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Abstract. Problem definition: With the rise of renewables and the decline of fossil fuels, elec
tricity markets are shifting toward a capacity mix in which low-cost generators (LCGs) are 
dominant. Within this transition, policymakers have been considering whether current mar
ket designs are still fundamentally fit for purpose. This research analyses a key aspect: the 
design of real-time imbalance pricing mechanisms. Currently, markets mostly use either sin
gle pricing or dual pricing as their imbalance pricing mechanisms. Single-pricing mecha
nisms apply identical prices for buying and selling, whereas dual-pricing mechanisms use 
different prices. The recent harmonization initiative in Europe sets single pricing as the 
default and dual pricing as the exception. This leaves open the question of when dual pricing 
is advantageous. We compare the economic efficiency of two dual-pricing mechanisms in 
current practice with that of a single-pricing design and identify conditions under which 
dual pricing can be beneficial. We also prove the existence of an optimal pricing mechanism. 
Methodology/results: We first analytically compare the economic efficiency of single-pricing 
and dual-pricing mechanisms. Furthermore, we formulate an optimal pricing mechanism 
that can deter the potential exercise of market power by LCGs. Our analytical results charac
terize the conditions under which a dual pricing is advantageous over a single pricing. We 
further compare the economic efficiency of these mechanisms with respect to our proposed 
optimal mechanism through simulations. We show that the proposed pricing mechanism 
would be the most efficient in comparison with others and discuss its practicability. Manage
rial implications: Our analytical comparison reveals market conditions under which each 
pricing mechanism is a better fit and whether there is a need for a redesign. In particular, our 
results suggest that existing pricing mechanisms are adequate at low/moderate market 
shares of LCGs but not for the high levels currently envisaged by policymakers in the transi
tion to decarbonization, where the optimal pricing mechanism will become more attractive.
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International License. You are free to download this work and share with others for any purpose, 
even commercially if you distribute your contributions under the same license as the original, and 
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1. Introduction
Electricity is an instantaneous commodity requiring the 
real-time balance of production and consumption in 
power networks. This is challenging, given the uncer
tainties of generation and consumption, the operational 
restrictions of generators, and network constraints. To 
address these challenges, trading in electricity markets 
consists of successive rounds of forward trading from 
several months, or more, to a few minutes ahead of actual 

delivery. The traded products in this process become pro
gressively more granular with seasonal forwards often 
being simply for continuous baseload power, whereas, 
closer to real-time, 15-minute or even 5-minute delivery 
periods may be actively traded to facilitate the precise 
matching of demand and supply.

Within this sequence of forward trading between 
generators and retailers (consumers), the day-ahead 
market has become the most actively traded to enable 
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production commitments and as a reference for finan
cial hedging instruments. In the day-ahead market, 
market participants place their offers/bids for each hour 
(or half-hour) of the next day. During each period of real- 
time delivery (hourly or less), all market participants are 
likely to incur imbalance volumes to some extent, reflect
ing the fact that retail demand may not be exactly the 
same as forecast, and generators may find that their pro
duction varies from that planned. It is the aggregate of all 
of these participant imbalance volumes that causes the 
need to administer the real-time balancing to ensure the 
match of generation and consumption for the power net
work. This is settled in the so-called real-time imbalance 
market. Because adjustments in real time need to be ad
ministered by central control, the system operator is the 
counterparty for performing the real-time balancing ad
justments and applying imbalance prices to market parti
cipants on their imbalance volumes. Thus, in all markets 
just before real-time delivery starts, there is a point called 
“gate closure” when the wholesale market trading bet
ween generators and retailers stops and all further trans
actions by either generators or retailers are with the 
system operator. At gate closure, the generators and retai
lers nominate their physical positions going into the real- 
time delivery periods, that is, how much they expect to 
produce or consume, and it is against these nominations 
that their actual production and consumption are com
pared to determine the production of the imbalance 
volumes. These imbalance volumes are costs to the sys
tem, and therefore, they incur imbalance prices. The reve
nue from these imbalance payments compensates the 
system operator for the costs of its real-time balancing 
actions. With the rise of intermittent renewable generation 
and greater demand-side engagement, the uncertainties in 
the delivery periods have increased substantially, and as a 
consequence, the design of the most appropriate imbal
ance pricing mechanism has become an important and 
controversial question for regulators and policymakers.

The effectiveness of a pricing strategy is greatly im
pacted by the composition of the supply mix and the 
technologies that comprise it. In electricity markets, the 
technological basis of market power may be changing 
with the energy transition. Incumbent generators with 
large fossil fuel facilities are seeing their coal facilities 
being decommissioned and replaced by large wind (or 
solar) farms. Thus, for example, RWE, historically one 
of the four dominant coal-fired generators in Germany, 
has faced the policy of coal eradication in Germany by 
developing a fleet of renewable facilities, including the 
world’s largest offshore wind farm of 1.4 GW (www. 
rwe.com). In the United Kingdom, where electricity was 
once dominated by a duopoly of coal generators, gov
ernment policy determined that the last coal power sta
tion will close before 2025, and a target of 40 GW 
offshore wind was set for 2030, most of which will be 
developed by a few major operators (HMSO 2020). In 

2022, because of the geopolitical turbulence in the oil 
and gas supplies to Europe, The Netherlands, Denmark, 
Germany, and Belgium signed a deal to substantially 
expand the capacity of the North Sea wind farms to 65 
gigawatts in 2030 and 150 gigawatts by 2050 (https:// 
www.dutchnews.nl). Therefore, market power in the 
energy transition going forward may be acquired more 
by the low marginal cost generators (LCGs), such as 
renewables and nuclear, and indeed nuclear has faced 
accusations of market power in the past (Ofgem 2000). 
Furthermore, research has already started to appear on 
the potential for the emerging market concentration of 
wind and solar facilities to exercise market power; see, 
for example, Sunar and Birge (2019). With this techno
logical shift in market power, we raise the question of 
whether the existing imbalance prices are still fit for pur
pose and whether there is a need for designing new 
pricing mechanisms. Therefore, we analyze and com
pare important existing imbalance pricing mechanism 
designs in the context of potential market power by 
LCGs, exercised possibly, but not exclusively, by the 
emerging scale of renewable generators.

Although different imbalance pricing mechanisms 
are used in different jurisdictions, most of them fall into 
two main categories known as single-pricing mechanisms 
— used, for example, in Germany, United Kingdom, 
and most U.S. markets — and dual-pricing mechanisms — 
used, for example, in France, Belgium, and Italy (Mora
les et al. 2014, EC 2016). In a single-pricing mechanism, 
the price applied to being out of balance in a positive or 
negative direction will be the same. Thus, for a genera
tor, if it produces less (more) in real time than it nomi
nated at gate closure, it is short (long) and will be 
charged (receive) the imbalance price on the imbalance 
volume, similarly for a retailer in the opposite direction. 
With the price being the same for short or long imbal
ances, a portfolio player can hedge quite effectively by 
netting its imbalance exposures across several assets 
and/or between its generation and retail activities. 
However, the single-pricing mechanism can give rise to 
opportunistic behavior if a market participant antici
pates whether the system operator will be a net buyer or 
seller and thereby deliberately becomes imbalanced in 
the opposite direction. The participant thereby profits 
(Lisi and Edoli 2018, Bunn and Kermer 2021, Matsu
moto et al. 2021). Furthermore, because these imbalance 
prices will generally differ from the prices clearing in 
the forward markets (the balancing function can capture 
a flexibility premium), the consequent price spreads 
between forward and imbalance prices can also lead to 
market players taking deliberate imbalance positions as 
shown both theoretically (Ito and Reguant 2016) and in 
practice (IRENA 2017, p. 68). Whereas some regulators 
(e.g., in the United Kingdom) are comfortable with mar
ket participants seeking to manage their imbalance posi
tions in the opposite direction to that of the whole 
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market, thereby reducing the balancing needs of the sys
tem operator, others (e.g., in Germany) take the view 
often expressed by system operators that this creates 
more uncertainty and potential instability for them to 
manage. One approach to making deliberate imbalance 
positions less attractive is to reduce the ease of hedging 
by having a dual-pricing mechanism. In this mechanism, 
participants face different imbalance prices when they are 
long or short. Thus, the prices are designed to be penalties 
for imbalance and thereby encourage the participants to 
manage their real-time production/consumption as close 
as possible to their prior gate closure nominations. How
ever, dual pricing by itself does not preclude participants 
from seeking profit by being deliberately out of balance 
(Matsumoto et al. 2021).

Overall, single-pricing mechanisms are simpler and 
preferred in circumstances where the regulator sees bene
fits in market participants taking arbitrage positions that 
may help their hedging and reduce the amount of aggre
gate imbalance volume that the system operator needs to 
manage (e.g., in the United Kingdom (Ofgem 2014a)). 
Dual-pricing mechanisms have more flexibility in design 
and are generally intended to encourage participants not 
to have imbalances, but their advantage is unclear, espe
cially because their particular way of distortion from the 
actual imbalance costs might lead to market inefficiency 
(IRENA 2017, p. 69). Facing this question of the most 
appropriate design in the context of European Union 
(EU)-wide market harmonization, the European Com
mission (ACER 2020) suggested single pricing as the basis 
and dual pricing only when it can be justified and on an 
ad hoc basis. Indeed, some markets have already shifted 
from a dual-pricing to a single-pricing mechanism (e.g., 
the United Kingdom in 2015 (Ofgem 2014b) and Nordic 
in 2021 (Nordic Balancing Model 2021)). Yet in practice, it 
is still unclear which market mechanism can best accom
modate the technological and possible market power 
changes created by the ongoing energy transition. In par
ticular, as the market evolves to become dominated by 
low-cost intermittent resources, with their consequent 
emergence of market power, the balancing market design 
not only will have more work to do in responding to the 
intermittency but also needs to be effective against this 
new source of strategic behavior.

Academic research on this particular aspect is sparse. 
Although researchers have studied the merits of each of 
these pricing mechanisms, there is no study that systemati
cally compares and assesses the advantages of each mecha
nism for different market structures, namely with regard 
to cost, heterogeneity, and market power. Studies in this 
area provide little guidance and are often contradictory on 
whether a single pricing (Vandezande et al. 2010, van der 
Veen et al. 2012) or a dual pricing (Clò and Fumagalli 2019) 
is the better option. This apparent contradiction stems in 
part from the fact that the relative performance of these 
mechanisms is highly dependent on market characteristics 

such as the generators’ cost structures and market power 
as well as supply and demand uncertainties.

Thus, in this paper, we analytically compare various 
pricing mechanisms and their impact on the economic 
efficiency and market’s outcomes under different het
erogeneity and market power conditions. Furthermore, 
we then seek to devise a new optimal imbalance pricing 
mechanism to face the challenge of the energy transition 
with the potential emerging market power of renew
ables. In particular, we study an electricity market with 
two stages (forward and real-time) and two types of 
generators, one (or multiple) strategic low-cost genera
tor (LCG) and one (or multiple) flexible but fringe high- 
cost generator (HCG). Low-cost generators may, but not 
necessarily, have a large share of renewables in their port
folios. HCGs represent technologies such as gas turbines 
that can ramp up/down on short notice, albeit at high 
marginal costs. For real-time imbalance pricing, we con
sider the most typical form of the single-pricing (SP) as 
well as two important forms of dual-pricing schemes that 
we refer to as the typical dual pricing (TDP) and the renew
able-based dual pricing (RDP). Whereas, with a single imbal
ance price, participants may offset positive and negative 
imbalances across their portfolios, in the typical dual- 
pricing scheme they would face different positive and 
negative imbalances prices, and therefore, such simple 
hedging would be precluded. For the renewable-based 
dual pricing, renewables would not be paid for any excess 
production when they produce more than they commit
ted in the forward market (the argument being that their 
production is zero marginal cost anyway). Because regu
latory policies are driven by economic efficiency, we mea
sure the impact of market power not only on market 
participant conduct but also on social welfare maximiza
tion, which reduces to the total cost minimization when 
demand is inelastic. We characterize market behavior 
and economic efficiency in equilibrium as a function of 
the number of LCGs, their total market share, and their 
uncertainty, as well as demand uncertainty. We provide a 
comprehensive overview of the impact of different factors 
on the efficiency of the dual-pricing mechanisms with 
respect to the single-pricing mechanism.

Our results show that the performance of single- 
pricing versus dual-pricing mechanisms is highly depen
dent on market characteristics. We find that one of the 
dual-pricing schemes (RDP) will be attractive to regula
tors in markets with small to medium shares of LCGs. 
Counterintuitively though, as the market share of renew
ables increases, these mechanisms are outperformed by 
the typical SP mechanism. Thus, the more forward- 
looking regulators could be more attracted to consider 
other mechanisms because their market share of renew
ables is expected to increase above a critical point. In this 
regard, we propose an optimal imbalance pricing (OP) 
mechanism that can entirely mitigate LCGs’ market 
power and recover the corresponding efficiency loss. 
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This is achieved by encouraging players to behave as if in 
a perfect-competition scenario. This is a new theoretical 
result on the impact of the real-time imbalance pricing on 
market power mitigation. We further complement the 
comparison through simulation studies for cases that 
reflect existing markets along with sensitivity analysis 
with respect to the choice of parameters. Our simulation 
findings consistently confirm that with a large share of 
LCGs, the OP mechanism can substantially reduce the 
deadweight loss compared with others.

The rest of the paper is organized as follows. In Section 2, 
we review the related research. In Section 3, we model 
the problem and formulate the economic efficiency in 
terms of the deadweight loss, given the market outcome. 
In Section 3, we formulate and analyze the economic effi
ciency of the market when the SP, the TDP, and the RDP 
are used in Sections 4–6, respectively. We formulate our 
optimal pricing mechanism and present its performance 
with respect to the three other pricing mechanisms in 
Section 7. We discuss practical concerns in Section 8. 
Finally, in Section 9, we provide a summary of pricing 
comparisons and conclude the paper.

2. Background Research
Our work relates to a large body of literature investigat
ing the market behavior of renewables (as LCGs) in elec
tricity markets (see, e.g., Löhndorf and Minner 2010, 
Zhou et al. 2015, Peura and Bunn 2021, and Sunar and 
Swaminathan 2021) or the market behavior in general 
multistage markets with similar concerns (see Anderson 
1991 for a survey). Below, we classify this literature 
across three dimensions: problem setting, methodology, 
and solution.

Prior studies have considered different market setups, 
including Cournot competition (Allaz 1992), Bertrand 
competition (Mahenc and Salanié 2004), and supply func
tion equilibrium (Anderson 2004, Al-Gwaiz et al. 2017, 
Sunar and Birge 2019). Different market characteristics 
have been studied in the literature, such as market liquid
ity (Hesamzadeh et al. 2020), reliability (Sunar and Birge 
2019), and efficiency (Ito and Reguant 2016). Existing 
research also varies in terms of market interconnection 
assumptions. Several studies have focused on modeling 
the economic efficiency of an isolated electricity market 
(see, e.g., Zhang and Xu 2013), whereas somewhat less 
research has appeared on multinode interconnected elec
tricity markets (see, e.g., Kamat and Oren 2004). In our 
work, we focus on equilibrium behavior, market power, 
and economic efficiency. We are among the few to ana
lyze the strategic behavior of LCGs, especially the poten
tial that renewables may pose, as indicated in Ito and 
Reguant (2016) and Sunar and Birge (2019).

There are various approaches used to study two-stage 
markets in general and electricity markets in particular. 
Because of the complexity of the problem, there are only a 

few studies that provide closed-form theoretical solutions 
(see, e.g., Allaz 1992, Allaz and Vila 1993, Ito and Reguant 
2016, Sunar and Birge 2019). Most studies, especially 
those with more practical assumptions, use mathematical 
programming, such as a mathematical program with 
equilibrium constraints (MPEC) (Luo et al. 1996, Su 2007, 
Yao et al. 2007), regression analysis (Zarnikau et al. 2019), 
dynamic programming (Jiang and Fei 2011, Kim and 
Powell 2011), or empirical/simulation approaches (Bor
enstein 2002, Ito and Reguant 2016), to bring new 
insights to the market operation and market behaviors 
of sequential markets. Our work adds to the theoretical 
literature by providing a closed-form formulation for 
economic efficiency (in terms of the total cost of produc
tion and deadweight loss) and market behavior of het
erogeneous suppliers (LCGs and HCGs).

The related literature can also be classified in terms of 
the type of solutions considered for market power miti
gation. The principles of market surveillance and mar
ket rule interventions in electricity have understandably 
evolved to mitigate market power, mainly regarding 
the conduct of thermal generators and in consideration 
of their marginal costs. Market power analysis—as dis
cussed by Biggar and Hesamzadeh (2014)—has gener
ally looked at markups above short-run marginal costs 
(PWC 2018) and capacity withholding (Willis and Alto
zano 2016) as well as structure and conduct considera
tions (FERC 2014). Several solutions have been proposed 
in the literature to mitigate market power and its nega
tive impact on the economic efficiency of sequential elec
tricity markets. Examples are adding more forward 
markets (Allaz and Vila 1993), introducing virtual bid
ders or financial speculators (Güler et al. 2010, Ito and 
Reguant 2016, Jha and Wolak 2019), storage (Löhndorf 
and Minner 2010, Secomandi 2010, Kim and Powell 
2011, Jiang and Powell 2015, Zhou et al. 2015), curtail
ment (Wu and Kapuscinski 2013, Al-Gwaiz et al. 2017), 
and enforcing price caps (Yao et al. 2007). Each of these 
solutions has its own strengths and limitations. We pro
vide a detailed discussion on some of these solutions in 
Section 8.

Unlike these studies, we focus on real-time imbalance 
pricing as a solution to mitigate the adverse effects of 
market power. This solution has been studied recently 
by Sunar and Birge (2019) in a similar context. They 
showed that if the renewable firms with market power 
are charged at a market-based rate for their real-time 
production deviation from the day-ahead commitments, 
then imposing or increasing the real-time market-based 
penalty rates might be counterproductive by reducing 
reliability. Our work differs from Sunar and Birge (2019) 
in multiple ways. First, we are focusing on economic 
efficiency, whereas Sunar and Birge (2019) focused on 
supply reliability. Secondly, HCGs in our framework 
are flexible fast ramp-rate generators (e.g., gas tur
bines), whereas Sunar and Birge (2019) assumed 
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inflexible generators (e.g., coal power plants). We argue 
that the energy transition to low-carbon technologies is 
leading to a replacement of the older inflexible fossil fuel 
generators with renewables and a contraction of the mid
merit segment of the supply function because both low- 
cost renewables expand and more flexible but expensive 
generators are needed to cope with renewables intermit
tencies. Finally, price formation in the second stage, in 
our work, is modeled differently and according to the 
real-time pricing mechanisms that recognize that these 
markets in reality often clear by facilities that are already 
scheduled in the first stage, and thereby, the second-stage 
market prices are linked to the first-stage market prices.

Our work, similar to Petruzzi and Dada (1999) and 
Liberopoulos and Andrianesis (2016) but in a different 
context, provides an analytical review and comparison 
of some pricing mechanisms with an extension to the 
optimal pricing. Thus, our work also relates to existing 
studies that compare the single-pricing and the dual- 
pricing mechanisms. To the best of our knowledge, this 
line of research is also rather limited. Clò and Fumagalli 
(2019) took an empirical approach using data from the 
Italian electricity market before and after it went through 
a transition from the single-pricing to the dual-pricing 
mechanism. They concluded that the dual pricing for 
that case outperforms the single pricing in terms of the 
total cost of production. van der Veen et al. (2012) took a 
simulation approach to compare multiple versions of 
single-pricing and dual-pricing mechanisms and con
cluded that the typical single pricing outperformed 
others in their study set. Vandezande et al. (2010) used 
simple numerical examples to compare the quantity 
adjustments of wind power producers under single and 
dual pricing and concluded that the single pricing is bet
ter. Although these studies are insightful, they are not 
conclusive, given the specific model setup or the market 
setting. In this context, our work is the first to provide a 
more thorough comparison between the single-pricing 
and the dual-pricing mechanisms as a function of market 
parameters, leading to an alternative optimal real-time 
pricing mechanism. Moreover, in these other studies, 
real-time prices are exogenous, and price formations are 
not modeled. Finally, we are focusing specifically on the 
impact of these real-time pricing mechanisms on market 
power mitigation and improving the economic efficiency 
(especially because the share of LCGs is increasing), none 
of which are the focus of these prior studies.

3. Model
3.1. Market Setup and Elements
In this section, we introduce the market setup. The reader 
can refer to Online Appendix A for a list of notations. To 
help readability, as also shown in Online Appendix A, 
we use regular English letters for endogenous variables 
and Calligraphic or Greek letters for exogenous ones.

3.1.1. Demand. We focus on the market for the delivery 
of electricity at a specific time period. We assume that 
the demand is exogenous and randomly distributed. 
Ahead of delivery time, the actual demand is unknown, 
but its expectation is common knowledge and, without 
loss of generality, normalized to 1. At delivery time, the 
actual demand is realized and revealed to all players: 
1+ ɛ. The parameter ɛ is an unbiased (E[ɛ] � 0) adjust
ment to the expected demand ahead of delivery time 
and is assumed bounded such that ɛ ≥�1. This ensures 
that the actual demand is never negative. We further 
assume that the demand is inelastic, as is roughly the 
case in practice, given that it is a necessary good.

3.1.2. Supply. The market is composed of two types of 
generators: N ≥ 1 heterogeneous strategic low-cost gen
erators (LCGs) and one nonstrategic (hence, not a deci
sion-maker), high-cost generator (HCG). Although these 
assumptions might be simplifications for the current 
market setting, it is imminent that they are also practi
cally relevant. LCGs are already becoming dominant 
players in some markets. For example, Germany has 
recorded many hours with even more than 80% of the 
total demand (International Energy Agency 2020). Addi
tionally, HCGs are losing market power because of 
the rise of renewables (and much less leftover demand 
to be served by HCGs) and the replacement of large 
producers with many smaller ones, as already observed 
in longer-term forward electricity markets (see, e.g., 
National Grid ESO 2021).

The HCG has an unlimited production capacity and 
faces marginal costs of production that grow linearly in 
quantity (i.e., total costs are quadratic in quantity). For 
production contracted ahead of delivery time, the mar
ginal costs increase at a rate of α1. For production con
tracted at delivery time, the marginal costs are assumed 
to increase at a rate of α2. We assume that both α1 and α2 
are common knowledge. Typically, market players get 
informed about the historical values of market prices and 
hence, can estimate the slopes (α1 and α2) with high accu
racy (e.g., Birge et al. 2017 and Chen et al. 2019 showed 
how such values can be estimated using inverse optimi
zation techniques.). Nonetheless, in Online Appendix C, 
we have ensured that our conclusions are robust with 
respect to mispredictions of these slopes. We further 
assume that α2 ≥ α1 ≥ 0. This is also consistent with most 
energy-generating technologies; short-term adjustments 
result in changes in marginal costs proportional to the 
size of the adjustment, and they are more costly com
pared with scheduling them in the first stage, given the 
lead time.

Let us denote by H1 the HCG’s production scheduled 
ahead of delivery time and by H2 the production adjust
ments at delivery time. Note that H1 ≥ 0, whereas H2 
can also take negative quantities because adjustments 
can also be in form of reducing the initially scheduled 
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production. We also use H to refer to the total production 
of the HCG after adjustments; that is, H ≡H1 +H2. With 
this notation, the HCG’s marginal costs for production 
scheduled ahead of delivery (MC1) and adjusted at deliv
ery time (MC2) are

MC1 � α1H1 (1) 

MC2 �MC1 + α2H2 � α1H1 + α2(H�H1): (2) 

Figure 1 depicts the functions of MC1 and MC2 with 
respect to H1 and H. This is due to the fact that the mar
ginal cost of the HCG is directly proportional to its pro
duction. Therefore, the marginal cost at the delivery 
time MC2 is anchored on the marginal cost with the 
scheduled production before delivery time MC1, and it 
changes with the short-term adjustments of H2 at the 
delivery time, with a faster pace compared with the one 
ahead of the delivery (i.e., α2 ≥ α1). If we shrink the pro
duction in real-time H2 < 0, the marginal cost will 
decrease, resulting in MC2 <MC1. However, this con
tinues only until the point where MC2 reaches zero, 
because the marginal cost cannot be negative. Another 
important point is that although we attribute HCG cost 
functions to one HCG, we can relax this assumption by 
interpreting these cost functions to be the equivalent 
cost function of a mixture of multiple HCGs (see Online 
Appendix B.1).

Using the marginal cost formulations in Equation (1) 
and Equation (2), the overall cost of production of the 
HCG, denoted by C(H1, H2), as a function of the HCG 
scheduled production in Stage 1 (H1) and its adjustment 
in Stage 2 (H2) is given by the area under the curve in 
Figure 1:

C(H1, H2) �

Z H1

0
α1hdh+

Z H

H1

[α1H1 +α2(h�H1)]dh

� α1
H2

2 + (α2� α1)
H2

2
2 : (3) 

The first element in Equation (3) (α1H
2=2) represents the 

light gray area, and the second term ((α2� α1)H2
2=2) 

represents the dark gray area in Figure 1. Figure 1, left, 

represents the total cost incurred by the HCG when 
H2 > 0, whereas Figure 1, right, represents the same costs 
when H2 < 0.

The LCGs face a negligible marginal cost of production 
(assumed zero). The realized production of each LCG is 
randomly distributed such that, ahead of delivery time, 
each LCG observes a private, unbiased, but noisy forecast 
of their actual production: γi. At delivery time, the LCG’s 
actual production is realized; γi(1+ νi), with νi represent
ing an unbiased (E[νi] � 0) adjustment to the expected 
production and assumed bounded such that νi ≥�1. 
Using a multiplicative adjustment is a modeling choice 
(similarly with ɛ for the demand), which fits practical sce
narios because energy forecast errors are often reported in 
terms of normalized percentages. Moreover, the multipli
cative error model allows us to exclude long-term errors 
and focus on short-term forecast errors.

We use the notation γ ≡
PN

i�1 γ
i for the total expected 

production across all LCGs. Without loss of generality, 
we assume that γi is normalized to the expected demand, 
but with the same dimension as demand (i.e., MWh). As 
such, we also interchangeably call γ the market share of 
LCGs. We restrict our focus to γ ≤ 1, because this repre
sents the practical situation where there is no curtailment 
of excess LCGs (e.g., wind) and where uncertain LCGs 
must be combined with an energy backup such as HCG 
to cover the residual demand. We make the assumption 
that LCGs do not hold back their total production during 
the delivery period. In practice, they receive significant 
subsidies for each unit of production, which are usually 
large enough to discourage any withholding in real time. 
Although these subsidies do not impact our analysis, 
they do eliminate any potential incentives that would 
lead to Li

1 + Li
2 < γ

i(1+ νi). Besides subsidies, additional 
capacity caps can also prevent production withholding 
(see Online Appendix B.12).

3.1.3. Market Operator. The market operator’s main 
goal is to guarantee that supply matches demand. To 
achieve this goal, the market operator defines the mar
ket rules, namely, the pricing settlement mechanism, 

Figure 1. (Color online) Marginal Costs (MC1 and MC2, respectively, the Lines with Slope α1 and α2), the Total Costs (Sum of 
Light Gray and Dark Gray Areas), and the Deadweight Loss (Dark Gray Area) When H2 > 0 (Left) and H2 < 0 (Right) 
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that is, how prices are formed at each period of the mar
ket. All generators interact directly with the market 
operator and must follow the rules, at the expense of 
being excluded from the market if they do not do so. 
We discuss the properties of different price settlement 
mechanisms in Section 4.

3.1.4. Timing of the Model and Sequence of Deci
sions. The model has two stages (see Figure 2). In Stage 
1—the period before the actual delivery of electricity, 
also known as the day-ahead market or the forward 
market—all suppliers receive a common signal about 
overall expected demand, with LCGs further receiving a 
private signal about their individual production capac
ity. With this information, LCGs decide how much pro
duction to commit to the market operator for delivery at 
delivery time. In Stage 2, also known as the delivery 
time or real-time imbalance market, the actual demand 
and production capacities are realized, and adjustments 
are made such that supply meets demand. 

Stage 1: Each LCG receives a signal about their 
own production at delivery time, γi, here represented 
as a fraction of the expected demand. Each LCG then 
chooses how much of their expected production to 
offer to the market operator: γi(1+ di). We call the deci
sion variable di the offer quantity adjustment because it 
corresponds to the deviation of the offer as a fraction of 
the total capacity of the LCG i. When di � 0, the LCG 
commits its total expected energy production in Stage 1. 
The total quantity committed by LCGs in Stage 1 is 
L1 ≡

PN
i�1 γ

i(1+ di), where di ∈ [�1, (1=γ)� 1] to guar
antee that the quantity commitment of every LCG is 
nonnegative and that the total commitment of all LCGs 
does not surpass the expected demand.

The HCG is not a decision-maker in our model, acting 
as a backup to ensure supply-demand matching in the 
presence of LCGs. This means that in Stage 1, HCG 
schedules to produce the leftover demand, that is, 
H1 � 1� L1, at a marginal cost of MC1 � α1H1. Prices 
are determined according to the pricing settlement 
mechanism defined by the market operator, who then 
pays the committed quantities to the generators. Note 
that with these definitions, L1 ∈ [0, 1], H1 ∈ [0, 1].

Stage 2: At delivery time, the actual demand (1+ ɛ) 
and the actual production for LCGs (γi(1+ νi)) are re
alized. Each LCG i then faces financial adjustments 
for deviations between the actual realized production, 

γi(1+ νi), and the committed quantity in Stage 1, 
γi(1+ di). The difference is γi(νi� di) because in an effi
cient scenario all of the LCGs’ production is incorpo
rated in the market before any HCG’s production 
because of the lower marginal costs of the former. At 
this stage, the total adjustment by the LCGs is L2 ≡PN

i�1 γ
i(νi � di).

The LCGs that committed more than their actual pro
duction will have to further purchase quantity at the 
prices determined by the pricing mechanism to fulfill 
their commitment to the market operator, and LCGs 
that committed less than their actual production will 
have to sell their unsold production to the market opera
tor according to the pricing mechanism. For notation 
simplicity, we also define Li

1 and Li
2, respectively, as the 

quantity commitment of the LCG i in Stage 1 and the 
quantity adjustment in Stage 2, given the quantity 
adjustment offer. With our notation, this means that 
Li

1 ≡ γ
i(1+ di) and Li

2 ≡ γ
i(νi� di).

The HCG then must provide the remaining of the 
unfulfilled realized demand, if any, H2 � ɛ� L2, at a 
marginal cost MC2 � α1H1 + α2H2. The prices are deter
mined according to the pricing settlement mechanism 
defined by the market operator. If the overall committed 
quantity by LCGs in Stage 1 was higher than the actual 
production, the HCG will have to adjust its produc
tion to produce more than initially planned, now with 
higher marginal costs. If the overall committed quantity 
by LCGs is lower than the actual production, LCGs will 
sell their extra production to the market operator, mak
ing the HCG adjust its production down, with implica
tions on marginal costs: MC2 �MC1 +α2H2, in which 
H2 can be negative.

3.2. Economic Efficiency
Given that demand is inelastic and the marginal costs of 
the HCG are given in Equations (1) and (2), the efficient 
outcome is the one that minimizes total costs. Thus, in 
the efficient scenario, all of the LCGs’ production is inte
grated, because their marginal cost is always lower than 
the marginal cost of the HCG.

Because our focus is economic efficiency, we use the 
deadweight loss (DWL) to compare a given outcome 
with the first-best outcome, that is, the efficient outcome. 
In the case of inelastic demand, the DWL is equivalent 
to the additional cost of serving the demand beyond the 
minimum possible cost. According to Equation (3) and 
also Figure 1, the minimum possible cost of production 
happens when H2 � 0 because it eliminates the dark 
gray area in Figure 1. Therefore, the DWL, which is the 
dark gray area in that figure, can be expressed as

DWL � C(H1, H2)�C(H, 0) � (α2� α1)
H2

2
2 : (4) 

Accounting for the uncertainty of the LCSs’ production 
and uncertainty in demand, the expected value of DWL 

Figure 2. (Color online) Market Setup and Elements 
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can be formulated as follows (see Online Appendix B.2 
for the proof):

Lemma 1. The expected value of the deadweight loss can 
be expressed as

E[DWL] � (α2 � α1)

2 E[(ɛ� L2)
2
]

�
(α2 � α1)

2 (VAR(ɛ) + E[L2
2]) (5) 

or equivalently as

E[DWL] � (α2 � α1)

2

 
XN

j�1

XN

i�1
γjγidj

1di
1 + VAR(ɛ)

+
XN

j�1

XN

i�1
γjγiCov(νj, νi)

!

: (6) 

Equation (5) implies that given demand forecast errors 
as exogenous, economic efficiency maximizes if the total 
that LCG offers in Stage 2 is minimized (i.e., L2 � 0). 
Equation (6) further differentiates the role of forecast 
errors from strategic behavior. The first term in Equa
tion (6) is attributed to the strategic behavior of LCGs, 
and the last two terms correspond to the DWL caused 
by the forecast errors (ɛ and νi’s). Thus, economic effi
ciency can increase by improving the forecasting algo
rithms and/or by aligning LCG’s market behavior with 
an efficient outcome. In this paper, we focus on the latter 
(actions on market behavior), treating forecast errors as 
exogenous. The important market behavior of any LCG 
i in our context is its offer quantity adjustment (di) 
because it directly affects the DWL (see Equation (6)). 
An immediate observation from Equation (6) is that a 
sufficient (not necessary) condition to remove the ineffi
ciency caused by the strategic behavior of LCGs occurs 
when all LCGs offer their total predicted production in 
Stage 1 (i.e., ∀i : di � 0).

The market behavior of LCGs depends on the pricing 
mechanisms in the first and the second stages of the 
market. Market price mechanisms in Stage 1 are typi
cally similar across all markets, chosen to be the mar
ginal cost of the HCGs; that is,

p1 � MC1, (7) 

where MC1 is given in Equation (2)), given the fringe 
nature of HCGs and the uniform pricing mechanism 
used in Stage 1 (day-ahead market). However, market 
price mechanisms in Stage 2 (imbalance market) differ 
considerably across different markets. We call the pric
ing mechanism in Stage 2 the imbalance pricing. In 
what follows, we analyze the market behavior of LCGs 
under different imbalance pricing mechanisms and the 
resulting impact on the economic efficiency.

4. Single-Pricing
In Stage 2 of the market, any LCG i trades its quantity 
adjustment Li

2, acting as a seller (when Li
2 > 0) or a buyer 

(when Li
2 < 0). In a single-pricing (SP) mechanism, the 

buying and selling prices for adjustments in Stage 2 of 
the market are identical. In the most typical form of a SP 
mechanism, this price is the marginal cost of procure
ment by the HCG in the balancing market; that is, p2, sp �

MC2 (see Equation (2)). This can be summarized in the 
following definition:

Definition 1 (SP). The single pricing is an imbalance 
pricing mechanism in which the price applied to the 
LCG i in the imbalance market is given by

SP : pi
2, sp � p1 + α2H2: (8) 

According to the above definition and Equation (8), 
the imbalance price in the SP mechanism pi

2, sp is the 
same for all LCGs and is anchored on the price in 
Stage 1 of the market p1 and deviates from that as a 
function of total quantity adjustments of the HCG in 
the second stage (H2). Thus, any changes in the price 
of Stage 1 will also affect the price in Stage 2. Accord
ingly, in the SP mechanism, the LCG i chooses the 
offer quantity adjustment di in the first stage to maxi
mize the profit, given by

Πi
sp � p1Li

1 + pi
2, spLi

2, (9) 

where the optimal strategy of the LCG i and the result
ing DWL are characterized as below.

Theorem 1. In a market with a SP mechanism, the offer 
quantity adjustment of any LCG i in an oligopoly of N het
erogeneous LCGs, in equilibrium, is given by

di � �
α1

α2
1� γ

(N + 1)γi

� �

, (10) 

which leads to

E[DWLsp] �
(α2 � α1)

2

"
α1γ

(N + 1)α2

� �2
+ Var(ɛ)

+
XN

j�1

XN

i�1
γjγiCov(νj, νi)

#

: (11) 

Proof. See Online Appendix B.3 for the proof.
Equation (10) implies that LCGs offer below their 

predicted energy production; that is, they under- 
commit. This is so because LCGs can take advantage 
of their market power to influence prices. The LCGs, 
by committing less quantity than they expect to pro
duce, are actively contributing to an increase in the 
price of energy in Stage 1; the HCG needs to schedule 
a higher production, raising its marginal cost of pro
duction. This rise in price means that the LCGs sell 
their production in Stage 1 at a higher unit cost than if 
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they had committed their full expected production. 
Moreover, they will still sell the remaining of their 
production in Stage 2, increasing their profit.

Several other interesting observations can be made 
based on Theorem 1 in terms of the behavior of LCGs, 
according to Equation (10), and the resulting DWL, 
according to Equation (11). To start with, Theorem 1
suggests that forecast errors (ɛ and νi) have no impact 
on the behavior of LCGs in a SP mechanism. This 
means that the strategic behavior of LCGs is not 
because of uncertainties but because of their market 
power. However, forecast errors negatively impact 
the DWL. Indeed, by comparing the general form of 
DWL in Equation (6) and the DWL in the case of a SP 
mechanism in Equation (11), we find that the impact 
of the SP mechanism is reflected in the first term of 
Equation (11), whereas the last two terms relate to the 
forecast errors and are not affected by the pricing 
mechanism.

Contrary to the impact of forecast errors, supply 
heterogeneity (γi across all i ≤N) does not impact the 
DWL but affects the market behavior of individual 
LCGs. This implies that supply heterogeneity in the 
SP mechanism makes LCGs take opposite deviations 
with respect to an aggregate monopolistic counterpart 
in a way that the impact of heterogeneity on the over
all DWL remains zero. It is also important to observe 
the impact of the total capacity (the market share) of 
LCGs (γ) as a result of capacity expansion. If we 
define the capacity expansion process as the process 
of uniformly increasing γi for all i (and correspond
ingly γ), then such expansion would not affect the 
market behavior of LCGs but would lead to an in
crease in the DWL. Therefore, as the total market 
share of all LCGs keeps increasing, the economic effi
ciency deteriorates further to the extent that it might 
make the SP mechanism unfit for the market. This is 
an important and alarming observation that the SP 
mechanism might not be a good choice for future elec
tricity markets because the share of renewables (as 
LCGs) in the energy mix is increasing.

Finally, we investigate how introducing competi
tion affects the market behavior and the DWL. To 
study the impact of competition, we fix the total share 
of LCGs γ and increase N. Theorem 1 shows that as 
the number of LCGs increases from n � 1 (monopoly) 
to N �∞ (perfect competition), the optimal offer quan
tity adjustment moves toward the efficient offer (di � 0) 
asymptotically as fast as Θ(N�1), and the DWL de
creases as fast as Θ(N�2). Note that the Big-Θ notation 
provides both lower and upper bounds on the growth 
rate, whereas Big-O provides only an upper bound (see 
Cormen et al. 2022, p. 51, for a more formal definition). 
Investigating the asymptotic trend as N increases is cru
cial because the number of LCGs can be significant, 
especially with the emergence of modular solar and 

wind power as the dominant LCGs in future markets. 
For example, by analyzing the trend, regulators can 
gain valuable insights into the scale at which increasing 
N can induce competitive behavior. For the special case 
of perfect competition (N �∞), LCGs offer their entire 
capacity in Stage 1 (di � 0), and the DWL reaches its 
minimum value as the first term in Equation (11) disap
pears. In a deterministic setting, a fully competitive 
market reaches full economic efficiency (DWL � 0) in 
the SP mechanism. In a probabilistic setting, though, 
the expected DWL will never be zero because of its 
component associated with uncertainty. All of the 
above discussion is summarized in the following:

Observation 1. In a market with the SP mechanism, 
forecast errors affect DWL negatively but have no im
pact on market behavior. Supply heterogeneity affects 
the market behavior of LCGs but does not impact the 
overall DWL. Increasing the total share of LCGs (γ) 
through capacity expansion would not affect the market 
behavior of LCGs, but it would result in an increase in 
the DWL. Finally, increasing competition (increasing N) 
steers the market behavior of LCGs toward the efficient 
offer (di � 0) as fast as Θ(N�1) and decreases the DWL 
as fast as Θ(N�2).

5. Typical Dual Pricing
In this section, we study the most typical form of the 
dual-pricing mechanism, used in several locations such 
as the Iberian market, the former British market, and the 
current Nordpool market (EC 2016). For this reason, we 
call it the typical dual pricing (TDP). We investigate the 
implications of TDP with respect to the SP mechanism 
and when LCGs become the dominant players.

Unlike the SP mechanism, in which all market players 
are exposed to a single price for their imbalances, in a 
TDP, selling and buying prices in the real-time imbal
ance market are different. A TDP mechanism works as 
follows (Morales et al. 2014). If ɛ� L2 > 0, then there is 
unserved demand in Stage 2, and the market operator 
needs to schedule the production shortage from the 
HCG (H2 > 0). This means market inefficiency. In this 
case, according to Equation (2), the marginal cost pricing 
of Stage 2 is higher than that of Stage 1 (i.e., MC2 >MC1, 
where MC1 and MC2 are marginal costs from Equation 
(2)). Any LCG i who is also a buyer (i.e., Li

2 < 0) when 
the overall market itself is in the energy shortage mode 
is indeed contributing to market inefficiency. In the TDP 
mechanism, such a market player pays pi

2 for its pur
chase. However, any LCG i who is a seller in this case 
(i.e., Li

2 > 0) receives p1 � MC1 (which is lower than p2) 
for its production in Stage 2. Similarly, if L2� ɛ > 0, then 
there is a surplus production in Stage 2, and the market 
operator needs to request the HCG to adjust by reduc
ing its Stage 1 scheduled production (H2 < 0), hence 
market inefficiency. In this case, according to Equation 
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(2), the marginal cost pricing of Stage 2 is lower than 
that of Stage 1 (i.e., MC2 <MC1). Any LCG i who is also 
a seller (i.e., Li

2 > 0) at that time is indeed contributing to 
this market inefficiency. In the TDP mechanism, such a 
market player receives pi

2 �MC2 (which is lower than 
p1�MC1) for its positive adjustments in Stage 2. How
ever, any LCG i who is a buyer in this case (i.e., Li

2 < 0) 
pays p1�MC1 (which is higher than MC2) for its pur
chase in stage 2. In summary, the TDP mechanism 
applies Stage 2 marginal cost prices (i.e., MC2) only 
when it is less attractive to the LCGs, and otherwise 
applies Stage 1 marginal cost prices (i.e., p1�MC1). This 
is formally defined below.

Definition 2 (TDP). The typical dual pricing is an imbal
ance pricing mechanism in which the price applied to 
the LCG i in the imbalance market is given by

TDP : pi
2, tdp � p1 + α2H2I(H2Li

2<0), (12) 

where Ix is 1 if x is true and is 0 otherwise.
Accordingly, as shown in the following proposition, 

we can express the average profit of a given LCG i in 
a market with the TDP mechanism (Πi

tdp) as a function 
of a similar scenario with the SP mechanism (Πi

sp) (see 
Online Appendix B.4 for the proof):

Proposition 1. The profit of any LCG i with any arbitrary 
offer quantity adjustment in an oligopoly of LCGs in a mar
ket with the TDP mechanism versus a similar scenario in a 
market with the SP mechanism can be expressed as

Πi
tdp � Π

i
sp � α2E[[H2Li

2]+], (13) 

where Πi
tdp and Πi

sp, respectively, represent the profit of LCG i 
in the TDP and the SP mechanisms with the same offer quan
tity adjustment (di).

This leads to the following lemma (see Online Appen
dix B.5 for the proof).

Lemma 2. The profit of the LCG i in a market with the 
TDP mechanism as formulated in Equation (13) is a con
cave function of its offer quantity adjustment di.

Using these results, we compare the efficiency of the 
TDP mechanism with respect to the SP mechanism. In 
this and the next sections, we assume that forecast errors 
can be characterized by uniformly distributed random 
variables. This keeps our derivations tractable while still 
being sufficiently practical. With this assumption, the 
probability density functions of any LCG i (denoted by 
fνi ) and the demand (denoted by fɛ) are, respectively, 
given by

fνi(x) ~ U[�ν, +ν] and fɛ(x) ~ U[�ɛ, +ɛ], (14) 

where ν ≥ 0 and ɛ ≥ 0 model the precision of predic
tions. The case of ν � ɛ � 0 corresponds to the perfectly 
predictable supply and demand. For tractability, in this 

section and the next section, we assume uncorrelated 
forecast errors. Nonetheless, as observed in Online 
Appendix C, our conclusions remain unchanged for 
correlated errors as well as the skewness of the distri
bution. Under a monopoly of one LCG, the following 
theorem compares the market power mitigation and 
economic efficiency under TDP and SP mechanisms 
(See Online Appendix B.6 for the proof):

Theorem 2. In a monopoly of a LCG, the economic effi
ciency of the TDP mechanism with respect to the SP mecha
nism depends on the forecast errors and the market share of 
the LCG. We can characterize three regions: Rsp, Rtdp, and 
Rn, representing the regions where the SP outperforms the 
TDP, the TDP outperforms the SP, and the region where 
the SP and TDP perform identically in terms of economic 
efficiency, respectively. These regions are given by

Rsp � (Z1 ∩ Zc
2 ∩ Z4) ∪ (Z2 ∩ Zc

3 ∩ Z4) (15) 
Rtdp � (Z2 ∩ Zc

4) ∪ (Z3 ∩ Z4) (16) 
Rn � (Rsp ∪ Rtdp)

c, (17) 

where 4 zones (Z1 to Z4) are defined as below,
Z1 :� {(ν, ɛ) |ɛ > γ(ν + d∗)}
Z2 :� {(ν, ɛ) |ɛ > γ(ν � d∗)}

Z3 :� {(ν, ɛ) |ɛ > 2γν + γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 � d∗2
√

}

Z4 :� {(ν, ɛ) |ν > �d∗}, 

and d∗ is the offer quantity adjustment of the LCG in the SP 
mechanism in equilibrium (as formulated in Theorem 1 for n 
� 1).

Figure 3. (Color online) Visualizing Theorem 2

Notes. Comparing the economic efficiency of the TDP and the SP as a 
function of the forecast errors of the demand (y-axis) and of the 
LCGs’ production (x-axis). Rsp: the SP is better; Rtdp: the TDP is better; 
Rn: the SP and the TDP perform equally effectively.
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We parametrically visualize Theorem 2 in Figure 3. 
Theorem 2 lays out the general efficiency comparison 
of SP and TDP mechanisms. Two missing points in this 
comparison are the impact of the number of LCGs and 
the impact of heterogeneity. We study the former with 
the following theorem (proof is in Online Appendix 
B.7) and discuss the latter in our simulation results in 
Section 7.

Theorem 3. In an oligopoly of N homogeneous LCGs, the 
profit functions of any LCG I under SP and TDP mechanisms 
and for any identical but arbitrary offer quantity adjustment 
converge to each other with the rate O(N�1); that is,

Πi
tdp�Π

i
sp �O

1
N

� �

, (18) 

where Πi
tdp and Πi

sp, respectively, represent the profit func
tions of the LCGs i in TDP and SP mechanisms. Equation 
(18) also infers that the market behavior, market power mitiga
tion, and economic efficiency under these two mechanisms 
converge to each other as N increases.

Combining Theorems 2 and 3 and Figure 3, we reach 
the following (see Online Appendix B.8 for the rationale).

Observation 2. With low-demand uncertainty, the 
TDP mechanism is not advantageous. Increasing the 
demand uncertainty favors the TDP over the SP mech
anism. In contrast, increasing the supply uncertainty 
of LCGs and increasing the total market share of LCG 
favor the SP over the TDP. There is, however, no gen
eral trend in the case of increasing the number of 
LCGs in the market. The relative performance of the 
TDP and the SP depends on other factors in this case.

In summary, we find that the performance of the SP 
mechanism compared with the TDP mechanism de
pends on multiple market characteristics, including 
LCGs’ market power, demand, and supply uncertainty 
and market share of LCGs. Contrary to the ambitions 
behind the TDP mechanism designs, our results show 
that the TDP mechanism does not always outper
form the SP mechanism. Depending on market charac
teristics, either of the two mechanisms can outperform 
the other, or they could perform identically in terms of 
economic efficiency. This justifies the contradictory ob
servations in the literature (as discussed in the Introduc
tion) about the relative performance of a single pricing 
with respect to a dual pricing. Figure 3 implies that the 
TDP mechanism mostly outperforms the SP mechanism 
when HCGs and LCGs are likely to take the same 
selling/buying position in Stage 2 of the market (for 
example, when the demand uncertainty increases or the 
share of LCGs is small). Conversely, when HCGs and 
LCGs have a higher chance to take opposite positions in 
Stage 2 (for example, when the demand uncertainty ɛ is 
low and LCGs’ uncertainty ν is high), the SP mechanism 
leads to a higher economic efficiency.

6. Renewable-Based Dual Pricing
Variable renewable sources such as wind and solar 
were formerly exempted from real-time imbalance pay
ments. However, because the share of renewables is 
increasing, there is a growing consensus to lift this 
exemption (IRENA 2017, p. 70). Indeed, the former strat
egy could have led to market manipulations and fewer 
incentives for improving the predictions of renewable 
generators. Apart from large uncertainties, renewable 
resources also differ from conventional resources in that 
they have negligible marginal costs. For this reason, 
some markets, such as the Italian electricity market, use 
specific real-time imbalance pricing for renewables EC 
(2016). A logical real-time adjustment would be not to 
pay them for their extra production in the imbalance 
market beyond their day-ahead commitments because 
this does not cost them, but paying for it might create 
an incentive for extra under-commitments in the day- 
ahead market.

Therefore, we study this real-time imbalance pricing 
mechanism, in which generators do not get paid for 
their overproduction (beyond their Stage 1 commit
ments), but they still need to buy their underproduction 
(below their Stage 1 commitments) in the second stage 
of the market. We call this mechanism the renewable- 
based dual pricing (RDP) because this is an appropriate fit 
for renewables and the prices differ for buying and sell
ing, hence, dual pricing. This is formally defined below.

Definition 3 (RDP). The renewable-based dual pricing 
is an imbalance pricing mechanism, in which the price 
applied to the LCG i in the imbalance market is given 
by

RDP : pi
2, rdp � (p1 + α2H2)ILi

2<0: (19) 

Accordingly, the profit of LCG i, denoted by Πi
rdp, 

under the RDP can be expressed as

Πi
rdp � p1Li

1 +E[p
i
2, rdpLi

2], (20) 

where p1 is the marginal price in the first stage from 
Equation (2).

Intuitively, the RDP, compared with the SP mecha
nism, should make the trading in Stage 2 less attrac
tive for LCGs because they cannot have positive 
revenue in that market stage. One might infer that the 
RDP leads to higher efficiency than the SP. We show 
here that this might not always be the case, depending 
on the market characteristics. To do so, we first formu
late the offer quantity adjustment of N homogeneous 
LCGs in equilibrium (see Online Appendix B.9 for the 
proof):

Theorem 4. Consider an oligopoly of N homogeneous 
LCGs in a market with the RDP mechanism. With iid sup
ply and demand forecast errors distributed as in Equation 
(14), and assuming that α2 > (2N + 1)α1=(2N), the offer 
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quantity adjustment of any LCG i in equilibrium is

di �

�B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2� 4AC
√

2A
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2� 4AC
√

2A
>�ν

N
γ(N + 1)� 1 �B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2� 4AC
√

2A
≤�ν & γ ≥ N

N+ 1

�ν
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2� 4AC
√

2A ≤�ν & γ < N
N+ 1 ,

8
>>>>>>>><

>>>>>>>>:

(21) 

where

A ≡ γ2

4N2ν
((2N + 1)α1� 2Nα2) (22) 

B ≡� γ(1� γ)α1

2Nν + (α1 +α2)γ
2 (N+ 1)

2N2

� �

(23) 

C ≡ α1γ

2N2 (N� (2N + 1)γ)� (α2=2� α1=4) γ
2

N2 ν: (24) 

An interesting observation is that, unlike the SP mecha
nism, di with the RDP is a function of LCG’s forecast 
error. Another interesting observation is the special case 
of ν � ɛ � 0 corresponding to the scenario of perfectly 
predictable supply and demand. In such a scenario, 
Equation (21) reduces to

di �

N
γ(N + 1)� 1 if N

N + 1 < γ

0 if N
N + 1 ≥ γ:

8
><

>:
(25) 

Equation (25) shows that in a deterministic setting, 
applying the RDP mechanism leads to the perfect com
petition outcome for any γ ≤N=(N + 1). As N increases, 

the range of γ over which the perfect competition out
come is happening (i.e., γ ∈ [0, N=(N + 1)]) increases. In 
the extreme case of perfect competition among LCGs, 
the RDP leads to maximum economic efficiency for any 
value of γ.

We use a numerical example to show how the impact 
of the RDP on market power mitigation compares to 
that of the SP mechanism. We compute and compare di 

from Theorem 4 with the one from Theorem 1 for identi
cal market parameters and insert the values in Lemma 1
to obtain the corresponding DWL and compare market 
efficiencies. Figure 4 illustrates the regions in which 
each mechanism outperforms the other in terms of mar
ket power mitigation and efficiency. We set α1 � 1 and 
α2 � 3. In Figure 4(a), we study the case of n � 1 (monop
oly) for any γ ∈ [0, 1] and ν ∈ [0, 1]. In Figure 4(b), we fix 
ν � 0:2 and instead vary N ∈ [1, 100] to capture the 
impact of market power. Our observations are summa
rized as follows (see Online Appendix B.10 for support
ing evidence).

Observation 3. Increasing the supply uncertainty of 
LCGs and increasing the total market share of LCGs 
favor the SP over the RDP. However, the relative perfor
mance of the RDP with respect to the SP is insensitive to 
the demand uncertainty, and there is no general trend 
with an increasing number of LCGs (depending on other 
factors in this case).

In summary, for a small to medium share of LCGs 
in the market, the RDP mechanism mitigates market 
power to a reasonable extent compared with the SP. 
Switching to the RDP in the early stages of the transition 
toward a high share of LCGs may be beneficial. How
ever, with higher shares of LCGs, its efficiency degrades 

Figure 4. (Color online) Economic Efficiency of the SP Versus the RDP as a Function of LCGs’ Market Share (x-Axis), Forecast 
Errors (y-Axis, Left), and No. of LCGs (y-Axis, Right) 

Notes. Shaded area: the RDP outperforms the SP (indicated by Rrdp). White area: the SP outperforms the RDP (indicated by Rsp). (a) (γ, ν) space, 
n � 1; (b) (γ, N) space, ν � 0:2.
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quickly. From Sections 5 and 6, we find that as the mar
ket share of LCGs increases, the single-pricing mecha
nism will most likely outperform either of the dual- 
pricing mechanisms (TDP and RDP) in most cases. 
Thus, although these dual-pricing mechanisms have 
been useful for small to moderate shares of renewables 
when the larger share of LCGs appears, regulators 
would be advised to move away from them, possibly to 
the single-pricing mechanism. Choosing single pricing 
over dual pricing is aligned with the harmonization ini
tiative (ACER 2020), which sets single pricing as the 
default, and dual pricing might be adopted only when 
justified. Importantly, our observation that none of the 
single- or dual-pricing mechanisms absolutely outper
forms the others motivates us to develop the optimal 
pricing mechanism and evaluate its performance com
pared with others. This is done in the next section.

7. Optimal Pricing
Article 52 of the EU harmonization (EU 2017) empha
sizes that imbalance prices should support competitive 
behavior among suppliers. Therefore, we develop an 
imbalance pricing mechanism that effectively removes 
the LCGs’ incentives to exercise market power. This is 
defined below:

Definition 4 (Optimal Pricing). The optimal pricing (OP) 
is an imbalance pricing mechanism, in which the price 
applied to the LCG i in the imbalance market is given by

OP : pi
2, op � p1 + α2H2 � α1Li

1: (26) 

The OP mechanism formulated above can be classified 
as a single-pricing mechanism because it does not dif
ferentiate between selling and buying imbalance prices. 
Upon comparing Equation (26) to Equation (8), it be
comes apparent that the OP mechanism can be con
sidered as an adjustment to the SP mechanism. The 
following theorem clarifies why we call it optimal (see 
Online Appendix B.11 for the proof).

Theorem 5. In a two-stage electricity market described in 
this paper, any LCG i behaves as if in a perfect competition 
setting, choosing di � 0, if the OP mechanism (Definition 
4) is used as the imbalance pricing mechanism. With this 
imbalance pricing mechanism, full economic efficiency in 
a deterministic setting (i.e., DWL � 0) and the maxi
mum economic efficiency (i:e:;E[DWLop] � 1=2(α2� α1)

(Var(ɛ) +
PN

j�1
PN

i�1 γ
jγiCov(νj,νi))) in a probabilistic set

ting are achieved.

Theorem 5 implies that the imbalance pricing mecha
nism, if designed properly, can substantially deter the 
exercise of market power. As stated in Theorem 5, the 
OP mechanism achieves the full efficiency in a determin
istic setting and the maximum possible in a probabilistic 

setting; the remaining DWL corresponds to forecast 
errors, which are exogenous in our setting.

We complement the theoretical results in Theorem 5, 
with simulation results. We evaluate and compare the 
performance of the OP mechanism with others. This 
allows a fair and simultaneous comparison of the effi
ciency and market behavior of all four mechanisms. For 
our numerical examples, we consider two LCGs com
peting in the market to serve the inelastic demand, and 
the leftover is served by HCGs. We choose α1 � 1 and 
α2 � 5, leading to the ratio of α2=α1 � 5, which is a prac
tical value, used also by Ito and Reguant (2016), taken 
from the Iberian market. We further assume that ɛ and ν 
are all i.i.d. random variables with a uniform distribu
tion in [�0:1, 0:1]. We include two settings, the homoge
neous setting and the heterogeneous setting, both 
described below.

7.1. The Homogeneous Setting
Here, we assume that LCGs are homogeneous and that 
the total share of LCGs in the supply mix is increasing. 
Figure 5(a) shows the logarithm of the ratio of the DWL 
in any of the three mechanisms with respect to that of 
the OP mechanism as a function of the total share of 
LCGs. Note that, unlike a deterministic setting, in a 
probabilistic setting the DWL of the OP mechanism is 
not zero. As shown in this graph, the OP mechanism 
substantially outperforms the others. For example, the 
OP mechanism reduces the DWL by almost 80% com
pared with the SP or the TDP in a homogeneous scenario 
and when the total share of LCGs is 90%. This percentage 
reduction is even more substantial (450%) when com
pared with the RDP. Another important observation is 
that the RDP can also lead to an efficient outcome if the 
market share of LCGs (γ) is low/medium and it starts 
to deteriorate drastically as γ keeps increasing. The SP 
and the TDP are outperformed by the RDP for a low/ 
medium γ, but they outperform the RDP for a large γ.

To analyze the market behavior of LCGs in different 
mechanisms, we illustrate the average of the absolute 
quantity adjustments of both LCGs in the same scenar
ios in Figure 5(b). This graph corroborates our analytical 
observations that the market behavior under the SP 
mechanism in a homogeneous scenario is independent 
of the market share, and the TDP is not much advanta
geous if demand uncertainty is not large.

7.2. The Heterogeneous Setting
Here, we create heterogeneity in the production capaci
ties of the two LCGs by varying their expected produc
tions. Without loss of generality, we assume that LCG 1 
has a smaller expected production (denoted by γ1) than 
LCG 2 (denoted by γ2). The x-axis presents the ratio 
between these expected productions, that is, γ1=γ2, 
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fixing their total expected production to γ1 + γ2 � 0:8. 
As we move on along the x-axis, the heterogeneity 
decreases. The extreme case of x � 1 represents the 
homogeneous scenario. We then repeat the same types 
of examples as in Figure 5.

Figure 6 suggests that heterogeneity does not have 
much effect on the DWL in the SP and the TDP, but it 
has major effects under the RDP. Market behavior in the 
optimal pricing and TDP also seems to be insensitive to 
heterogeneity. In contrast, even though the DWL is not 
affected much in the SP mechanism, we still observe con
siderable deviations from bidding the expected produc
tion (i.e., d1 � d2 � 0). Indeed, in the SP mechanism, in a 
very heterogeneous environment, market players deviate 

from bidding their expected production, but in the oppo
site directions. This is why the DWL remains unaffected 
by heterogeneity, unlike the market behavior.

In summary, the theoretical results and numerical 
examples show the optimality and the substantial effi
ciency gain of the OP mechanism with respect to the 
other pricing mechanisms. We believe that the OP 
mechanism is new, and as such, it is untested in practice 
(see Section 8). In Online Appendix C, we provide addi
tional results to show that our conclusions are not sensi
tive to values of important factors such as the type of 
distribution, skewness, and correlations of supply or 
demand predictions as well as the uncertainty in slope 
estimations.

Figure 5. (Color online) Comparing the Performance of Different Mechanisms; the Homogeneous Scenario 

Notes. The x-axis is γ and y-axes are Log(DWL=DWLop) (left plot) and ( |d1 | + |d2 | )=2 (right plot). (a) DWL; (b) average deviation.

Figure 6. (Color online) Comparing the Performance of Different Mechanisms; the Heterogeneous Scenario 

Notes. The x-axis is γ1=γ2, and the y-axes are Log(DWL=DWLop) (left plot) and ( |d1 | + |d2 | )=2 (right plot). (a) DWL; (b) average deviation.
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8. Discussion
As stated in Section 2, imbalance pricing is not the only 
solution to improve economic efficiency in the presence 
of market power. Three alternatives are (1) introducing 
more market stages, (2) storage, and (3) virtual bidders. 
Each of these solutions has its own strengths and weak
nesses. Here, we discuss the practical concerns of these 
solutions as well as ours.

The Allaz-and-Vila effect suggests that market power 
inefficiency can be reduced by adding more forward 
markets and involving market players in parallel partic
ipation. Regulators have been aware of this since the 
early 1990 s, attempting to mandate additional forward 
trading in illiquid and incomplete markets, but with 
limited success. However, this approach conflicts with 
liberalized principles of allowing market participants to 
hedge their risks as they see fit. It also complicates the 
market structure, making clearing each stage more time- 
consuming. Achieving full efficiency would require an 
infinite number of stages, which is impractical. Moreover, 
maintaining liquidity in all added stages is challenging, 
as seen in electricity markets with low liquidity in intro
duced intraday markets (Weber 2010).

Storage can help mitigate market power and enhance 
economic efficiency by shifting energy demand to more 
affordable periods. However, practical challenges hin
der its widespread adoption. Scalability is an issue, with 
certain technologies like batteries being financially unat
tractive in electricity markets (Fares and Webber 2014, 
Zhou et al. 2015). Land limitations restrict the viability 
of technologies like pumped hydro. Additionally, inte
grating storage into existing market structures requires 
new pricing mechanisms because of the unique nature 
of storage technologies. Furthermore, the effectiveness 
of introducing storage to mitigate market power and 
enhance economic efficiency may not meet expectations 
and could potentially even reduce efficiency (Sioshansi 
2014).

Virtual bidders, as used in some electricity markets 
such as Pennsylvania-New Jersey-Maryland (PJM), are 
traders with no physical assets who can arbitrage 
between the first and the second stage of the market. 
With a sufficiently large number of virtual bidders, the 
prices of the first and the second stage of the market con
verge. Multiple studies show the benefits of using vir
tual bidding (see, e.g., Hogan 2016 and Mather et al. 
2017). In a competitive market, virtual bidding improves 
economic efficiency. However, virtual bidding is shown 
not to be a good solution to mitigate market power (Cel
ebi et al. 2010). In the presence of market power, Ito and 
Reguant (2016) showed that virtual bidding is not neces
sarily welfare-enhancing, reducing consumer costs but 
increasing deadweight loss (as large as 2x). This is 
because generators tend to withhold production entirely 
in the presence of many virtual bidders. Additionally, 
there are several other practical concerns about virtual 

bidding. In 2015, PJM released a white paper (S&P 
Global 2018), bringing evidence that virtual bidding 
does not necessarily result in more efficient market oper
ation (Hogan 2016). Multiple reasons were raised as the 
practical problems with virtual bidding, including the 
exacerbation of the congestion problem, the complexity 
of the market clearance with a large number of virtual 
bidders, and more uncertainty in real time because of 
the lack of generation assets of virtual bidders and creat
ing large uncertainty in the final deliveries of electricity, 
which affects the system reliability. Accordingly, the 
Federal Energy Regulatory Commission (FERC) reduced 
the eligible nodes for virtual bidding by 87.9% (S&P 
Global 2018). Although virtual bidding has become more 
limited for those who have implemented it, because of 
these concerns, many markets such as most European 
markets have remained entirely uninterested in even 
allowing virtual bidding.

Considering the implementability of our proposed 
pricing mechanism, an immediate observation is that 
the optimal pricing (OP) with respect to dual-pricing 
mechanisms (here, TDP and RDP) has less complexity 
because the OP is a continuous mechanism and the lat
ter involves integer variables (to distinguish selling and 
buying). The OP mechanism is more complex than the 
SP mechanism, but only with an additional continuous 
term. The variables involved in the optimal price forma
tion (the price in Stage 1, the LCGs’ forward quantity 
offer, and the HCG’s quantity in the real-time market) 
are all already being used in single- or dual-pricing 
mechanisms and hence, implementable. Similarly, know
ing the type of technologies (here, LCGs) needed in the 
proposed optimal pricing is practically sound, as is used 
in some types of dual pricing. In particular, in Europe at 
least, the transparency directives by the regulators make 
almost all relevant physical system data available to the 
market, often within minutes (e.g., see https://www. 
bmreports.com for the case of the United Kingdom). 
Moreover, because imbalance price determination and 
contract settlements are usually undertaken by an inde
pendent agency or system operator, they necessarily have 
full visibility of all contracts, including the technology 
and quantities for settlement. Thus, all of the information 
required by the balancing and settlement agency to com
pute the optimal price is already part of their routine data 
processing. It remains a question, though, whether regu
lators put the effort to identify the best imbalance pricing 
algorithm or, rather, settle with suboptimal mechanisms 
because of legacy.

Although we discuss the practical concerns of differ
ent solutions for market power mitigation here, we do 
not argue that imbalance pricing, and in particular, the 
optimal pricing, is the only solution. Instead, we find 
great potential in this solution, and we advocate 
embracing this solution wherever possible. In reality, 
we project that a combination of these solutions could 
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create the best solution, depending on market char
acteristics, technology maturity level, human interac
tions, etc.

9. Conclusions
This research has been motivated by one of the major 
challenges in electricity markets because of the energy 
transition. Many markets are moving toward a technol
ogy mix in which low-cost renewable generators will 
have predominant market shares, whereas the high-cost 
conventional gas generators may be left with little more 
than reserve and balancing services. Sunar and Birge 
(2019) have shown that real-time imbalance prices can 
have substantial and counterintuitive impacts on mar
ket behavior and the reliability of supply in electricity 
markets. In this paper, we focus on how real-time im
balance pricing can accommodate the fundamental 
changes in the energy mix.

There are two main types of pricing mechanisms 
used in imbalance markets, single pricing and dual pric
ing, where the latter is an attempt to further mitigate the 
strategic market behavior. Recently, the European Com
mission has called for more clarity on the effectiveness 
of the chosen pricing mechanisms and has proposed 
greater harmonization. Interestingly, in this call, mar
kets are encouraged to use the single pricing and only 
move to dual pricing if they can justify the need. This 
raises several important questions. How do they per
form with respect to each other as the share of renew
ables keeps increasing? How well can they handle the 
possible strategic behavior of renewables when they are 
dominant? Is there a better mechanism apart from the 
existing ones to deal with the technological and market 
power changes in the energy supply mix?

Motivated by these research questions, we conducted 
an analytical review and compared the performance 
of two important dual-pricing mechanisms, which we 
refer to as the typical dual pricing (TDP) and the 
renewable-based dual pricing (RDP) with respect to the 
single-pricing (SP) mechanism in terms of economic effi
ciency. Additionally, we proposed a new optimal pric
ing (OP) mechanism and showed for the first time that 
an optimal pricing mechanism for the imbalance market 
can be designed to create a competitive outcome in 
a market with dominant low-cost generators (LCG), 
potentially mostly renewables.

We used analytical and simulation approaches in 
complementary ways. Table 1 summarizes our compar
ison results by presenting the suitability of each market 
pricing mechanism as a function of different market 
characteristics. Some highlights of our observations are 
as follows. Generally speaking, we showed that our pro
posed OP mechanism is the most efficient one. We also 
found that the RDP was effective in improving effi
ciency for small to moderate market shares of renew
ables but less so, compared with the SP, as market share 
increases. The TDP can outperform the SP only in the 
presence of significant demand uncertainty. These com
parative analyses suggest that for small to moderate 
market shares of renewables, switching to the RDP (for 
small demand uncertainty) and the TDP (for significant 
demand uncertainty) might be sufficiently effective. 
However, as the market share of renewables increases 
beyond that, there will be no incentive to switch to such 
heuristics because the SP might outperform them. In
stead, there will be a need to consider the new optimal 
pricing, perhaps along the lines of the optimal pricing 
formulated in this work. We also found that heterogene
ity among LCGs has a mixed effect. The only one that 
seems to be highly impacted by heterogeneity is the 
RDP mechanism.

We used simulations to complement our analytical 
findings by (1) enabling a simultaneous comparison and 
quantification of pricing mechanisms in one shot and 
under different market conditions, (2) ensuring the robust
ness of the results with respect to multiple factors such as 
the cross-correlation and the skewness of the forecast 
errors, and (3) further investigating the impact of heteroge
neity. Most notably, our simulation results revealed that at 
a large share of LCGs, the OP mechanism can provide a 
substantial reduction in the deadweight loss compared 
with other mechanisms (80%, 90%, and 450% when com
pared with the SP, the TDP, and the RDP, respectively).

Our analytical model is very stylized, but not more so 
than most of the theoretical research on this theme. In 
practice, reality will bring many complications. There
fore, we included a detailed discussion on the practical 
concerns of using imbalance pricing design and those 
of other promising solutions, such as virtual bidding, 
storage, and adding more market stages. Although in 
this paper we focused on the impact of one solution 

Table 1. Comparing Different Imbalance Pricing Mechanisms

pi
2, : Demand uncertainty ↑ Supply uncertainty ↑ LCG Heterogeneity Low share of LCGs high share of LCGs

SP p1 + α2H2 ✓ ✓✓ ✓✓ ✓ ✓

TDP p1 +α2H2I(H2Li
2<0) ✓✓ ✓ ✓✓ ✓ ✓

RDP (p1 +α2H2)ILi
2<0 ✓ ✓✓ ✗ ✓✓ ✗

OP p1 + α2H2 �α1Li
1 ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Notes. The number of ✓ per item reflects the suitability of the pricing mechanisms in the presence of that item. When ✗ is used for an item and a 
pricing mechanism, it means that the corresponding pricing mechanism is not a good fit in the presence of that item.
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(imbalance pricing design), we expect that a combination 
of multiple solutions will also soften the opportunities 
for price manipulation, and perhaps more significant 
regional interconnections will reduce market concentra
tions. Nevertheless, we expect the principles in this 
paper to motivate regulators to consider more efficient 
imbalance pricing mechanisms as important levers for 
economic efficiency in the near future.

An important consideration of the urgency of this 
transition is to recognize that wholesale power is a 
sequence of separate delivery periods (hourly, or less), 
which are distinct markets that clear according to the 
fundamentals for each period. For example, in the case 
of Germany with 40% of overall solar and wind power, 
there were about 100 hours of the year that the share of 
renewables in those hours was higher than 80% of 
the total demand (International Energy Agency 2020). 
Therefore, waiting for the overall market share to reach 
a critical point oversimplifies the situation; the critical 
points materialize gradually and selectively by hour 
and by season. This suggests a proactive approach to 
the implementation of optimal imbalance pricing in 
anticipation of it gradually becoming more appropriate 
for a greater proportion of the days and year.

We identify multiple directions for future work. For 
example, we assume a linear and symmetric marginal 
cost for HCGs. It would be interesting to see how the 
results will change in the presence of nonlinear and non
symmetric marginal costs. Another interesting exten
sion is to consider a combination of multiple solutions, 
for example, imbalance pricing and virtual bidding or 
storage. Along this line, the flexibility in demand, through 
demand response and storage and demand elasticity, is 
worth considering as another solution. Finally, in this 
study, we consider a market in isolation. It is interesting 
to also investigate how the imbalance pricing can affect 
and be affected in connected markets in the presence of 
congestion between them.
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