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Abstract—The flexibility services available from embedded
resources, being attractive to both the network operators and
retailers, pose a problem of co-ordination and market design at
the local level. This research considers how a Flexibility Market
Operator (FMO) at the local level, analogous to market operators
at the wholesale level, can improve the real-time operation
of the power systems and efficiently manage the interests of
the TSO, DSO, and Retailers. Using generalized disjunctive
programming, a stochastic bilevel representation of the task
is reformulated as a stochastic mixed-logical linear program
(MLLP) with indicator constraints. An Inference-Dual-Based
Decomposition (IDBD) Algorithm is developed with sub-problem
relaxation to reduce the iterations. Using expected Shapley values,
a new payoff mechanism is introduced to allocate the cost of
service activations in a fair way. Finally, the performance and
benefits of the proposed method are assessed via a case study
application.

Index Terms—Stochastic Inference-Dual-Based Decomposition
Algorithm, Disjunctive programming, TSO-DSO-Retailer coor-
dination.

I. INTRODUCTION

The effective coordination among Transmission System
Operators (TSOs), Distribution System Operators (DSOs), and
retailers is crucial for maintaining grid stability and efficiency
in real-time power system operations [1]. TSOs manage high-
voltage transmission networks, monitor power flows and volt-
age levels, and facilitate cross-border power exchange. DSOs
oversee distribution networks, integrate distributed energy re-
sources, and ensure power quality. Retailers interact with end
consumers to efficiently distribute and sell electricity, ensuring
reliable supply and managing pricing fluctuations. Optimal
resource utilization, renewable energy integration, and demand
management are enabled through the effective coordination of
all of these participants, thereby enhancing grid reliability and
supporting the transition to a sustainable energy system.

A. Motivation

The proliferation of ”Embedded Energy Resources” (EERs)
at the local level not only increases the real-time uncertainties
faced by the TSO, DSO, and Retailers, but also provides
opportunities for these parties to contract with the operators
of the EERs to manage their operating risks.

From an optimization viewpoint, the increasing presence of
uncertain EERs at the local level poses significant challenges
for TSOs, DSOs, and Retailers. The integration of EERs
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Sweden. M. R. Hesamzadeh is with KTH Royal Institute of Technology,
Stockholm, Sweden, and D. Bunn is with London Business School, London,
UK.

introduces real-time uncertainties and operational risks that
need to be effectively managed to ensure reliable and efficient
power system operations. Moreover, the traditional approach
of independent bilateral contracting between these parties and
EER operators leads to suboptimal outcomes, as it fails to
consider the interdependencies and cross-impacts among the
stakeholders [2].

In addition, since EERs often consist of renewable re-
sources, the use of stochastic coordination, e.g. [3], appears to
be most appropriate. To address these optimization challenges,
there is a need for coordination schemes that maximize the
utilization of EERs while ensuring operational constraints are
met. This involves finding optimal strategies for TSOs, DSOs,
and Retailers to activate flexibility services in response to real-
time uncertainties, while considering their own objectives and
the impact on other parties. Additionally, the optimization
framework must account for the integration of stochastic
renewable energy sources, the behavior of EERs ”behind the
meter,” and the impact of retailers’ power demand forecasts.

In the existing liberalized market setting, each party pos-
sesses sensitive data that they are unwilling to share openly.
This reluctance to share crucial information hampers effective
coordination efforts between TSOs and DSOs, hindering the
optimization of system operations and overall efficiency. The
absence of trusted intermediary results in a sequential flexibil-
ity activation procedure that fails to fully address the opera-
tional constraints and risks faced by both TSOs and DSOs. The
concept of an independent agency needed to be introduced to
overcome this limitation and enhance system operations. This
agency acts as an intermediary, collecting necessary informa-
tion from TSOs and DSOs without disclosing it to other market
participants. By safeguarding privacy concerns, it is possible
to facilitate efficient coordination among TSOs, DSOs, and
Retailers, ultimately leading to improved operational efficiency
and a fair allocation of resources.

By developing an advanced optimization model, coordina-
tion framework, and organizational setup this paper aims to
enhance the efficiency and effectiveness of EER activations
from an optimization perspective. The proposed coordination
framework enables TSOs, DSOs, and Retailers to jointly
optimize their decision-making processes, taking into account
the uncertain nature of renewable energy sources and the
dynamic interactions between stakeholders. The ultimate goal
is to achieve optimal resource allocation, reduce operational
costs, and improve the overall performance of the power
system.

By addressing the optimization challenges associated with
EER activations, this research will contribute to the advance-
ment of optimization techniques in the field of energy systems.



2

The findings of this study can provide valuable insights for
decision-makers, policymakers, and industry practitioners in-
volved in the planning, operation, and management of modern
power systems with a high penetration of renewable energy
resources.

B. Literature Review

There is extensive background research on the coordination
process between TSOs and their interconnected DSOs. In [4],
a decentralized algorithm was utilized to implement collabo-
rative TSO-DSO optimal power flow (OPF). Three TSO-DSO
coordination schemes were proposed in [5], including two se-
quential decentralized models and one centrally co-optimized
model. In [6], a hierarchical mechanism for TSO-DSO coor-
dination was proposed that considers the dispatch decisions of
both TSOs and DSOs. Four TSO-DSO coordination schemes
were proposed in the European SmartNet project [7], all
of which considered the sequential coordination process. In
articles [4]–[7], the retailers’ objectives, the stochastic pro-
gramming, and the cross-dependency between service buyers’
objectives have not been modeled in the ancillary flexibility
service market. In [8], the authors discuss a deterministic
operational coordination problem between TSO and DSOs.
The problem is decomposed into TSO and DSO subproblems,
and the coordination is achieved through the adjustment of
Lagrangian multipliers. To handle the nonlinearities resulting
from AC power flow constraints at the TSO level, dynamic
linearization techniques are employed. Another framework,
presented in [9], focuses on the optimal day-ahead scheduling
of power distribution systems. This framework considers the
dynamic interaction between TSOs and DSOs, utilizing a
mixed-integer linear programming model. However, the ap-
proaches discussed in [8] and [9] overlook the integration of
stochastic renewable energy sources within the coordination
between TSOs and DSOs and do not account for the impact
of retailers operating in the electricity market.

In [10], a complementarity model for the TSO-DSO coor-
dination problem under uncertainty is proposed in which two
trading markets including day-ahead and real-time have been
considered. Although it enhances the TSO-DSO coordination
problem from the stochastic programming viewpoint, other
research gaps still exist. Three coordination schemes have
been proposed in [11] in which the retailer has been included.
However, it co-optimizes the TSO-DSO-Retailer coordination
problem in a deterministic setting which cannot model the
uncertain behavior of renewable energies in the flexibility
ancillary service markets properly. Moreover, service buyers
require to look beyond the immediate dispatching period to
cope with uncertainties over various time intervals in the
future [12]. Consequently, to extend this theme of research
in those two important dimensions, we develop a stochastic
formulation for TSO-DSO-Retailer operational coordination
problem with a look-ahead multi-interval (LA-MI) framework.

Three TSO-DSO coordination frameworks have been pro-
posed in the existing literature [13]: the TSO-managed model,
the TSO-DSO hybrid-managed model, and the DSO-managed
model. The hybrid model involves both the TSO and DSO,

with the DSO responsible for bid validation. However, the
limitations related to the distribution system’s lifespan lead
to an underutilization of its maximum capacity, resulting in
inefficient resource allocation. On the other hand, the DSO-
managed model operates sequentially, prioritizing the DSO’s
needs, but this approach often fails to achieve overall effi-
ciency in service allocation, leading to suboptimal outcomes.
It can also create cross impacts between buyers and facilitate
the free-rider strategy, where participants exploit the system
without contributing proportionately [13].

In addition, one of the crucial considerations in a liberalized
market setting is that each party, TSO, DSO, and Retailer,
has proprietary information that they would be unwilling to
share. Therefore, to enhance system operations and address
the drawbacks of a sequential flexibility activation procedure
outlined in [11], as well as mitigate free-rider strategies, we
consider the role of an independent agency. This agency
would be entrusted with the task of collecting the necessary
information from TSO, DSOs, and Retailers. Importantly, this
agency would not share the collected data but would focus on
facilitating efficient coordination among the stakeholders in-
volved, ultimately leading to improved operational efficiency.
We refer to this agency as the Flexibility Market Operator
(FMO) and there is already evidence of their emergence [2],
[14]. In our formulation, the FMO is an independent, regulated
organization through which all market participants who want
to buy or sell local flexibility services must trade under their
license conditions.

To achieve this from a modeling perspective, therefore,
the FMO embeds the stochastic optimization of DSOs and
retailers within the stochastic look ahead multi-interval real-
time dispatch modeling of the TSO, and as a consequence
solves a two-stage stochastic bilevel mixed-logical linear pro-
gramming problem (MLLP). Further, using the Karush-Kuhn-
Tucker (KKT) conditions to reformulate the bilevel stochastic
programming problem leads to a large-scale stochastic MLLP
problem. Consequently, the utilization of decomposition meth-
ods is indispensable, as in [15], [16], and [17]. In these three
examples, all binary variables are considered as complicating
variables in a Mixed-Integer Linear Programming (MILP)
master problem and the sub-problems are linear programs.
However, as in [18], in several formulations such as our formu-
lation, due to the existence of numerous binary variables and
complementary slackness conditions, it is impossible to have
convex sub-problems with zero duality gap since not all binary
variables can be considered as complicating variables in the
master problem. Consequently, standard duality theory is not
applicable [19], and a new modification of the decomposition
technique is needed.

Thus, integer sub-problems [20], non-linear constraints [21],
and logical propositions [19] are considered in several mod-
ifications of Benders decomposition. However, these meth-
ods use continuous relaxation to calculate the Benders cuts.
Moreover, the execution time of these methods is high, es-
pecially with an extensive number of binary variables [20].
Alternatively, since any form of the optimization problem
can be considered as a sub-problem in the Inference-Dual-
Based Decomposition (IDBD) algorithm [18], the IDBD is
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very attractive. The proposed decomposition algorithm in our
paper combines the concepts of ”inference dual” theory and
the Benders-like decomposition algorithm. In this sense, it
is a major extension of both concepts. Unlike traditional ap-
proaches, it eliminates the requirement of a linear optimization
problem with a zero duality gap as the resulting subproblem.
Therefore, the proposed IDBD algorithm offers the flexibility
to address a broad spectrum of convex and non-convex opti-
mization problems as subproblems. The IDBD algorithm does
not use continuous relaxation and is computationally superior
to the existing methods [22]. In practice, the IDBD cuts
are determined using the concept of ”inference dual” which
depends on a structural investigation of the sub-problem and
does not require any dual multiplier. This enables the algorithm
to efficiently handle optimization problems with binary/logical
variables in the subproblem. However, the IDBD algorithm
has not hitherto been developed for two-stage stochastic
bilevel programming problems, and no general method to
determine the IDBD cuts exists as each problem requires
a customized approach [18], [22]. Furthermore, the IDBD
algorithm convergence and execution time strongly depend
on the inclusion of ”sub-problem relaxation” constraints in
the master problem [23], which are not similar to common
relaxation methods and relate to the specific nature of the
complicating variables. Therefore, for any specific problem,
a custom formulation is needed.

Moreover, the collaborative activation of flexibility services
by TSO, DSOs, and retailers entails a mutual reliance on the
value functions of service buyers. Consequently, it becomes
imperative to establish a fair compensation mechanism that
allocates payoffs commensurate with the actual impacts of
each service buyer. The Shapley value method is a widely
recognized and respected approach in cooperative game theory
for allocating costs. It ensures fairness by considering the
marginal contributions of each participant and assessing their
influence on various coalitions [24]. This method aims to
distribute costs equitably among participants by accounting
for all possible combinations. Additionally, the Shapley value
method promotes efficiency by incentivizing participants to
contribute in a way that maximizes overall benefits, leading to
efficient resource utilization and productive collaboration. It
also guarantees a balanced allocation of costs by thoroughly
evaluating contributions across different coalitions. Another
appealing aspect of the Shapley value method is its adherence
to the principle of ”independence of irrelevant alternatives”,
meaning that changes in the cooperative game’s composition
do not affect cost allocation [25]. This method’s wide ac-
ceptance and extensive research in cooperative game theory
have further enhanced its credibility and robustness. In [11], a
settlement mechanism was proposed based on the calculation
of Shapley values. However, the application of the Shapley
value mechanism in the context of a two-stage stochastic
optimization problem has not been thoroughly investigated,
thereby leaving uncertainties unaddressed. Thus, in light of
this research gap, we propose a novel compensation mech-
anism for service buyers founded on the ”expected Shapley
value” concept.

C. Contributions

This paper is a major extension of the previously published
paper [2] on the TSO-DSO operational coordination frame-
work in a deterministic setting. Accordingly, as compared
to [2], the contributions of this paper are as follows:

1) We add the role of retailers into the TSO-DSO operational
coordination and develop the IDBD algorithm for a two-
stage stochastic TSO-DSO-Retailer operational coordina-
tion problem.

2) We propose a novel decomposition technique based on
the inference duality theorem to find the optimal solution
to our proposed stochastic bilevel Mixed Logical Linear
Programming (MLLP) model for the TSO-DSO-Retailer
coordination problem.

3) We create a novel formulation to determine the appro-
priate sub-problem relaxation constraints and Stochastic
Inference-Dual-Based Decomposition (SIDBD) cuts.

4) To improve the system operations in a stochastic setting
and mitigate the drawbacks of sequential flexibility ac-
tivation procedures, we propose the establishment of a
new agency (FMO) that will collect, but not share, the
required information from the TSO, DSO, and Retailers,
aiming to facilitate efficient coordination and diminish
free-rider strategies.

5) We consider a new approach to determining a fair pric-
ing mechanism amongst the TSO, DSOs, and Retailers,
pro-rata to the actual impacts of each of their activa-
tions. Extending the deterministic Shapley value approach
in [11] to the stochastic optimization context effectively
introduces a market allocation mechanism based upon
expected Shapley values.

The rest of the paper is organized as follows. Section II
explains our market mechanism and problem formulation.
The optimization procedures are presented in Section III.
Section IV and Section V describe the case studies and the
conclusions, respectively.

II. MARKET MECHANISM AND PROBLEM FORMULATION

We assume Demand Response (DR), Photovoltaic (PV)
panels, and Wind Turbines (WT) are available as Embedded
Energy Resources (EERs) to provide flexibility services to
TSO, DSOs, and Retailers. As with [11], we assume that the
required flexibility is cleared in a one-shot auction. At the TSO
level, the EERs compete with the other transmission-connected
operating reserves from the generators to provide flexibility
services but they are the only flexibility service providers at
the DSO level. Batteries and other storage technologies are
included in EERs. For our purposes, they do not need to be
modeled separately, as they exhibit a deliverable functionality
similar to other EERs, insofar as they cannot be charged and
discharged simultaneously. This implies that energy storage
devices can participate in the market just like other providers
of turn-up and turn-down services, based on bid/offer func-
tions. Nevertheless, energy storage systems introduce distinct
inter-temporal and orthogonal constraints into the overall coor-
dination process involving TSO-DSO-Retailer interactions. In
a previous paper [2], we extensively discussed an optimization
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technique for the effective handling of energy storage systems.
Hence, for the sake of simplicity here, as in [10], we have
excluded the optimization of energy storage systems, given
our model’s capability to effectively address a large number
of intertemporal and orthogonal constraints, as necessary.

A. Coordination Mechanism and Modeling Setup

In our market design, service providers are settled on a
”pay-as-bid” basis. We consider 15-minute delivery periods.
In Fig.1, we illustrate the LA-MI framework model for the
system operating with firm contracts from the forward markets.
The LA-MI framework effectively tackles the evolution of
uncertainties through the progressive forward market clearing
processes. Additionally, we develop a market mechanism
based on the market properties discussed in [11].

Fig. 1. The proposed LA-MI framework for TSO-DSO-Retailer coordination.

One period ahead, the FMO receives all available in-
formation to operate the coordination mechanism, generates
scenarios to model different uncertainty sources, embeds DSO-
Retailers interest functions within the TSO dispatch model,
and solves a two-stage stochastic bilevel TSO-DSO-Retailer
operational coordination problem. Then, the flexibility market
participants are informed about the market clearing outputs
and receive dispatch instructions.

The coordination mechanism proposed in our paper involves
an independent organization managing the activations of the
EERs in a fair and nondiscriminatory manner. It would ef-
fectively be a licensed market operator at the local level.
The FMO would represent a development consistent with the
unbundling of independent DSOs from DNOs, the licensing
of flexibility market platforms and the regulatory directives to
ensure the EERs compete in a non-discriminatory way with the
larger, incumbent generators. It would need to interact with the
independent market agency responsible for the settlement of
contracts (eg Elexon is licensed for this role in Britain). This
approach is currently the direction of market arrangements
in several European designs with the support of the Agency
for the Cooperation of Energy Regulators (ACER), which
coordinates National Regulators, and the European Associa-
tion for the Cooperation of Transmission System Operators
(ENTSO-E), which coordinates national or regional TSOs in
Europe [26]–[28]. Our coordination mechanism is inspired by
and aligned with these European designs.

B. Flexibility Interest Functions

Although the impacts of the activated flexibility services
are shared, the cost allocation to the respective parties, under

the Shapley value criterion, should reflect the relative value
to each party if they were to contract singularly from the full
availability of services. Thus we have:

1) Expected Shapley Value: When service buyers aim to op-
timize the expected value of their flexibility interest functions
in a stochastic programming problem, we use the expected
value criterion and define the expected Shapley value as
follows [29].

Definition 1. The expected Shapley value ϕ is defined as
ϕk(M,ϑ) =
1

|M !|
∑

S⊆M (|s| − 1)!(|M | − |s|)!(Eω(ϑ[S])−Eω(ϑ[S]/{k}))

where, |s| is the number of participants in coalition S, ϑ[S]
is the flexibility interest of coalition S, and M is the total
number of participants including retailers, DSOs, and TSO.
The proof of the validity of the expected Shapley value can
be found in [29] which is outside the scope of this paper.

Now, in order to calculate the expected Shapley value, we
explain the independent flexibility interests of TSO, DSOs, and
retailers as follows. The interest functions of TSO and DSOs
are developed based on the same TSO and DSO models in [2].
The differences are the utilization of the two-stage stochastic
programming and consideration of the scenarios index which
can be seen in the objective functions (1a) and (2a). We
use the Nomenclature as summarized in Table IX in the
Appendix. Binary variables αDW

db and αUP
ub are ”here-and-

now” variables that are independent of different scenarios.
These variables represent the state of service activation in our
two-stage stochastic programming problem. The rest of the
optimization variables are considered ”wait-and-see” variables
which are related to the second stage and determine the real-
time operation of the systems. The variables related to the
second stage are scenario-dependent variables. The scenario
tree and the first and second stage variables are shown in Fig.2.

Fig. 2. The two-stage stochastic bilevel programming for TSO-DSO-Retailer
operational coordination problem.

2) Expected Flexibility Interest of the TSO: Despite its
widespread adoption among system operators for its com-
putational robustness, the DC OPF method exhibits inherent
limitations. It neglects essential factors such as reactive power,
voltage magnitude, and the consequential influence of reactive
power flow on line currents, potentially resulting in suboptimal
or insecure solutions. In this study, we employ a novel OPF
method proposed in [30] to model the TSO and DSO networks.
This OPF method achieves a delicate balance between lin-
earity, convergence guarantee, and accuracy. By incorporating
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the consideration of reactive power and voltage magnitude
while retaining the advantageous features of the linear DC
OPF model, our approach aims to mitigate the compromises
in accuracy that are typically encountered during network
modeling. The utilized AC OPF model incorporates apparent
branch flow limits, enabling a more accurate representation of
system congestion compared to the DC OPF method, which
only enforces surrogate active power flow limits. Furthermore,
by considering the impact of voltage/VAR limits on the Loca-
tional Marginal Prices (LMP), the proposed method provides
a more precise economic signal compared to the DC OPF
method. The inclusion of reactive power balance equations
facilitates the practical implementation of the reactive power
market. In summary, the utilized AC OPF model enhances
solution accuracy and economic efficiency, and expands the
range of applications compared to the widely used DC OPF
model, without requiring any additional information.

In AC power flow calculations, the DC OPF model is
commonly used as a basis. However, certain applications
require improved accuracy in the linearized network model.
To address this, the DC OPF model is re-optimized if any
violations occur. During the DC-AC iteration, updating the
initial point and formulating a warm-start model can enhance
accuracy. The warm-start OPF solution provides a method to
improve performance, especially during the iterative process
that ensures AC feasibility. The proposed OPF method exploits
the quasi-linear relationship between active power and voltage
angle, resulting in desirable voltage angle estimates. As losses
primarily depend on voltage angle, the OPF model’s solution
establishes a more favorable ”base case system operating
condition” for loss linearization. Additionally, a better initial
point for nonlinear term expansions further enhances the
network model’s accuracy.

The combined features of the quasi-linear active power and
voltage angle relationship, along with the efficient linearization
method employed in the proposed network model, ensure that
the warm-start OPF model’s solution closely approximates
the AC OPF optimum with just one additional iteration.
Moreover, compared to the DC OPF method, the AC OPF
method effectively handles constraint violations during the
iterative process to ensure AC feasibility. In traditional DC-AC
iteration, addressing branch flow violations requires modify-
ing branch flow limits in the DC OPF model, which alters
the feasible region of system operation. Consequently, the
modified DC OPF model may yield sub-optimal or infeasible
solutions. Additionally, violations related to reactive power and
voltage magnitude cannot be directly addressed. However, by
replacing the DC OPF method with the proposed OPF method,
constraint violations are likely to be eliminated due to the im-
proved accuracy of the warm-start network model, without the
need for modifying operational limits. This approach allows
direct constraint of violations in reactive power and voltage.
These features significantly reduce the required iterations for
ensuring AC feasibility when using the proposed OPF method
instead of the DC OPF method.

As a consequence, we formulate the following two-stage
stochastic programming problem to specify the TSO’s objec-

tive based on the proposed AC-OPF model in [30].

Minimize
Ω1

{
Eω

[∑
t∈T

∑
b∈NTS

UP

fb(P
TS
gbtω

− P̂TS
gbt

) +∑
t∈T

∑
b∈NTS

DW

πRD
btω fb(P̂

TS
gbt

− PTS
gbtω

)+∑
t∈T

∑
b∈ITS

∑
d∈Ndb

FDWT
dbtω πDW

dbtω+ (1a)∑
t∈T

∑
b∈ITS

∑
u∈Nub

FUPT
ubtω π

UP
ubtω

]
+∑

b∈ITS

(∑
u∈Nub

αUP
ub +

∑
d∈Ndb

αDW
db

)}
subject to :
PTS
bctω ≈ −BTS

bc θ
TS
bctω ,∀ (bc) ∈ KTS , t ∈ T, ω ∈ Θ,

(1b)

QTS
bctω ≈ −BTS

bc (
vs

TS

btω − vs
TS

ctω

2
) (1c)

QTS
btω =

∑
bc∈KTS

QTS
bctω − vs

TS

btω

∑
c∈ITS

BTS
bc , (1d)

PTS
gbtω

− PTS
Lbtω

−
∑

u∈Nub

FUPT
ubtω +

∑
d∈Ndb

FDWT
dbtω =∑

(bc)∈KTS
PTS
bctω + vs

TS

btω

∑
c∈ITS

GTS
bc ,

∀ b ∈ ITS , t ∈ T, ω ∈ Θ (1e)

PTS
Lptω

= P̃DS
gptω

+
∑

u∈Nup

FUPT
uptω −

∑
d∈Ndp

FDWT
dptω ,

∀ p ∈ PCC , t ∈ T, ω ∈ Θ (1f)
QTS

Lptω
= Q̃DS

gptω
, ∀ p ∈ PCC , t ∈ T, ω ∈ Θ (1g)

PTS
gbtω

− PTS
gb(t−1)ω

≤ βUP
b RUb ,

∀ b ∈ NTS
UP , t ∈ T, ω ∈ Θ (1h)

PTS
gb(t−1)ω

− PTS
gbtω

≤ βDW
b RDb ,

∀ b ∈ NTS
DW , t ∈ T, ω ∈ Θ (1i)

fb(P
TS
gbtω

) = ã1,bP
TS
gbtω

+ ã0,b ,

∀ b ∈ ITS , t ∈ T, ω ∈ Θ (1j)
(FUPT

ubt + F̃UPD
ubt ) ≤ αUP

ub (ΦPV
uptω +ΦWT

uptω),

(FDWT
dbt + F̃DWD

dbt ) ≤ αDW
db ΦDR

dptω,

∀ p ∈ PCC, u ∈ Nub, d ∈ Ndb, t ∈ T, ω ∈ Θ (1k)

PTS
b ≤ PTS

btω ≤ P
TS
b , QTS

b
≤ QTS

btω ≤ Q
TS
b , (1l)

vs
TS

b ≤ vs
TS

btω ≤ vs
TS

b , ∀ b ∈ ITS , t ∈ T, ω ∈ Θ (1m)

PTS
bc ≤ PTS

bctω ≤ P
TS
bc , QTS

bc
≤ QTS

bctω ≤ Q
TS
bc ,

∀ (bc) ∈ KTS , t ∈ T, ω ∈ Θ (1n)
{FUPT

ubtω , F
DWT
dbtω } ∈ R≥0, {α, β} ∈ {0, 1} (1o)

{vs
TS

btω, θ
TS
bctω, P

TS
bctω, Q

TS
bctω, P

TS
btω , Q

TS
btω} ∈ R , (1p)

where, θTS
bctω = θTS

btω − θTS
ctω ,∀(bc) ∈ KTS , t ∈ T, ω ∈ Θ

Set of variables Ω1 = {vsTS

btω , θTS
btω , PTS

gbtω
, QTS

gbtω
, PTS

bctω, Q
TS
bctω ,

PTS
Lptω

, PTS
btω , Q

TS
btω , FDWT

dbtω , FUPT
ubtω , βUP

b , βDW
b , αUP

ub , αDW
db }.

The objective function (1a) minimizes the reserve and the
flexibility service activation costs. Constraints (1b) and (1c)
represent the active and reactive power flow on each branch,
respectively. Constraints (1d) and (1e) represent the reac-
tive and active power balance at each node, respectively.
Constraints (1f) and (1g) represent the linking constraints
between the TSO and DSO related to the active and reactive
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load consumption at the point of common coupling. The
activation of reserve capacities considering the ramp rates
of operating reserve units are described in (1h) and (1i). In
order to adhere to the mathematical principle of implication
within the inference dual theorem employed in the IDBD
algorithm (Section III-C), it becomes imperative to reassign
binary variables, namely α and β, to the flexibility services.
The utilization of binary variables is indispensable as the
inference dual theorem, rooted in Boolean logic, does not
permit the application of the concept of implication to con-
tinuous variables. Constraint (1j) shows the offer function of
generators. Constraints (1k) represents the maximum available
turn-up and turn-down services at each point of common
coupling.

3) Expected Flexibility Interest of the DSOs: The follow-
ing two-stage stochastic programming problem expresses the
purpose of DSOs to activate flexibility services based on the
proposed AC-OPF model in [2], [30].

Minimize
Ω2

{(∑
u∈Nub

αUP
ub +

∑
d∈Ndb

αDW
db

)

Eω

[∑
t∈T

∑
u∈Nub

FUPD
utω πUP

utω +

+
∑

t∈T

∑
d∈Ndb

FDWD
dtω πDW

dtω

]}
(2a)

subject to :

PDS
ijtω ≈ PDS

ijω,0 + (∇PDS
ijω |0)T

vsDS

itω − vsDS

iω,0

vsDS

jtω − vsDS

jω,0

θDS
itω − θDS

iω,0

θDS
jtω − θDS

jω,0

 , (2b)

QDS
ijtω ≈ QDS

ijω,0 + (∇QDS
ijω |0)T

vsDS

itω − vsDS

iω,0

vsDS

jtω − vsDS

jω,0

θDS
itω − θDS

iω,0

θDS
jtω − θDS

jω,0

 ,

∀ (ij) ∈ KDS , t ∈ T, ω ∈ Θ (2c)

QDS
itω =

∑
(ij)∈KDS

QDS
ijtω + vs

DS

itω

∑
j∈IDS

−BDS
ij , (2d)

PDS
gitω

− PDS
Litω

+ PVitω +WTitω + FDWD
itω − FUPD

itω =∑
(ij)∈KDS

b

PDS
ijtω + vs

DS

itω

∑
j∈IDS

b

GDS
ij ,

∀ i ∈ IDS
b , t ∈ T, ω ∈ Θ (2e)

FUPD
utω ≤ αUP

ub (ΦPV
utω +ΦWT

utω ) , FDWD
dtω ≤ αDW

db ΦDR
dtω ,

∀ u ∈ Nub, d ∈ Ndb, t ∈ T, ω ∈ Θ (2f)

PDS
i ≤ PDS

itω ≤ P
DS
i , QDS

i
≤ QDS

itω ≤ Q
DS
i ,

vs
DS

i ≤ vs
DS

itω ≤ vs
DS

i , ∀ i ∈ IDS , t ∈ T, ω ∈ Θ (2g)

PDS
ij ≤ PDS

ijtω ≤ P
DS
ij , QDS

ij
≤ QDS

ijtω ≤ Q
DS
ij ,

∀ (ij) ∈ KDS , t ∈ T, ω ∈ Θ (2h)
{FUPD

utω , FDWD
dtω } ∈ R≥0, {αUP

ub , α
DW
db } ∈ {0, 1} (2i)

{vs
DS

iω , θDS
iω , PDS

ijω , Q
DS
ijω , P

DS
iω , QDS

iω } ∈ R (2j)

where,

∇PDS
ijω |0 =


(1 −

vDS
jω,0

cosθDS
ijω,0

2vDS
iω,0

)GDS
ij −

vDS
jω,0

BDS
ij

sinθDS
ijω,0

2vDS
iω,0

−vDS
iω,0

GDS
ij

cosθDS
ijω,0

2vDS
jω,0

−
vDS

iω,0
BDS

ij
sinθDS

ijω,0

2vDS
jω,0

vDS
iω,0v

DS
jω,0G

DS
ij sinθDS

ijω,0 − vDS
iω,0v

DS
jω,0B

DS
ij cosθDS

ijω,0

−vDS
iω,0v

DS
jω,0G

DS
ij sinθDS

ijω,0 + vDS
iω,0v

DS
jω,0B

DS
ij cosθDS

ijω,0



∇QDS
ijω |0 =


−(1 −

vDS
jω,0

cosθDS
ijω,0

2vDS
iω,0

)BDS
ij −

vDS
jω,0

GDS
ij

sinθDS
ijω,0

2vDS
iω,0

vDS
iω,0

BDS
ij

cosθDS
ijω,0

2vDS
jω,0

−
vDS

iω,0
GDS

ij
sinθDS

ijω,0

2vDS
jω,0

−vDS
iω,0v

DS
jω,0B

DS
ij sinθDS

ijω,0 − vDS
iω,0v

DS
jω,0G

DS
ij cosθDS

ijω,0

vDS
iω,0v

DS
jω,0B

DS
ij sinθDS

ijω,0 + vDS
iω,0v

DS
jω,0G

DS
ij cosθDS

ijω,0


where, Ω2={vsDS

itω , θDS
ijtω , PDS

ijtω , QDS
ijtω , PDS

itω , QDS
itω , FUPD

itω ,
FDWD
itω , αUP

ub , αDW
db }. The objective function (2a) minimizes

the activation costs of the flexibility services. The first-order
Taylor series expansions of the active and reactive power flow
on each branch are explained by equations (2b) and (2c).
Constraint (2f) for DSO is similar to (1k) for the TSO.
The active and reactive power balance at each bus of the
distribution system are expressed by equations (2d) and (2e),
respectively.

4) Expected Flexibility Interest of the Retailers: The Re-
tailer activates flexibility services for the peak price periods if
the submitted bids by the service providers are lower than the
retailer’s anticipation of the electricity price (πEX

utω ). The fol-
lowing two-stage stochastic programming problem describes
the purpose of retailers to activate flexibility services.

Minimize
Ω3

{(∑
u∈Nub

αUP
ub +

∑
d∈Ndb

αDW
db

)

Eω

[∑
t∈T

∑
u∈Nub

FUPR
utω (πEX

utω − πUP
utω)

+
∑

t∈T

∑
d∈Ndb

FDWR
dtω (πDW

dtω − πEX
dtω )

]}
(3a)

subject to:
FUPR
utω ≤ αUP

ub (ΦPV
utω +ΦWT

utω ), FDWR
dtω ≤ αDW

db ΦDR
dtω ,

∀u ∈ Nub, d ∈ Ndb, t ∈ T, ω ∈ Θ (3b)
{FUPR

utω , FDWR
dtω } ∈ R≥0, {αUP

ub , α
DW
db } ∈ {0, 1} (3c)

where, Ω3={FDWR
dbtω , FUPR

ubtω , αUP
ub , αDW

db }. Constraint (3b)
for the retailer is the same as (1k) for the TSO.

III. OPTIMIZATION PROCEDURE

It is assumed that the EER providers embed all equality
and inequality constraints and possible cost functions of their
services into the submitted offers. All offer functions are
assumed convex.

The proposed coordination process, as illustrated in Fig.3,
involves the participation of the FMO, an independent reg-
ulated non-profit organization that maintains communication
with the TSO, DSOs, Retailers, and EER providers. The
FMO obtains the necessary data to formulate a Two-Stage
Stochastic Bilevel Programming problem for coordinating the
TSO-DSO-Retailer interactions within the flexibility market.
Subsequently, the FMO disseminates the dispatch commands
to the market participants following the completion of the
market clearing process.

The process and various steps of our proposed modeling
setup and problem formulation are depicted in Fig. 4, pro-
viding a visual representation. In the first step, we reframe
the expected flexibility interests of the TSO, DSOs, and
Retailers to create our proposed Two-Stage Stochastic Bilevel
Programming with Embedded DSO-Retailer Activations. The
upper level of our bilevel programming problem addresses
the TSO’s expected flexibility interest, which is formulated as
a Mixed-Integer Linear Programming (MILP) problem. The
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Fig. 3. The proposed coordination process for TSO-DSO-Retailer coordina-
tion.

lower level problem involves the merging optimization prob-
lem that considers the flexibility interest functions of DSOs
and retailers, which can be modeled as a linear programming
problem. In the second step, we utilize the Karush-Kuhn-
Tucker (KKT) conditions to substitute the lower-level linear
programming problem with its optimality conditions. This step
transforms the Bilevel problem into a single-level Stochastic
Mathematical Program with Complementarity Constraints. In
the third step, we reformulate our single-level Stochastic Math-
ematical Program as a Generalized Disjunctive Programming
(GDP) Model. Finally, in the fourth step, we employ our
proposed SIDBD algorithm to decompose the GDP model into
two Mixed-Logical Linear Programming (MLLP) problems,
namely the master and subproblems, which are subsequently
solved to address the main problem.

Based on our proposed coordination mechanism and mod-
eling setup, the FMO aims to find a solution to the following
two-stage bilevel stochastic programming problem.

A. Two-Stage Stochastic Bilevel Programming with Embedded
DSO-Retailer Activations

Here, we assume that the FMO receives all the required
data from TSO, DSOs, and retailers to form the optimization
problem. Some monitoring devices like PMUs and micro
PMUs are required to achieve this goal in both transmis-
sion and distribution networks. Then, the FMO considers the
stochastic flexibility interest of the DSOs, retailers, and TSO
in one programming problem. Therefore, we have a two-
stage stochastic bilevel mixed-integer programming problem
as follows.

1) Upper Level: The upper level is as follows.

Minimize
Ω4

Objective Function of (1a) (4a)

subject to (1b)-(1d), (1h)-(1j), (1l)-(1p), (2i), (3c), and:

PTS
gbtω

− PTS
Lbtω

−
∑

u∈Nub

(FUPT
ubtω + FUPD

ubtω + FUPR
ubtω )+∑

d∈Ndb

(FDWT
dbtω + FDWD

dbtω + FDWR
dbtω ) =∑

(bc)∈KTS
PTS
bct + vs

TS

btω

∑
c∈ITS

GTS
bc ,

∀ b ∈ ITS , t ∈ T, ω ∈ Θ (4b)

PTS
Lptω

= PDS
gptω

, QTS
Lptω

= QDS
gptω
, vs

TS

ptω = vs
DS

ptω, θ
TS
ptω = θDS

ptω

∀ p ∈ PCC, t ∈ T, ω ∈ Θ (4c)

FUPT
uptω + FUPD

uptω + FUPR
uptω ≤ αUP

up (ΦPV
uptω +ΦWT

uptω) ,

FDWT
dptω + FDWD

dptω + FDWR
dptω ≤ αDW

dp ΦDR
dptω ,

∀ p ∈ PCC, u ∈ Nub, d ∈ Ndb, t ∈ T, ω ∈ Θ (4d)

{αUP
ub , α

DW
db } ∈ {0, 1} (4e)

where, Ω4={Ω1, Ω2, Ω3, PTS
Lptω

, QTS
Lptω

}. Constraints (4c)
and (4d) illustrate the common constraints in the TSO-DSO-
Retailer coordination problem. Here, variables PDS

gptω
, QDS

gptω
,

θDS
ptω , vs

DS

ptω , FDWD
dbtω ,FUPD

ubtω , FDWR
dbtω , and FUPR

ubtω are determined
through following lower-level optimization problem.

2) Lower Level: We formulate the lower-level problem as
follows, which is the merged flexibility interest functions of
DSOs and retailers.

Minimize
Ω5

∑
t∈T

∑
b∈ITS

∑
u∈Nub

FUPD
ubtω πUP

ubtω+∑
t∈T

∑
b∈ITS

∑
d∈Ndb

FDWD
dbtω πDW

dbtω+∑
t∈T

∑
b∈ITS

∑
u∈Nub

FUPR
utω (πEX

utω − πUP
utω)+∑

t∈T

∑
b∈ITS

∑
d∈Ndb

FDWR
dtω (πDW

dtω − πEX
dtω ) (5a)

subject to (2b)-(2d), (2g)-(2j), and:

PDS
gibtω

− PDS
Libtω

+ PVibtω +WTibtω + FDWT
ibtω −

FUPT
ibtω + FDWD

ibtω − FUPD
ibtω + FDWR

ibtω − FUPR
ibtω =∑

(ij)∈KDS
b

PDS
ijbt + vs

DS

ibt

∑
j∈IDS

b

GDS
ijb ,

∀ b ∈ ITS , i ∈ IDS
b , t ∈ T, ω ∈ Θ (5b)

where, Ω5={vsDS

ibtω , θDS
ibtω , PDS

ijbtω , QDS
ijbtω , PDS

ibtω , QDS
ibtω , FUPD

ibtω ,
FDWD
ibtω , FUPR

ibtω , FDWR
ibtω }. The objective function (5a) min-

imizes the total cost of flexibility service activation. Con-
straint (5b) is the new power balance with the impact of flex-
ibility service activations. Here, since the lower-level problem
is a linear programming problem with a zero duality gap,
we replace it with its Karush-Kuhn-Tucker (KKT) optimality
conditions, which are presented in the following section. The
KKT conditions offer necessary and sufficient conditions for
optimality in constrained optimization problems.

3) Reformulated Stochastic Mathematical Program with
Complementarity Constraints: Now, we have the single-level
reformulated form of our two-stage stochastic bilevel mixed-
integer programming problem:

Minimize
Ω4

Objective Function of (1a) (6a)

subject to (1b)-(1d), (1h)-(1j), (1l)-(1p), (2b)-(2d), (2i),
(2j), (3c), (4b)-(4e), (5b), and:

{λibtω,Πibtω, µijbtω, δijbtω} ∈ R, {D} ∈ R≥0 (6b)
λibtω +D3,ibtω −D4,ibtω = 0 ,

Πibtω +D5,ibtω −D6,ibtω = 0 ,

∀ b ∈ ITS , i ∈ IDS
b , t ∈ T, ω ∈ Θ (6c)

Πibtω

∑
j∈IDS

b

BDS
ijb − λibtω

∑
j∈IDS

b

GDS
ijb

+D1,ibtω −D2,ibtω +
∑

(ij)∈KDS
b

µijbtω(−
∂PDS

ijbtω

∂vDS
ibtω

)

+
∑

(ij)∈KDS
b

δijbtω(−
∂QDS

ijbtω

∂vDS
ibtω

) = 0 ,∀ b ∈ ITS ,

i ∈ IDS
b , t ∈ T, ω ∈ Θ

(6d)
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Fig. 4. The proposed problem formulation steps for TSO-DSO-Retailer coordination.

∑
(ij)∈KDS

b

µijbtω(
∂PDS

ijbtω

∂θDS
ibtω

) + δijbtω(
∂QDS

ijbtω

∂θDS
ibtω

) = 0,

∀i ∈ IDS
b , t ∈ T, ω ∈ Θ

(6e)

SBπ
UP
ptω − λuptω +D11,ibtω = 0, (6f)

SBπ
DW
ptω + λdptω +D12,ibtω = 0, (6g)

SB(π
EX
utω − πUP

utω)− λuptω +D13,ibtω = 0, (6h)

SB(π
DW
dtω − πEX

dtω ) + λdptω +D14,ibtω = 0,

∀p ∈ PCC, u ∈ Nup, d ∈ Ndp, t ∈ T, ω ∈ Θ
(6i)

0 ≤
∑

u∈Nub

FUPT
uptω ⊥

∑
d∈Ndb

FDWT
dptω ≥ 0,

∀p ∈ PCC, t ∈ T, ω ∈ Θ
(6j)

0 ≤ D3,ibtω ⊥ (P
DS
gib

− PgDS
ibtω

) ≥ 0, (6k)

0 ≤ D4,ibtω ⊥ (PgDS
ibtω

− PDS
gib

) ≥ 0,

∀ b ∈ ITS , i ∈ IDS
b , t ∈ T, ω ∈ Θ

(6l)

and same complementary slackness conditions as
(6k)-(6l) for constraints (2g) and (2h) in problem (5).

(6m)

where, Ω6={Ω4, Ω5, D, λ, Π, µ, δ}. The derivative of
the Lagrangian function with respect to the optimization
variables of the DSO and retailer stochastic programming
problems is presented by constraints (6c)-(6i). Constraint (6j)
ensures that turn-up and turn-down service activation will not
occur at one node of the transmission system, simultaneously.
Constraints (6k)-(6m) express the complementary slackness
conditions for each inequality constraint in the lower-level
optimization problem.

B. Generalized Disjunctive Programming (GDP) Model

In contrast to the reformulated stochastic mathematical
program with complementarity constraints, Generalized Dis-
junctive Programming (GDP) offers several advantages. The
GDP surpasses existing optimization models by accommo-
dating flexible disjunctive constraints, thereby rendering it
exceptionally suitable for addressing intricate decision-making
scenarios amidst uncertainty. Its capability to handle nonlinear
and nonconvex problems commonly encountered in real-world
optimization challenges enables more precise and realistic
modeling.

The realms of real-time operation of power systems and
the electricity market are replete with inherent complexities,

rendering many real-world optimization problems highly in-
tricate. In order to effectively tackle these challenges, GDP
emerges as a powerful tool that facilitates the formulation and
solution of such intricate problems. By incorporating GDP
into the modeling process, it becomes possible to achieve a
more accurate and realistic representation of these complex
problems.

One of the key advantages of GDP lies in its ability to in-
corporate logical relationships between decision variables and
constraints. This allows for the explicit specification of logical
conditions, utilizing operators such as ”or” and ”and,” thereby
capturing the dependencies and interconnections among vari-
ables. This capability proves to be particularly valuable when
dealing with problems involving binary decision variables or
when specific logical conditions must be satisfied. As a result,
the modeling process gains enhanced expressiveness, enabling
a more comprehensive representation of the problem at hand.
Additionally, GDP offers robust support for global optimiza-
tion, enabling the exploration of the entire feasible region
to find the best solutions. The framework employs efficient
solution techniques, including decomposition methods, further
enhancing its effectiveness in tackling diverse optimization
problems.

Therefore, here, we reformulate the optimization prob-
lem (6) into a generalized disjunctive programming model as
follows.1

Minimize
Ω7

Objective Function of (1a) (7a)

subject to (1b)-(1d), (1h)-(1j), (1l)-(1p), (2b)-(2d), (2i),
(2j), (3c), (4b)-(4e), (5b), (6b)-(6i), and the equivalent

disjunctive forms of constraints (6k) and (6l) as follows:

 Y1,ibtω
D3,ibtω = 0
D4,ibtω = 0

 ∨

 Y2,ibtω
D3,ibtω = 0

PgDS
ibtω

= PDS
gib

 ∨

 Y3,ibtω
D4,ibtω = 0

P
DS
gib

= PgDS
ibtω

 ,
Y1,ibtω =⇒ ¬Y2,ibtω ∧ ¬Y3,ibtω,
Y2,ibtω =⇒ ¬Y1,ibtω ∧ ¬Y3,ibtω,
Y3,ibtω =⇒ ¬Y1,ibtω ∧ ¬Y2,ibtω,

∀ b ∈ ITS , i ∈ IDS
b , t ∈ T, ω ∈ Θ

(7b)

1∨:Logical disjunction (OR), =⇒ :Mathematical implication,
∧:Logical conjunction (AND)
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Similar to (7b) for complementary slackness condition
of constraints (2g) and (2h) presented in (6m),

(7c)

and the equivalent disjunctive form of constraint (6j) as
follows:[

Y21,ibtω
0 ≤

∑
u∈Nub

FUPT
uptω

]
∨
[

Y22,ibtω∑
d∈Ndb

FDWT
dptω ≥ 0

]
,

Y21,ibtω =⇒ ¬Y22,ibtω , Y22,ibtω =⇒ ¬Y21,ibtω ,
∀ b ∈ ITS , i ∈ IDS

b , t ∈ T, ω ∈ Θ
(7d)

where, Ω7={Ω6, Y }. Logical disjunctions (7b)-(7d) ensure
that all equality and inequality constraints related to each true
Boolean variable are added to the main optimization problem.
For instance, utilization of the logical propositions in (7b)
ensure that only one of the Boolean variables Y1,ibtω , Y2,ibtω ,
and Y3,ibtω is true at the same time.

Generally, the Big-M method is of the most common meth-
ods to find the solution to GDP problems which reformulates
the problem as a mixed-integer linear/nonlinear programming
model. In the process of reformulating GDP by the Big-M
method, the connections between the binary variables and
the corresponding constraints are relatively obfuscated [31].
Moreover, since using the Big-M method for a GDP prob-
lem with a large number of variables and complementarity
constraints forms an NP-hard problem [32], utilization of
the Big-M method leads to weak continuous relaxations and
hence it is unsolvable in practice [33]. In our study, we
utilized the indicator constraint method in the optimization
process of mixed-integer programming (MIP), which has the
potential to yield weaker relaxations. Although this charac-
teristic could potentially result in longer computation time,
we observed a significant improvement in both performance
time and problem complexity in our specific case. This im-
provement was achieved by implementing our proposed IDBD
algorithm, which has a separable structure. Importantly, all
IDBD cut calculation problems associated with our method
are independent and can be solved simultaneously in a parallel
computing mode. Therefore, in this paper, we employ the
indicator constraints method and MIP solver CPLEX in the
GAMS platform to handle our GDP problem.

Due to a large number of binary variables, the plausible
sub-problems will be non-convex. Therefore, obtaining the
optimality cuts using the Standard Benders Decomposition
(SBD) method is challenging. Since it is not straightforward to
solve optimization problems with the non-convexity in the sub-
problem with the SBD method, we propose a new Stochastic
Inference-Dual-Based Decomposition (SIDBD) algorithm in
the current paper as follows.

C. Stochastic Inference-Dual-Based Decomposition (SIDBD)
Algorithm

The IDBD’s incorporation of logical constraints directly into
the decomposition framework enhances modeling flexibility,
and it enables the accurate representation of complex prob-
lems with logical relationships between decision variables.
This leads to improved problem decomposition by grouping

variables and constraints based on their logical dependencies,
resulting in smaller and more manageable subproblems. More-
over, the IDBD algorithm reduces the computational effort
by exploiting logical conditions, minimizing the number of
required IDBD cuts. The inclusion of logical relationships
also accelerates convergence by guiding the solution process
toward feasible regions of the problem space. Furthermore,
the IDBD algorithm effectively handles discrete decisions,
making it suitable for mixed-integer programming problems.
Ultimately, these advantages culminate in higher solution
quality, affirming the superiority of the IDBD algorithm in
solving optimization problems efficiently and effectively.

Accordingly, in this section, we propose a new modification
of the decomposition method for the stochastic TSO-DSO-
Retailer coordination problem. In the context of our two-
stage stochastic programming problem, we introduce binary
variables representing service activation as ”here-and-now”
variables that remain constant across scenarios, while other
variables are classified as ”wait-and-see” variables, contingent
upon specific scenarios. The optimization process follows a
sequential approach, where the ”here-and-now” variables are
optimized in the first stage, independent of future uncertainty,
and the ”wait-and-see” variables are optimized in the second
stage, considering real-time operational aspects influenced by
encountered scenarios. These steps align with the principles of
stochastic programming, effectively addressing uncertainties.

Accordingly, to form the master problem, we consider the
binary variables corresponding to the turn-up and turn-down
service activations, αUP

ub and αDW
db , as complicating variables

(sub-set Nmv
b ). We also include the sub-problem relaxation

constraints that are in the form of the complicating variables
in the master problem. Whilst the master problem variables
are considered exogenous parameters, we optimize the rest of
the variables through the sub-problem. At each iteration of
SIDBD, since there is a specific IDBD cut for each scenario,
we introduce the concept of ”expected IDBD cuts”. The
process of the SIDBD algorithm using the proposed FMO
organization and scenario tree generation is shown in Fig. 5.

Fig. 5. The stochastic Inference-Dual-Based Decomposition (IDBD) algo-
rithm for solving the embedded TSO-DSO-retailer coordination problem using
the proposed FMO organization.

Accordingly, we formulate the sub-problem, master prob-
lem, cut calculation process, and sub-problem relaxation as
follows.
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1) sub-problem: Considering the complicating variables as
exogenous parameters αUP

ub
∗ and αDW

db
∗, forms the SIDBD

sub-problem corresponding to the GDP problem (7) as follows.

Minimize
Ω7

Objective Function of (1a) (8a)

subject to (1b)-(1d), (1h)-(1j), (1l)-(1p), (2b)-(2d), (2i),
(2j), (3c), (4b)-(4e), (5b), (6b)-(6i), (7b)-(7d), and:

αUP
ib = αUP

ib

∗
, αDW

ib = αDW
ib

∗
,

∀ b ∈ ITS , i ∈ IDS
b , t ∈ T (8b)

At each iteration, the expected upper bound of the original
optimization problem (7) is determined through solving the
sub-problem (8) for all scenarios. The process is finished
provided that the difference between the expected lower and
the expected upper bounds is less than a pre-defined tolerance.

2) sub-problem relaxation: The proposed sub-problem re-
laxation is not a typical sort of relaxation since, rather than
the sub-problem variables, it is defined in terms of the master
problem variables. The number of SIDBD iterations depends
on the process of evaluating all enumeration of complicating
variables (i.e. the generated IDBD cuts). Each enumeration of
complicating variables forms a specific sub-problem that needs
to have a feasible solution to determine the corresponding
SIDBD cut. Infeasible sub-problems result in no-good cuts
that significantly increase the computational complexity of the
SIDBD algorithm [20]. Therefore, removing all enumerations
of complicating variables with a resulting infeasible sub-
problem is crucial. To achieve this goal, we propose new
constraints in the master problem based on the structure of
the sub-problem to eliminate the enumerations of complicating
variables corresponding to the infeasible sub-problems. These
constraints are called ”sub-problem relaxation” since they
relax the master problem based on the structure of the sub-
problem.

Nonetheless, determining appropriate relaxation constraints
depends on the structure of the sub-problem of different op-
timization problems. After utilizing a sub-problem relaxation,
the remaining IDBD cuts in the master problem should satisfy
the following two properties [31].

Property 1. The SIDBD cuts related to the infeasible solutions
should be excluded from the master problem.

Property 2. Any SIDBD cuts related to the feasible solutions
must not be excluded from the master problem.

Property 1 ensures the finite convergence of the SIDBD
algorithm when the variables in the master problem have
finite domains. In the SIDBD algorithm, each cut generated
corresponds to a specific combination of flexibility service
activation. The flexibility service is related to the ability to
adjust certain parameters or resources in the system. In order
to effectively utilize these flexibility services, the FMO needs
to determine all acceptable combinations of flexibility service
activations in advance. By doing so, the FMO can remove
any combinations of flexibility service activation that lead to
infeasible subproblems, thereby reducing the computational
complexity of the TSO-DSO-retailer coordination problem.
Essentially, Property 1 indicates that the FMO should filter

out infeasible combinations and focus on feasible ones, thus
simplifying the problem.

Property 2 guarantees optimality in the SIDBD algorithm
by ensuring that the cuts considered in the master problem
do not remove any feasible solutions. Property 2 specifies that
the FMO, while utilizing the subproblem relaxation, should
not eliminate any combination of flexibility service activation
that corresponds to a feasible solution for the subproblem.
In other words, the FMO should not discard any feasible
options during the optimization process. By considering both
Property 1 and Property 2, the SIDBD algorithm can achieve
convergence within a small number of iterations, making the
overall optimization process more efficient.

Accordingly, we propose sub-problem relaxation constraints
in the master problem of the TSO-DSO-Retailer coordination
problem as follows.∑

u∈Nub

F̃UP,Min
uptω ≤

∑
u∈Nub

αUP
up (ΦPV

uptω +ΦWT
uptω) ,∑

d∈Ndb

F̃DW,Min
dptω ≤

∑
d∈Ndb

αDW
dp ΦDR

dptω ,

∀ p ∈ PCC, t ∈ T, ω ∈ Θ (9)

where, F̃UP,Min
uptω and F̃DW,Min

dptω are the minimum level of
the required flexibility services, calculated by the interface
optimizer of FMO, which is needed to be activated to cope
with uncertainties in the real-time operation of the system.
These constraints ensure that the summation of the maximum
possible service activation is greater than the summation of
the minimum level of required services.

Considering the proposed sub-problem relaxation (9), Prop-
erty 1, and Property 2, we have the following Theorem.

Theorem 1. The proposed sub-problem relaxation (9) to de-
termine the SIDBD cuts is valid (i.e. it meets properties 1 and
2 above) for our stochastic TSO-DSO-Retailer coordination
problem.

Proof. We need to show that Property 1 and Property 2
are valid for our proposed sub-problem relaxation to prove
this theorem. Recall that each cut is related to a specific
combination of complicating variables that are associated with
the activation of different flexibility services. Evidently, due to
the power balance equality constraints (4b) and (5b), the sub-
problem (8) is infeasible if the summation of the maximum
available potential flexibility is lower than the summation
of the required services. Consequently, adding constraint (9)
to the master problem only excludes the cuts related to the
combination of the complicating variable with an infeasible
solution and it does not exclude any cut related to the feasible
solution of the sub-problem (8).

The proposed sub-problem relaxation in Theorem 1 is one
of the key contributions of this paper. In our proposed frame-
work, the complicating variables in the master problem are
considered ”here-and-now” variables at the first stage of the
SIDBD algorithm. Each combination of complicating variables
in the master problem results in a different sub-problem which
forms a specific SIDBD cut. The concept of inference in the
inference duality theory (see Definition 3 and Theorem 3 in
Appendix) is applicable only if the resulting sub-problem has
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a feasible solution. Since the convergence rate of the SIDBD
algorithm depends on finding the SIDBD cuts related to the
feasible sub-problems, proposing a method that identifies all
SIDBD cuts corresponding to the feasible sub-problems is
crucial. The impact of the proposed sub-problem relaxation in
the optimization procedure of the SIDBD algorithm is shown
in the following illustrative example.

a) Illustrative Example: If the number of combinations
of complicating variables with infeasible sub-problems in-
creases, without considering the proposed sub-problem re-
laxation constraints, the SIDBD algorithm should solve all
resulting sub-problems to find the required feasible ones to
converge to the final solution. Let consider we have ten binary
variables. All enumerations of the complicating variables
form 210 combinations. Let assume only 17 out of 1024
combinations result in feasible sub-problems. To avoid any
combination with an infeasible sub-problem, we represent the
relationship between the infeasibility of the sub-problem and
the different enumeration of complicating variables in the
master problem, using our sub-problem relaxations constraints.
Therefore, we can remove the no-good cuts without solving
the sub-problem which highly affects the convergence rate of
the algorithm. Consequently, instead of 1024 combinations of
complicating variables in the master problem, the number of
enumerations decreases to 17.

3) Master Problem: Using the sub-problem relaxation and
the concept of strong inference duality (see Definition 3
and Theorem 3 in Appendix), our proposed master problem
optimizes the complicating variables and the expected values
of the lower bound. We formulate the master problem as
follows.

Minimize
grn,αUP

ubr
,αDW

dbr
,Zr

Zr (10a)

subject to (4e), (9), and:

Zr ≥ Γrngrn,∀ n ∈ {1, .., 2N
mv

b }, r ∈ IT (10b)

grn =⇒ αUP
ubr , grn =⇒ αDW

dbr ,

∀
{
n ∈ {1, .., 2N

mv

b }, r ∈ IT
} (10c)

∑
n
grn = 1, ∀ r ∈ IT, grn ∈ {0, 1} (10d)

The objective function (10a) finds the lower bound of our
SIDBD algorithm. Constraint (10b) is related to the IDBD
cuts. The EER activation modes are modeled through con-
straint (10c). Constraint (10d) illustrates that, at each iteration,
only one combination of service activation is selected.

4) IDBD Cut Calculation: In our proposed SIDBD algo-
rithm, the IDBD cuts constitute the master problem. Here,
before proposing our cut calculation process, we need to define
expected SIDBD cuts.

Definition 2. The expected IDBD cut is defined by calculating
the expected values of slope and intercepts of different cuts
over all scenarios.

Considering the expected IDBD cuts, the sub-problem (8),
and the master problem (10), the optimality theorem for our
TSO-DSO-Retailer coordination problem is as follows:

Theorem 2. our SIDBD algorithm converges to an approxi-
mate optimal solution in a finite number of steps.

Proof. Consider Theorem 1 and recall that the sub-problem (8)
returns the expected upper bound. Therefore, the lower bound
which is the solution to the master problem should be in the
form of the expected value to guarantee the convergence of
our proposed SIDBD algorithm. Since the master problem is
based on the SIDBD cuts, considering expected SIDBD cuts
assures the convergence of the model.

The following shows the process of calculating the SIDBD
cuts. Based on the set of complicating variables (Nmv

b ⊆
Nub), we have 2N

mv

b SIDBD cuts. At each iteration, the value
of Γrn, which is the tightest bound to the master problem,
is determined based on the optimal values of complicating
variables αUP

ubr
∗ and αDW

dbr
∗ in the sub-problem solutions using

the concept of strong inference duality in Theorem 3.

Γrn =
∑

b∈ITS

(∑
u∈Nub

¯̄αUP
ubrn +

∑
d∈Ndb

¯̄αDW
dbrn

)
+

Eω

(∑
b∈NTS

UP

fb(
¯̄PTS
gbrntω

− P̂TS
gbt

) +∑
b∈NTS

DW

πRD
btω fb(P̂

TS
gbt

− ¯̄PTS
gbrntω

)+∑
b∈ITS

∑
d∈Ndb

¯̄FDWT
dbrntωπ

DW
dbtω+∑

b∈ITS

∑
u∈Nub

¯̄FUPT
ubrntωπ

UP
ubtω

)
(11a)

where, ¯̄αUP
ubrn and ¯̄αDW

dbrn represents the enumeration of the
complicating variables, and ¯̄FUPT

ubrntω , ¯̄FDWT
dbrntω , and ¯̄PTS

gbrntω
are

calculated through following equations.

¯̄FUPT
ubrntω = {FUPT

ubrtω

∗| ¯̄αUP
ubrn

Ω∗
7−−−→ Y21,ubrtω

∗}, (11b)

∀ b ∈ ITS , u ∈ Nub, t ∈ T, n ∈ {1, .., 2N
mv

b }, r ∈ IT

¯̄FDW
dbrntω = {FDWT

dbrtω

∗| ¯̄αDW
dbrn

Ω∗
7−−−→ Y22,dbrtω

∗}, (11c)

∀ b ∈ ITS , d ∈ Ndb, t ∈ T, n ∈ {1, .., 2N
mv

b }, r ∈ IT

¯̄PTS
gbrntω

= {PTS
gbrtω

∗| ¯̄αUP
ubrn

Ω∗
7−−−→ βUP

b

∗}, (11d)

∀b ∈ NTS
UP , i ∈ IDS

b , t ∈ T, n ∈ {1, .., 2N
mv

b }, r ∈ IT

¯̄PTS
gbrntω

= {PTS
gbrtω

∗| ¯̄αDW
dbrn

Ω∗
7−−−→ βDW

b

∗}, (11e)

∀b ∈ NTS
DW , i ∈ IDS

b , t ∈ T, n ∈ {1, .., 2N
mv

b }, r ∈ IT

Superscript ∗ shows the optimal solution of the sub-problem.
Symbol −→ represents the implication with respect to Ω7

∗.
Algorithm 1 explains the process of our proposed SIDBD
algorithm.

In summary, using the theorem of strong inference duality
(see Appendix VII), our proposed SIDBD algorithm can
handle situations where the sub-problem has binary variables.
Our proposed sub-problem relaxation technique reduces the
number of SIDBD iterations significantly. Furthermore, the
indicator constraints method effectively handles the inclusion
of constraints in mathematical optimization models by di-
rectly incorporating logical conditions. This approach ensures
that the constraints are satisfied without introducing large
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Algorithm 1 Inference-Dual-Based Decomposition Algorithm
1: complicating variables: αUP

ubr and αDW
dbr

2: initial guess: αUP
ubr ← α

UP(0)

ubr , LB ← −∞ , UB ←∞, r ← 1

3: while (UB − LB) ≥ ϵ do
4: if (r ̸= 1) then
5: solve: MLLP master problem (10)

6: g∗rn ← grn, LB ← new LB, g∗rn =⇒ (αUP
ubr

∗ ∨ αDW
dbr

∗
)

7: end if
8: solve: Stochastic linear logic− based sub− problem (8)

9: keep optimal values: Ω7
∗ ← Ω7, UB ← new UB ,

10: for n← 1 to 2N
mv
b do

11: (¯̄grn ← 1) =⇒ ( ¯̄αUP
ubrn ∨ ¯̄αDW

dbrn)

12: ( ¯̄αUP
ubrn ∨ ¯̄αDW

dbrn)
Ω∗

7−−−−→ (Y21,ubrtω
∗ ∨Y22,dbrtω

∗ ∨βUP
b

∗ ∨
βDW
b

∗
)

13: calculate (11a): Γ(r+1)n ← Γrn, ¯̄grn ← 0
14: end for , r ← r + 1
15: end while

parameters (big-Ms) and the associated challenges of finding
appropriate values for them.

IV. CASE STUDIES

A. Test System

Here, we evaluate the performance of the proposed SIDBD
algorithm in finding the solution to a two-stage stochastic
TSO-DSO-Retailer operational coordination problem using a
modified IEEE 118-bus test system which is connected to two
modified IEEE 33-bus test systems at its bus No.102 and bus
No.109. A case study with conflicts among the objectives
of service buyers is considered to evaluate the proposed
schemes and methods. In order to assess the effectiveness of
the proposed SIDBD algorithm in managing the coordination
between TSOs, DSOs, and retailers on a larger scale involving
more than two DSOs, we conducted additional case studies
encompassing three, five, and ten DSOs.

Using the proposed algorithm in [34], a proper number of
scenarios are generated considering uncertainty sources in-
cluding the aggregated load consumption and RES generation,
and the submitted offer functions by the service providers.
Table I depicts the expected amount of available flexibility
services in two considered DSOs. We used the MIP solver
CPLEX in the GAMS platform. Our computer had Intel Core
i7-8650U (2.11 GHz), and 16GB of RAM.

TABLE I
EXPECTED AVAILABLE FLEXIBILITY SERVICES IN THE CASE STUDY

Distribution network Node Turn-Down Turn-up

DSOA

No.07 DR1(0.2MW ) WT1(11.3MW )
No.08 DR2(0.6MW ) PV1(4.5MW )
No.24 DR3(0.3MW ) PV2(8.3MW )
No.30 DR4(0.7MW ) WT2(7.8MW )
No.32 DR5(0.4MW ) PV3(5.5MW )

DSOB

No.07 DR2(0.4MW ) PV1(7MW )
No.24 DR2(1.4MW ) PV2(7.1MW )
No.25 DR3(1.3MW ) PV3(9.7MW )
No.32 DR4(0.8MW ) WT (12.5MW )

We consider a case study that deals with a situation in
DSOA that the load consumption is unpredictably decreased

at buses No.23−25 and buses No.30−32, and it is increased at
buses No.20−22 and No.12−15. As a result of the considered
case study, there are load increments and surplus renewable
energy generation, simultaneously. Accordingly, TSO, DSO,
and retailers procure flexibility services to cope with possible
problems including congestion, energy imbalance, voltage
stability, and unexpected increments of cost in their regions.

B. Results and Discussions

We consider eight hours of system operations to evaluate
the performance of the proposed SIDBD algorithm and coor-
dination frameworks.

1) Performance of the Proposed SIDBD Algorithm: Ta-
ble II presents the performance of our SIDBD algorithm,
showcasing its results in terms of the number of DSOs,
variables, equations, convergence time, and IDBD’s iterations.
The table includes comparisons with and without incorporating
our proposed sub-problem relaxation technique.

TABLE II
THE PERFORMANCE OF OUR PROPOSED SIDBD ALGORITHM FOR

DIFFERENT NUMBERS OF DSOS

Quantitative Criteria Number of DSOs

2 3 5 10
Total Number of Variables 110,276 147,430 208,761 375,984
Total Number of Discrete Variables 403 588 929 2175
Number of Complicating Variables 10 10 15 20
Number of Equations 20,905 28,145 44,532 87,341
Iterations without SP Relaxation 490 521 677 1108
Iterations with SP Relaxation 7 7 8 9
Execution time without SP Relaxation 462 (s) 641 (s) 912 (s) 1486 (s)
Execution time with SP Relaxation 193 (s) 230 (s) 310 (s) 491 (s)

The results unequivocally establish the effectiveness of
the proposed SIDBD algorithm in effectively addressing the
intricate problem of large-scale coordination among TSO,
DSOs, and retailers within a reasonable execution time. Impor-
tantly, the SIDBD algorithm exhibits remarkable performance
regardless of whether subproblem relaxation is considered. Re-
markably, the inclusion of subproblem relaxation significantly
enhances the SIDBD algorithm by substantially reducing the
number of iterations and execution time.

The complexity of our optimization problem becomes ap-
parent when considering the substantial increase in the total
number of variables, which escalates from 110,276 in the
scenario involving two DSOs to 375,984 variables in the
case involving ten DSOs. Furthermore, the number of binary
variables and equations experiences a significant surge. Conse-
quently, it is evident that our optimization problem comprises
an abundance of variables and an extensive range of equality
and inequality constraints.

Table 1 illustrates the varying execution times associated
with different case studies involving interconnected DSOs. It
is evident from the perspective of CPU execution time that
the utilization of subproblem relaxation reduces the execution
time across all case studies. It is crucial to emphasize that
the results presented herein are predicated on arbitrary values
employed solely for the purpose of evaluating the performance
of the proposed method. The ability of TSO and DSOs
to accommodate EERs in their respective systems and the
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efficacy of these services in providing flexibility will invariably
depend on the specific circumstances and conditions.

Furthermore, it is noteworthy that our model incorporates
an AC-OPF model, which encompasses the inclusion of
constraints pertaining to the voltage at the DSO level. This
essential inclusion not only renders the problem more realistic,
but also introduces a heightened level of complexity to the
optimization process.

In the ensuing sections of this paper, we meticulously
investigate and analyze the efficacy of the SIDBD algorithm
in addressing the intricacies of large-scale coordination among
TSO, DSOs, and retailers. Through an in-depth case study in-
volving two DSOs, we comprehensively evaluate the outcomes
derived from the implementation of the SIDBD algorithm.

Table III shows the performance of our SIDBD algorithm
for different numbers of complicating variables from conver-
gence time and the number of IDBD’s iterations viewpoints
with and without considering our proposed sub-problem re-
laxation technique.

TABLE III
EVALUATING THE PERFORMANCE OF OUR PROPOSED SIDBD
ALGORITHM ACROSS VARYING NUMBERS OF COMPLICATING

VARIABLES: A CASE STUDY WITH TWO DSOS

Quantitative Criteria Number of Complicating Variables

3 4 5 10
Number of SIDBD cuts 8 16 32 1024
Iterations without SP Relaxation 4 7 14 490
Iterations with SP Relaxation 2 2 3 7
Execution time without SP Relaxation 945 (s) 807 (s) 726 (s) 462 (s)
Execution time with SP Relaxation 519 (s) 411 (s) 322 (s) 193 (s)

As can be seen, the number of cuts increases by increasing
the number of complicating variables. The cuts related to
the combination of complicating variables with an infeasible
solution are defined as ”no-good” cuts. The proposed sub-
problem relaxation can find the no-good cuts without solving
the sub-problem corresponding to each combination of com-
plicating variables which in turn reduces the execution time
and the number of SIDBD iterations significantly, especially
when the number of complicating variables increases. For
instance, in the case of taking into account five complicating
variables, our proposed SIDBD algorithm finds the solution in
3 and 14 iterations with and without considering sub-problem
relaxation, respectively. Without sub-problem relaxation, the
SIDBD algorithm evaluates all cuts including the cuts related
to the infeasible solutions. As a comparator, considering sub-
problem relaxation in the master problem removes the cuts
related to infeasible conditions of the power balance equal-
ity constraints. Furthermore, using the proposed sub-problem
relaxation technique improves the performance of the IDBD
algorithm from the execution time viewpoint.

Table IV shows the 32 SIDBD cuts associated with all
enumerations of five complicating binary variables in DSOA.
As can be seen, at least four services should be activated in
order to satisfy the considered power balance constraint in
the proposed sub-problem relaxation technique. It means that
all combinations of the complicating variables with less than
four activated services will end up in an infeasible solution.

Consequently, the corresponding cuts to these combinations
are labeled as no-good cuts and excluded from the algorithm.

TABLE IV
RESULTS OF SIDBD ALGORITHM WITH FIVE COMPLICATING VARIABLES

IDBD
Cuts

State of flexibility service activation
in DSOA

Expected lower bound at
each iteration of SIDBD

No.07 No.08 No.24 No.30 No.32 First Second Third
Cut 1 0 0 0 0 0 no-good no-good no-good
Cut 2 0 0 0 0 1 no-good no-good no-good
Cut 3 0 0 0 1 0 no-good no-good no-good
Cut 4 0 0 1 0 0 no-good no-good no-good
Cut 5 0 1 0 0 0 no-good no-good no-good
Cut 6 1 0 0 0 0 no-good no-good no-good
Cut 7 0 0 0 1 1 no-good no-good no-good
Cut 8 0 0 1 0 1 no-good no-good no-good
Cut 9 0 1 0 0 1 no-good no-good no-good
Cut 10 1 0 0 0 1 no-good no-good no-good
Cut 11 0 0 1 1 0 no-good no-good no-good
Cut 12 0 1 0 1 0 no-good no-good no-good
Cut 13 1 0 0 1 0 no-good no-good no-good
Cut 14 0 1 1 0 0 no-good no-good no-good
Cut 15 1 0 1 0 0 no-good no-good no-good
Cut 16 1 1 0 0 0 no-good no-good no-good
Cut 17 0 0 1 1 1 no-good no-good no-good
Cut 18 0 1 0 1 1 no-good no-good no-good
Cut 19 1 0 0 1 1 no-good no-good no-good
Cut 20 0 1 1 0 1 no-good no-good no-good
Cut 21 1 0 1 0 1 no-good no-good no-good
Cut 22 1 1 0 0 1 no-good no-good no-good
Cut 23 0 1 1 1 0 no-good no-good no-good
Cut 24 1 0 1 1 0 no-good no-good no-good
Cut 25 1 1 0 1 0 no-good no-good no-good
Cut 26 1 1 1 0 0 no-good no-good no-good
Cut 27 0 1 1 1 1 331139 332938 331128
Cut 28 1 0 1 1 1 331128 332858 331140
Cut 29 1 1 0 1 1 331139 332991 331140
Cut 30 1 1 1 0 1 331139 333111 331140
Cut 31 1 1 1 1 0 330917 333111 330919
Cut 32 1 1 1 1 1 331139 333111 331140

In the first iteration, based on the objective function of the
master problem, cut 31 is selected which has the minimum
expected cost. For the further iterations, first, each cut is
updated with the maximum expected value for all iterations
so far. Second, the master problem selects a cut with the
minimum expected value. Consequently, in the second and
third iterations, cut number 28 is selected which has the
minimum expected value. The summary of this process is
shown in Table V.

TABLE V
SELECTED CUTS IN SIDBD ALGORITHM

SIDBD Iteration Selected Cut Expected Lower Bound ($)
First Cut 31 330917
Second Cut 28 332858
Third Cut 28 332858

Fig. 6 depicts the convergence of the proposed SIDBD
algorithm with sub-problem relaxation for the case with
four advisory intervals and five complicating variables. The
proposed SIDBD algorithm has been converged into three
iterations.

Since using our proposed sub-problem relaxation technique
only removes the infeasible conditions related to the power
balance equality constraints, the number of iterations in the
case of ten complicating variables equals seven. In fact, our
sub-problem relaxation technique cannot find all no-good
cuts. The proposed sub-problem relaxation technique can be



14

Fig. 6. The convergence of the SIDBD algorithm with five complicating
variables using our proposed sub-problem relaxation technique.

enhanced to find the infeasible conditions related to all equality
and inequality constraints which is the scope of our future
work.

From the stochastic optimization viewpoint, we can employ
parallel computing techniques since each scenario is optimized
individually and independently. Consequently, the utilization
of parallel computing, which is one of the main advantages of
our developed SIDBD algorithm, decreases the computation
time for large-scale optimization problems, significantly.

2) System Operation Cost: This section presents the find-
ings of a comparative analysis that demonstrates the effec-
tiveness of our proposed framework, namely the embedded
DSO-Retailer activation mode with bilevel programming, in
contrast to the exogenous DSO-Retailer activation mode utiliz-
ing single-level programming in the current electricity market.
In the exogenous model, the activation of DSO flexibility is
treated as a stochastic exogenous parameter, resulting in the
deduction of the anticipated DSO flexibility activation from
the total available services for the TSO. This deduction relies
on prior knowledge of net energy transactions between the
TSO and DSO, encompassing renewable energy output and
the requested energy exchange between the TSO and DSO.

TABLE VI
EXPECTED SYSTEM OPERATION COST

Operation
Time

Exogenous DSO-Retailer
Activation Model

Embedded DSO-Retailer
Activation Model

Single-Interval Four-Interval Single-Interval Four-Interval

t1 82393.8 ($/h) 82430.8 ($/h) 83837 ($/h) 83936 ($/h)
t2 83107.2 ($/h) 83136.0 ($/h) 83766 ($/h) 83732 ($/h)
t3 80898.6 ($/h) 80936.4 ($/h) 82928 ($/h) 82934 ($/h)
t4 Infeasible 88288.6 ($/h) 82931 ($/h) 83164 ($/h)
t5 Infeasible 83103.9 ($/h) 83603 ($/h) 83047 ($/h)
t6 Infeasible 85966.8 ($/h) 83512 ($/h) 83044 ($/h)
t7 Infeasible 85117.0 ($/h) 83315 ($/h) 83061 ($/h)
t8 Infeasible 82323.5 ($/h) 83636 ($/h) 83673 ($/h)

Total - 671303 ($) 667529($) 666593($)

The results presented in Table VI demonstrate that the
proposed embedded DSO-Retailer activation model consis-
tently obtains feasible solutions across all generated scenarios.
The look-ahead multi-interval framework improves the system
operation cost and helps the system operator find feasible solu-
tions compared to the single-interval framework. Additionally,
the embedded model reduces system operation costs compared
to the exogenous model. Therefore, hereafter, all the results
are related to the embedded DSO-Retailer activation model
with four intervals.

3) Flexibility Service Activation: As shown in Table VII,
there are conflicts between TSO, DSO, and retailers to procure
their flexibility services of need. The TSO intends to activate
turn-up services due to the surplus energy in the transmission

system which makes congestion and voltage problems. On
the other side, unlike TSO, DSO tries to activate turn-down
services due to the load consumption increment in some
parts of the distribution network which makes congestion and
voltage problems. At the same time, the retailers compete with
DSO to activate turn-down services to decrease their costs.

TABLE VII
EXPECTED FLEXIBILITY SERVICE ACTIVATION AT DSOA

Time TSO service
activation (MW)

DSOA service
activation (MW)

Retailers service
activation (MW)

Up Down Up Down Up Down

t1 8.5 - - 0.6 - 0.2
t2 4.4 - - 0.2 - 0.6
t3 4.7 - - 0.2 - 0.6
t4 12.4 - - 0.6 - 0.2
t5 10.5 - - 0.2 - 0.6
t6 12.1 - - 0.2 - 0.6
t7 10.4 - - 0.2 - 0.6
t8 13.4 - - 0.2 - 0.6

DSO and Retailers activate the available turn-down services
at bus No.7 and bus No.8 in the distribution network. The
summation of the expected value of available turn-down
service at buses No.7 and No.8 equals 0.8 MW at each time
of operation in our case study. The results show that our
proposed framework, market scheme, and SIDBD algorithm
can properly manage the situation with conflict of interest
between the service buyers.

4) Payoff Mechanism: Our proposed operational coordina-
tion scheme mitigates the conflict between different buyers.
However, gaming strategies may occur since the valuations
of the service buyers are interdependent. For instance, if
TSO activates a turn-up or turn-down service, it can be
indirectly beneficial for the other service buyers without any
cost. Accordingly, this condition leads to a free-rider strategy
where any of the service buyers can anticipate the actions
of others for their own benefit. Consequently, we proposed
the expected Shapley value calculation to allocate the cost of
service activation among the beneficiaries in the coalition in
a fair way.

Table VIII compares the results of the proposed expected
Shapley value method and the pay-as-bid mechanism in
the TSO-DSO-Retailer operational coordination problem.

TABLE VIII
PAYOFF MECHANISM FOR FLEXIBILITY SERVICE ACTIVATION

Time Total
Cost ($)

Expected Cost Without
Shapley value($)

Expected With
Shapley value($)

TSO DSO Retailers TSO DSO Retailers

t1 114.78 105.82 7.04 1.92 30.95 41.91 41.91
t2 103.91 88.55 3.68 11.68 26.12 38.90 38.90
t3 107.46 94.34 3.52 9.6 59.34 24.06 24.06
t4 245.47 232.35 9.92 3.20 68.69 88.39 88.39
t5 231.53 216.18 3.84 10.88 65.37 82.76 82.76
t6 249.38 234.66 3.84 10.88 71.18 89.1 89.1
t7 266.47 246.75 3.84 10.88 79.95 93.26 93.26
t8 277.66 263.42 3.52 10.72 82.69 97.49 97.49

As mentioned above in Table VII, TSO activates the turn-
up services, and DSO and retailers activate the turn-down
services. Aligned with Table VII, the results in Table VIII



15

represent that without considering the expected Shapley value,
TSO should pay a higher portion of the costs. However, the
proposed payoff mechanism based on the expected Shapley
value method demonstrates that DSO and retailers are benefi-
ciaries of the activated services by TSO. For instance, without
considering the proposed expected Shapley value, TSO should
pay 263.42 $ for the turn-up service activation at time t8 which
is 94.87 percent of the total service activation costs. As a
comparator, since our proposed payoff mechanism allocates
the cost pro-rata to the actual impacts of participants in a
coalition in a fair way, TSO should pay 82.69 $ which is
corresponding to its actual impacts on the system operation.
We have also obtained almost the same results for times t1 to
t7. Furthermore, utilization of the proposed payoff mechanism
shows that DSO and the aggregated retailers have the same
impacts on the system operation from the flexibility service
activation viewpoint. This results in the fact that the costs of
service activation are the same for both.

Therefore, our payoff mechanism properly allocates the cost
of service activation among the beneficiaries in a fair way,
according to their actual impacts on the system operation.

V. CONCLUSION

In this paper, the Inference-Dual-Based Decomposition
(IDBD) algorithm is developed for a two-stage stochastic
TSO-DSO-Retailer operational coordination problem consid-
ering a new organizational setup based on the introduced
concept of the FMO. A new sub-problem relaxation technique
is presented for decreasing the number of iterations and
the execution time of the SIDBD algorithm. A new payoff
mechanism is proposed based on the expected Shapley value
method to allocate the cost of service activation in a fair way.
The results show that the proposed SIDBD algorithm manages
the coordination problem especially when there are conflicts
of interest between the service buyers. The proposed sub-
problem relaxation reduces the execution time for finding a
solution to a large-scale MLLP problem. Finally, the payoff
mechanism allocates the cost of service activation among the
service buyers based on their actual impacts on the system
operation which, as a result, eliminates the free-rider strategy.

VI. FUTURE WORK

In this paper, we focused upon solving the TSO-DSO-
Retailer coordination for market arrangements typical of the
European context. However, we conjecture that with suitable
adaptations, the coordination mechanisms can, in principle,
be applied to other competitive and regulatory situations,
as in North America and elsewhere. This is because the
proposed solution algorithm is quite general and it can be
applied to solving any bilevel program with binary variables
in both upper and lower levels. We suggested the inference-
dual theory instead of the value-function theory to handle the
bilevel optimization problems which have binary variables at
the lower level. Although, we have explained our Inference-
Dual-Based Decomposition (IDBD) algorithm in the context
of the TSO-DSO-Retailer application, however, the underlying

solution algorithm is quite general and it can be tested for other
applications beyond this coordination issue.

The authors are presently engaged in developing a fuzzy
inference-dual-based decomposition algorithm, aiming to cir-
cumvent the necessity of assigning binary variables to service
activations.

VII. APPENDIX

Using the definition of implication in [35], we define the
concept of inference dual as follows:

Definition 3. Consider the optimization problem P1 =
{Minimize f(x) : x ∈ S, x ∈ D} with feasibility set
S and domain set D. The inference dual is defined as the
problem of inferring the possible tightest lower bound on
the optimal value of the objective function f(x) from the
constraints (x ∈ S). The inference dual of P1 is as follows:
P2 = {Maximize ψ : x ∈ S

D−→ f(x) ≥ ψ}.

Consequently, with regards to the above definition, the
strong duality theorem is introduced as follows.

Theorem 3. Strong inference duality: The optimization prob-
lem P1 and its inference dual problem P2 have the same
optimal values.

Proof. See [2], page 12, Proof of Theorem 1.
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