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Introduction

There is considerable interest today in the potential for collaboration between
humans and artificial intelligence (henceforth, AI) technologies. Contemporary AI is
based on machine learning (henceforth, ML) techniques that allow computers to learn
solutions from data rather than be explicitly programmed (Bishop & Nasrabadi, 2007;
Goodfellow, Bengio, & Courville, 2016; also refer to Csaszar & Steinberger, 2021 for
a review of the literature). While the core concept is not new, recent algorithmic advances
coupled with expansion in processing power and the ever-increasing availability of
digital data have made AI viable in ways that were not possible before, resulting in a
wave of enthusiastic adoption with various applications spanning research and practice.
Organizations have started exploring how to improve managerial performance by
employing a combination of humans and AI—rather than either alone—to tackle a
variety of problems, and scholars have begun to study the antecedents and consequences
of such efforts (e.g., Murray, Rhymer, & Sirmon, 2020; Shrestha, Ben-Menahem, &
Krogh, 2019).

A characteristic of prior attempts to combine humans (henceforth, H) and AI to perform a
task1 has been the emphasis on division of labor with specialization. Specialization implies that
H and AI perform different (sub-)tasks and their distinct outputs are then combined to gen-
erate the final output.2 Division of labor with specialization involves redefining the task divi-
sion and task allocation between agents to exploit their respective advantages, in terms of
superior output and/or lower cost of labor (Canetti et al., 2019; Holzinger, 2016; Murray
et al., 2020; Dastin, 2018). Consider, for instance, a hiring task that involves two sub-tasks:
screening the application pool and interviewing selected candidates. AI can be used to auto-
mate the first sub-task by screening applicants’ resumes and shortlisting candidates, and H to
conduct in-depth interviews of the selected few (Pessach et al., 2020). A more subtle form of
specialization involves H checking the work of AI or training it (on the presumption that H
has superior capabilities to do so). In sum, division of labor with specialization arises
when an original task can be decomposed into sub-tasks and those can be allocated across
actors based on their relative competence. As we will show, the wide variety of H-AI collab-
oration literature (including work on the “human in the loop” configuration, e.g., Holzinger,
2016; Ostheimer, Chowdhury, & Iqbal, 2021) implicitly assumes a division of labor with
specialization.

However, division of labor with specialization is not the only possibility for H-AI collab-
oration. In this paper, we consider an alternative that has relevance when the task involves
decision-making based on a prediction: A division of labor without specialization. The
idea of aggregating the predictions of multiple decision makers tackling the same decision
problem has a rich heritage in the literatures on human decision-making (Nisbet, Elder, &
Miner, 2009; Page, 2010, 2014; Tumer & Ghosh, 1996) and in computer science on aggre-
gating multiple prediction models (e.g., Polikar, 2012; Sagi & Rokach, 2018; Zhang & Ma,
2012). In keeping with the latter, we use the term “ensembling” to denote aggregation of pre-
dictions from multiple models applied to the same prediction problem (Sagi & Rokach,
2018).3 In this form of division of labor, H and AI tackle the same prediction problem, but
their different predictions are aggregated in some way (e.g., by averaging for estimation prob-
lems; quorum, plurality, or unanimity for classification problems) to arrive at a final output
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(Puranam, 2021). Whereas specialization requires H and AI to perform distinct (sub-)tasks,
ensembled H and AI tackle the same task (Csaszar & Steinberger, 2021: 20).

The concept of ensembling H-AI is orthogonal to the ideas of “augmentation” and “auto-
mation” (Raisch & Krakowski, 2020) and can result from either, as we also show in this
paper. Augmentation of a set of human workers occurs when an AI is added to the
humans to improve the performance of a task. Automation, on the other hand, implies that
algorithms replace (at least some) humans in performing the task. Ensembling can be
achieved through augmentation if AI is added to (a group of) humans, or thorough automation
if AI replaces (some but not all) humans in the group (refer to Table 1 for an illustration).

The appeal of ensembling is the potential for improving decision accuracy when decision
makers vary in the errors they make on the same task (Nisbet et al., 2009; Page, 2010, 2014;
Steyvers, Tejeda, Kerrigan, & Smyth, 2022; Tumer & Ghosh, 1996). This diversity in errors
can (although need not always) be beneficial when two agents make opposite prediction
errors: one underestimates and the other overestimates the outcome value. Their respective
errors cancel each other out, resulting in the average predicted value being closer to the
true value. However, while the literature so far has considered ensembles consisting of
only H (henceforth, H-H, e.g., the wisdom of crowds) or only AI (henceforth, AI-AI, e.g.,
bagging models), ensembled decision-making involving a combination of H and AI (hence-
forth H-AI) has not received as much attention.

In this paper, we argue that H-AI ensembles have qualitatively distinctive features com-
pared to H-H and AI-AI (where the latter can be treated as a single AI meta-algorithm).
The unique value added by H to H-AI ensembles lies in their hard-to-externalize data—com-
monly associated with expertise, intuition, gut-feeling, judgement, and life experience. In
contrast, what AI uniquely adds to the H-AI ensemble is the potential to estimate the best
fitting function—of arbitrary complexity—that can describe the data it has access to. This
combination produces some unique characteristics of the H-AI ensemble, which we study
in this paper.

Table 1

Use of Augmentation and Automation for Different Forms of Division
of Labor: The Case of Hiring

Tasks Performed by Different Agents Have Same
Goal and Outcome [Ensembling, That Is,
Non-Specialization]

Tasks Performed by Different Agents Have
Different Goals and Outcomes [Specialization]

Augmentation Newly added AI to a team of two H to make a
decision on whether the candidate should be
hired for the job; their predictions are aggregated
to make a final decision (see Panel C in
Figure 1).

Newly added AI decides whether the job
candidate reaches a threshold on a set of
quantifiable skills that are required for the
job. The two H then make the final decision
on whether to hire the candidate.

Automation AI that replaces one of the H (i.e., H2) and the
remaining H (i.e., H1) both make a decision on
whether the candidate should be hired for the
job; their predictions are then aggregated to
make a final decision (see Panel B in Figure 1).

AI that replaces one of the H (i.e., H2) decides
whether the job candidate reaches a threshold
on a set of quantifiable skills that are required
for the job. H1 then makes the final decision
on whether to hire the candidate.
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While our arguments are applicable to many prediction tasks, in the managerial context
they are most relevant to “project evaluation in data-rich contexts.” This refers to the task
of evaluating a set of alternatives, whose performance can be predicted (and eventually
assessed through widely agreed accuracy metrics) on the basis of their features, to ultimately
make a choice on which one to select, or how to allocate resources across them (e.g.,
Christensen & Knudsen, 2010; Csaszar & Ostler, 2020; Sah & Stiglitz, 1985, 1986, 1988).
Project evaluation has been used to model the overall decision-making process of managers
and firms (e.g., Christensen & Knudsen, 2010; Csaszar & Ostler, 2020), and describes a
variety of managerial decision-making scenarios, such as decisions related to hiring employ-
ees, investing in projects, selecting suppliers and strategic partners, acquiring firms, or
launching new products (Csaszar & Ostler, 2020).

There are many project evaluation problems where AI cannot (yet) outperform human
decision-making because the underlying structure of the decision problem is unknown and
not enough data is available to study past behavior and patterns to approximate that structure
in a sufficiently accurate manner (Bao, Diabat, & Zheng, 2020). A division of labor with spe-
cialization may be unsuitable in this case if the AI offers no clear advantage by taking over a
(sub-)task from H. However, since human managers might also often be inaccurate in their
decision-making (Csaszar & Steinberger, 2021), these problems may still be suited for ensem-
bling between H and AI. In other words, by aggregating the decisions of H and AI—even if
AI is inferior to H—the ensembled prediction-based decision can be more accurate than
relying on either one alone.

Ensembles can particularly benefit managerial decision-making as, for this class of prob-
lems, improvements in decision accuracy often lead to significant economic returns, even

Figure 1
Ensembling Through Automation or Augmentation
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with modest improvements in accuracy (Agrawal, Gans, & Goldfarb, 2018; Athey, 2018;
Cockburn, Henderson, & Stern, 2018). Moreover, unlike the division of labor with special-
ization, ensembling is easier to reverse since the counterfactual is always observable in
terms of performance (accuracy in decision-making) that H and AI independently achieve.
This flexibility may be particularly useful in managerial decision contexts when the task envi-
ronment is changing rapidly.

Unlike a descriptive theory that explains observed phenomena, our theory is a normative
one; we cannot yet point to widespread use of ensembles between humans and AI for
prediction-based decisions (although there are several instances of the use of AI alone,
which we discuss). The recent breakthroughs in generative AI and their rapid adoption
across organizations4 suggest that there may be value in pre-emptive theorizing to anticipate
and perhaps guide developments in practice. Therefore, we offer theoretical predictions based
on internally consistent arguments about what should occur (i.e., work better), rather than
why we already observe a particular empirical pattern (Santos & Eisenhardt, 2005).
Specifically, as a design theory, our paper is forward looking, describing possibilities that
have yet to be realized or carefully examined in practice. Following Simon (1996), we
believe that such an approach to theory can contribute to progress in a design-centric
science such as organization design, to which our theorizing adds by explicating the condi-
tions for successful collaboration between agents—human and artificial—in a system with
the objective of making good decisions based on predictions (Burton & Obel, 1984;
Mintzberg, 1979).

Prior Literature on H-AI Collaboration in Decision Tasks

In this section, we review the relevant literature on how H and AI can be combined for
prediction-based decision-making. We first highlight the close link between prediction and
decision-making, and why AI algorithms, despite their considerable power at prediction
tasks, do not prove universally superior to human decision makers. Next, we review research
pertaining to the gains from specialization of H and AI to sub-tasks they are each superior at,
as well as the literature on the use of H as superior decision makers that can act as gatekeepers
or trainers of algorithms. We conclude this section by noting that the possibility of ensem-
bling between H and AI—which involves neither specialization nor AI superiority to H in
predictive accuracy—has so far remained under-explored.

AI as an Aid to Prediction and Decision-making

All decisions under uncertainty ultimately require prediction (Agrawal et al., 2018),
although a prediction may not be enough to make a decision (Bertsimas & Kallus, 2020).
For instance, when evaluating projects to select between alternatives—for example, which
candidate to hire, which project to invest in, or which course of action to pursue for a
given strategy—the decision maker predicts the corresponding outcome of each available
option and selects the alternative most likely to yield the best outcome. Decisions may
involve predictions in the form of (i) estimation (i.e., deciding on the value of a variable,
for instance how much to invest in a new project), or (ii) screening (e.g., accepting or rejecting
a proposal, such as hiring a candidate for a particular job). Estimation is also referred to as a
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“regression” problem, and screening as a “classification” problem in the AI literature (Hastie,
Friedman, & Tibshirani, 2009).

Existing research documents that AI algorithms can be helpful in tackling decision prob-
lems involving regression and classification.5 In contrast to traditional optimization algo-
rithms, such as branch and bound, dynamic programming, and integer programming used
in the development of expert systems (a form of “traditional” AI) based on exact predeter-
mined rules to identify a solution (Kanet & Adelsberger, 1987; Lee, Chen, &Wu, 2010), con-
temporary AI algorithms that are based on ML (which we focus on in this paper) do not
require as much a priori knowledge of the problem structure, or clearly defined rules, to gen-
erate a solution. Instead, they can approximate it based on models fit to data. In other words,
contemporary AI algorithms assume a certain problem structure and fit and evaluate a set of
possible models using the data.6 Such assumptions are defined using a set of model param-
eters that include, for instance, the degree of interaction between input features, the
weights assigned to each input, the non-linearity in the relationships, and so forth. These
parameters determine how much each feature will contribute to the final prediction. On the
other hand, hyperparameters are top-level parameters that control how the model learns
and determine the range of model parameters that the algorithm will estimate (Hastie et al.,
2009). Hyperparameters are chosen and set by the analyst before the training of the model
even begins, and include, among other factors, the learning rate and stopping rule of the
algorithm.

It is this freedom from predetermining exact rules that has allowed the development of
complex AI algorithms and driven the recent AI advancements. The most powerful results
in terms of predictive accuracy so far have been generated by AI that consists of ML archi-
tectures known as “deep neural networks” or “deep learning models,” that is, multi-layered
complex stacks of artificial neural networks (LeCun, Bengio, & Hinton, 2015).7 The
notable recent advancements in generative AI and related foundation models also rely on
deep neural networks trained on large quantities of unlabeled data (e.g., a large part of the
internet and public text corpora), at scale and in parallel, using hundreds of computers
(Bommasani et al., 2022; Longoni, Fradkin, Cian, & Pennycook, 2022). These deep learning
networks specifically rely on advanced “transformer” architectures (Vaswani et al., 2017),
and aim to imitate attention-directing mechanisms in human cognitive systems (Shaw,
Uszkoreit, & Vaswani, 2018). Our focus in this paper is also on AI algorithms based on
neural network architectures, although we exclude generative AI applications for reasons
detailed in Section 5.1.

A well-known set of theorems prove the existence of neural network architectures that can
effectively capture arbitrarily complex patterns in a dataset. These are broadly known as
Universal Approximation Theorems (henceforth, UATs; for details see Kratsios, 2021).
These theorems demonstrate the power of neural networks in approximating (or
reverse-engineering) any arbitrary function to an arbitrary level of precision using data gen-
erated from that function. Sequential combinations of linear and non-linear components in a
neural network guarantee that there exist networks such that, for every possible input x, the
network can reproduce the value f(x) (or its close approximation) irrespective of the nature of
the function f.

Strikingly, the implication of such theorems is that, given sufficient data on the factors that
influenced past decisions and the outcome of the resulting decision, and sufficient computing
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power, an AI algorithm exists (specifically, in the form of a neural network architecture) that
can be at least as accurate as any other predictive model (including the ones possibly under-
lying human cognition) to forecast the outcome of future decisions that relies only on this
data. In other words, for a given data set, the theorems show that there exists a neural
network architecture that cannot be beaten in terms of accurately estimating the relationships
in that data set if it is large enough and computing power is not a constraint. This result
assumes continuous functional forms for the relationships in the data, but attempts are under-
way to generalize the results, and there already exist many practical solutions using neural
network architectures for discontinuous functional forms (Cao, Udhayakumar, Rakkiyappan,
Li, & Lu, 2021; Scarselli & Tsoi, 1998).

Given such power in function approximation, why do AI algorithms based on neural
network architectures not simply overwhelm and replace H in terms of making accurate data-
based predictions to support decisions (barring regulatory constraints)? There are at least two
important reasons. First, the existence of the neural network architecture guaranteed by the
theorems does not ensure it can be found within reasonable time and cost. For instance, it
has taken many years of research to build the complex neural network architectures known
as “transformers,” as well as the enormous amounts of data and costly computing infrastruc-
tures to build Large Language Models like GPT-3 and GPT-4. Training deep learning models
is also computationally expensive. For instance, the energy required to train GPT-3 is esti-
mated to be around 1.287 gigawatt hours, which is equivalent to the total electricity consumed
by 120 homes in the United States a year (Patterson et al., 2021). Nonetheless, it is true that
both data availability and computing power has been increasing dramatically in the recent
past.8 Second, even if we were to assume such constraints away, an additional and perhaps
more important reason why AI algorithms do not displace human decision makers lies in lim-
itations in terms of type—not just volume—of data. Not all relevant data can be captured and
codified in a way that can be used by AI algorithms (even if there were no data privacy con-
cerns). Indeed, exactly what the relevant data is for decision-making is itself often unclear.

For instance, consider a managerial prediction problem consisting of making hiring deci-
sions. Which aspect of the candidate’s resume interacts with the hiring manager’s life expe-
riences and expertise in shaping how they decide on whether to hire them or not? While the
information on the resume (e.g., the candidate’s education background, their work experi-
ence, and skills) can be potentially codified into data that an algorithm can process, the man-
ager’s life experiences (e.g., some form of intuition that evaluates the candidate for potential
job fit as well as compatibility within the team in a way different from the algorithm) may not.
If the latter is more important in determining the accuracy of the final decision, then, despite
the power of AI to produce highly accurate predictions based on the codified information
from the resume, it will not outperform—and may even be beaten by—H in terms of final
decision accuracy (i.e., making a good hire).

Such considerations have naturally so far led to a division of labor between H and AI that
involves specialization, where each takes on the (sub-)task at which they perform best. For
instance, AI can make predictions about effective hires based on comparing resumes of suc-
cessful past hires to resumes of current applicants, and H can form an assessment on a selected
pool based on interviews. Many firms now employ deep learning algorithms for resume
screening alongside their human teams.9 In addition to these, there are many other successful
implementations of deep learning in managerial tasks, such as expense approval, employee
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career feedback, task allocation, and pricing, to name a few. We refer the interested reader to
Table A1 in Appendix 1 for a list of successful practical AI applications to managerial tasks.

In sum, similar to any data-driven methodology, contemporary AI has its limitations, such
as the requirement of large amounts of data, time, and computational power required for
model training, the limited interpretability of outputs by H, the risk of adversarial attacks
and catastrophic forgetting, as well as high error rates due to function discontinuity. (We
refer the interested reader to Appendix 1 for further details on the limitations of deep learning
and current areas for improvements being explored by researchers. Table A3.1 in Appendix 3
also contains a glossary of technical terms used in this section and in the paper more broadly.)
Despite these limitations, deep learning-based AI has been effectively used in practice to take
on some tasks that it can perform in a manner demonstrably superior to H, or in tasks where its
outputs can be easily checked by H (as per the list in Table A1). We next review the literature
on these uses, which entail forms of specialization.

Assigning Sub-Tasks to AI

In an attempt to systematize the research on H-AI collaboration, Dellermann and col-
leagues (2019: 637) offer a conceptualization of socio-technological ensembles (also known
as collective or hybrid intelligence) as “using the complementary strengths of human intelli-
gence and AI, so that they can perform better than each of the two could separately.” The
authors also provide a useful taxonomy highlighting the main design dimensions of hybrid
systems, spanning task characteristics and task representation to learning paradigms and
types of H-AI interaction. The underlying logic in all these instances is based on division
of labor with specialization: Each agent performs different, non-overlapping sub-tasks
based on their respective capabilities (Agrawal et al., 2018, Section 6), in turn yielding eco-
nomic benefits related to cost effectiveness, speed of task performance, and expansion of
scale and scope (Iansiti & Lakhani, 2020). We refer the interested readers to the rich literature
review on hybrid intelligence in Akata et al. (2020).

The common idea underlying the logic of specialization is that H and AI take on tasks
they are distinctively better at performing (Jarrahi, 2018; Murray et al., 2020; Seeber et al.,
2020). For instance, across a range of applications (e.g., automated call centers where
language-understanding systems handle incoming queries; military drones that fire at
targets based on remote human decisions; facial-recognition systems that help immigration
officers identify suspicious travelers; image-recognition algorithms that help doctors diagnose
diseases), algorithms take over tasks that they do better or at least in a more cost-effective way
and with comparable quality to H. According to industry reports, these applications can gen-
erate outcomes two to more than six times better than those involving H or algorithms alone
on several tasks (Daugherty & Wilson, 2018).

Situations where “business as usual” as well as “unusual circumstances” need to be
handled are also suitable for division of labor with specialization. AI can deal with normal
decisions (“business as usual”) and H can intervene when a regime change (commonly
known as “data shift”) or a steep decline in the quality of AI decisions is detected (broadly
corresponding to “unusual circumstances”). Such a division of labor relies on the assumption
that: (i) the change is detectable, and (ii) under unusual circumstances, the task has changed to
one where H outperforms the AI. This could occur, for example, due to an exogenous shock
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that results in a drastically changed environment from the one used to train the AI. A case in
point is online pricing algorithms that failed to effectively predict customer behavior during
the COVID-19 pandemic, as the latter rapidly changed their travel and purchase behavior due
to unanticipated system shock caused by the pandemic itself (Garg, Shukla, Marla, &
Somanchi, 2021). Thus, in a dynamic environment, atypical issues can be escalated for
human oversight while AI can handle more typical situations (Attenberg, Ipeirotis, &
Provost, 2015; Kamar, 2016).

Approval and Training of AI Decisions by H

Another stream of literature has focused on identifying methods to incorporate input from
H (who are assumed to be superior decision makers compared to AI algorithms) to improve
the algorithm’s predictive performance. Studies in this domain (e.g., Jain, Munukutla, &
Held, 2019; Vellido, 2020) have covered applications in areas such as health imaging analysis
and keyword identification. This research can be broadly categorized into two streams accord-
ing to the type of H-AI interactions: (i) H as gatekeeper, and (ii) H “in the loop.” The role of H
in both configurations is to correct the AI’s errors and improve the predictive model with
human input.

As a gatekeeper, the human agent checks and approves the outcome from the AI to mit-
igate potential prediction errors. The human role is considered necessary, and blind reliance
on AI without human supervision may have negative consequences.10 Human intervention is
viewed as pivotal in these cases and, as gatekeepers, H have the final say in the decision. In
the human-in-the-loop (henceforth, HITL) configuration, H are focused primarily on the algo-
rithm training process to improve its accuracy (Holzinger, 2016). HITL configurations use
complementary strengths to combine H and AI in creating hybrid intelligence configurations
(Ostheimer et al., 2021), where H takes the role of trainer and is assumed to be endowed with
superior insight that can be used to correct the algorithm. The “active learning” framework in
the AI literature, where a learning algorithm improves its predictive accuracy by interactively
querying a user (H) to verify its prediction and label new data points with the desired outputs,
falls into this category (Settles, 2012). Unlike gatekeeping, in a HITL setting the goal is to
make AI as capable as H after being trained.

Both HITL and gatekeeping are also forms of division of labor with specialization,
meaning that the AI and H perform different tasks (e.g., AI makes a prediction and H
approves it, or H trains the AI), based on their comparative advantage.

Summary

The existing literature on H-algorithm collaborative decision-making emphasizes the ben-
efits from specialization (i.e., H and AI are each superior at different [sub-]tasks), including
the distinction between task performance and training/evaluation (e.g., the gatekeeper or
HITL configurations). In applications of the logic of specialization, at least some H are
replaced by AI for some sub-tasks (even if no H is made fully redundant). An important
risk of this replacement-based approach has been noted by Balasubramanian, Ye, & Xu
(2022), who highlight the dangers of short-termism and reduced variance within organiza-
tions. Specifically, such a replacement-based approach could also result in automated
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human capabilities being unintentionally removed from organizations (e.g., humans losing
navigation skills due to the ubiquity of GPS-based navigation).

In contrast, our aim is to describe how to combine H and AI-based algorithmic decision-
making when neither agent has a clear advantage over the other at a task or its sub-
components, and even if neither alone can attain satisfactory accuracy in making predictions
that underlie the relevant decisions. Such conditions characterize many managerial decision-
making contexts related to project evaluation. Whereas division of labor with specialization
(involving assigning some sub-tasks to AI or to H as gatekeeper/trainer) would logically be
ruled out in such cases, possibly leaving such decisions entirely in human hands for reasons of
tradition, trust, and legitimacy, we believe that ensembling offers an alternative and over-
looked path.

Theory: The Distinctive Benefits of H-AI Ensembles

The distinctive feature of ensemble decision-making is that all its members perform the
same prediction task, that is, there is no specialization (Anderson, 2019: 23; Brown, 2010:
1). Ideas relating to ensembles have been extensively studied in both ML (e.g., boosting,
bagging, stacking, cross-learning algorithms) and the social sciences (e.g., Condorcet’s
jury theorem, wisdom of the crowd, pooling of experts). The existing literature identifies ben-
efits not only from ensembling estimation tasks (e.g., Page, 2007), but also screening deci-
sions (e.g., through voting systems) and probabilities or quantile estimates in various ways
(Becker, Guilbeault, & Smith, 2021; Lichtendahl, Grushka-Cockayne, & Winkler, 2013;
O’Hagan, 2006; Ranjan & Gneiting, 2010; Thomas & Ross, 1980).

However, an attempt to understand how and when ensembling H and AI can be useful in
(managerial) decision-making is novel. We build on Steyvers and colleagues’ (2022) discus-
sion of the benefits of hybrid systems where H and AI work together for predictive accuracy,
as well as on the differentiation of H’s and AI’s errors in prediction.

We develop our theoretical arguments in three stages. First, we explain why diversity in pre-
dictions is necessary but not sufficient for ensembles, rather than just H or just AI decisionmakers,
to be useful. Next, we explain the source of diversity between H and AI predictions. This leads us
to identify the precise conditions under which H-AI ensembles will dominate pure H or pure AI
decision-making in project evaluation (Proposition 1). Finally, given that an ensemble between H
and AI can be formed either by AI replacing one of the existing H (automation) or by adding to
the existing H in a team (augmentation), we also derive the conditions under which the former is
more likely to add value than the latter (Proposition 2). While we describe our arguments in terms
of predictive accuracy, its most direct application in the domain of managerial decision-making is
for project evaluation in data rich contexts, such as hiring employees, investing in projects, select-
ing suppliers and strategic partners, acquiring firms, or launching new products (Christensen &
Knudsen, 2010; Csaszar & Ostler, 2020).

Why Diversity in Predictions Is Necessary (But Not Sufficient)
for Ensembles to Be Useful

Diversity in predictions (and therefore in prediction errors, i.e., the difference between the
predictions made and the actual outcome) made by agents is necessary but not sufficient to
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improve the accuracy of their ensembled prediction. The intuition is most simply expressed
for the case of a point prediction task, based on a result known as “ambiguity decomposition”
(Krogh & Vedelsby, 1995). This theorem exists in multiple fields related to statistics, with the
version given by Scott Page as the “diversity prediction theorem” being the most accessible
(Page, 2010), and widely popularized (by Surowiecki, 2005) as the “wisdom of the crowd.” It
posits that the error of a crowd’s estimate (which is the average of its members’ estimates) is
systematically lower than the average individual error (where the error is expressed as the
square of the difference between estimate and truth) as long as diversity (i.e., the sum of
the squared difference in estimates) across individuals is positive. The key expression can
be written as follows:

Crowd error = Average individual error–Diversity (1)

The ensemble (in this case, the crowd’s prediction) can thus be expected to always perform
better than the average accuracy of its members in a single estimation task, which represents
the right benchmark if one cannot hope to learn which of the ensemble members is likely to be
the most accurate (Page, 2010).

However, we might be interested in knowing whether ensembling can help us improve on
the best individual predictor, or how we could improve the ensemble’s accuracy.
Unfortunately, the identity in (1) neither guarantees that the crowd (i.e., the ensemble)
always beats the best (i.e., most accurate) individual, nor that increasing the diversity of
crowd predictions will necessarily increase its accuracy. The reason is that the two terms,
whose difference determines the crowd accuracy (i.e., average individual accuracy and diver-
sity) are not independent. Therefore, the crowd’s accuracy cannot be solely determined by its
diversity, but also requires a consideration of individual accuracy. This limits the usefulness
of the wisdom of the crowd approach to our arguments.

Table 2 illustrates the trade-off between average individual bias and diversity with an
example. Consider a Case (A) where two agents solve a prediction problem consisting of esti-
mating the true value of an outcome variable—that is, the length of a pole in meters—and
make predictions of 5 m and 6 m, respectively. If the true value of the pole length is 5 m,
then the first agent beats the crowd estimate, which predicts 5.5 m. Now, consider Case
(B), in which the second agent is replaced, and the new predictions made by the individuals
are of 8 m and 6 m, respectively. These predictions are more diverse than those made by the
agents in Case (A), corresponding to a gain in crowd diversity from 0.25 to one. However, the

Table 2

Trade-off Between Average Individual Bias and Diversity, Calculation Using the
Diversity-Prediction Theorem

Case
Individual
Predictions

Crowd Prediction
(Average)

True
Value

Crowd
Error

Average
Individual Bias Diversity

Does the Crowd Beat
the Best Individual?

A 5.00, 6.00 5.50 5.00 0.25 0.50 0.25 No
B 8.00, 6.00 7.00 5.00 4.00 5.00 1.00 No

Note. The best predictor is highlighted in bold.
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crowd prediction of 7 m (the average of the predictions of 8 m and 6 m) is less accurate than
the earlier prediction of 5.5 m (the average of 5 m and 6 m). This example highlights that
diversity alone is neither sufficient to improve ensemble accuracy nor does it guarantee
beating the best predictor.

To build ensembles that are superior to their best members, the principle of balancing
average individual errors (bias) against diversity is central in the extensive literature
on error cancellation with aggregation of predictions. This is well documented in the ML
literature (see Brown, Wyatt, Harris, & Yao, 2005; Ueda & Nakano, 1996, on the
“bias-variance-covariance decomposition”). For instance, methods have been developed to
balance average individual accuracy and diversity by identifying models with negative cor-
relations between their prediction errors (known as “NC learning,” see Table A3.1 in
Appendix 3 for a definition), which can lead to an ensemble with higher accuracy than
even the best member model (Reeve & Brown, 2018). Similarly, recent literature shows
that diverse errors and Bayesian learning can lead to improved accuracy of a hybrid H-AI pre-
dictor in a classification task (Steyvers et al., 2022). The intuition is not unlike that in the story
of the two statisticians who go out hunting, shoot, and miss their mark by the same amount in
opposite directions, but claim they succeeded (on average). Crucial to this story is that they
are both off the mark in different but self-cancelling ways. Appendix 2 gives details of three
broad classes of AI-AI ensembling, namely bagging, stacking, and cross-learning, and how
each balances individual bias and group diversity.

Group composition that leverages demographic diversity (as a proxy for prediction diver-
sity, see Hong & Page, 2004) is the primary mechanism for ensembling among H. Because of
differences in life experiences and cognitive capabilities, bringing a diverse group of individ-
uals together for making decisions (through rules such as pooling their estimates or voting)
can be seen as an attempt to use ensembling to improve on individual decisions through
error cancellation. Condorcet’s jury theorem also illustrates error cancellation based on aggre-
gation through voting (Condorcet, 1785). The theorem emphasizes both individual accuracy
and diversity: The probability of getting an incorrect decision through a majority vote dimin-
ishes by adding jury members who are each likely to be correct, at least better than chance,
because they are independent (i.e., diverse in their beliefs). This allows their probabilities of
being wrong to be multiplied and taken in the limit to zero (i.e., attaining accuracy far superior
to that of any individual).

In sum, across the variety of ensemble techniques studied in the literature, all ensembles,
whether among H or among AI, gain predictive accuracy by creating and aggregating diver-
sity in predictions and managing the trade-off between average bias and diversity. It is worth-
while reiterating that there is no theoretical guarantee that ensembles will always outperform
their best members. However, we do know that this outcome is more likely to arise when (a)
there is diversity in prediction errors made by different models, (b) each of which is at least a
“weak learner,” that is, at least marginally better than chance in its predictive accuracy
(Dormann et al., 2018; Reeve & Brown, 2018; Rougier, 2016; Schapire, 1990). For instance,
to be able to predict whether a coin will show heads or tails (in an experiment on Extra
Sensory Perception, for instance), a predictor would be a weak learner if their predictions
are accurate more than 50% of the time. Ensemble techniques, in general, try to simultane-
ously reduce bias and variance of such weak learners by combining several of them together
resulting in better performances. When the component models are either identical or do not
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perform better than chance, such enhancement in performance via ensembling is unlikely.
These are necessary but not sufficient conditions for ensembles to outperform their best
members (Dormann et al., 2018; Reeve & Brown, 2018).

Results from empirical studies are encouraging in showing that the conditions that make
ensembling advantageous over component models seem to be often, if not always, met. For
instance, in a series of experimental studies, Armstrong (2001) found that ensembles resulted
on average in error reduction by 12.5%, with the amount of error reduced ranging from 3% to
24%, as compared to individual decisions (also see Mendes-Moreira, Soares, Jorge, & Sousa,
2012). Džeroski and Ženko (2004) provide empirical evidence that ensembling performed
better than the best individual model in various classification tasks, such as disease diagnosis.
The Netflix contest11 has made the practice widely popular in applied ML. In this field, it is
common to try several models and compare the ensemble performance with those of the
member models, ultimately picking either the best member or the ensemble based on accu-
racy. This flexibility to easily “reverse” the decision to ensemble is one of its key distinguish-
ing features, compared to division of labor with specialization, where the counterfactual (i.e.,
non-specialized decision-making) is typically harder to observe after specialization has taken
place.

What H and AI Each Bring to an Ensemble

Given that diversity in prediction errors across its members plays such an important role in
an ensemble’s performance, it is useful to understand the two fundamental sources from
which it can arise: Different models and different data—as well as a combination of both dif-
ferences (Csaszar & Ostler, 2020; also see Simons, Pelled, & Smith, 1999).

The first source of diversity is the model used to make the prediction by the agents in the
ensemble, that is, the result of a process that involves converting data into a representation of
the prediction problem. For H, models refer to the mental representation of the prediction
problem, which is how H represents the environment and processes information while
making decisions (Csaszar & Laureiro-Martínez, 2018; Csaszar & Ostler, 2020). H learn
from experience, using forms of associative learning (Heyes, 2018). Biological and cultural
factors influence how they extract insight from a given set of data, that is, how much of it is
processed and how patterns are recognized. The models used by individuals to make predic-
tions from the same data may therefore vary systematically along demographic dimensions
(Phillips, Northcraft, & Neale, 2006).

In the case of AI, the model refers to the result of the ML process—the representation used
to summarize the patterns discovered in the data. Its components include the training process,
the loss function used, and the model architecture in terms of available hyperparameters. Just
as two H or two AI algorithms may differ in the models they learn from the same data, a H and
an AI algorithm may also differ from each other. Despite considerable progress in research in
neuroscience, we are yet to attain a reliable model of how H learn and make decisions (Baars
& Gage, 2013), and there is consensus that the AI algorithms in use today differ from the
models that H use to process data to make predictions, to an (as of yet) unquantifiable
degree (Blum & Blum, 2021; see also Hawkins, 2021).

The second source of diversity in prediction is access to data by the respective agents.
Even when using the same underlying model, two H or two AI can arrive at diverse
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predictions if they access different data. If we denote the data that can be codified into a digital
format and made available to AI for training as “Data Type I,” then this type of data is, by
definition, also accessible to H (even though they may not be able to process it as effectively
as AI if they are overwhelmed by its scale).12 However, “Data Type II” could also exist—that
is, information available to H but not to AI for training. In the hiring context, for instance,
Data Type II might take the form of what the candidate said in interviews, the observation
of body language, and facial expressions that cannot easily be coded but can nonetheless
be used (perhaps unconsciously) by H in decision-making (Ibrahim, Kim, & Tong, 2021).
It might also be difficult to provide Data Type II to an AI because of privacy concerns or reg-
ulation, even when it is codifiable. The crucial point we wish to make here is the possible
existence of Data Type II (separately from Data Type I), and the inability of AI to access
it. Table 3 summarizes characteristics of Data Type I and II.

Given these two sources of diversity in predictions, a baseline conclusion may be that
AI might replace H acting alone in decision-making when the predictive accuracy of AI
(drawing on Data Type I alone) exceeds the predictive accuracy of H (drawing on Data
Types I & possibly Type II as well). As we have noted, the UATs guarantee the existence
of neural network architectures that cannot be beaten in terms of predictive accuracy,
given access to all available data and means to protect against overfitting. This implies
that, at least in theory, an AI can be built that can beat or equal a H if only Data Type
I exists (this is a necessary, not sufficient, condition). To be sure, there are practical con-
siderations that might prevent the use of the appropriate neural network architecture (such
as limits on processing power or the desire to retain explainability, among others) which
may allow H a role in these situations, and we discuss those further under boundary con-
ditions to our theory in Section 3.5. However, what we aim to highlight is the importance
of Data Type II, without which (and in the absence of practical constraints of the form
noted above) H cannot be guaranteed to outperform AI in terms of predictive accuracy.

The Case for H-AI Ensembles

The horserace between H and AI is, however, not the most useful one to examine, given
that we know that an ensemble could improve on its component members when it is made up
of (at least) weak learners that are diverse in their prediction errors. We therefore turn to the-
orize conditions under which the H-AI ensemble can be superior to H-H and AI-AI (which

Table 3

Characteristics of Data Types I and II

Data Type I Data Type II

Accessible by H & AI H only
H’s ability to process May be limited, depending

on data size
High, possibly sub-consciously

Characteristics Codified Tacit & unique to the H’s individual experience
Examples (from the context of job
candidates hiring)

Information contained in
candidates’ resumes

What the candidate said in interviews, body
language, and facial expressions
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can be treated as a single meta-AI). We break down the comparison of H-AI to H-H and
AI-AI across three scenarios describing the availability of Data Type I and/or Type II.

Consider Case I in Table 4, where we assume that there is insufficient codified and
AI-accessible data (Data Type I), but Data Type II exists, which is accessible only to
H. By insufficient data of Type I, we mean that when using this data, it is not possible for
any AI or H to make predictions better than random guesses. In this case, AI will not
produce predictions that are better than random guesses—that is, they are not even “weak
learners.” Hence, AI adds no value to the ensemble, and therefore H-AI is unlikely to be
the best ensemble.

Next, consider Case II, where there is sufficient Data Type I but insufficient Data Type II.
In this case, H can only rely on Data Type I to become at least a weak learner. However, in
this case, based on the UATs, there exists an AI that cannot be beaten in terms of predictive
accuracy, given access to all available data. This implies that H—including groups of humans
—can be beaten or matched at least in theory by an AI in situations that look like Case II in
Table 4, in terms of predictive accuracy. Therefore H-AI cannot be the optimal ensemble in
this case either.

However, Case III in Table 4 describes a situation where there is sufficient AI-accessible
data (Data Type I) as well as H-only accessible data (Data Type II). It represents the case in
which both H and AI can add value to the ensemble since they are both at least weak learners,
and their models and data are diverse. We formalize this argument as follows:

Proposition 1: H-AI ensembles are likely to be superior to AI-AI or H-H ensembles when (a) ade-
quate data is available for AI algorithms to produce at least weak learners (Data Type I) and (b) H
possess adequate non-externalizable and private data (Data Type II) which enables them (perhaps
in combination with AI-accessible Data Type I) to act at least as weak learners.

A noteworthy implication of Proposition 1 is that H-AI ensembles can be useful even when
neither H nor AI achieves satisfactory levels of decision accuracy on their own, or even if one
outperforms the other. As long as both are at least weak learners (i.e., make predictions that
are more accurate than random chance), the diversity in their predictions arising from differ-
ences in the data and models used by H and AI is likely to (but is not guaranteed to) improve
on either alone. In contrast, a division of labor with specialization is ruled out if neither H nor

Table 4

Alternative Scenarios Concerning Availability of Data Type I and Data Type II,
to Compare H-AI to H-H and AI-AI Ensembles

Case I Case II Case III

Adequate Data Type I No Yes Yes
Adequate Data Type II Yes No Yes
Is H-AI likely to be the best ensemble? No No Yes
Examples New product sales forecast Dynamic pricing Recruitment

Note. By “adequate data,” we mean an amount of data that is needed for an agent to be at least a weak learner (i.e.,
attain better than chance accuracy) in making a prediction.
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AI achieves satisfactorily high levels of predictive accuracy at sub-tasks (with the default
often being to keep things in the hands of the H in such cases). H-AI ensembling therefore
opens up a set of possibilities for collaboration between H and AI that remain invisible
under the logic of division of labor with specialization.

H-AI Ensembles Formed Through Augmentation Versus Automation

If we allow for ensembles with more than two component models—that is, multiple H and
multiple AI—and use H-AI to now denote any ensemble which includes at least some H and
some AI composition, then H-AI ensembles may arise either through augmentation—that is,
the addition of an AI—or automation—that is, the replacement of a H with an AI. Our the-
oretical framework is also useful to understand the conditions under which we may see either
kind of H-AI ensemble arise.

Consider an initial ensemble of two H: H1-H2 (the logic below generalizes to any number
of H, and there is no need to separately consider AI-AI ensembles since they can be treated as
a single meta-AI that uses an ensemble algorithm). When does it make sense to replace one of
the H with an AI (the case of automation, leading to H1-AI or H2-AI) versus augmenting the
ensemble with an AI (leading to H1-H2-AI)? We know that for an AI to have a role in an
ensemble it must be at least a weak learner, which, in turn, implies that there must exist
Data Type I (Proposition 1). The existence of Data Type I is thus a necessary condition for
H-AI ensembles formed either through augmentation (complementing) or through automa-
tion (replacement). The question of interest is when it is sensible to keep both H in the ensem-
ble versus replace one of them with AI.

Since the advantage of an ensemble of weak learners arises from the diversity of their pre-
diction errors, we can infer that the more similar the prediction errors of H1 and H2 are
(because of overlapping Data Type II, similar mental models, or both), the less useful it is
to keep both in the ensemble. This leads to the following:

Proposition 2: H-AI ensembles are more likely to be formed by augmentation (complementing,
i.e., adding an AI) rather than by automation (replacing a H with an AI) if the prediction errors
made by the H who are already in a team are more diverse with respect to each other. Inter-human
diversity increases the value of ensembles formed through augmentation.

We highlight that, in order to compare ensembles formed through augmentation versus
automation, one must start with a team initially composed of at least two H. If it were a
single H as a starting point, then the choice between automation and augmentation would
no longer be a comparison between two types of ensembles. Instead, it would be a choice
between a non-ensemble design—that is, either a H or an AI (automation), and an ensemble
in which AI augments the single H. Therefore, to consider a fair comparison of ensembles
formed through automation or augmentation, we need to begin with a team of at least two
H; such a team can then be automated at least partially by replacing one of the H with AI,
or augmented by adding an AI to the team of two H. In both cases, the final result is still
an ensemble: The difference between the two is that the former has been formed through auto-
mation and the latter through augmentation. This then allows for the comparison that under-
lies Proposition 2.
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Figure 1 and Table 1 illustrate how ensembles can be formed through either augmentation
or automation. It is worth highlighting two surprising corollaries of Proposition 2. First, when
forming a H-AI ensemble through automation, it is not necessary to replace the less accurate
H. Rather, the objective should be to retain the best combination of H-AI, which may arise by
keeping the less accurate H in the ensemble. This is because what matters for prediction accu-
racy is not only bias but also diversity in an ensemble (refer to Appendix 2 for more details).

Second, it is not the overlap in models or data between H and AI that puts the H at risk of
replacement through automation in the construction of an H-AI ensemble. Rather, it is the
lack of diversity among the H themselves. In fact, diversity may be easier to preserve in a
H-AI ensemble compared to H-H ensembles. In the case of H-H ensembles, social conformity
pressures often lead actors to generate similar decisions (Asch, 1956; Janis, 1982). This is
especially common when the group involved in the decision-making task spans multiple
levels in the organizational hierarchy, with subordinates being prone to conforming to the
manager’s decision. Cognitive bias and homophily can also reduce diversity in human
groups (McPherson, Smith-Lovin, & Cook, 2001).

On the other hand, the challenge of explainability of algorithmic decisions (Lipton, 2018)
to a H—often blamed for limiting human trust in AI and the adoption of H-AI collaborations
within organizations (Glikson & Woolley, 2020)—can usefully preserve the diversity of pre-
dictions in a H-AI ensemble. In particular, with the development of deep learning algorithms
which could fit arbitrarily complex functional forms, explainability of algorithmic decisions
—namely the ability of H to explain why the AI does what it does—currently remains one of
the basic challenges of H-AI interactions (Lipton, 2018; Park & Puranam, 2023; Samek,
Wiegand, & Müller, 2017). However, a potential inadvertent benefit of this limited explain-
ability might be that it restricts the extent of belief sharing between H and AI, thereby enhanc-
ing the preservation of diversity in the ensemble. In other words, H-AI ensembles, where the
agents can observe each other’s input to and output of the decision-making process, but not
the exact function used to generate the prediction, is expected to preserve diversity in predic-
tion to a higher extent than cases where the agents share the same belief system (Park &
Puranam, 2023).

Boundary Conditions for the Usefulness of H in Ensembles

We have assumed that, in the absence of Data Type II, H can contribute little to an ensem-
ble with AI since, at least in theory, there is a neural network architecture that can produce the
best approximation to the function that generated the data (Le Roux & Bengio, 2010; Lin &
Jegelka, 2018). However, in practice, finding the appropriate network architecture involves a
laborious search through the hyperparameter space, with the potential alternative consisting
of checking if the diversity in predictions produced by a H can help to improve on the imper-
fectly tuned network. Yet, this is by no means a stable or “safe” state for H to protect against
displacement, as technologies for tuning network architectures become more rapid, efficient,
and automatic (He, Zhao, & Chu, 2021). “Routine” tasks, that is, tasks that organizations
perform repeatedly over time, may be particularly suitable for takeover by AI. This is the
case not only because these tasks, given their stable nature, may often be easily codified,
but, even if not codifiable, being performed frequently, organizations may produce large
volumes of data on them so that AI could easily learn how to optimally perform them.13
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Further, it is possible that changes over time in underlying data generation processes (i.e.,
regime changes) alter the value of available Data Types I and/or II, or bring into existence
such data. If the existence of Data Type I and Type II can change over time, these will nat-
urally lead to a changed evaluation of whether the H-AI ensemble is the best configuration for
decision accuracy, given a particular task. If the value of Data Type II in predictions disap-
pears due to drastic modifications in the data generating process, there would be no benefit in
retaining the H component in the ensemble, and the predictive task would be best performed
by the AI only, leveraging Data Type I through specialization. However, especially in unsta-
ble contexts as in the case of managerial decision-making for project evaluation (e.g., Raisch
& Krakowski, 2020), further changes may occur so that Data Type II becomes again available
over time, leading to the task being optimally performed with ensembling instead of division
of labor via specialization. Yet another possibility is that Data Type I may become irrelevant
in the ensemble, and thus the task would be optimally performed by a specialized H that lever-
ages Data Type II.

Application of H-AI Ensembling to Managerial Tasks

Managerial tasks pertaining to project evaluation involve decisions (e.g., Mintzberg,
1975). Further, it is a domain in which human intuition and judgement is often invoked to
justify decisions—suggesting the existence of what we have called Data Type II (Acar &
West, 2021). We can therefore infer that the managerial decisions for which H-AI ensembles
will be fruitful to investigate are those for which there is sufficient Data Type I to train AI at
least up to the level of a weak learner.

With the increasing availability of large volumes of data that organizations can digitize, the
stock of existing Data Type I can be enhanced (Adner, Puranam, & Zhu, 2019). Pertinent
examples include collecting fine-grained data about the hiring process, the allocation of
capital and resources to tasks as well as to established and new projects, and the choice of
locations to open new branches and points of sale. These are strategic decisions, made by
managers, yet performed frequently enough that firms can collect and codify large
volumes of data (Data Type I) required for AI training. Accordingly, we believe that such
forms of project evaluation are a good candidate to be performed by H-AI ensembles.
Note that it is not necessary for the algorithm to attain levels of accuracy comparable or supe-
rior to H for it to be valuable in the ensemble. As long as it is a weak learner and adds model
diversity, forming a H-AI ensemble may be an improvement on H alone.

An important pragmatic consideration, however, is that greater predictive accuracy
attained by the ensemble is not always sufficiently valuable. Regardless of the type of
prediction problem (i.e., estimation or screening), the threshold of acceptable accuracy
is set either by the organization or by individuals within it. A manager might have a dif-
ferent desired level of accuracy for hiring employees than that for resource allocation,
depending on considerations such as profitability, reversibility, or ethical and legal liabil-
ity for the decision. Additionally, the desired level of accuracy can vary due to the dif-
ferent costs of omission and commission errors. For instance, in the case of
stock-picking decisions, managers explicitly or implicitly decide on the upper bounds
of the permissible omission and commission errors based on an evaluation of risks and
opportunity costs (Csaszar, 2012).
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This is important because we have reasoned about Propositions 1 and 2 in terms of the
ensemble that is likely to produce the most accurate predictions for project evaluation.
However, if, above a threshold, there is no economic value to improving accuracy, then it
is possible that the scope of application of H-AI ensembles can shrink if H or AI alone can
produce sufficiently accurate predictions on their own. For instance, problems in operations
research such as demand forecasting or pricing are examples of tasks traditionally performed
by H that can now be completely handled by AI (Carbonneau, Laframboise, & Vahidov,
2008), because the volume of Data Type I available to organizations for training purposes
is enough to make the algorithm sufficiently accurate, and to make an H-AI ensemble unnec-
essary even if Data Type II existed.

In contrast, several cases of strategic decisions in the form of project evaluation exist that
are rare and idiosyncratic enough to prevent firms from collecting and codifying large
volumes of AI accessible data (Data Type I). Accordingly, AI cannot yet be adequately
trained to tackle such prediction tasks. Illustrative examples include the selection of a
target company to acquire, or a partner to form a merger or an alliance with; whom to hire
as a new CEO; which new branding campaign to launch; or which new industries or
market segments to enter. Decisions of this kind are also not suitable for ensembling H
and AI either, because of the lack of Data Type I, which prevents AI from satisfying the
“weak learner” condition. This assessment can change with access to new data sources or
new research on AI that can develop algorithms that learn effectively from limited data.
For instance, with respect to making accurate predictions about transactions in the Private
Equity Industry, Sen and Puranam (2022) showed that, using historical data on past transac-
tions, it was possible to make highly accurate predictions about the type of investors in syn-
dicates formed for particular types of investments. Similarly, recent research in medical AI
has developed efficient deep learning approaches for disease diagnosis given high costs of
accumulating medical data (Stephen, Sain, Maduh, & Jeong, 2019).

In sum, to implement H-AI ensembles for managerial decision-making of the form of
project evaluation, the task needs to first meet the technical conditions set out in
Proposition 1, namely that both the H and AI must have access to sufficient data on
past instances of the kind of decision they are engaged in solving, to be at least
capable of being weak learners. Second, it is important to preserve the independence of
predictions of H and AI. This means that, when making their own judgments, H should
not be shown the AI’s decisions first, and vice versa. Third, a mechanism for aggregating
the predictions of H and AI must exist. A practical way to accomplish the aggregation is to
have a third individual, for example, a human manager, who takes as input the results of
both the H’s and AI’s predictions and combines them according to an aggregation rule.
This means of separating the aggregator from the predictor into two separate human
roles can also help to preserve independence between the AI and the H in the prediction
stage.

Whether a managerial task concerning project evaluation should be tackled by H and
AI in ensemble or left entirely in human hands will depend also on whether improvements
in accuracy beyond current levels achieved by H alone is valuable, and whether Data
Type I is available to organizations for AI training purposes but not as much to make
Data Type II redundant. We assume these boundary conditions are met when stating
Propositions 1 and 2.
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Discussion and Conclusion

Mirroring the ever-increasing reliance on AI witnessed across various industrial domains,
including the recent breakthroughs with generative AI and the ChatGPT applications, orga-
nizational researchers have begun to analyze it in theoretical terms (e.g., Balasubramanian
et al., 2022; Lindebaum, Vesa, & Hond, 2020). Many have focused on identifying task
and system characteristics and dimensions under which the human or algorithmic component
may be best suited to complete the task (e.g., Dellermann et al., 2019; Jarrahi, 2018; Murray
et al., 2020). Others have studied how to optimally include superior human judgement as an
input to algorithmic processes, either in the form of gatekeeping (Canetti et al., 2019; Dastin,
2018), or human-in-the-loop configurations, where H train AI (Bhardwaj, Yang, &
Cudré-Mauroux, 2020; Holzinger, 2016; Jain et al., 2019).

Yet, these do not account for the possibility of ensembling decision-making by H and AI—
which does not involve specialization, or an advantage of H over AI, or vice versa. Moreover,
it can be useful even when neither H nor AI on their own attain satisfactory accuracy in their
predictions. Ensembling, because of the observability of the counterfactual and the relatively
easy reversibility, offers the luxury of being easily discarded when we feel reasonably con-
fident that it will no longer be beneficial, and allows for that belief to be checked continu-
ously. This observability of the counterfactual is particularly useful in dynamic
environments due to the chances of AI model decay (i.e., reduction in accuracy) caused by
data shifts, where managers can continuously evaluate AI models’ accuracy as compared
to their own decisions. Additionally, as H are involved in the exact same decision-making,
H-AI ensembling also avoids the risk of H losing decision-making capabilities, which is
the case with replacement-based approaches (Balasubramanian et al., 2022).

Our paper contributes to the literature on H-AI collaboration in three ways. First, we delin-
eate the possibility for collaboration between H and AI through ensembling, a form of divi-
sion of labor without specialization. Second, we identify the precise data availability
conditions that are likely to make H-AI ensembling attractive to project evaluation tasks per-
formed by managers in data-rich contexts. Distinguishing between AI-accessible data and
H-only accessible data, we argue that the human value in ensembles must ultimately rely
on unique H-specific and machine inaccessible data. The existence of such H-specific data
need not be static and can evolve with every decision. Further, H so far have the lead in
the ability to learn from unrelated tasks and transfer their learning to the task at hand,
thereby constantly enriching the H-only accessible data. This may change if research in AI
makes significant progress on the problem of transfer learning (Zhuang et al., 2020).

Third, we also explain why, under the constraint that H must always be part of an
ensemble, the H-AI ensemble can be composed either by augmentation or automation
(Raisch & Krakowski, 2020). In automation, a human agent is replaced or substituted
by an AI, whereas in augmentation the AI is added to the ensemble to complement the
human agents (Tschang & Almirall, 2021). Somewhat surprisingly, in this situation H
are most at risk of replacement when they exhibit less diversity relative to each other
in terms of prediction errors, and not because they have lower accuracy than AI. In
fact, it is not necessarily the H with the lowest accuracy who is at greatest risk of
being replaced in the ensemble but, rather, the one who adds the least diversity of predic-
tion error relative to the AI.
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Future Research Directions

While our focus has been on the benefits of H-AI ensembling for project evaluation arising
from diversity in predictions, further benefits exist of such ensembles, which we did not
explore in this paper and may provide fruitful avenues for future research on this topic.

A common feature of both H and AI based on ML is the possibility of learning from feed-
back. A domain that seems to offer potential for further investigation is the use of ensembling
in learning-by-doing. It is possible that, after each decision event, both H and AI learn from
and adapt to the feedback on actions based on past decisions (i.e., learning by doing, e.g.,
Argote, 2013). Learning-by-doing reflects reinforcement learning (Sutton & Barto, 2018)
and is different from the process by which algorithms are trained on existing data, for instance
in supervised or unsupervised learning. The distinction is sometimes denoted by the terms
“online” (i.e., based on actions taken) versus “offline” (i.e., based on pre-existing data) learn-
ing (Gavetti & Levinthal, 2000; Puranam &Maciejovsky, 2020). In online learning, feedback
from the task environment (e.g., on how accurate a prediction was) is generated based on past
decisions, and agents update their belief about the task based on how accurate their past pre-
dictions were, resulting in changes to their underlying prediction model. This feedback also
enables indirect interactions between the two types of agents.

Ensembling may also create benefits in the online learning-from-feedback process by influ-
encing the diversity of the feedback generated. A single agent that attempts learning-by-doing
faces an exploration–exploitation trade-off because of dependence on their own action, that is,
they only see feedback on the actions they take, not on the actions that have never been taken
(Battigalli, Francetich, Lanzani, & Marinacci, 2019). For instance, managers do not observe the
performance of employees that they do not hire, although they do observe the performance of
stocks they did not invest in. Consequently, in the case of recruiting, there is a higher risk that
managers will be trapped into hiring a particular type of candidate because of their own priors
(exploitation), unless they sample actions inconsistent with their current beliefs (exploration).

Diversity in feedback can mitigate this.14 It can arise because of noise in outcomes, or dif-
ferences in learning processes. The resulting diversity in feedback can be leveraged by
exchanging that information among ensemble members. At the same time, the process of
sharing experiences may be self-limiting, as it also risks curtailing the benefits of diversity
for further learning, thus creating a trade-off between sharing information among ensemble
members (allowing them to improve individual performance at any point in time), but at
the same time lowering that diversity (Park & Puranam, 2023).

If feedback is only available on the ensemble’s decisions, then the learning process can be
described as learning by participation (Piezunka, Aggarwal, & Posen, 2022). In such a
process, the feedback obtained is highly dependent on the members of the ensemble who
influence the ensemble prediction the most. For instance, the final decision made by an
ensemble could be determined by voting. In this case, the task environment only provides
feedback on the action proposed by the majority. The potential diversity of feedback on pre-
dictions that the less influential members of the ensemble could have contributed is lost.
As Piezunka, Aggarwal, and Posen (2022) note, this sets up potential trade-offs between
the aggregation rule that allows for best predictions by the ensemble given current data
(i.e., how best to exploit existing diversity) versus those that allow for better data to be gath-
ered through feedback on past ensemble decisions (i.e., how to exploit diversity in feedback).
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Ensembling may also have some pragmatic benefits in terms of motivation. For instance,
H may experience enhanced epistemic motivation to engage in learning because of the pres-
ence of AI as a competitive benchmark. While such a competitive effect may also exist with
another H, the threat of eventual displacement of H by algorithms, and the redundancy of
H on the job, may serve as a stronger stimulus in the case of H-AI combined learning.

Finally, while in the paper we focus on ensembling for project evaluation in data-rich con-
texts—that is, a form of prediction tasks that are quantitative in nature—we believe that the
H-AI ensembling configuration may also benefit qualitative managerial tasks such as the ones
currently solvable by generative AI models—in particular, Large Language Models such as
ChatGPT and DALL-E2 (Bommasani et al., 2022; Floridi & Chiriatti, 2020). Generative AI
models are considered a turning point in the field of AI and are widely believed to have the
potential to revolutionize a wide range of industries and applications, from marketing and
sales, operations, human resource management, risk, and legal, to research and development
(Mollick & Mollick, 2022).

Given their ability to generate original human-like textual, visual, and auditory content
with little or no human input and intervention, drawing entirely on the data on which they
have been trained, these technologies are creating many new AI applications. For instance,
generative AI can assist in marketing and sales by creating user guides, analyzing customer
feedback, identifying potential risks, and improving sales support chatbots (Chui, Roberts, &
Yee, 2022). In human resource management, generative AI can be used to create interview
questions for candidate assessment and automate first-line interactions such as employee
onboarding. The advent of generative AI is currently driving the rapid industrialization of
AI, as companies are adopting and customizing existing foundation models into their business
processes and products.

However, what these developments mean for H-AI ensembles remains to be seen. In con-
trast to regression and classification tasks, where the ensembling is relatively straightforward
through (weighted) averaging, the aggregation of generative AI outputs with human genera-
tive content is much more complicated, due to its qualitative nature. The next step for future
research is thus to identify aggregation mechanisms to ensemble H and AI for qualitative
outputs. This has potentially significant implications for organizational innovation and crea-
tivity. This direction appears promising because many qualitative tasks, such as natural lan-
guage processing applications that frequently underlie OpenAI solutions, are already solved
by ML through a translation into quantitative tasks (e.g., the vectorization of text into embed-
ding spaces).

Limitations

We acknowledge that our theory on H-AI ensembling does not account for all possible
interactions between H and AI. First, not all forms of collaboration between H and AI
involve prediction-based decisions. For instance, as noted above, our theory does not directly
apply to ensembling of qualitative outputs between H and generative AI. Combining the cre-
ative outputs (e.g., text, images, music) of H with that of AI is not identical to static error can-
cellation, but may be closer to the dynamics of learning by doing and coupled search in
complex search environments (e.g., Knudsen & Srikanth, 2014; Puranam & Swamy,
2016), which requires further investigations.
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Second, we acknowledge that not all managerial decision-making is suitable to H-AI
ensembling. While project evaluation has been used to model the overall decision-making
process of managers and firms (e.g., Christensen & Knudsen, 2010; Csaszar & Ostler,
2020), and encompasses a wide array of managerial decision-making scenarios, this class
of problems does not comprise everything managers do, and excludes, for instance, motivat-
ing employees, or complying with legal requirements. Further, the additional condition for a
task pertaining to project evaluation to be handled by AI in ensemble with H is that consid-
erable amounts of data on past decisions (e.g., past records of hiring, partner selection, project
investment) must exist.

Relatedly, our paper focuses on “project evaluation in data-rich contexts” and does not
cover what are known as wicked problems (Grewatsch, Kennedy, & Bansal, 2021; Rittel
& Webber, 1973; see Lönngren & van Poeck, 2021 for a comprehensive review of the liter-
ature). Such problems (e.g., poverty and environmental degradation) are commonly charac-
terized by high levels of (1) complexity, (2) uncertainty, and (3) divergence in values. In
wicked problems, complexity emerges due to the involvement of multiple stakeholders, the
existence of various systems, and the interconnectedness of factors, which give rise to intri-
cate interdependencies. In the framework of AI, complex problems can be understood as
those fitted by complex functional forms, that is, functional forms with several interaction
terms. While deep learning can, in principle, fit predictive models for such complex problems,
the real challenge may be data availability.

Given the results of the Universal Approximation Theorems, we know that deep learning
algorithms can, in theory, fit predictive models for such complex problems, if there are suf-
ficient data. However, problem uncertainty and divergence among actors produce limits on
data. Uncertainty stems from incomplete or missing information, contradictory evidence,
and dynamically changing variables. Divergence refers to conflicts in values among different
stakeholders (meaning different models and also accessing different sets of data), as they may
possess alternate understandings and interpretations of the problem. This divergence compli-
cates the development of a shared outcome as well as a clear evaluation metric for the solution
(Camillus, 2008). Therefore, even if deep learning algorithms can assist in addressing the
complexity associated with wicked problems, problem uncertainty and the absence of an
agreed-upon model and evaluation metric (problem divergence) violates the condition of
data availability (of either Type I or II), which is essential to include in a managerial decision-
making problem. Wicked problems, however, as currently defined in literature, are beyond
the scope of our paper as they cannot be solved by AI algorithms, either standalone or in
ensemble, because of the limited availability of data.

Third, while H-AI ensembling allow for direct interactions between agents typical of
observational learning (Park & Puranam, 2023), we acknowledge that agents’ interdependence
in feedback typical of coupled learning (e.g., Knudsen & Srikanth, 2014; Puranam & Swamy,
2016) is beyond the scope of our research. A distinctive feature of combined decision-making
by H and AI, as opposed to other forms of technology adoption, is the potential for mutual
adjustment: Both H and algorithms not only learn on their tasks from feedback, but they can
also learn to adjust to each other and from each other via interaction. The literature on vicarious
learning, while focused on interaction among humans (e.g., Levitt &March, 1988; Myers, 2018,
2021), offers a general framework to think about various configurations in which one learning
entity can interact with another, and it can be generalized to the case of H-AI ensembling.

Choudhary et al. / Human-AI Ensembles 23



With the vicarious learning framework, each learner can have access to the experience of
the other, where experience may comprise any combination of past inputs (i.e., attributes of
projects), processes (i.e., logic behind action), outputs (i.e., actions), and feedback (i.e., out-
comes; Bandura, 1977; Cyert, March et al., 1963). For instance, in a team of one H and one
algorithm that produces a recommendation on picking equities to invest in, the H may have
access to the attributes, actions, and results produced by the algorithm, and vice versa. Park
and Puranam (2023) formally analyze four variants on vicarious learning based on what the
agents share with each other: Belief sharing, observational learning (i.e., the case in which
attributes, actions, and outcomes are visible), imitation (i.e., the case in which only actions
are visible), and inspiration (i.e., the case in which only outcomes are visible).

Our theory of H-AI ensembling allows for some overlap in the data (i.e., experience) that the H
and AI access, which implies a form of direct interaction. Specifically, the learning process in this
instance resembles what Park and Puranam (2023) define as observational learning, that is, a form
of vicarious learning in which the agents learn from the observed attributes, actions, and out-
comes of others, but with a relatively low depth of interaction and with limits on what can be
observed, which refers to the existence of H-only accessible data (i.e., Data Type II) in ensembles.

We also highlight that, despite H-AI ensembles allowing for direct interactions, in our
analysis—and consistent with prior research on vicarious learning—we focus on task envi-
ronments where the performance feedback on an agent’s actions is independent of the
actions taken by others (Lazer & Friedman, 2007; March, 1991). An alternative would
have been to consider what is known as coupled learning (e.g., Knudsen & Srikanth,
2014; Puranam & Swamy, 2016). Coupling in learning occurs when it is not possible to sep-
arate feedback: For instance, when a H and AI jointly produce a recommendation, the feed-
back would consist in assessing the quality of the aggregate recommendation, rather than of
its component parts. Such interdependence in feedback is beyond the scope of our analysis.
This is because, when ensembled, each learner produces a complete decision (i.e., ensembles
do not entail division of labor with specialization): The feedback can thus be effectively
decoupled, since each complete decision can be evaluated on its own.

Conclusion

The possibility of ensembling H and AI algorithms for prediction-based project evalua-
tions that, currently, neither perform well individually, expands the frontiers of H-AI collab-
oration beyond what can be accomplished through division of labor with specialization
(including relying on human superiority to act as a gatekeeper or trainer). Since the properties
of many important managerial decisions concerning project evaluation (in particular, their
unknown underlying structure and the limits of data on past decisions) make it difficult for
AI to attain satisfactory stand-alone performance in the near term, we suggest that ensembling
AI with managers is a possible avenue worth exploring.
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Notes
1. We refer to a task as a goal-oriented activity to achieve a desired outcome. Different tasks have different

outputs that satisfy different goals (von Hippel, 1990; Willis, 1996; Baldwin & Clark, 2000).
2. Specialization is possible because agents possess divergent capabilities ex ante, or will develop them ex

post (i.e., divergence in capabilities can occur over time). Throughout the paper, when we refer to “specialization,”
we mean that actors perform distinct tasks that produce distinct outputs.

3. Ensembling is the opposite of specialization, that is, it occurs when multiple models (or agents) perform the
same prediction task (e.g., bagging, stacking).

4. https://www.mckinsey.com/capabilities/quantumblack/our-insights/generative-ai-is-here-how-tools-like-
chatgpt-could-change-your-business (accessed February 2, 2023).

https://www.forbes.com/sites/benjaminlaker/2023/01/06/generative-analysis-how-ai-enables-effective-leadership/
(accessed January 10, 2023).

5. The familyofMLmodels that tackle regressionandclassification tasksareknownas“supervised learning”models.
6. Note that this is true for both supervised and unsupervised ML, because in both cases the algorithm eval-

uates a loss function. The main difference is that in supervised AI, the loss function contains the target term (e.g., Y, as
in mean squared error), while this is not the case for unsupervised AI (e.g., total mean distance in k-means clustering).

7. Large Language Models such as Chat GPT also involve such deep learning architectures (transformers).
8. https://ourworldindata.org/artificial-intelligence (accessed July 12, 2023).
9. https://cvviz.com/product/resume-screening/ (accessed March 17, 2023).
https://ideal.com/ (accessed November 11, 2022)
10. For example, Amazon found that an AI algorithm designed to screen job applicants amplified biases in the

training data, resulting in unfair outcomes for female candidates (Dastin 2018). Canetti et al. (2019) provide another
example of bias exacerbation in the application of AI algorithms to criminal conviction decisions, where AI assists H
by computing the probability of a person being convicted of a crime. It is now known that the assessment will have
shortcomings (e.g., because of biased data) that may create unfair outcomes.

11. https://en.wikipedia.org/wiki/Netflix_Prize (accessed June 27, 2021).
12. This data could well include codified observable aspects of past human decisions, possibly incorporating

their biases. However, this does not alter our argument in any way.
13. While the specific definition of routine tasks varies in literature (refer to alternate conditions in e.g.,

Brynjolfsson & Mitchell, 2017, and Acemoglu and Restrepos, 2019), the boundary condition we arrived at is
highly consistent with that in extant research: In essence, access to training data that produces at least a weak
learner is a fundamental limit on automation through AI. Put differently, if all data accessible to H were also
made accessible to AI, then there would be no technical efficiency reasons not to automate the related tasks.
There might however be institutional (i.e., legal and social) reasons not to do so.

14. Our argument rests on the premise that organizations using AI for decision-making take steps to address the
relevant issue of bias in training data.

15. https://www.uipath.com/product/rpa-ai-integration-with-ai-center (accessed October 3, 2023).
16. https://cvviz.com/product/resume-screening/ (accessed March 7, 2023).
17. https://www.nellyssecurity.com/blog/articles/video-surveillance/what-is-deep-learning-ai-and-why-is-it-

important-for-video-surveillance (accessed November 2, 2023).
18. https://openai.com/blog/chatgpt (accessed January 23, 2023)
19. https://techhq.com/2019/04/ibm-could-be-a-model-for-hr-in-the-ai-age/ (accessed January 27, 2023).
20. https://www.cnbc.com/2019/04/03/ibm-ai-can-predict-with-95-percent-accuracy-which-employees-will-

quit.html (accessed March 3, 2023).
21. https://api.slack.com/bot-users (accessed October 2, 2023).
22. https://www.accenture.com/gb-en/services/applied-intelligence/solutions-ai-pricing (accessed January 21, 2023).
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Appendix 1: Deep Learning Applications for Managerial Tasks

Similar to any data-driven methodology, deep learning has its limitations. Training a deep
learning model requires a large amount of data. In addition to limitations concerning data
availability, the time required for training a model can also be extremely high, depending
on its complexity. Furthermore, there could be constraints on computational power to fit a
sufficiently complex model within reasonable time, and the desire to retain interpretability
in human terms (Babic, Gerke, Evgeniou, & Cohen, 2021). Deep learning networks are
also prone to adversarial attacks (e.g., with some pixel changes in an image, a lion can be rec-
ognized as a library with very high accuracy; Heaven, 2019) and affected by catastrophic

Table A1.1

Successful Practical Applications of Deep Learning to Managerial Tasks

Source Managerial Task Deep Learning Application

UiPath15 Expense (reimbursement) approval Deep learning algorithms work alongside a human
team to enter data (e.g., item, invoice number,
amount) into the reimbursement system and then
approve/reject it.

CVVIZ16 Resume screening Algorithms parse and understand the contextual text
in the resume and shortlist suitable candidates for a
job opportunity.

Nelly’s
Security17

Prediction of unsafe movement Nelly’s Security employs deep learning tools to
analyze movement of equipment and H to predict
unsafe movement (e.g., H walking on a
material-movement aisle in a warehouse). This
technology is also implemented in warehouses to
identify aggressive behavior of employees.

OpenAI18 Drafting of correspondence (e.g., letters,
emails), summarizing documents, and
generating reports

ChatGPT is an AI chatbot that OpenAI developed
and launched in November 2022 that builds on a
family of Large Language Models and fine-tuned
with supervised and reinforcement learning.

IBM19 20 Employee career feedback, task allocation
to employees based on skills

My Career Advisor (henceforth, MYCA) is an
AI-based virtual assistant built on Watson (the
question-answering computer system developed by
IBM) to provide employees career feedback,
especially about areas where they need to improve
their skills. IBM uses MYCA in combination with
Blue Match Technology, another AI-based solution
that matches employees to tasks based on their
AI-inferred skills.

Slack21 Information provision, coordination Slack allows customers to embed into its channel
bots that interact with users to provide them with
information and coordination.

Accenture22 Pricing Solution.AI is an AI-based strategic pricing tool that
ensures price optimization relying on real-time
insights derived from market signals, competitive
intelligence, and dynamic customers’ preferences
and willingness to buy. The tool can be used for
personalized and dynamic pricing, revenue growth
management, and to improve customer profitability
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forgetting (Goodfellow, Mirza, Xiao, Courville, & Bengio, 2013). Function discontinuity
further hampers learning as approximated functions show high error rates around the discon-
tinuities, particularly for algorithms relying on backpropagation of errors as in deep learning.
We refer the interested reader to Table A3.1 in Appendix 3, which provides a glossary of key
technical terms used in the paper, including those related to the limitations of deep learning.

Despite these limitations, deep learning has been effectively used in practice and technical
advances are being made to tackle these challenges. For instance, to reduce the time and data
required for model training, researchers are developing compact models and transfer learning
methods (Torrey & Shavlik, 2010). Similarly, to address network forgetting, Neural Turing
Machines (Graves, Wayne, & Danihelka, 2014) are being developed that could possibly resemble
human-like memory. Novel adversarial training methods also hold the promise to overcome the
issue of adversarial attack issues. Finally, in practice, continuous functions often turn out to be a
satisfactory substitute for discontinuous ones, rendering neural networks applications broadly fea-
sible. For instance, the robotics community has developed novel architectures (Bianchini, Halm,
Matni, & Posa, 2021) that display favorable performance under discontinuity, and discontinuity-
capturing neural networks (Hu, Lin, & Lai, 2022) also seem to perform well in this context. Other
workarounds are also available in practice (e.g., piecewise continuous functions, functional
approximations; see Llanas, Lantarón & Sáinz, 2008 for an example). Finally, more complex net-
works (i.e., three layers neural networks) hold the promise of being able to represent even discon-
tinuous functions (Llanas et al., 2008). Table A1.1 illustrates successful applications of deep
learning to managerial tasks.

Appendix 2: How AI-AI Ensembles Handle the Bias-Diversity Trade-Off

Computer scientists have noted that ensemble algorithms can be divided into three broad classes
based on the increasing degree to which the ensemble members’ diversity is recognized and
balanced with average bias, namely: (a) baseline ensembling (or bagging), (b) stacking, and (c)
cross-learning. These forms of ensembling differ along two dimensions. First, they differ in
whether diversity in prediction stems from the model, the accessible data, or both. Second, they
vary in how the individual models are weighted and accounted for in the final ensemble, based
on whether such weights are fixed, tuned ex post, or tuned simultaneously in the training step.

In a baseline ensemble (or “bagging”), each model is trained independently on a different
bootstrapped sample of the same dataset, and the predictions are combined either by averag-
ing or voting over class labels. Bagging can be homogenous or heterogenous in nature, based
on similarity or dissimilarity of the member models used. Random forest is an example of
homogenous bagging, while bagging between support vector machines and decision trees
is heterogeneous. In aggregation, each model is given equal weight. In this class of ensem-
bling, diversity stems from different data access (for homogeneous bagging) and/or different
models (for heterogeneous bagging), and there is no weight tuning across the various models.

In stacking, a variety of base models is trained independently (similar to bagging), and
their predictions are aggregated to build a second meta model that learns how to best
combine the base models by identifying the optimal weight for each model. The meta
model works like expertise recognition in organizations. First, experts on various tasks are
identified such that, during aggregation, the predictions made by the corresponding experts
are given different weights. In this second class of ensembling, diversity in prediction
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stems from both different models and data accessed by the algorithms, and the weights attrib-
uted to each model are tuned after the training stage.

Baseline ensemble and stacking approaches to ensemble incorporate stochastic elements
during the model construction in the hope of a group of “diverse” predictors emerging
with diversity in prediction that enable accuracy gains. In contrast, cross-learning approaches
(such as boosting and Negative Correlation, or NC-learning) are more direct and explicitly
enforce a measure of error diversity on the models. Each model is built to ensure that it is
substantially different from other models in its errors, thereby creating model interdepen-
dence. Boosting algorithms, such as Adaboost, accomplish this by re-weighting the training
examples for each model, increasing the likelihood of more accurate predictions where pre-
vious models made more errors. NC learning takes an even more direct approach by adding a
diversity penalty to the loss function, thus managing the accuracy-diversity trade-off while
training the member models. Here, diversity stems, as in stacking, from both different
models and data access, where the models themselves are tuned during the training phase.

Table A2.1 summarizes the three alternative methods for ensembling and highlights how
those vary in the extent to which they create and manage diversity.

Table A2.1

Different Ensemble Algorithms and Their Characteristics

Method Extent to Which Diversity Is Created and Managed

Baseline Ensemble, or Bagging Low (individual models are optimized to reduce model errors; each model
is given the same weight).

Stacking Medium (individual models are optimized to reduce model errors; each
model is given optimal different weights).

Cross-Learning Ensembles (Boosting
or NC Learning)

High (individual models are optimized to reduce ensemble errors; each
model is given optimal weight).
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Appendix 3: Glossary of Key Technical Terms Used in the Paper

Table A3.1

Glossary of Key Technical Terms

Term Definition

Adversarial Attack Purposefully generate challenging (adversarial) examples to improve model’s prediction
reliability.

Augmentation AI is added to a human agent in decision-making.
Automation AI replaces human agents in decision-making.
Backpropagation Backpropagation is an algorithm which helps in supervised learning by calculating the gradient

of the error function with respect to neural network’s weights, and adjusts the weights
iteratively to minimize the error.

Bagging Random samples of the training data are selected with replacement. Using the random samples,
independent models are trained in parallel, and their outcomes are aggregated.

Boosting Models are trained sequentially, using higher weights for the mistakes of the previous model.
Catastrophic
Forgetting

Catastrophic forgetting is a tendency where, while training a neural network, it could drastically
and abruptly forget previously learned information upon learning new information.

Deep Learning Learning with a neural network with three or more layers.
H-AI Ensemble An ensemble (division of labor without specialization) between H and AI.
Hyperparameter A parameter whose value is used to control the learning process and derive the model

parameters.
NC Learning Negative correlation learning refers to an ensemble learning technique that attempts to train and

combine individual neural networks into the same learning process with the goal of generating
the best result for the entire ensemble.

Neural Network Neural networks are subset of ML that mimic the human brain and are comprised of an input
layer, one or more hidden layers, and an output layer.

Stacking Different types of models are trained using the same training data, for example, decision tree
and linear regression. Finally, their outcomes are aggregated.

Task A goal-oriented activity to achieve a desired outcome. Different tasks have different outputs that
satisfy different goals.

Tuning Finding the optimal values of the hyper parameters.
Weak Learner An agent/model that makes predictions that are better than random guesses.
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