applying

HIFO. Our analysis comprises nearly 7,000 individual bed allocations. We then categorize the

patients into four groups, depending on whether their bed allocation with HIFO is better, worse,

identical, or not comparable. Figure 5 reports aggregate results for increasing simulation lengths.

While the decisions made by HIFO improve boarding times and service placements on average,

we observe that not all patients benefit from the optimization approach. On one-day experiments,

approximately 38% of all patients experience better outcomes under HIFO while 20% experience

worse outcomes, suggesting that HIFO is able to correctly identify and prioritize patients based on

their individual impact on the overall system performance. In addition, the proportion of patients

experiencing better placements increases as the simulation length increases, providing encouraging

results on the potential benefit from implementing HIFO in practice. Inequity implications and

fairness enforcement in healthcare have received attention in other contexts (Olsen 2011, Bertsimas

et al. 2013, McCoy and Lee 2014), and constitute interesting and necessary future directions for our

work.

When moving from simulation to actual implementation, one should expect the actual opera-

tional benefits to be less acute. This gap is partly due to the fact that the decision of assigning

a patient to a bed is ultimately made by nurses and doctors, the output of the algorithm being a

recommendation they can decide to ignore. Since our simulation setting assumes that all the HIFO

recommendations are followed, our experiments might over-estimate the operational benefits. To
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Figure 5 Proportion of patients whose HIFO placement was better (green), worse (red), identical (blue), not com-

parable (pink) to their historical one, for different simulation lengths (1, 3, 5, and 7 days).

quantify the impact non-compliance could have on our results, we conduct simulations over a one-

day horizon, as in Section 5.2 but, for each patient, implement the recommendation of the algorithm

with some probability p∈ [0,1] and implement the historical decision otherwise. The variable p (i.e.,

the level of compliance) creates a continuum between the historical policy (p= 0) and our optimal

policy (p = 1). Among others, we observe in Figure 6 that implementing only 20% of the recom-

mendations captures ∼ 70% of the benefit in off-service placement while reducing waiting time by

∼ 7%. However, the impact on waiting time is almost linear in p. Modeling more rigorously the

strategic behavior of users to the algorithmic recommendations and measuring in a real-life pilot

the compliance and the ultimate operational impact are exciting potential future directions.

6. Concluding remarks
In this paper, we propose a robust discrete optimization framework to achieve hospital-wide pa-

tient flow management. Our approach comprises three key elements: a holistic view to account

for the entirety of the hospital within a single model, an aggregation strategy to reconcile short-

and medium-term objectives in a tractable fashion, and data to describe and anticipate future de-

mand and supply of care. We use the framework of adaptive robust optimization to derive tractable

optimization formulations, while alleviating conservatism inherent in a robust approach. Through

extensive numerical simulations, we observe that our formulation can be solved within seconds for a

600-bed institution and could provide significant operational improvement. In addition to the imple-

mentation and evaluation of our algorithms in a real hospital environment, exciting future research

directions include theoretically analyzing the performance of close-loop robust control policies, de-

riving tractable formulations for the corresponding adjustable distributionally robust optimization

problem, and integrating fairness or behavioral considerations to increase adoption and impact.
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Figure 6 Trade-off between waiting time and off-service placement for the HIFO policy with affine known recourse

(λw = λ= 1) for varying compliance levels p.
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Appendix A: Theoretical guarantees of the robust approach: lemmas and extension

In this section, we derive new tail bounds on the sum of independent Poisson random variables, used in

the proof of Proposition 1. We also extend the result from Proposition 1 to a setting where we relax the

independence assumption on the medical trajectories.

A.1. Tail bounds on the sum of Poisson random variables

Lemma 1. Let Gj, j = 1, . . . ,m, be m independent Poisson random variables with respective rates λj. Fix

c∈Rm+ and denote cmax = maxj∈[m] cj and c̄=
∑

j
λjcj. Then for any α≥ 0,

P

∑
j∈[m]

cj |Gj −λj | ≥ αc̄

≤ exp

(
− c̄

cmax

α2

1 +α

)
.

Proof of Lemma 1 Define ρ(x) = ex−x−1. For any Poisson random variable G with rate λ, E[et[G−λ]] =

exp(λρ(t)). Fix t≥ 0. By a standard Chernoff bound technique, for any θ > 0, we have

P

∑
j∈[m]

cj |Gj −λj | ≥ t

≤ e−θt ∏
j∈[m]

E
[
eθcjGj

]
= exp

−θt+
∑
j∈[m]

λjρ(cjθ)

 .

Since ρ is convex and ρ(0) = 0, for any 0 < x ≤ y, we have ρ(x) ≤ x/y ρ(y). Applying this inequality for

x= cjθ and y= cmaxθ yields

P

∑
j∈[m]

cj |Gj −λj | ≥ t

≤ exp

−θt+
1

cmax

∑
j∈[m]

λjcjρ(cmaxθ)

= exp

(
−θt+

c̄

cmax

ρ(cmaxθ)

)
,



30

with c̄=
∑

j
cjλj . The right-hand side is minimized at θ= 1

cmax
log (1 + t/c̄), which in turn leads to

P

∑
j∈[m]

cj |Gj −λj | ≥ t

≤ exp

(
c̄

cmax

{
t

c̄
−
(

1 +
t

c̄

)
log

(
1 +

t

c̄

)})
.

Since log(1 +x)≥ 2x/(2 +x) for x≥ 0,

P

∑
j∈[m]

cj |Gj −λj | ≥ t

≤ exp

(
− c̄

cmax

(t/c̄)2

1 + t/c̄

)
.

�

A.2. Probabilistic guarantees in case of dependent medical trajectories

We now relax the assumption that the flows are independent and Poisson distributed. Instead, we adopt

a patient-level description: we assume that patients are independent and that flows are the aggregation

of individual patient trajectories (Assumption 3). Note that under Assumption 3, we can still define a

rate for
∑

(j,j′,t)∈Sk
Gt
j,j′ as λk := E

[∑
(j,j′,t)∈Sk

Gt
j,j′

]
=
∑

i∈[I]

∑
(j,j′,t)∈Sk

E[Zti,j,j′ ]. Among others, we have∑
k∈[K] λk ≤ I. Under this assumption, Proposition 1 translated into:

Proposition 2. Fix f ∈ F and let c? = maxg∈U c(f ,g). Denote c∞ = maxk ck and c̃ =
∑

k

√
λkck. We

introduce a measure of the size the uncertainty set U in terms of relative cost deviation Γc := [c?− c(f , ĝ)]/c̃.

Under Assumption 3, for Γc ≥ 1, we have

P(c(f ,G)≥ c?)≤ exp

(
− c̃2

2Ic∞
(Γc− 1)2

)
.

Compared to Proposition 1, Proposition 2 qualitatively exhibits the same exponential dependency in −Γ2
c .

However, the rate involves c̃=
∑

k

√
λkck ≤

√
c̄I, and is slower than the case where flows are assumed to be

independent. The proof is similar to the proof of Proposition 1, except that we invoke a more technical tail

bound derived from McDiarmid’s inequality:

Lemma 2. Let Zi ∈ {0,1}m, i = 1, . . . , n, be n independent random vectors with
∑

j∈[m]Zi,j ≤ 1. Denote

λj :=
∑

i∈[n]E[Zi,j ]. Fix c∈Rm+ and denote cmax = maxj∈[m] cj and c̃=
∑

j

√
λjcj. Then for any α≥ 1,

P

∑
j∈[m]

cj

∣∣∣∣∣∣
∑
i∈[n]

(Zi,j − pi,j)

∣∣∣∣∣∣≥ αc̃
≤ exp

(
− c̃2

2cmaxn
(α− 1)2

)

Proof of Lemma 2 Denote h(z1, . . . ,zn) :=
∑

j∈[m] cj

∣∣∣∑i∈[n](zi,j − pi,j)
∣∣∣. The function h satisfies a so-

called bounded difference property. Indeed, when we compare the difference in value of h for two n-tuples

that differ only in their ith coordinate, since zi and z′i have at most one coordinate equal to 1, we obtain

|h(z1, . . . ,zi, . . . ,zn)−h(z1, . . . ,z
′
i, . . . ,zn)| ≤ 2cmax.

Hence, by McDiarmid’s inequality (McDiarmid 1998, Theorem 3.1), for any t≥ 0,

P (h(Z1, . . . ,Zn)−E[h(Z1, . . . ,Zn)]≥ t)≤ exp

(
− t2

2ncmax

)
.
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To conclude the proof, we need to bound E[h(Z1, . . . ,Zn)] =
∑

j∈[m] cjE
∣∣∣∑i∈[n](Zi,j − pi,j)

∣∣∣. By Cauchy-

Schwarz inequality and the independence of the Zi’s, we obtain

E

∣∣∣∣∣∣
∑
i∈[n]

(Zi,j − pi,j)

∣∣∣∣∣∣≤
√∑

i∈[n]

pi,j(1− pi,j)≤
√∑

i∈[n]

pi,j =
√
λj .

So E[h(Z1, . . . ,Zn)] ≤
∑

j
cj
√
λj . Denoting c̃ =

∑
j
cj
√
λj and setting t = (α − 1)c̃, α ≥ 0, we obtain the

result. �
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Electronic Companion
This electronic companion (EC) provides the full Hospital-wide Inpatient Flow Optimization

HIFO formulation presented in Section 3. It also gives details on the uncertainty set from Section 4,

and describes the simulation procedure used for the numerical experiments in Section 5 alongside

additional numerical results.

EC.1. Description of units in our partner hospital
Our partner hospital comprises two campuses (A and B). We provide a list and description of the

units on campus A in Table 1. For completeness, we detail the composition of campus B here in

Table EC.1.

Table EC.1 Description of inpatient units on campus B at our partner hospital. The type is either GC (general

care) or IC (intensive care). The unit name follows the nomenclature: Campus-Type Number.

Name Type # Licensed # Private Primary (secondary) servicesbeds rooms

B-GC 1 GC 36 16 Surgery, Trauma (Orthopedics)
B-GC 2 GC 36 16 Orthopedics, Surgery
B-GC 3 GC 28 7 General Medicine, Surgery
B-GC 4 GC 30 8 Neurology, Neural Surgery
B-GC 5 GC 32 10 General Medicine
B-GC 6 GC 29 10 Cardiology (Cardiac Surgery)
B-GC 7 GC 30 8 Cardiology (Cardiac Surgery)
B-GC 8 GC 14 4 Neurology, Neural Surgery
B-GC 9 GC 28 2 General Medicine
B-GC 10 GC 20 20 Cardiac Surgery, Thoracic Surgery
B-GC 11 GC 34 6 General Medicine

B-IC 1 IC 10 10 Surgery (Orthopedics)
B-IC 2 IC 7 7 Cardiac Surgery
B-IC 3 IC 8 8 Cardiac Surgery
B-IC 4 IC 8 8 Cardiac Surgery (Cardiology)
B-IC 5 IC 8 8 Neurology, Neural Surgery
B-IC 6 IC 8 8 General Medicine
B-IC 7 IC 8 8 General Medicine
B-IC 8 IC 8 8 Neurology, Neural Surgery
B-IC 9 IC 8 4 Vascular Surgery

EC.2. Detailed optimization formulation and extensions
In this section, we provide some practical details about the optimization formulation introduced

in Section 3 and describe extensions of the model that are relevant to practice. In this section, we

present the complete nominal formulation for the HIFO problem, which includes individual future

trajectories and capacity decisions.
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EC.2.1. Immediate problem: cost calculation

The cost of assigning patient i to unit j, cij, should depend on the patient’s current location and

their medical need.

Each unit or ward is pre-assigned a primary service as well as secondary services, as described

in Table 1. Correspondingly, we define a priority level pjs between each unit j and service s. For

primary services, pjs = 1, for secondary services, pjs = 2. Otherwise, we have pjs =∞. Note that, in

some large hospitals, some units might provide a third level of medical specialty (pjs = 3) –typically,

those would correspond to medical specialties that are not unit j’s primary or secondary specialties.

These patients are often off-placed in unit j so the nursing staff in j are now familiar with this new

patient population.

For each patient i, we describe their medical need as the combination of hospital service/medical

specialty s and level of care ` that their condition requires. The level of care ` = 1 if the patient

requires an intensive care bed, 0 otherwise. With this notation, we decompose the cost cij into

cij = pjs− 1 (Service match)

+


6, if `= 1 and j /∈ IC,
3, if `= 0 and j /∈GC,
0, otherwise.

(Level of care match)

Depending on the particular hospital, we might include a term to capture physical distance between

patient i and unit j, especially if units are spread across different buildings.

EC.2.2. Immediate problem: future individual assignments

In practice, for patients who need a new bed, medical staff might value having a plan for where to

place the patients immediately (z1ij) and when to move them in the future and where. To do so,

we introduce individual unit assignment variables ztij which will track the location of the patients

through to the end of the day. ztij = 1 if patient i is in unit j at time t, 0 otherwise. Since we only

care about the patients who currently need a new bed, we shall introduce these variables just for

them.

In accordance with the single-move assumption (Assumption 1), each patient should move (at

most) once during the entire time horizon. Therefore, we also introduce binary variables to encode

for the final location of the patient, `ij, and the time they move, mt
i. All things considered, the

decision variables ztij, `ij and mt
i must satisfy a set of constraints, concisely denoted (z,`,m) ∈Z,

namely:

ztij, `ij,m
t
i ∈ {0,1}, ∀i∈ [I], j ∈ [J ], t∈ [T ],∑

t∈[T ]

mt
i≤1,

∑
j∈[J]

`ij = 1, ∀i∈ [I],
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ztij ≤ `ij, ∀j ∈ [J ], t∈ [T ],∑
τ∈[t]

mτ
i ≤ 1− z0ijztij, ∀j ∈ [J ], t∈ [T − 1],∑
i∈I

ztij ≤Ct
j , ∀j ∈ [J ], t∈ [T ],

ztij = 0,∀i∈ [I], t∈ [T ], j ∈Fi.

The first set of constraints ensures that z,`,m are binary. The second set of constraints ensure that

each patient i moves at most once. The third constraints capture the logic `i,j = 0 =⇒ zti,j = 0.

The third constraint ensures that if the patient has not moved, i.e., z0ijztij = 1, then mτ
i = 0 for

τ ≤ t. The fourth constraints are capacity restrictions. Finally, the last set of constraints involves a

patient-specific set Fi describing the units that patient i cannot go to. For instance, if patient i is

initially in unit j0, i.e., z0ij0 = 1, and did not request a new bed, then Fi = [J ] \ {j0}. Note that we

could relax this requirement to allow for inpatient reallocation as in Thompson et al. (2009).

Similar to Section 3, the objective is to minimize cost. For simplicity, we decompose cost into an

assignment quality term, cij`ij, with cij defined as in the previous section, and a waiting time cost,

citm
t
i. The waiting time cost has a piece-wise linear structure, cit = ai(PastWaiti+2t− τ̄i)+, i.e., we

linearly penalize waiting time (by a marginal cost of ai) whenever the cumulative waiting time for

patient i (the sum of the time they have been waiting up until t= 0, denoted PastWaiti, plus the

time they will wait if they are assigned at time t, 2t because we consider 2-hour time steps) exceeds

a target threshold of τ̄i. The target threshold τ̄i depends on the unit in which the patients are (we

use 0 hours for scheduled admissions, 4 hours for unscheduled visits, and 6 hours for transfers). The

marginal cost of waiting ai depends on (a) the unit the patients are waiting in (among SA, UV, T),

(b) the level of care they are waiting for, and (c), for SA and UV patients, the time they have been

waiting so far, PastWaiti.

Remark EC.1. If one does not to want to introduce these additional variables to describe the

future trajectories of patients currently waiting for a bed, the unit assignment costs cij defined

EC.2.1 could be modified to also prioritize patients based on the time they have waited so far, e.g.,

by considering cij + ai(WaitT imei− τ̄i)+ instead.

EC.2.3. Daily problem: feasible set

The flow variables f tj,j′ ought to satisfy the following constraints:

(F1) Integrality: f tj,j′ ∈N.

(F2) Flow conservation: If j is an inpatient unit, we have
∑

t,j′ f
t
j,j′ = z0j . Alternatively, for j ∈

{SA,US,T}, the total number of patients moved from j (for instance, from the emergency depart-

ment) throughout the day,
∑

t,j′ f
t
j,j′ can be greater than the number of patients currently waiting

to be moved at t= 0, z0j , because of future arrivals. Hence, we have
∑

t,j′ f
t
j,j′ ≥ z0j .
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(F3) Forbidden moves: Those constraints are similar to those on the individual moves. We also

add the constraints f tj,j = 0, ∀t∈ [T −1], j ∈ [J ] to ensure that patients who do not move during the

day are all captured in fTj,j′ .

(F4) Capacity constraints:

z0j +
∑
τ∈[T ]

∑
j′

f τj′,j −
∑
τ∈[T ]

∑
j′

f τj,j′ ≤Ct
j , ∀j ∈ [J ],∀t∈ [T ]. (1)

EC.2.4. Daily problem: cost formula

Let (x)+ := max(x,0) denote the positive part of x. We define a cost function c(f ,g) between

inpatient flows between units, f , and the total number of patients requesting to be moved (i.e., the

demand) between units, g, as the sum of the following quantities:

• For scheduled admissions (j = SA), we emphasize delays as well as mismatch and try to satisfy

demand for general and intensive care throughout the day. We add to c(f ,g) the terms

cSA,GC

T∑
t=1

 ∑
j′∈GC

∑
τ∈[t]

gτSA,j′ −
∑
j′∈GC

∑
τ∈[t]

f τSA,j′

+

+ cSA,IC

T∑
t=1

∑
j′∈IC

∑
τ∈[t]

gτj,j′ −
∑
j′∈IC

∑
τ∈[t]

f τSA,j′

+

.

In a robust approach, the aggregation of flows over units and time reduces the power of the adversary,

and so leads to less conservative solutions.

• For j ∈ {UV,T}, we only consider the overall demand for general and intensive care respectively,

i.e., augment the objective with the terms

cUV/T,GF

 ∑
j∈{UV,T}

∑
j′∈GC

∑
t∈[T ]

gtj,j′ −
∑

j∈{UV,T}

∑
j′∈GC

∑
t∈[T ]

f tj,j′

+

and

cUV/T,IC

 ∑
j∈{UV,T}

∑
j′∈IC

∑
t∈[T ]

gtj,j′ −
∑

j∈{UV,T}

∑
j′∈IC

∑
t∈[T ]

f tj,j′

+

.

• For inpatient units, we try to satisfy demand for intensive care across the entire time horizon

and consider

cGC,IC

∑
j∈GC

∑
j′∈IC

∑
t∈[T ]

gtj,j′ −
∑
j∈GC

∑
j′∈IC

∑
t∈[T ]

f tj,j′

+

.

• Finally, we only allow for discharges that are needed through constraints of the form

f tj,DIS = gtj,DIS, ∀j ∈GC ∪ IC, ∀t∈ [T ]. (2)
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EC.2.5. Capacity constraints and decisions

In practice, unit capacities Ct
j depend on hospital managers’ decisions. First, the total number of

beds effectively available in a unit on a given day depends on the number of physical beds in this

ward, but also on the number of nurses staffed in this ward on this day. Due to their strategic/tactical

nature, we consider them as inputs to our optimization problem and, in our numerical experiments,

set Ct
j equal to the effective capacity of unit j on that day.

Furthermore, the hospital might have an extra operational lever to increase capacity: In addition

to licensed beds, LicensedBedsj, each unit j has the possibility to accommodate more patients than

the number of licensed beds, by using outpatient stretchers or placing some patients in the corridors.

We refer to these options as extra or virtual beds respectively. Though undesirable, situations where

virtual beds are used are not uncommon, especially in the middle of the day when newly admitted

and soon discharged patients overlap. Hence, we could introduce decision variables vtj to indicate

the number of virtual beds used for each unit j ∈ [J ] and each time t ∈ [T ], and associate some

cost with using virtual beds. With this notation, the actual unit capacity Ct
j would be equal to

Ct
j =LicensedBedsj + vtj.

Also, all beds in the same service or ward are not equivalent. Indeed, some patients –with viral

infections for instance– require beds in private rooms; shared rooms can usually be occupied by

same-sex patients only. This heterogenity in resources can also be captured in our optimization

model by considering assignment of patients to beds zti,b directly, at the expense of a higher number

of decision variables. Alternatively, we can break down the bed capacity Ct
j into beds that can be

assigned to male only Ct
j,male, female only Ct

j,female, or to all genders Ct
j,all. Then, the capacity

constraints write as follows, for all units j, time t:∑
i

zti,j ≤Ct
j,male +Ct

j,female +Ct
j,all,∑

i, i male

zti,j ≤Ct
j,male +Ct

j,all,∑
i, i female

zti,j ≤Ct
j,female +Ct

j,all.

EC.3. Calibration of the machine learning models to predict future flows

In this section, we detail the data and machine learning models used to predict the different patient

flows. We also present an extended formulation for the uncertainty set U .

EC.3.1. Predicting inpatient flows

We have rich information about current inpatients from their electronic health records (EHRs).

Following the approach from Bertsimas et al. (2021), we build individual risk scores to predict, on

a daily basis (each day at 6am) and for each patient, the probability to be discharged by the end
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of the day, and the probability to be in an intensive care unit (ICU). We summarize here the key

steps of this predictive task.

Data: Patient-level EHR data about all inpatients admitted to the hospital between January

2017 and July 2019.

Training period: January 2017–April 2018.

Testing period: May 2018 –July 2018.

Prediction task: Probability to be discharged by the end of the day,

P(discharge for patient i,as of 6am), and the probability to be in an ICU by the end of the day,

P(ICU for patient i,as of 6am).

Out-of-sample accuracy: On both prediction tasks, we reach an Area Under the receiver oper-

ating Curve (AUC) of 0.810 and 0.973 respectively. Consequently, we predict the number of daily

discharges with a median relative error (MRE) of 6.0% (R2 = 0.847) and the ICU midnight census

with an MRE of 11.1% (R2 = 0.998).

Integration: The prediction models should be integrated within the hospital’s EHR system and

predictions computed daily at 6am.

Limitation: For predicting the need for intensive care, the main limitation is that we do not yet

have access to data about needs. We only observe transfers to/out of the ICUs, which is a censored

version of the quantity of interest. To circumvent this difficulty, we did not include logistical or

operational covariates, such as the overall or unit census. Also, in the next section, we will allow for

some variability around these predictions, which will alleviate the issue.

Connection with demand variables g: We dissociate the prediction of daily volume with the

intra-day distribution as described in Section 4.2. For daily volumes, we aggregate machine learning

predictions at a hospital and unit level. Concerning intra-day distribution, we simply take the em-

pirical distribution and compute average ratios βt, the average fraction of discharges which occurred

during [t, t+ 1). As a result, one should expect

∑
j

gtj,DIS

/ ∑
j

∑
t∈[T ]

gtj,DIS to be close to βt.

Note that βt depends on the day of the week and the hour of the day at t = 0. In contrast with

overall discharge volume, we model intra-day distribution of discharges for the entire hospital only

and not for each unit. Regarding the need for intensive care, we use a similar approach to predict

overall volume. However, we do not try to control the intra-day distribution, which is mostly driven

by bed placement decisions, i.e., our decision variables.
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EC.3.2. Scheduled admissions

For scheduled admissions, we consider the latest schedule available at the beginning of each time

period, and assume there is no uncertainty. Hence, we do not explicitly model the risk of cancellation

in this version of the model. However, as soon as an admission is cancelled, it disappears from

the schedule. In other words, our model adapts to the state of the schedule and cancellations. For

surgeries, the schedule indicates the type of surgery performed, not the specific unit the patient

should be admitted to afterwards. We automate this translation in the following way:

Data: All surgical cases from January 2012 until July 2019.

Connection with demand variables g: To convert the schedule for surgeries into a sequence of

future needs from surgical patients for the rest of the day, we use data on past surgeries and we

associate each Current Procedural Terminology (CPT) procedure code with a hospital service and

an empirical probability of needing an ICU after surgery.

Double counting of inpatients scheduled for surgery: Some of the scheduled surgeries involve pa-

tients who have already been admitted and who occupy a bed in an inpatient unit. For these

patients, however, we have already developed models to predict their probability of discharge and

needing an ICU in the previous section. Accordingly, there is a risk of counting these patients twice,

as contributing both to demand from current inpatients and SA. Based on our discussion with our

partner hospital, we adopt the following strategy to prevent double counting: Using historical data

and decisions trees, we elicited a simple rule2 that predicts whether a current inpatient scheduled

for surgery will request a new bed with 85% accuracy. If we anticipate that a current inpatient will

need a new bed assignment, then we consider that they will be discharged when surgery starts and

will be readmitted after surgery as an SA. Otherwise, we assume that the patient will come back

to their original bed after surgery and pretend that they will never leave their bed (which, as far as

bed assignment is concerned, is safe to assume).

EC.3.3. Emergency department (ED) and unscheduled visits

By nature, future bed requests from the ED involve patients not physically present in the hospital

yet, so no patient-level information is available to predict these flows. Other unscheduled visits

can correspond to patients who have an existing relationship with the hospital. For instance, some

outpatients can experience complications and need to be admitted as an inpatient after their pro-

cedure. In these cases, one could use information about the outpatient schedule and the patient to

predict the risk of inpatient admission. For simplicity, and to limit the number of models to train

and maintain, we do not adopt this approach here. Instead we propose to aggregate all bed requests

coming from the ED and other unscheduled visits and consider all of them as “ED requests”.

2 Rule: If the patient is currently in an ICU, no reassignment is needed, otherwise a reassignment is needed if the
empirical probability of needing an ICU after this CPT code is above 35%.
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Data: All visits to the ED arrivals and their corresponding bed requests from November 2012

until July 2019. We did not consider the Clinical Decision Unit, a five-bed observation unit of the

emergency room dedicated to overnight emergent patient and fully managed by ED staff, as an

inpatient unit. We constructed features based on the date (month number, day of the week, weekend

or holiday indicator), the hour of the day and previous workload (requests received on the same

time period yesterday, same day last week, on average last week, on average on the same day of the

week last month).

Training period: November 2012–May 2018.

Testing period: July 2018–July 2019.

Prediction task: At each hour of the day, the number of future bed requests received until the end

of dat (EoD).

Out-of-sample accuracy: Linear regression model with `1-regularization achieves a median relative

error of 14.0% (R2 = 0.907). Other predictive methods such as decision trees achieved comparable

but not significantly higher accuracy so we implemented the linear model.

Integration: The linear prediction models should be integrated within the hospital’s IT system

and hourly compute a predicted number of requests until 6am (EoD).

Connection with demand variables g: From the linear regression model, we compute an estimate

of the total number of requests from the ED, namely
∑

j′
∑

t∈[T ] g
t
ED,j′ . We force the distribution of

these requests across hours of the day and across hospital units to match the distribution observed

empirically in our training data. We only consider the last year of our training data to estimate the

distribution of requests across units (or at least service/levels of care) since the hospital structure

has changed between the beginning of our dataset (2012) and 2018-2019.

EC.3.4. Transfers

For outside transfers, we adopt the same approach as for unscheduled visits.

Data: All transfer requests received from November 2018 until July 2019. We excluded patients

transferred to the emergency room for there is usually no decision (the patients are immediately

accepted to the ED) and, if they eventually request an inpatient bed, it will be accounted for by the

ED model. Similar to the ED model, we constructed features based on the date (month number,

day of the week, weekend or holiday indicator), the hour of the day and previous workload (requests

received on the same time period yesterday, same day last week, on average last week, on average

on the same day of the week last month).

Training period: November 2018–April 2019. Note that, unfortunately, we could not collect this

data prior to November 2018. To keep the size of the training data reasonable, we extended the

training period in April 2019, hence overlapping with the simulation period used for validation..
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Testing period: May 2019–July 2019.

Prediction task: At each hour of the day, number of future bed requests received until the EoD.

Out-of-sample accuracy: Linear regression model with `1-regularization achieves a median abso-

lute error of 1.19 requests. The median relative error is fairly high (58.1%), though, since the total

number of requests is sometimes relatively low (close to one).

EC.3.5. Lifted formulation of the uncertainty set

In Section 4.2, we constructed an uncertainty set to describe deviations between the actual bed

requests g̃tj,j′ and their estimates gtj,j′ . However, in some cases, especially for larger institutions, it

might be more convenient to describe/predict bed requests for a medical specialty and/or level of

care instead of target unit, i.e., consider uncertain vectors htj,(s,`) instead of gtj,j′ . Again, in a robust

framework, we can easily introduce such additional variables and add simple (linear) constraints, to

ensure that they relate to the gtj,j′s appropriately.

We introduce variables, htj,(s,`), which encode for the number of patients who were in unit j during

[0, t) and then need to be in service s at level of care `. Here, `∈ {0,1} equals one if the patient needs

intensive care (IC), zero otherwise. htj,(s,`) better corresponds to how needs are expressed, whereas

gtj,j′ captures how they materialize. We need constraints to ensure that these two descriptions of

medical trajectories, from a unit and medical need perspective, match on multiple aspects.

• Discharges. For simplicity, we created a virtual unit for discharges alongside a virtual service

and impose

gtj,DIS = htj,(DIS,0) +htj,(DIS,1), ∀j, t.

• Level of care. Each unit is either an intensive care (IC) or general care (GC) unit. Consequently,

the following holds, for any unit j and any time t,∑
j′∈IC

gtj,j′ =
∑
s

gtj,(s,1),∑
j′∈GC

gtj,j′ =
∑
s

gtj,(s,0).

• Total flows. Namely,
∑

j′ g
t
j,j′ =

∑
(s,`) h

t
j,(s,`) for all unit j and time t.

• Pre-assignment unit-service. As previously mentioned, each unit can serve a list of primary

services and vice versa. Since we are considering medical trajectories, i.e., what should happen in

an ideal world, we do not consider secondary or tertiary services. Consequently, for each need (s, `),

we have a list of designated primary units U(s, `). So, for this particular need, we should have for

all origin j and time t,

htj,(s,`) ≤
∑

j′∈U(s,`)

gtj,j′ .
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Symmetrically, each floor j′ is associated with a list of medical needs it can serve, N (j′), inducing

the constraint

gtj,j′ ≤
∑

(s,`)∈N (j′)

htj,(s,`),∀j, t.

EC.4. Supplement to the numerical experiments
We assess our approach on data collected between January 1 and August 24, 2019 at our partner

hospital.

EC.4.1. Simulation procedure

We apply the following methodology: We specify a start date and a simulation length (in days).

We start our experiment at h= 6 o’clock on the start date and download all the available data

about the hospital at that time, namely the list of all pending bed requests, current inpatients, and

scheduled surgeries and admissions. We also run the predictive models from Section 4.1. We then

construct and solve the optimization model, i.e., robust HIFO or its fluid approximation, obtaining

a vector of first-stage variables z1. We virtually implement this vector, i.e., we update the location

of all patients as prescribed by z1.

For the next time period, at h o’clock +2 hours, we similarly download all the data available

at that time. However, this empirical data needs to be adapted to reflect the previous assignment

decisions z1, and not the empirical decisions. We use the following update rules:

For waiting units (Scheduled Admissions, Unscheduled Visits, Transfers), we have the

empirical lists of requests at h and h+ 2 o’clock, and the prescribed assignments z1. We construct

the list of pending of bed requests at h+ 2 o’clock by combining:

• new requests, i.e., requests that were pending at h+ 2 o’clock but unavailable at h o’clock;

• pending requests, i.e., requests that were pending at h o’clock but were not granted a bed

according z1.

For current inpatients, we consider three different cases:

• Case 1: Inpatient at h+2 o’clock who was an inpatient at h o’clock. If this patient needed a bed

at h o’clock, then we place them in the location prescribed by z1, otherwise we place them in their

empirical location at h+2 o’clock. Note that, in the latter case, if the location of the patient between

h and h+ 2 changed, we apply this change, although it was not prescribed by the optimization. By

doing so, our simulation procedures accounts for unplanned surgery or unplanned ICU admissions

from the current inpatient population.

• Case 2: Inpatient at h + 2 o’clock who was not an inpatient at h o’clock. This patient was

historically admitted between h and h+ 2 o’clock. If, in addition, the patient was in a waiting unit

at h o’clock, then we follow z1. On the contrary, if the patient was not in a waiting unit at h o’clock,

then we apply the empirical decision.
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• Case 3: Inpatient at h o’clock who is no longer an inpatient at h+ 2 o’clock, i.e., discharged

patient. We follow the empirical decision and discharge the patient from the hospital.

We repeat these steps until reaching the predefined simulation length (e.g., one or three day days).

In Section 5.2, we run the different optimization formulations for λ ∈ {0,1,2,3,4,5,6,7,8,9,10}

and λw ∈ {0,1,2}.

EC.4.2. Additional comparisons of adaptive HIFO with the static policies

Figure 3 demonstrates a strong improvement from using optimization over the historical policy, and

a further improvement from using adaptive decision rules when modeling future decisions in this

multi-stage optimization problem under uncertainty.

First, we observe that, in our problem, uncertainty affects the feasibility of the decision variables

f t, primarily through discharges and capacity constraints. Hence, there are two possible implemen-

tations for the SAA approach. We can either impose the constraints for all scenarios (’feasible almost

surely’), or, less conservatively, we can impose them in expectation (’feasible on average’). We re-

ported the performance of the former implementation in Figure 3. However, Figure EC.1 compares

the two alternatives and displays no material difference in performance.

Figure EC.1 Trade-off between waiting time and off-service placements for two alternative implementation of the

SAA approaches.

To further analyze why HIFO with affine decision rules uncovers even more efficient policies than

static policies (Stochastic - SAA, Fluid approximation, HIFO with static decision rules), we display

in Figure EC.2 the distribution of the hour of admission, for each class of policy. We observe that

HIFO with affine decision rules admits more patients in the beginning of the day (between 10 a.m.
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and 4 p.m.), which shows that, despite variability in future daily discharges, the affinely adaptive

model is less conservative and better anticipates future discharges when making early admission

decisions. Note that, for each policy class, the numbers displayed in Figure EC.2 are averaged over

all policies within the class, as displayed in Figure 3. Accordingly, we observe more variance in the

admission patterns for adaptive HIFO since the range of policies obtained is more varied than for

the static approaches.

Figure EC.2 Distributions of hour of admission for different optimization-based policies. Reported values are centered

and scaled according the the mean and standard deviation of the empirical policy.

We also look at individual patient decisions and identify the characteristics that explain most of

the difference between the decisions made by the adaptive HIFO vs. the other three policies3. We

measure the difference in decisions in terms of absolute difference in waiting time (centered and

normalized according to the mean and standard deviation of the historical policy vs. affine HIFO)

and predict it using information about the time (hour, day of the week) and the type of request

(source channel, whether the patient will need an ICU). The resulting tree is displayed in Figure

EC.3. Overall, we observe more discrepant decisions for transfer patients and on weekends.

3 For this comparison, we consider one policy per policy class, namely the one with λ= λw = 1.
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Figure EC.3 Decision tree predicting the (standardized) absolute difference in waiting time of the static policies vs.

adaptive HIFO.

EC.4.3. Additional results for the affine with known recourse policy on {1,3,5,7}-day
simulations

Figure EC.4 compares the distribution in the total number of off-service placements (Panel a), total

waiting time of patients from UV (Panel b) and SA (Panel c), historically and using HIFO with

known affine recourse, for different simulation lengths. Note that, for each simulation length and

each metric, the values are normalized by the historical mean. We observe that, under HIFO, the

distributions of these metrics are all shifted towards lower values, and that the improvement from

HIFO increases as the simulation length increases.

To assess the robustness of our simulation strategy, we assess the impact of the choice of the

starting day on the seven-day simulation results. We conduct simulations on all the possible seven-

day periods in our dataset (229 possibilities) and report results in Figure EC.5, aggregated by which

day of the week the first day of the period is. We observe consistent results in all metrics of interests,

with waiting time from unscheduled visits being the most variable.

Finally, in Section 5.4, we discussed the fairness implications of implenting HIFO in practice.

While Figure 5 reports the proportion of patients experiencing better, worse, identical, or not

comparable outcomes for increasing simulation lengths, Table EC.2 reports detailed results for the

one-day experiments.

EC.4.4. Quantification of the impact of HIFO on length of stay

As demonstrated in Section 5, our robust optimization policy HIFO can effectively reduce the num-

ber of off-service placements. In turn, some empirical evidence suggests that off-service placement

can have a negative (i.e., increasing) impact on length of stay. However, as summarized in Ta-

ble EC.3, empirical studies are not unanimous on the matter. Accordingly, in our simulations, we
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(a) Off-service placement

(b) UV Waiting Time (c) SA Waiting Time
Figure EC.4 Distributions of three performance metrics under the historical (blue left side) and HIFO (orange right

side) bed assignment policy, for different simulation lengths (1, 3, 5, and 7 days). Reported values are

normalized so that the historical policy achieves a mean of 1 on each metric.

Table EC.2 Comparison of individual bed assignment decisions from HIFO with the historical bed placements, on

one-day simulations. A (+) (resp. (-) ) indicates a strict improvement (deterioration). (=) indicates that both policies

lead to the same outcome.

Overall impact of HIFO Waiting time Service placement Proportion of patients

(+) (+) 6.1%
Better (+) (=) 22.0%

(=) (+) 9.7%

Identical (=) (=) 35.0%

Not comparable (+) (-) 0.7%
(-) (+) 5.3%

(-) (=) 20.9%
Worse (=) (-) 0.1%

(-) (-) 0.2%
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Figure EC.5 7-day simulations results depending on which day of the week the first day of the simulation period is.

adopted the conservative assumption that service placement has no impact on length of stay. We

challenge this assumption in this section and try to quantify the impact of HIFO on length of stay

reduction.

Table EC.3 Summary of the empirical evidence for the impact of off-service placement on resulting length of stay,

mortality rate, and readmission rate. "No effect" indicates that the study found no significant effect. A blank indicates

that the study did not consider this outcome.
Reference Length of stay Readmission rate Mortality rate
Song et al. (2020) Increased Increased No effect
Bai et al. (2018) Increased
Stretch et al. (2018) Increased
Stowell et al. (2013) Increased Increased No effect
Liu et al. (2014) No effect No effect No effect
Alameda and Suárez (2009) Increased No effect No effect

As in Song et al. (2020), we posit that off-service placement has a multiplicative effect on length

of stay. In the absence of rich patient-level information allowing rigorous econometric analysis, we

conduct a stratified analysis and divide our patient population into six categories based on medical

specialty (general medicine, surgery and surgical specialties, cardiology, oncology, neurology, other

specialties). Let L0 (resp. L1) denote the average length of stay for in-service (resp. off-service)

patients. Within each group, we estimate the mean and standard error of Li, i= 0,1, and assume

that Li ∼ N (µi, σi). Instead of using µ1/µ0, we adopt a conservative approach and use the 95th

percentile of L1/L0 for each group, defined as

max

{
t : P

(
L1

L0

≥ t
)
≥ 0.95

}
= max

{
t : P

(
N (0,1)≥ tµ0−µ1√

t2σ2
0 +σ2

1

)
≥ 0.95

}
,
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which we compute by exhaustive search over a discretization grid of t values. Table EC.4 reports

our conservative ratios of length of stay alongside the relative size of each group, i.e., the fraction

of admissions belonging to each group. In particular, we find in our data that off-service placement

increases length of stay by 9% on (weighted) average with heterogeneity across medical specialties

(range: −23%; +21%).

Table EC.4 Empirical estimates of the effect of off-service placement on hospital length of stay (LOS). We report

the 95th percentile of the LOS ratio L1/L0 alongside the relative size of each service group in our partner hospital.
Group Relative size LOS inflation factor
General medicine 40% 1.10
Surgery and surgical specialties 28% 1.11
Cardiology 15% 1.21
Oncology 7% 0.77
Neurology 5% 0.86
Other specialties 5% 1.21

We then conduct simulation on the entire data set (N = 212 days). For patients whose service

placement is different (but not necessarily better) under the historical and the HIFO policy, we

compare the historical length-of-stay distribution with the expected new distribution based on the

inflation factors from Table EC.4. In Figure EC.6, we do observe a minor global reduction in length

of stay under HIFO, which could be due to the fact that most patients are admitted in the right

medical specialty, that the impact of off-service placement on length of stay is limited, and that a

large portion of patients are placed in the same service under both policies. Beyond length of stay,

off-service placement might lead to increased mortality and readmission risk and put additional

pressure on the medical staff, two issues that are hard to capture but should not be undervalued.
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Figure EC.6 Empirical length-of-stay distribution and estimated length-of-stay distribution under HIFO for the pa-

tients whose service placement differs in the two scenarios.
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