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Abstract

We offer a model of scientific progress in which uncertainty resolves over

time. We show that rivalry leads to less experimentation, extending results for

preemption games to experimentation with uncertain outcomes. We compare

experimentation duration and welfare when experimental outcomes are publicly

versus privately observable. We show that public learning can generate more

experimentation and higher welfare when uncertainty about the feasibility of

a breakthrough is large; breakthroughs are rare even when they are feasible;

and experiments produce results infrequently. Our results shed light on recent

criticism of the science system.
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1 Introduction

Scientific progress, according to Arrow (1969), is in the first instance the reduction

in uncertainty: “The product of a research and development effort is an observation

on the world which reduces its possible range of variation”. In fact, he argued that

the information gain from an experiment might be more important than its concrete

output. Challenging earlier models of research and development, Arrow calls for a

more general formulation of knowledge production, encompassing situations where the

probabilities of potential research outcomes are not known with certainty. Although

uncertainty about outcomes is ubiquitous in science, very few formulations of this

type have since been proposed in the literature (for an exception, see, e.g., Halac et

al., 2017).

In this paper, we offer a model that combines uncertainty about the probabilities

of research outcomes, as suggested by Arrow, with another typical feature of research

activity: the competition to be first. Scientists seek to establish priority by being

first to publish an advance in knowledge and are often concerned at being preempted

in this by other scientists. Indeed, “Since the earliest days of science, bragging rights

to a discovery have gone to the person who first reports it” (Fang and Casadevall,

2012).1

The main objective is to understand how the combination of learning about the

distribution of research outcomes and preemption affects scientific progress and wel-

fare. Our analysis also allows us to address a recent critique of the current science

system: According to Lawrence (2016), the practice of university administrators to

1For empirical evidence of the winner-takes-all rewards structure in science, see Hagstrom (1974),

Newman (2009), and Sabatier and Chollet (2017).
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rank scientists against each other based on publications numbers, and allocate funds

and jobs respectively, is impeding scientific progress by enhancing the importance

attached to being first: “All of us (...) focus our research to produce enough papers

to compete and survive. Thus, projects are published as soon as possible and many

therefore resemble lab reports rather than fully rounded and completed stories. (...)

I think this emphasis on article numbers has helped make papers poorer in quality.”

For biology and medicine, Broad (1981) observes that teams often settle for the “least

publishable unit” - a practice that has come under fire for leading to research outcomes

of lower quality overall. Adding to the criticism, the editors of Nature urged scientists

conducting laboratory studies to take greater care in their work, citing several types

of “avoidable errors”, in terms of both methodology and presentation, that diminish

the quality of the published output (Nature Publishing Group, 2012). In response to

the critique, Fang and Casadevall (2012) and, more recently, Stein and Hill (2021)

have advocated a new science system that offers greater collegiality, freer sharing of

information, and cooperation.

To set the stage, we study the extent of experimentation in a two-player stop-

ping game and compare it to its counterpart in a setting without competition, which

corresponds to the cooperative problem. As we show in our benchmark result, co-

operation indeed always leads to more experimentation and value. However, com-

petition is almost always an inherent feature of scientific inquiry. This raises the

important question of whether transparency and sharing of research progress leads

to more or less experimentation and value in a competitive setting with uncertain

research outcomes. The answer is not immediate since there are competing forces.

On the one hand, keeping research progress private might soften the competitive pre-

emption threat (cf. Hopenhayn and Squintani, 2011), but on the other hand, public

information may reduce the uncertainty about the likelihood of eventual success.

To better understand this trade-off, we compare experimentation when the out-

comes of the experiments are publicly versus privately observable. We show that,
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under certain conditions, public learning generates more experimentation and higher

welfare. More precisely, we find that public learning tends to counteract the threat of

preemption when uncertainty about the feasibility of a breakthrough is large, break-

throughs are rare even when they are feasible, and experiments frequently fail to

produce results. In scientific research, we can approximate the probability of a break-

through with the frequency of publishing a landmark paper, which appears to be

quite low.2 Hence, our result supports the views of Fang and Casadevall (2012) and

Stein and Hill (2021), who are in favor of freer information sharing. Our findings

may be surprising, particularly in the light of Hopenhayn and Squintani (2011), who

show that secrecy may result in longer durations of experimentation by reducing the

researcher’s fear of being preempted. While there are several conflicting effects, we

trace our results to the stronger ability to coordinate on the information obtained

through experimentation when it is shared. This is one of the central insights of this

paper.

Formally, we study a model in which two researchers running successive experi-

ments decide at any point in time whether to stop and go forward with their best

research finding thus far. Each experiment, with some probability, is successful, and

the player receives a draw from some unknown distribution interpreted as the result

of the experiment. With complementary probability, the experiment is unsuccessful

and fails to produce any results. As we show later, the possibility of failed experi-

ments distinguishes public and private learning.3 The unknown distribution of draws

remains fixed throughout the game, either producing low-value draws with certainty

or randomizing between low- and high-value draws. We interpret a low-value draw as

a mundane result and a high-value one as a breakthrough result from the project. To

2See, e.g., Bornmann, Ye and Ye (2018).

3In fact, in natural science and many branches of social science, failure abounds (see, e.g., Mohs

and Greig, 2017; Barwich, 2019 for empirical evidence). As Parkes (2019) notes: ”If we want to

make new discoveries, that means taking a leap in the dark - a leap we might not take if we’re too

afraid to fail.”
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capture the uncertainty about the potential of the project, we assume the researchers

do not know which is the true distribution, and they only share a prior belief about

the feasibility of a high-value outcome. The competition is winner-takes-all, so, re-

searchers have an incentive to stop preemptively and “publish their partial findings

quickly, rather than dropping the bombshell of a completely solved problem on their

surprised colleagues” (Hagstrom, 1974).4

We construct perfect Bayesian equilibria in symmetric threshold strategies. When

the experimental outcomes are public, we establish the existence of equilibria in which

the two players share common beliefs about the potential of the project and remain in

the game until either a draw of high value occurs or their beliefs about the possibility

of such a draw become too pessimistic. The latter event occurs when the total number

of low-value draws exceeds a certain threshold, with the consequence that the players

decide to stop simultaneously in equilibrium.

Our analysis in the case of private learning is complicated because of the com-

plexity of the belief structure. Each player has to form beliefs regarding the draws

his opponent has received. These beliefs and the player’s own results determine in

turn the player’s belief about both the feasibility of a high-value outcome and the

threat of preemption. In general, since the players’ beliefs are private, it is diffi-

cult to track their evolution and, thus, to establish the existence of an equilibrium.

The use of time as a public variable allows only for a partial simplification of the

belief structure because each player’s beliefs about the number of low-value draws

the other player has obtained depends on the number of low-value draws the player

has himself obtained, as well as the other player’s equilibrium strategy. Despite this

complication, we are able to construct symmetric equilibria in strategies involving

nonmonotone time-dependent thresholds: Each player experiments until he receives

4We present the related literature in Section 7 where we classify existing models according to

whether they deal with preemption, or uncertainty and learning about the distribution of research

outcomes, or both.
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a high-value draw or accumulates too many low-value draws, although the threshold

for the number of low value draws may vary non-monotonically over time.

Finally, we compare the length of experimentation and the players’ total welfare

under public versus private learning. Without the possibility of failed experiments,

public and private learning are identical but otherwise they generate different out-

comes. We find that public learning generates more experimentation than private

learning, despite the higher threat of preemption, for a range of model parameters

for arbitrary time horizons. Specifically, we find that if there is a lot of uncertainty

about the feasibility of a breakthrough or if breakthroughs are rare even when fea-

sible, then public learning generates more experimentation and higher welfare than

private learning. These results provide testable implications of our model.

The paper is organized as follows. In Section 2, we present the model. In Section 3,

we analyze the single-player case and cooperative benchmark. In Section 4, we analyze

the two-player case under the assumption of public learning. In Section 5, we consider

the case in which the two players cannot observe one another’s draws. We provide

a comparison between the two information settings in Section 6. In Section 7, we

discuss how our results relate to the existing literature. We conclude in Section 8.

2 Model

Two players, 1 and 2, engage in a stopping game of successive experiments, taking

place in discrete time periods t = 1, . . . , T . At the beginning of each period t, as

long as the game continues, each player i ∈ {1, 2} runs a new experiment. With

probability 1 − r, where r ∈ (0, 1), player i’s experiment is unsuccessful and fails to

produce any valuable result. With probability r, the experiment is successful and

provides new information about the common natural world. This is expressed by a

draw xit ∈ {L,H} for player i in period t, where 0 < L < H. That is, a successful

experiment either provides some partial finding (of value L) or yields an important
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discovery (of value H). Incremental improvements over time are neglected in our

formulation in order to sharpen the focus on the players’ incentives to keep going,

even though experiments may fail, in the hope of making a significant discovery.

An inherent feature of experimentation is the uncertainty regarding the potential

outcomes of an experiment, which in our model is expressed by an uncertain distri-

bution of the draws. Specifically, the values xit are distributed according to either

xit =

 H, with probability q;

L, with probability 1− q,

where q ∈ (0, 1), or

xit ≡ L.

The distribution is chosen randomly (by nature) at the beginning of the game, with

probabilities p and 1 − p respectively, in a manner unobservable to the players, and

remains the same throughout the game.5 Conditional on the choice of distribution,

the values xit are independent across players and across periods. Thus, unless a draw

of value H is obtained in an experiment, whether such an outcome is at all possible

is unknown to the players.

We will consider two opposite cases regarding the observability of the players’

experimentation outcomes: one in which each player can observe the draws of his

opponent and the other in which each player can observe only his own draws.

At the end of each period t, each player i has to decide, after observing his own

draw, xit, and possibly his opponent’s draw, xjt , whether to stop in that period or

continue to period t + 1. These actions are denoted by s or c, respectively. The two

players make their decisions simultaneously and the game continues until at least one

player decides to stop.

5Note that players are sampling from the same distribution. This assumption is met, for exam-

ple, when scientists seek to identify facts about the common natural world rather than to invent

potentially different new technologies.
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We assume that the experiments of the two players are directly competitive: the

player who stops first receives a payoff equal to the value of his best past draw, while

his opponent receives nothing. This winner-takes-all assumption seems particularly

suited for a model of rivalry among scientists.6 If both players decide to stop at the

same time, with the same value, then we assume that only one of them – each with

probability 1/2 – actually succeeds and becomes the first mover.7 However, if the

two players stop simultaneously with different values, then the player with the higher

value receives his value in full whereas the other player gets zero. The two players

discount time by a common rate δ ∈ (0, 1) and suffer no other cost for remaining

active in the game.8 Thus, to avoid trivial outcomes, we assume that each player can

stop only after he has obtained at least one draw.

For each player i, a (private) history hit ∈ H i
t at the time of his decision in period

t consists of the following elements, depending on our observability assumption:

a. Player i’s own past draws xiτ ∈ {∅, L,H}, for τ = 1, . . . , t, where ∅ denotes the

occurrence of no draw;

b. Player j’s past draws xjτ ∈ {∅, L,H}, for τ = 1, . . . , t, when draws are publicly

observable;

c. Trivially, the two players’ past decisions to continue, (c, c), for τ = 1, . . . , t− 1.

A strategy of player i in period t < T indicates whether the player stops or continues

6See, for instance, Gaston (1973 [p.107]), Hagstrom (1974), Lawrence (2016) for empirical ev-

idence. The assumption that preemption destroys all value to the second player simplifies the

exposition, but is not crucial to our results. Our analysis would apply as long as the claim of L by

one player destroys some nontrivial part of the value that the other player can claim.

7See Hoppe and Lehmann-Grube (2005) for a discussion of this tie-breaking rule in timing games.

8Our analysis extends with only slight modifications to the case in which there is a constant

cost for each period a player is active. Since the presence of a discount factor suffices to make

experimentation costly and to provide incentives to a player to stop experimenting even if he faces

no preemption threat, we have chosen not to include such costs in our model.
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at the end of period t, for any possible time-t history. Hence, player i’s strategy in

period t is a function

σit : H i
t −→ { s, c },

under the restriction that σit(h
i
t) = c, if hit ∈ H i

t is such that xiτ = ∅ for all τ ≤ t;

while player i’s strategy for the entire game is a finite sequence of time-t strategies,

σi = {σit}T−1t=1 .

We focus on pure strategies. Thus, each player i’s strategy at time t partitions the set

of the player’s histories H i
t into stopping and continuation regions, H̄ i

t and H i
t \ H̄ i

t .

Finally, our solution concept is that of perfect Bayesian equilibrium.

3 The Cooperative Benchmark

We start our analysis by examining the case in which experimentation is carried out

by a single player, who performs one experiment in each period. We then modify this

setting, by allowing two experiments to be performed in parallel within each period,

so as to obtain the solution for the benchmark cooperative problem.

Clearly, the player will not stop before obtaining at least one draw and will not

continue after obtaining a draw of H. Hence, the problem reduces to choosing whether

to stop experimenting, claiming a value of L, or to continue at a cost of (1− δ)L for

each additional period to potentially increase this value by δ(H − L).

The expected payoff from continuing to the next period depends on the player’s

belief about the distribution from which he draws. The player becomes more pes-

simistic that a draw of value H is feasible each time he receives a new draw of L. In

particular, if the player has received n ≥ 1 draws of L, then the player believes that

he draws from the first distribution with probability

p (n) =
(1− q) p (n− 1)

1− q p (n− 1)
, (1)
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defined recursively, with p (0) = p. The sequence {p (n)}∞n=0 is decreasing, since we

have p (n) /p (n− 1) < 1, for all n ∈ N. Therefore, the expected value of staying in

the game one more period weakly decreases as the game progresses.

Hence, for each period t < T , after having received nt ≥ 1 draws of L, the player

will continue to period t+ 1 if and only if his expected one-step continuation payoff,

discounted by δ, is larger than his stopping payoff, that is,

δ [r p(nt) q H + (1− r p(nt) q)L] ≥ L.

Thus, the optimal rule is to stop experimentation when nt ≥ N̂ or t = T and to

continue otherwise, where

N̂ = min {n ∈ N : δ p(n) rq (H − L) < (1− δ)L}. (2)

Finally, to obtain a proper cooperative benchmark for our analysis with two play-

ers, we modify the single-player case and allow the player to receive up to 2 draws

in each period. This modification is necessary to account for the mere duplication

of experiments with two players. In this case, given the player’s beliefs p(nt) at the

end of period t, the probability that the player obtains at least one draw of H in the

period t+ 1 is

pH(nt) = p(nt) [ 1− (1− rq)2 ]. (3)

Our previous analysis implies that two players who cooperate under an agreement to

share information and, eventually, any value obtained will continue experimentation

in periods t = 1, . . . , T − 1, until either at least one of them receives a draw of H or

if they jointly obtain nt ≥ N∗ draws of L, where

N∗ = min {n ∈ N : δ pH(n) (H − L) < (1− δ)L}. (4)

Since pH(n) ≥ p(n) rq, it follows thatN∗ ≥ N̂ , reflecting the fact that two cooperating

players experimenting in parallel are more likely to find H in the next period than

one player experimenting alone, at the same cost (due to value depreciation).
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In the sequel, we examine the impact of competition upon experimentation when

outcomes are observed publicly or privately and compare these cases with each other

as well as with the above cooperative benchmark.

4 Public Learning

We now examine the two players’ interaction. In this section, we assume that each

player is fully informed of the experimental results of his rival. Players may have

this information for various reasons. For example, they may be able to observe each

other’s experiments or there may be truthful communication between the players.

In this environment, in every period t ≥ 1, the two players share common beliefs

about the feasibility of an H outcome. If no draw of H has been obtained, these

beliefs are expressed by the probability p(nt), where nt is the total number of L

draws obtained by the two players up to period t, determined recursively, according

to equation (1) in the single-player problem. Hence, the probability that at least one

draw of H is obtained by either player in the next period, if both players continue to

it, is pH (nt), defined by equation (3).

In the following, we construct a symmetric perfect Bayesian equilibrium in which

experimentation terminates prior to the final period T if one or both players receive

an H draw or if the total number of L draws reaches a certain threshold. In this

equilibrium, like in the single player case, each player’s expected gain from experi-

mentation decreases as the number of L draws obtained (and jointly observed) by the

two players increases.

First, suppose that by the time of the continuation or stopping decision in period

t, each player has received at least one draw of L, that is, nit, n
j
t ≥ 1. In this case,

the minimal number of L draws obtained by the two players such that a player will

prefer to stop in period t rather than to continue to period t+ 1 and then surely stop
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if he knows that his opponent will also stop in period t+ 1 is

N1 = min
{
n ≥ 2 : (1/2) δ [ pH(n)(H − L) + L ] < L

}
. (5)

Second, suppose that a single player has received all draws obtained by the end of

period t. Then the minimal number of L draws such that this player will prefer to

stop in period t rather than to continue to period t + 1 and then surely stop if he

knows that player j will stop as soon as he obtains a draw of L is9

N2 = min
{
n ≥ 1 : (1/2) δ [ pH(n)(H − L) + [1 + (1− r)(1− p(n)rq)]L ] < L

}
. (6)

By comparing the inequalities in the definition of N1 and N2, it can be shown that

N1 ≤ N2.

Furthermore, consider the threshold strategy σ∗ = {σ∗t }T−1t=1 , prescribing to player

i the following behavior in each period t:

- Player i stops in period t if he has obtained at least one draw and

a. Player i has drawn H in some period t′ ≤ t; or

b. Player j has received a draw in some period t′ ≤ t, and nit + njt ≥ N1; or

c. Player j has received no draw in periods t′ ≤ t, and nit ≥ N2.

- Otherwise, player i continues.

Clearly, the strategy σ∗ is fully characterized by the thresholds N1 and N2, which

remain constant over time.

Proposition 1 The strategy profile (σ∗, σ∗) constitutes a perfect Bayesian equilib-

rium.10

9The extra term in the left-hand-side of the inequality in the definition (6) of the threshold N2

expresses the additional payoff that player i will receive in period t + 1 in case player j does not

obtain a draw in that period.

10All proofs are in Appendix A.
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The equilibrium has a simple structure. The players remain in the game prior to

the final period T until either a draw of high value occurs or their beliefs about the

possibility of such a draw become too pessimistic. Since the players share common

beliefs about the potential of the project, the latter event occurs when the total

number of low-value draws exceeds a certain threshold. Consequently, in equilibrium,

unless a draw of H is obtained, the players decide to stop simultaneously.

The game admits other equilibria in which the players stop experimenting after

obtaining a total of N
′
< N1 draws of L or after reaching a certain time T

′
, where

N
′

and T
′

are exogenously set. To see this, note that in such equilibria, because of

the possibility of preemption, each player’s decision to stop experimentation earlier

forces his rival also to stop. However, experimentation resulting in more than N1 or

N2 draws of L turns out to be impossible.

Proposition 2 There exists no perfect Bayesian equilibrium involving experimenta-

tion that can generate more draws than the strategy σ∗.

The following result compares public learning to the cooperative benchmark:

Proposition 3 The maximal experimentation duration is longer in the case of two

cooperating players than in any perfect Bayesian equilibrium under public learning.

The proposition states that two players experimenting under an agreement to

share information and value will search longer for H, in terms of the maximal number

of experiments failing to find it, than two players sharing only information; that is,

N∗ ≥ N2 ≥ N1. Thus, the threat of preemption leads to a decrease in the total

amount of experimentation, for a welfare loss.

5 Private Learning

We now turn our attention to the case in which the two players cannot observe one

another’s experimental outcomes. Instead, in each period, each player has to form
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beliefs about the draws of his opponent, depending on the duration of experimenta-

tion, the stopping strategy his opponent has been using, and significantly, the draws

he has received himself. Naturally, these beliefs affect the two players’ continuation

or stopping incentives, via their calculations about the likelihood of an H outcome as

well as about the possibility that the other player stops in the current or next period.

In general, the beliefs of player i at time t take the form of a probability distribu-

tion over the feasible histories of the game, in particular, over the history components

that are privately observed by player j. In analyzing the stopping decision of player

i in period t, when he has received no draw of H, we can assume that player j has

received no draw of H either. Consequently, the beliefs of player i reduce to a prob-

ability distribution over the number of L draws, njt , that player j has received up to

period t.11

Since the probability of drawing L depends on the distribution from which the

two players draw, player i’s beliefs about njt need to take into account his own private

information, that is, the number nit of L draws he has received.12 In addition, player

i needs to condition his beliefs upon any information he can infer from player j’s

decisions not to stop in any earlier period, given the strategy sj.13 The following

result shows that the players’ beliefs are positively correlated, that is, each player’s

beliefs about the draws of his opponent stochastically increase in the number of his

own draws.

Lemma 1 Suppose that player j follows the strategy sj and that player i has obtained

nit = ni draws of L by period t. Then, at the end of period t, conditional on player j

11As Lemma 3 below will show, the timing of the players’ draw arrivals is irrelevant in equilibrium.

12For example, with a parameter q ≈ 1, at the end of period t = 1, player i believes that

H is feasible with probability approximately equal to p or 0, if, respectively, nit = 0 or nit = 1.

Consequently, he believes that njt = 1 with probability approximately equal to (1 − p) r or r,

depending on whether nit = 0 or nit = 1.

13In particular, if player j follows a strategy sj characterized by stopping thresholds {N j
t }T−1t=1 ,

then player i will condition his beliefs at period t upon njt′ < N j
t′ for all t′ < t.
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having received no draw of H, player i believes that njt = nj with probability

pt(n
j, ni, sj) =

ht(n
j, sj) rn

j
(1− r)t−nj

[p(1− q)ni+nj
+ (1− p)]∑t

n=0 ht(n, s
j) rn (1− r)t−n [p(1− q)ni+n + (1− p)]

,

where ht(n
j, sj) ≤

(
t
nj

)
is the number of histories of player j consistent with njt = nj,

the stopping constraints of strategy sj, and the hypothesis that no draw of H has

occurred.

In addition, for any ñi > ni, the distribution pt( ·, ñi, sj) first-order stochastically

dominates the distribution pt( ·, ni, sj).

Given the symmetry of the game, we henceforth focus on equilibria in symmetric

threshold strategies, that is, in which each player stops in period t if either he obtains

a draw of H or the number of L draws he has received exceeds a certain threshold

Nt, depending on that period. For such strategies, we can show that each player’s

beliefs are stochastically increasing in each threshold of his opponent:

Lemma 2 Let sj and ŝj be two threshold strategies for player j such that N j
τ ≤ N̂ j

τ

for all τ < t. Then, for all nit, the distribution pt( ·, nit, ŝj) describing player i’s beliefs

about njt at time t, conditional on player j having received no draw of H, first-order

stochastically dominates the distribution pt( ·, nit, sj).

Lemma 2 implies that, under private learning, in any period t+1, a player’s belief

that H is feasible, conditional on the game reaching that period, is monotonically

decreasing in his rival’s threshold in period t. Thus, under private learning, unlike

the case of public learning, a player’s belief regarding the feasibility of H may update

optimistically.14 In addition, a change in the rival’s threshold in period t affects a

player’s incentive to continue to period t+1 in both a positive and a negative manner,

14For a simple example, suppose that at t = 1, player j always continues; and that at t = 2,

player j continues only if he has received no draw. Then, if ni1 = ni2, player i will be more optimistic

about the feasibility of H in period t = 2 than in period t = 1.
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for an unclear overall effect. In fact, as Example 1 demonstrates below, a player may

be more willing to continue if his rival adopts a lower threshold in the current period.

Our main result asserts the existence of a symmetric equilibrium in threshold

strategies under a condition on the parameters of the model, ensuring that each

player’s expected payoff function from continuing or stopping at the end of each

period t < T satisfies a single crossing property.

Condition SC The parameters δ, r, p, q, H, L and T are such that

pt(N, 1, s)

[
p(2N) [1− (1− rq)2] − 1− δ

δ

L

H − L

]
≥∑

n<N

pt(n, 1, s) p(n+ 1)
[
(1− rq)2 − (1− rq)2(T−t)

]
for all N ≤ t and t < T , where s is the strategy with thresholds Nτ = 1 for τ < t−N

and Nτ = τ − (t−N) + 1 for τ ≥ t−N .

Using the expression for pt(n, n
i
t, s

j) in Lemma 1, with nit = 1 and sj = s, the

inequality in Condition SC becomes

rN [p(1− q)N+1 + (1− p)]
[
p(2N) [1− (1− rq)2] − 1− δ

δ

L

H − L

]
+∑

n<N

(
N
n

)
rn (1− r)N−n [p(1− q)n+1 + (1− p)] p(n+ 1)

×
[
(1− rq)2(T−t) − (1− rq)2

]
≥ 0

for all N ≤ t and t < T , which is easier to check.

The strategy s in Condition SC is “minimal” among the threshold strategies for

which njt ≥ N with positive probability; that is, if sj is a threshold strategy such that

pt(N, 1, s
j) > 0, then N j

τ ≥ Nτ for all τ < t. Therefore, by Lemma 2, the inequality

in Condition SC extends to all such thresholds strategies sj.15

15Notice that the right-hand-side in Condition SC is positive; so, in the left-hand-side, it follows

that p(2N) [1− (1− rq)2] − 1−δ
δ

L
H−L ≥ 0. Thus, after a rearrangement of its terms, Condition SC

requires that the expectation of an increasing function with respect to the distribution pt(·, 1, s) is

positive, allowing Lemma 2 to apply.
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Condition SC implies that player i’s best-response in any period t < T takes the

form of a threshold N i
t which is monotonically increasing in player j’s threshold N j

t .16

For t = T − 1, the condition simplifies further to

δ [ p(2T ) [1− (1− rq)2] (H − L) + L ] ≥ L.

To describe how the condition is used in the argument, suppose that player j switches

from a strategy sT−1(n
j
T−1) of stopping in period T − 1 to a strategy ŝT−1(n

j
T−1) of

continuing in period T − 1, for some njT−1, with all other elements of his strategy

remaining the same. Consequently, player i’s payoff calculations involve a lower

probability of player j stopping in period T − 1 but also a lower expected payoff

from experimentation, conditional on the game reaching period T , because of more

pessimistic beliefs. Condition SC implies that player i’s benefit from the switch in

player j’s strategy is greater when he continues to period T than when he stops in

period T − 1, for any number niT−1 of L draws that player i may have.

More generally, in any period t < T , suppose that player j has njt draws of L

and changes his strategy at time t from stopping to continuing and his continuation

strategy from {sjτ}T−1τ=t+1 to {ŝjτ}T−1τ=t+1.
17 Then player i’s calculations about the benefits

of further experimentation should involve not only more pessimistic beliefs, if the

game reaches period t + 1, but also a potential loss from the change in player j’s

continuation strategy. Condition SC requires that even under the worst-case scenario

about the switch {sjτ}τ>t to {ŝjτ}τ>t, player i will benefit more from the change in

player j’s strategy in period t, if player i continues at time t rather than if he stops.

16In particular, Condition SC is used in the proofs of Lemma 3 and Proposition 4 to show that

each player’s expected gain from continuing rather than stopping at the end of period t is decreasing

in the number of L draws the player has observed. This property of monotone differences implies

single crossing, which Milgrom and Shannon (1994) have shown to be necessary and sufficient for

each player’s best response in period t to be monotone (and thus, in our two-action setting, to be a

threshold strategy).

17In period T − 1, a change in player j’s continuation strategy is not possible.
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Although the condition is stronger than necessary, when it fails, a non-trivial sym-

metric equilibrium may not exist even for short time horizons. To see this, consider

the following example:

Example 1 Let δ = 0.9, p = 0.8, q = 0.9, H = 8, L = 1, and T = 2 (two periods).

Then each player’s strategy reduces to deciding whether to stop or to continue with

one draw of L at the end of period t = 1. If r ∈ (0.237, 0.242), then each player

is better off stopping against an opponent who continues and continuing against an

opponent who stops; therefore, there is no symmetric equilibrium.

In this example, q takes a relatively high value so that player j’s decision to

continue with one draw of L has a relatively large negative effect upon player i’s

beliefs about the feasibility of H, conditional on the game reaching period T .

The next lemma establishes the mutual optimality of the threshold strategies

under Condition SC.

Lemma 3 For any T ∈ Z+, if Condition SC holds, then each player i’s best response

to any threshold strategy {N j
t }T−1t=1 of player j is also a threshold strategy {N i

t}T−1t=1 .

The result of Lemma 3 is rather intuitive. With a higher number of L draws,

player i becomes less willing to continue experimentation, for three reasons. First,

independently of his opponent’s presence, the extra draws of L have a negative effect

upon player i’s beliefs regarding the feasibility of H. Second, with another player

experimenting in parallel, player i’s pessimism about H is reinforced by the knowledge

that the other player has not succeeded either. In particular, when player j will not

stop unless he obtains H, player i’s pessimism increases at a higher rate when he

has received a higher number of L draws, independently of any preemption threat.18

18It is straightforward to calculate the probability that H is feasible, conditionally on nit draws

of L for player i and no draw of H for player j, and to show that the rate at which this probability

decreases in the experimentation duration t is increasing in nit.
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Third, considering also the opponent’s stopping strategy, player i ’s fear of being

preempted by the other player increases with each additional draw of L that he

receives. In total, since the draws of L have only negative effects upon a player’s

expectations and payoffs, if player i is better off stopping with a certain number of L

draws, then he will be better off stopping also with any higher number of such draws.

Suppose now that player j follows a strategy σj characterized by thresholds

{N j
t }T−1t=1 . Then, at the end of each period t, player i’s expected gain from con-

tinuing to period t + 1 (and subsequently using his optimal continuation strategy)

rather than stopping at period t, when he has obtained nit draws of L, is

∆Vt = ∆Vt(n
i
t |σj),

defined recursively by equations (A.1)–(A.6) in the proof of Lemma 3 (see Appendix

A), with player i’s beliefs about player j’s draws being the ones induced from strategy

σj via Lemma 1.

For any T ∈ Z+, a strategy σ with thresholds {Nt}T−1t=1 will be part of a symmetric

equilibrium if, in each period t < T , we have

∆Vt(n
i
t |σ)

 > 0 if nit < Nt,

≤ 0 if nit ≥ Nt.

The following proposition asserts that such a symmetric equilibrium exists.

Proposition 4 For any T ∈ Z+, if Condition SC holds, then there exists a sym-

metric perfect Bayesian equilibrium in threshold strategies {Nt}T−1t=1 .

The equilibrium strategies identified in Proposition 4 involve time-variant thresh-

olds that may decrease and increase over time. While a player’s best response within

an examined period (i.e., the threshold to adopt in that period) is monotonic in the

opponent’s threshold, this does not imply that the player’s entire continuation strat-

egy (all thresholds in and after the period we consider) is monotonic in the opponent’s

threshold. To describe the way the thresholds Nt are determined, consider a player
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who has received nit = N draws of L by period t and who knows that his opponent

will stop in that period if and only if he has also obtained njt ≥ N j
t = N draws of L.

An increase in the number N has two effects upon the continuation incentives of that

player: a positive one, stemming from the increase in N j
t and the higher probability

that his opponent will continue to the next period; and a negative one, stemming

from the increase in nit and the lower probability that H is feasible. As N increases,

the second effect becomes more important. Eventually, either it comes to dominate

the first effect, for a threshold Nt ≤ t+1, or the two players choose always to continue

experimenting for at least one more period.

6 Comparison of Public and Private Learning

In this section, we compare the duration of experimentation and the players’ total

welfare under public and private learning. As we show, the players’ total welfare is

typically but not always higher with longer experimentation. Our results indicate

that public learning generates more experimentation when q is either low or high, r is

low, and p is low. Private learning, on the other hand, generates more experimenta-

tion when q is intermediate, and r and p are high. In scientific research, there is often

a great deal of uncertainty about the feasibility of a breakthrough (low p); break-

throughs are rare even when they are feasible (low q); and experiments frequently fail

to produce results (low r). Hence, our findings suggest that public learning would

generate more experimentation than private learning in scientific research. Through-

out this section, when there are multiple equilibria, we focus on the equilibrium with

the highest welfare.

As we noted before, the optimal experimentation duration and welfare are equal

under both regimes when failed experiments are not possible. This is because when

r = 1, under private learning, in each period, each player knows with certainty the

number of L draws his opponent has received. However, when the arrival of draws is

20



uncertain, i.e., for r < 1, public and private learning are no longer equivalent.

We first analyze the two-period case, in which equilibrium behavior can be com-

pletely characterized. In Proposition 7, we partially extend the two-period result to

an arbitrary horizon by showing that public learning results in higher welfare relative

to private learning under the parameter values for which the corresponding two-period

result holds.

In the two-period case, Condition SC simplifies to the following inequality:

p(2) [1− (1− rq)2] H − L
L

≥ 1− δ
δ

(7)

In addition, consider the following conditions upon a player’s payoffs from continu-

ing or stopping at the end of the first period, against an opponent who continues,

depending on what the player can observe about his opponent’s draw:

p(2) [1− (1− rq)2] H − L
L

≥ 2− δ
δ

(8)

p(1) [1− (1− rq)2] H − L
L

+ (1− r)[1− p(1) rq] <
2− δ
δ

(9)

[p1(0, 1) p(1) + (1− p1(0, 1)) p(2)] [1− (1− rq)2] H − L
L

+ p1(0, 1) (1− r) [1− p(1) rq] <
2− δ
δ

(10)

In these conditions, the probabilities p(·) and p1(0, 1), expressing the players’ beliefs,

are defined, respectively, by equation (1) and Lemma 1.19

Proposition 5 In the case of two periods, i.e., when T = 2, suppose condition (7)

holds. Then the comparison of the most efficient equilibria under public and private

learning depends on conditions (8)-(10):

19Since p(1) > p(2), the LHS in condition (8) is smaller than the LHS in condition (9), so that

the two inequalities cannot hold simultaneously. In addition, the LHS in condition (10) is a convex

combination of the LHS in conditions (8) and (9), weighted according to the players’ beliefs p1(0, 1)

and p1(1, 1); therefore, condition (10) must fail / hold respectively when condition (8) / (9) holds.
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a. If condition (8) holds, then public and private learning result in the same out-

comes and payoffs, with each player continuing to period T = 2 unless he receives

H.

b. If condition (9) holds, then public and private learning result in the same out-

comes and payoffs, with each player stopping as soon as he receives a draw.

c. Otherwise, if conditions (8) and (9) do not hold, under public learning, the two

players stop in period t = 1 if they both receive a draw of L; else, they continue

to period T = 2. In this case, public learning generates more experimentation

than private learning if and only if condition (10) holds. In addition, under

condition (10), public learning results in higher expected payoffs.
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Figure 1: For parameters δ = 0.9, H = 8, L = 1, p = 0.6, condition (7) holds in the

white area. Conditions (8) - (10) hold respectively inside the blue line (area A), outside the

orange line (area B), outside the green line (areas B and C).
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Figure 1 illustrates the comparison of public and private learning when T = 2,

for fixed parameters δ = 0.9, H = 8, L = 1, p = 0.6 and variable probabilities r, q.

To describe the graph, notice that the analysis of the players’ incentives and strategies

can be reduced to their decisions at t = 1 after obtaining a draw of L, depending

under public learning on the information they observe about their opponent’s draw.

For each strategy profile, we indicate the combinations of r, q for which this profile

constitutes an equilibrium. Under public learning there are three possible equilibria:

(i) Players always continue (r, q in area A).

(ii) Players stop if they both receive draws of L; otherwise, they continue (r, q in

areas C and D).

(iii) Each player stops if he receives a draw of L regardless of the other player’s draw

(r, q in area B).

Under private learning, there are two possible equilibria:

(i) Players always continue (r, q in areas A and D).

(ii) Each player stops if he receives a draw of L (r, q in areas B and C ).

Hence, in areas A or B, the length of experimentation is the same under public and

private learning. In area D, private learning generates more experimentation than

public learning. Finally, in area C, public learning generates more experimentation

than private learning.20

To explain the intuition, note that private learning softens the threat of preemp-

tion, inducing players to stop later. Using Figure 1, we see that private learning

generates more experimentation than public learning when q has intermediate values

and r is high enough. However, despite the possibility of preemption, we find that

20As shown in the proof of Proposition 5, when condition (10) fails, in the areas A+D in Figure 1,

under private learning, an equilibrium exists even if condition (7) fails, with each player continuing

to T = 2 unless he receives H in period t = 1. It is only for parameters for which (10) holds, in the

areas B+C, that an equilibrium may not exist without condition (7) being satisfied.
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public learning generates more experimentation than private learning when q is ei-

ther low or high enough. To see why this is the case, note that when q is low, i.e.,

breakthroughs are rare even when they are feasible, under private learning players

stop with a single L because they believe that obtaining H with the next draw is

very unlikely, so, the preemption motives dominate those of experimentation. On the

other hand, when q is high, i.e., breakthroughs are rather frequent, obtaining an L

leads players to update their beliefs drastically and believe that a breakthrough is not

feasible (because if it were, they would have received an H with high probability given

that q is high). This leads them to stop immediately. Under public learning, however,

there is a range for the parameter q in which players would continue with a single L

and stop only if they observe two Ls. Hence, when q is in this range, public learning

generates more experimentation than private learning. Put differently, independent

learning leads to coordination failures when players stop with a single L under private

learning, but continue with a single L and stop if they both receive Ls under public

learning. In addition, such coordination failures become more likely when r is low,

i.e., experiments frequently fail to produce results. Indeed, for low values of r, public

learning dominates private learning for all values of q.

Our analysis of the two-period case also reveals that the effect of softening pre-

emption becomes stronger for a wider set of parameters when p gets higher, i.e., when

it is more likely that a breakthrough is feasible. Graphically, in Figure 1, as p in-

creases, areas B+C contract, while areas A+D expand. We state this formally in the

next proposition.

Proposition 6 For T = 2, if public learning generates more experimentation and

higher payoffs than private learning for some probability p, then it will generate weakly

more experimentation and weakly higher payoffs for all probabilities p′ < p.

When public learning generates more experimentation, it necessarily results in

higher welfare, as it is closer to the single-player optimum. It is interesting to notice,
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though, that public learning can result in higher welfare even in cases in which it

generates less experimentation, if conditions (8)-(10) do not hold, where the solution

to the cooperative problem is to experiment until obtaining N∗ = 2 draws of L. For

such parameters, the failure to aggregate the two players’ information under private

learning may result in excessive experimentation. The following example illustrates

this possibility of excessive experimentation under private learning.

Example 2 Let δ = 0.9, H = 8, L = 1, p = 0.9, q = 0.9, r = 0.1, and T = 2.

The cooperative solution is to keep experimenting until obtaining 2 draws of L. Under

public learning, the two players stop at t = 1 if and only if they both obtain L draws;

thus, the equilibrium achieves the optimal cooperative experimentation outcome. Un-

der private learning, in equilibrium, players always continue to period T = 2 even if

they each obtain an L draw. Hence, due to lack of coordination, it is possible that

they continue experimenting beyond the cooperative stopping threshold. Thus, the ex-

pected duration/payoff of experimentation in the cooperative solution (and for public

learning) is lower/higher than the expected duration/payoff under private learning.

For more than two periods, the comparison between public and private learning

turns out to be complicated because of the large number of cases that need to be

considered. However, as the following result shows, for parameters corresponding

to area C in Figure 1, public learning results in higher welfare relative to private

learning, independently of the experimentation horizon T .

Proposition 7 For T ≥ 2, suppose that conditions (7) and (10) hold while condition

(9) does not hold. Then public learning results in more experimentation and higher

expected payoffs than private learning.

In fact, for public learning to result in at least as efficient experimentation out-

comes as private learning, it suffices that conditions (7) and (10) hold, that is, the

parameters are in areas B and C in Figure 1. Under these conditions, under pri-

vate learning, there is a unique equilibrium, in which each player stops as soon as
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he receives one draw. The additional requirement that condition (9) does not hold

restricts the set of parameters defined by conditions (7) and (10) to those in area C

in Figure 1, so that the players’ thresholds under public learning are N2 ≥ N1 ≥ 2,

for public learning to result in strictly better experimentation outcomes.

In Appendix B, we extend the analysis of the two-period problem under private

learning by computing also non-efficient pure-strategy equilibria as well as mixed-

strategy equilibria. In the latter, each player mixes between continuing and stopping

if he has a draw of L at the end of the first period.

7 Related Literature

Our paper is related to two bodies of work on experimentation, which are distin-

guished by the possibility of preemption and the presence of uncertainty regarding

the distribution of potential outcomes. In preemption games, players decide when to

terminate the game, given a first-mover advantage in the payoffs. They can seek to

obtain a larger prize by moving late but also have the opportunity to accept a smaller

prize, and by doing so, they prevent all others from obtaining any prize at all. In

games of experimentation and learning, the players decide in each period whether to

continue allocating resources to a risky project or to stop and exit for a safe option,

according to what they can infer from the outcomes they have observed that far.

The first body of work features preemption in the sense that we just described,

but does not deal with uncertainty and learning about the probability distribution of

research outcomes. Hopenhayn and Squintani (2011) consider a preemption game in

which two players randomly receive new information over time, interpreted as inno-

vation increments. Players accumulate outcomes from a known distribution in their

model. They find that private information about each player’s state tends to soften

the fear of being preempted, resulting in longer expected durations in equilibrium.

This is in contrast to our findings. The reason is that, in our model, researchers
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not only learn about the threat of being preempted, but also about the probability

distribution of research outcomes. We find that there are gains from making this

information public that have no counterpart in their setup.

Bobtcheff et al. (2017) consider preemption in a model where two researchers

privately have a breakthrough idea and decide how long to let the idea mature before

disclosing it. However, the distribution of research outcomes is common knowledge.

By contrast, our paper considers preemptive situations in which the feasibility of

a high-value breakthrough is uncertain and focuses on learning about the distribu-

tion of outcomes and the effects of information exchange. Other preemption games

in the context of research activity are investigated, for instance, by Lippman and

Mamer (1993), Hoppe and Lehmann-Grube (2005). However, these studies consider

preemption under deterministic payoffs.21

The other body of work deals with experimentation and learning in stopping games

without the threat of preemption, as in the multi-armed bandit models (see, for in-

stance, Keller et al., 2005). In these models, players must allocate resources to a risky

project and a safe option. The risky project is characterized by uncertainty about

the arrival rate of rewards, and players learn about this arrival rate over time by ob-

serving each other’s actions and rewards. Private information in multi-armed bandit

problems has been investigated by several authors, however, in these models there is

no advantage from disclosing an experimentation result ahead of the opponent.22

Moscarini and Squintani (2010) consider a two-player experimentation model with

learning about the arrival rate of an invention. In their setting, a player earns nothing

when he stops before the invention arrives. Hence, preemption is not possible. By

21Boyarchenko and Levendorskii (2014) examine preemption games with a single risky investment

opportunity, but where learning about an uncertain distribution of outcomes is not an issue. Unlike

us, they study the effects of players’ asymmetry under jump-diffusion uncertainty.

22In our setting, the stopping and continuation decisions correspond, respectively, to settling for

a sure arm and trying a stochastic arm. Note that in our model, a player’s stopping decision affects

the value of both arms for the other player.
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contrast, in our model, each player’s beliefs regarding the position of his opponent

are used to estimate not only the likelihood of achieving a high-value outcome but

also the probability of being preempted with a low-value result.

Akcigit and Liu (2015) consider a model where two players begin experimenting

with a risky arm that results in either a good outcome or a dead end. At any point,

a player can privately and irreversibly switch to a safe arm. A good outcome from

the risky arm is public, but a dead end is observed in private. Assuming that only

a single player can obtain a reward from a given arm, the authors identify channels

for inefficient experimentation. Aside from the different focus, the key difference

between our paper and Akcigit and Liu (2015) stems from the lack of preemption in

their framework. Without the threat of preemption, public experimentation is always

superior to private experimentation.23

Heidhues et al. (2015) consider the possibility of communication via cheap talk

in a multi-armed bandit model without preemption. Rosenberg et al. (2013), Dong

(2021) and Wagner and Klein (2022) study the impact of private information about

outcomes on welfare in two-armed bandit models without preemption. Margaria

(2020) studies a two-player investment game with a second-mover advantage.

Building on the multi-armed bandit framework, Halac et al. (2017) study innova-

tion contests when there is uncertainty about the feasibility of a successful innovation.

There is a principal who designs a contest to maximize the probability of obtaining a

successful innovation and several researchers who engage in costly experimentation for

a fixed number of periods. The principal allocates a fixed prize among the researchers

and chooses a prize-sharing scheme and a disclosure policy. Unlike in our model, pre-

emption is not possible in their setting. This is because players cannot stop with

anything less than a success, and even then, experimentation can continue after one

of the players obtains success either because the contest is private or because there

23A second more technical difference concerns the evolution of beliefs in their setting where, for

any strategies, players can only become pessimistic over time, unlike in our problem.
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is equal sharing. By contrast, in our model, both private or public experimentation

stop as soon as one of the players reveals either a low- or a high-value success which

introduces fundamentally different learning and belief dynamics.

One paper that falls within the intersection of the two bodies of literature, dealing

with preemption and learning about uncertain research outcomes, is Spatt and Ster-

benz (1985). The authors show that preemption shortens experimentation. There are

two crucial differences from our paper. First, in every period, there is a single public

draw, and second, there are no failed experiments. Thus, there is no possibility of

private learning in their setting, whereas our paper compares private and public learn-

ing. More recently, Bobtcheff et al. (2021) consider a preemption game with risky

investment opportunity where players randomly receive a single perfectly informative

private signal over time when the project is not profitable. In their model, learning

is about bad news, and when learning is private, players delay investment to avoid

the winner’s curse. Thus a planner who would like to avoid unprofitable investment

prefers private over public learning. By contrast, in our paper, learning is about the

possibility of a breakthrough and we show that public learning can lead to longer

experimentation and higher welfare. Hence, we view the papers as complementary.

8 Conclusion

We have examined the effects of rivalry upon experimentation and learning in a stop-

ping game in which the players acquire information over time about the distribution

of their potential payoffs. A key innovation in our setting is that experiments are not

always successful and sometimes do not return any useful results.

Under the assumption of public observation of the players’ experimentation re-

sults, we have constructed a perfect Bayesian equilibrium in threshold strategies. In

this equilibrium, the two players continue experimenting, trying to obtain a high-value

outcome, until their beliefs about its feasibility become too pessimistic. Because of the
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threat of preemption, the length of experimentation is shorter than socially optimal.

We have checked whether earlier results, showing that the threat of preemption

is softened when information is kept private, carry over to preemption games with

uncertainty and learning about research outcomes.24 If players cannot observe one

another’s results, i.e., under private learning, they need to form beliefs about the

experimentation outcomes of their rival and eventually about the feasibility of a high-

value outcome. These beliefs turn out to be quite complex because they depend not

only on the length of time the players have been experimenting but also on the number

of successful experiments. Despite this complexity, we provide conditions for the

existence of equilibria in strategies involving nonmonotone time-variant thresholds.

Our analysis reveals that private learning generates even shorter experimentation

durations than public learning for a wide range of parameters.

We trace our findings to the players’ inability to coordinate on their information

under private learning: A player who does not observe his rival’s experimentation

results and, due to unsuccessful experimentation, does not himself have many results

might still believe that his opponent has run many successful experiments and ob-

tained more results. This situation would push the player to stop experimenting even

earlier than under public observation of his rival’s experimentation results. Overall,

our paper sheds light on whether public or private experimentation generates longer

experimentation horizons and greater value for scientists.
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Appendix A: Proofs of Results

Proof of Proposition 1:

Consider the strategy σ∗ = {σ∗t }T−1t=1 , described in Proposition 1. Arguing along the

lines of the one-shot deviation principle, for (σ∗, σ∗) to constitute an equilibrium,

we need to show that there is no continuation game such that player i can deviate

profitably from the continuation strategy induced by σ∗. Suppose contrary and let t

and ht be the last period (within a finite time horizon) and one of the histories in that

period in which player i can deviate profitably from the strategy σ∗. Thus, according

to the contradiction hypothesis, σ∗ is optimal for player i in all periods t′ > t, against

player j also following σ∗.

We split cases, depending on the history ht.

Player i can clearly not gain from stopping after histories in which he has received

no draw at all. In addition, player i cannot gain from continuing after histories in

which he has already received a draw of H. Similarly, player i cannot deviate from

σ∗ profitably after histories in which his opponent has received a draw of H. So,

it remains to check histories in which player i has received nit ≥ 1 draws of L and

neither player has received a draw of H.

If njt ≥ 1 and nt = nit+n
j
t < N1, then player i’s payoff from following σ∗ (thus, from

continuing to period t+ 1 and then acting optimally, as implied by our contradiction

hypothesis) weakly exceeds his payoff from continuing to period t+ 1 and then surely

stopping, which is greater or equal than

(1/2) δ [ pH(nt)(H − L) + L ] ≥ L,

his payoff from stopping in period t.

On the other hand, if njt ≥ 1 and nt ≥ N1, then player j will stop in period t, so,

player i should also stop in that period.

If njt = 0 and nt < N2, then player i’s payoff from following σ∗ (that is, from

continuing to period t+ 1 and then acting optimally) weakly exceeds his payoff from
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continuing to period t+1 and then surely stopping, with player j also surely stopping

if he receives a draw, which is

(1/2) δ [ pH(nt)(H − L) + [1 + (1− r)(1− p(nt)rq)]L ] ≥ L,

his payoff from stopping in period t.

If njt = 0 and nt ≥ N2, if player i continues to period t + 1, then player i will be

best-off stopping in period t + 1 (that is, following σ∗ after period t); and player j

will also stop in period t+ 1, if he receives a draw. Thus, player i’s optimal deviation

payoff is

(1/2) δ [ pH(nt)(H − L) + [1 + (1− r)(1− p(nt)rq)]L ] < L,

his payoff from stopping in period t.

Having exhausted the cases, we have that player i has no profitable deviation from

the strategy σ∗, contradicting our hypothesis.

Proof of Proposition 2:

We argue backwards, from period t = T − 1 to period t = 1, showing that at the end

of each period t, the continuation game starting at that time cannot admit a pure-

strategy equilibrium in which the players continue if the total number of L draws

exceeds the thresholds N1 and N2 in the definition of σ∗.

In period t = T − 1, when njt ≥ 1 and nit + njt ≥ N1, even if player j is willing to

continue to period T , the inequality in the definition (5) of the threshold N1 implies

that player i is better-off stopping in period T − 1. Thus, there is no equilibrium in

which a player might continue to period T when nit + njt ≥ N1. In addition, when

njt = 0 and nit ≥ N2, the inequality in the definition (6) of the threshold N2 implies

that player j is better-off stopping in period T − 1.

In period t = T − 2, when njt ≥ 1 and nit + njt ≥ N1, even if player j is willing to

continue to period T , player i knows that the game will surely end in the next period.

Therefore, player i’s continuation and stopping payoff calculations in period T − 2
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are identical to those in period T − 1, implying again that there is no equilibrium

in which the players might continue to period T − 1 when nit + njt ≥ N1. For the

same reason, the knowledge that the game will not continue beyond T − 1, player i

is better-off stopping in period T − 2, when njt = 0 and nit ≥ N2.

Reiterating the last argument for t = T − 3, . . . , 1, noticing that in each period t,

when njt ≥ 1 and nit+njt ≥ N1 or when njt = 0 and nit ≥ N2, player i is forced to treat

the continuation game as a two-period game, it follows that there is no equilibrium

in which the game continues after histories in which the strategy σ∗ dictates stopping.

Proof of Proposition 3:

Comparing the inequalities in (4) and (6), defining the thresholds N∗ and N2 ≥ N1,

we find that a player’s gain from continuing experimenting for exactly one more pe-

riod is larger when he is alone, so that N∗ ≥ N2 ≥ N1.

Proof of Lemma 1:

At the end of period t, consider the joint event in which the two players have observed

respectively histories hit and hjt involving nit and njt draws of L and no draw of H.

The probability of this event is

P (hit, h
j
t) = rn

i
t+n

j
t (1− r)2t−ni

t−n
j
t [ p(1− q)ni

t+n
j
t + (1− p) ]

Aggregating over all time-t histories hjt involving njt draws of L, no draw of H, and

satisfying the continuation constraints of the strategy sj for all periods up to time

t− 1, we get

P (hit, n
j
t , s

j) = ht(n
j
t , s

j
t) r

ni
t+n

j
t (1− r)2t−ni

t−n
j
t [ p(1− q)ni

t+n
j
t + (1− p) ],

where ht(n
j
t , s

j
t) ≤

(
t
nj
t

)
is the total number of such histories.
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Therefore, player i’s belief that njt = nj is given by the conditional probability

pt(n
j
t , n

i
t, s

j) = P (njt |hit, sj) =
P (hit, n

j
t , s

j)∑t
n=0 P (hit, n, s

j)

=
ht(n

j
t , s

j) rn
j
t (1− r)t−n

j
t [p(1− q)ni

t+n
j
t + (1− p)]∑t

n=0 ht(n, s
j) rn (1− r)t−n [p(1− q)ni

t+n + (1− p)]
,

with the second equality being obtained by canceling equal terms.

To explore the monotonicity of the beliefs pt(n
j
t , n

i
t, s

j) with respect to the variable

nit, notice that

dpt
dnit,

(njt , n
i
t, s

j) =

ln (1− q) ht(njt , sj) rn
j
t (1− r)t−n

j
t

(
∑t

n=0 ht(n, s
j) rn (1− r)t−n [p(1− q)ni

t+n + (1− p)] )2

×
∑t

n=0 ht(n, s
j) rn (1− r)t−n p (1− p) (1− q)ni

t [(1− q)n
j
t − (1− q)n]

Therefore, since ln (1− q) ≤ 0,

dpt
dnit,

(njt , n
i
t, s

j) R 0 ⇐⇒
t∑

n=0

ht(n, s
j) rn (1− r)t−n [(1− q)n

j
t − (1− q)n] Q 0,

The sum is independent of nit, decreasing in njt , positive for njt = 0, negative for

njt = t. Hence, for every t and sj, there is a value n̄jt such that

dpt
dnit,

(njt , n
i
t, s

j) R 0 ⇐⇒ njt R n̄jt

Let ñit > nit. To show that

n∑
nj
t=0

[ pt(n
j
t , n

i
t, s

j)− pt(njt , ñit, sj) ] ≥ 0, for all n = 0, 1, ...t,

as required for first-order stochastic dominance, notice that

pt(n
j
t , ñ

i
t, s

j) R pt(n
j
t , n

i
t, s

j) ⇐⇒ njt R n̄jt .

Therefore, the sum is positive for values n ≤ n̄jt . For values n ≥ n̄jt , we have

n∑
nj
t=0

[ pt(n
j
t , n

i
t, s

j)− pt(njt , ñit, sj) ] = −
t∑

nj
t=n+1

[ pt(n
j
t , n

i
t, s

j)− pt(njt , ñit, sj) ]
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so that again the sum is positive, as required.

Proof of Lemma 2:

Since first-order stochastic dominance is a transitive relation, so that our argument

can proceed from sj to ŝj in a threshold-by-threshold manner, it suffices to show the

result for strategies sj and ŝj such that N j
τ = N̂ j

τ , for τ 6= t0, and N j
τ < N̂ j

τ , for τ = t0,

for some time t0 < t.

Given two threshold strategies sj and ŝj that differ only at time t0 < t, with

N j
t0 < N̂ j

t0 , by Lemma 1, for all M ≤ t, we have

P [njt ≤M |nit, ŝj] − P [njt ≤M |nit, sj] =

M∑
m=0

[
ht(m, ŝ

j) p̄(m,nit)∑t
n=0 ht(n, ŝ

j) p̄(n, nit)
− ht(m, s

j) p̄(m,nit)∑t
n=0 ht(n, s

j) p̄(n, nit)

]
,

with the expression p̄(m,nit) = rm (1 − r)t−m [p(1 − q)ni
t+m + (1 − p)] being used to

simplify the notation. Therefore, for all M ≤ t,

P [njt ≤M |nit, ŝj] − P [njt ≤M |nit, sj] ≤ 0

as required for for the result, if and only if

M∑
m=0

t∑
n=0

p̄(m,nit) p̄(n, n
i
t)
[
ht(m, ŝ

j)ht(n, s
j) − ht(m, s

j)ht(n, ŝ
j)
]
≤ 0

or, after canceling equal terms, if and only if

M∑
m=0

t∑
n=M+1

p̄(m,nit) p̄(n, n
i
t)
[
ht(m, ŝ

j)ht(n, s
j) − ht(m, s

j)ht(n, ŝ
j)
]
≤ 0

Therefore, it suffices to show that

ht(m, ŝ
j)ht(n, s

j) − ht(m, s
j)ht(n, ŝ

j) ≤ 0,

for all m,n ≤ t such that m ≤M < n.
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Notice that for all strategies s with thresholds {Nτ}t−1τ=1 and any time t0 < t, we

have

ht(k, s) =
k∑
l=0

h′t0 [l, (Nτ )
t0
τ=1] ht−1−t0 [k − l, (Nτ − l)t−1τ=t0+1]

where h′t0 [l, (Nτ )
t0
τ=1] is the number of player j’s histories at the end of period t0 such

that player j has received l draws of L and no draw of H and such that njτ < Nτ for

all τ ≤ t0.

Therefore, it suffices to show that

m∑
k=0

h′t0 [k, (N̂
j
τ )t0τ=1] ht−1−t0 [m− k, (N̂ j

τ − k)t−1τ=t0+1]

×
n∑
l=0

h′t0 [l, (N
j
τ )t0τ=1] ht−1−t0 [n− l, (N j

τ − l)t−1τ=t0+1] −

m∑
k=0

h′t0 [k, (N
j
τ )t0τ=1] ht−1−t0 [m− k, (N j

τ − k)t−1τ=t0+1]

×
n∑
l=0

h′t0 [l, (N̂
j
τ )t0τ=1] ht−1−t0 [n− l, (N̂ j

τ − l)t−1τ=t0+1] ≤ 0

Since N̂ j
τ = N j

τ , for all τ > t0, this reduces to showing (after again canceling equal

terms) that

m∑
k=0

n∑
l=m+1

ht−1−t0 [m− k, (N j
τ − k)t−1τ=t0+1] ht−1−t0 [m− l, (N j

τ − l)t−1τ=t0+1]

×

 h′t0 [k, (N̂
j
τ )t0τ=1] h

′
t0

[l, (N j
τ )t0τ=1] −

h′t0 [k, (N
j
τ )t0τ=1] h

′
t0

[l, (N̂ j
τ )t0τ=1]

 ≤ 0

for all m,n ≤ t such that m ≤M < n.

For m < N j
t0 , we have h′t0 [k, (N̂

j
τ )t0τ=1] = h′t0 [k, (N

j
τ )t0τ=1], for all k ≤ m, so that the

inequality follows from the fact that h′t0 [l, (N
j
τ )t0τ=1] ≤ h′t0 [l, (N̂

j
τ )t0τ=1], for all l ≥ 0.

Finally, for m ≥ N j
t0 , we have h′t0 [l, (N

j
τ )t0τ=1] = 0, for all l ≥ m + 1, so that the

expression on the left-hand-side of the inequality involves only non-positive terms.
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Proof of Lemma 3:

We argue by means of backwards induction, in periods T −1, T −2, . . . , 1, showing in

each period, first, that player i’s optimal strategy at the end of the period takes the

form of a threshold rule; and second, that player i’s expected payoff from following

his optimal strategy is decreasing in the number of L draws he has obtained that far,

a result to be used in the next step of the induction.

Throughout our argument we condition on player j having obtained no draw of

H by the time of player i’s decision; otherwise, player i’s decision is irrelevant for his

payoff. For the sake of brevity, we drop this condition from our notation.

Given any T ∈ Z+, suppose that player j’s strategy sj is such that he stops in

periods t < T if and only if njt ≥ N j
t , for some sequence of thresholds {N j

t }T−1t=1 .

Moving backwards in the periods of the game, suppose that player i has obtained

niT−1 > 0 draws of L by the end of period T − 1.25 Then player i’s expected payoff

from continuing to the last period T , conditionally on player j having obtained njT−1

draws of L and on the game actually reaching period T , is

UT (niT−1|n
j
T−1, s

j) =


1
2
δ [pH(niT−1 + njT−1)(H − L) + L], njT−1 > 0;

1
2
δ [pH(niT−1)(H − L) + L] +

1
2
δ [1− r p(niT−1) q] (1− r)L, njT−1 = 0.

(A.1)

Therefore, conditionally on njT−1, player i’s expected gain from continuing to period

T instead of stopping in period T − 1 is

∆VT−1(n
i
T−1 |n

j
T−1, s

j) =


−L/2, njT−1 ≥ N j

T−1;

UT (niT−1 |n
j
T−1, s

j) − L, njT−1 < N j
T−1.

Finally, player i’s (unconditional) expected gain from continuing instead of stopping

is

∆VT−1(n
i
T−1 | sj) =

T−1∑
nj
T−1=0

pT−1(n
j
T−1, n

i
T−1, s

j) ∆VT−1(n
i
T−1 |n

j
T−1, s

j). (A.2)

25When niT−1 = 0, player i must continue into period T independently of hj.T−1.
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Under Condition SC, the function ∆VT−1( · | ·, sj) is decreasing in njT−1.
26 In addition,

∆VT−1(n
i
T−1 | 0, sj) =

(1/2)δ p(niT−1) rq [(2− rq)H − (3− r − rq)L]− L+ (1/2)δ (2− r)L.

Therefore, for parametersH/L < (3−r−rq)/(2−rq), we have ∆VT−1(n
i
T−1 | 0, sj) < 0,

so that ∆VT−1(n
i
T−1 |n

j
T−1, s

j) < 0, for all niT−1 ≥ 1, njT−1 ≥ 0. In this case, player

i’s expected gain from continuing is ∆VT−1(n
i
T−1 | sj) < 0, for all niT−1 ≥ 1, implying

that player i is best-off stopping if he has at least one draw of L. Otherwise, for

parameters H/L ≥ (3 − r − rq)/(2 − rq), the function ∆VT−1( · | ·, sj) is decreasing

also in niT−1. In this case, for ñiT−1 > niT−1, we have

∆VT−1(ñ
i
T−1 | sj) =

T−1∑
nj
T−1=0

pT−1(n
j
T−1, ñ

i
T−1, s

j) ∆VT−1(ñ
i
T−1 |n

j
T−1, s

j)

≤
T−1∑

nj
T−1=0

pT−1(n
j
T−1, n

i
T−1, s

j) ∆VT−1(n
i
T−1 |n

j
T−1, s

j)

= ∆VT−1(n
i
T−1 | sj),

with the inequality being obtained from the fact that the probability distribution

pT−1( ·, ñiT−1, sj) first-order stochastically dominates the distribution pT−1( ·, niT−1, sj).

Hence, player i’s incentive to continue to period T is decreasing in the number niT−1

of L draws he has received, implying that his best response in period T − 1 takes the

form of a threshold rule, N i
T−1.

To complete the first step of the induction, notice that player i’s expected payoff

from choosing to continue to period T ,

V c
T−1(n

i
T−1 | sj) =

Nj
T−1−1∑

nj
T−1=0

pT−1(n
j
T−1, n

i
T−1, s

j)UT (niT−1 |n
j
T−1, s

j)

26For all niT−1, since the probability pH(niT−1 + njT−1) is decreasing in njT−1, the payoff

UT (niT−1 |n
j
T−1, s

j) is also decreasing in njT−1. Condition SC ensures that UT (niT−1 |n
j
T−1, s

j)−L >

−L/2, for all njT−1 < N j
T−1, for all N j

T−1.
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is decreasing in niT−1, since the distribution pT−1( ·, niT−1, sj) is first-order stochasti-

cally increasing in niT−1 and the payoff UT (niT−1 |n
j
T−1, s

j) is decreasing in niT−1 and

njT−1. In addition, player i’s payoff from stopping in period T − 1,

V s
T−1(n

i
T−1 | sj) = (L/2) +

Nj
T−1−1∑

nj
T−1=0

pT−1(n
j
T−1, n

i
T−1, s

j) (L/2),

is also decreasing in niT−1, because of stochastic dominance. Therefore, player i’s

optimal payoff at the end of period T − 1,

V ∗T−1(n
i
T−1 | sj) = max{V c

T−1(n
i
T−1 | sj), V s

T−1(n
i
T−1 | sj) } (A.3)

is decreasing in niT−1.

Proceeding to periods t = T − 2, T − 3, . . . , 1, suppose that player i’s optimal

continuation strategy in period t + 1 takes the form of a threshold rule {N i
τ}T−1τ=t+1,

depending only on the strategy sj; and that his optimal payoff at the end of period

t+ 1,

V ∗t+1(n
i
t+1 | sj) = Vt+1[n

i
t+1 | sj, (N i

τ )
T−1
τ=t+1]

is decreasing in nit+1 (induction hypothesis).

At the beginning of period t+ 1, player i’s expected payoff from drawing in that

period and then following the optimal continuation strategy {N i
τ}T−1τ=t+1 is

U∗t+1(n
i
t | sj) = Ut+1[n

i
t | sj, (N i

τ )
T−1
τ=t+1]

= p̂H(nit | sj) (1/2)H + [1− p̂Ht (nit | sj)] p̂Lt (nit | sj) V ∗t+1(n
i
t + 1 | sj) (A.4)

+ [1− p̂Ht (nit | sj)] [ 1− p̂Lt (nit | sj)] V ∗t+1(n
i
t | sj)

where

p̂Ht (nit | sj) =
t∑

nj
t=0

p′t(n
j
t , n

i
t, s

j) pH(njt + nit)

is player i’s belief at the beginning of period t + 1 that at least one draw of H will

be obtained in that period,

pLt (nit | sj) =
t∑

nj
t=0

p′t(n
j
t , n

i
t, s

j)
[ 1− p(njt + nit) + p(njt + nit) (1− q) (1− rq) ] r

1− p(njt + nit) + p(njt + nit) (1− rq)2
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is player i’s belief at the beginning of period t+ 1 that he will draw L in that period,

conditional on neither player drawing H, with

p′t(n
j
t , n

i
t, s

j) =
h′t(n

j
t , s

j) rn
j
t (1− r)t−n

j
t [p(1− q)ni

t+n
j
t + (1− p)]∑t

n=0 h
′
t(n, s

j) rn (1− r)t−n [p(1− q)ni
t+n + (1− p)]

,

defined in a manner analogue to pt(n
j
t , n

i
t, s

j), being the probability that player j has

obtained njt draws of L by the end of period t, conditional on nit and on the constraints

of the stopping strategy sj, including the one at the end of period t.27

Arguing as in Lemma 1, it can be shown that the distribution p′t( ·, nit, sj) first-

order stochastically increases in nit. Therefore, the probabilities p̂Ht (nit | sj) and p̂Lt (nit | sj)

are respectively decreasing and increasing in nit. In addition, V ∗t+1( · | sj) is decreasing

(from the induction hypothesis) and V ∗t+1(n
i
t+1 | sj) ≤ (1/2)H, for all nit+1 ≥ 0. Hence,

the payoff U∗t+1(n
i
t | sj) = Ut+1[n

i
t | sj, (N i

τ )
T−1
τ=t+1] is decreasing in nit.

At the end of period t, player i’s expected gain from choosing to continue rather

than to stop is

∆Vt(n
i
t | sj, (N i

τ )
T−1
τ=t+1) (A.5)

= P [njt < N j
t |nit, sj] [Ut+1[n

i
t | sj, (N i

τ )
T−1
τ=t+1]− L ]

+ P [njt ≥ N j
t |nit, sj] (−L/2)

= P [njt < N j
t |nit, sj] [Ut+1[n

i
t | sj, (N i

τ )
T−1
τ=t+1]− L/2 ] − L/2

Using again the fact that an increase in nit results in a stochastic dominant distribution

for the unknown variable njt , along with the fact that U∗t+1( · | sj) is decreasing, it

follows that player i’s gain ∆Vt[n
i
t | sj, (N i

τ )
T−1
τ=t+1] is decreasing in nit, so that player

i’s best-response strategy in period t takes the form of a threshold rule, N i
t .

Finally, since the probability P [njt < N j
t |nit, sj] and the expected payoff functions

27In particular, h′t(n
j
t , s

j) ≤
(t+1
nj
t

)
is the number of histories of player j consistent with with

player j having obtained njt draws of L and the constraints of the stopping strategy sj in periods

1, 2, . . . , t. Notice that these constraints include the hypothesis that no draw of H has occurred.
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Ut+1(n
i
t | sj, (N i

τ )
T−1
τ=t+1) are decreasing in nit, it follows that the payoffs

V c
t [nit | sj, (N i

τ )
T−1
τ=t+1] = P [njt < N j

t |nit, sj] Ut+1[n
i
t | sj, (N i

τ )
T−1
τ=t+1],

V s
t [nit | sj, (N i

τ )
T−1
τ=t+1] = (L/2) + P [njt < N j

t |nit, sj] (L/2)

and

V ∗t (nit | sj) = Vt[n
i
t | sj, (N i

τ )
T−1
τ=t+1]

= max{V c
t [nit | sj, (N i

τ )
T−1
τ=t+1], V

s
t [nit | sj, (N i

τ )
T−1
τ=t+1] } (A.6)

are decreasing in nit, completing the induction.

Proof of Proposition 4:

Similar to the proof of Lemma 3, we condition our continuation payoff calculations

on player j having obtained no draw of H by the time of player i’s decision.

In the continuation game starting at the end of period T , it is clear that the

strategy profile in which each player stops immediately constitutes an equilibrium,

independently of the players’ strategies up to that period and associated beliefs.

In period T − 1, suppose that the two players have followed symmetric strategies

s′ with stopping thresholds {Nt}T−2t=1 prior to that period; and that player j follows a

threshold N j
T−1 in that period.28 If player i has obtained niT−1 > 0 draws of L, then

his expected gain from continuing to period T instead of stopping in period T − 1 is

given by equations (A.1) and (A.2) in the proof of Lemma 3.29

For parameters H/L < (3− r− rq)/(2− rq), as argued in the proof of Lemma 3,

we have ∆VT−1(n
i
T−1, |n

j
T−1, s

′, N j
T−1 ) < 0, for all niT−1 ≥ 1, njT−1 ≥ 0, so that player

28Notice that the players cannot observe one another’s deviations, in particular, the deviation to

continuing when a player’s strategy prescribes stopping. Thus, in histories off the equilibrium path,

a player’s continuation or stopping payoff is not affected by his past behavior, it depends only on

the number of L draws he has and the strategy of his opponent.

29Notice that player i’s beliefs regarding the number of draws of his opponent, njT−1, are inde-

pendent of his opponent’s continuation strategy, in particular, of the threshold N j
T−1.
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i’s continuation gain is ∆VT−1(n
i
T−1 | s′, N

j
T−1 ) < 0, for all niT−1 ≥ 1. In this case,

there is a unique equilibrium for the continuation game, with threshold NT−1 = 1.

For parameters H/L ≥ (3 − r − rq)/(2 − rq), again as argued in the proof of

Lemma 3, the payoff ∆VT−1(n
i
T−1 | s′, N

j
T−1 ) is decreasing in the number of draws

niT−1. In addition, under Condition SC, the payoffs ∆VT−1(n
i
T−1, |n

j
T−1, s

′, N j
T−1 )

and, therefore, ∆VT−1(n
i
T−1 | s′, N

j
T−1 ) are increasing in player j’s threshold N j

T−1.

Hence, the threshold characterizing player i’s best-response strategy in period T − 1,

given by

BRi
T−1(N

j
T−1 | s

′) = max{n = 1, 2, . . . , T − 1 : ∆VT−1(n | s′, N j
T−1 ) > 0 } + 1,

with BRi
T−1(s

j) = 1 when the set is empty, is an increasing function of the threshold

N j
T−1 in the strategy sj.30

The set {1, 2, ..., T} is a lattice with respect to the order ≥, complete because

of finiteness. Therefore, since the function BRi
T−1( · | s′) is increasing in the variable

N j
T−1, it has at least one fixed point. Hence, for each symmetric strategy s′ = {Nt}T−2t=1

prior to period T − 1, we can define the players’ common threshold at time T − 1 as

the maximal fixed point of BRi
T−1( · | s′).

Moving backwards to periods t = T − 2, T − 3, . . ., 1, suppose that for each

symmetric strategy profile with stopping thresholds {Nτ}tτ=1 up to the end of period

t, there is a symmetric equilibrium s′′[(Nτ )
t
τ=1] for the continuation game starting in

period t+ 1, with thresholds that depend on {Nτ}tτ=1 (induction hypothesis).

Suppose that the two players have followed a symmetric threshold strategy s′ up

to the end of period t−1. We need to show that there is a threshold N in period t such

that the continuation strategy (N, s′′(s′, N)) forms a symmetric equilibrium for the

continuation game starting in period t, where s′′(s′, N) is the symmetric equilibrium

30If Ñ j
T−1 > N j

T−1, then we have ∆VT−1(n | s′, Ñ j
T−1) > ∆VT−1(n | s′, N j

T−1), for all n =

1, 2, . . . , T , implying that {n ∈ N : ∆VT−1(n | s′, Ñ j
T−1) > 0} ⊇ {n ∈ N : ∆VT−1(n | s′, N j

T−1) > 0}

and, therefore, that the best response is BRiT−1(Ñ j
T−1 | s′) ≥ BRiT−1(N j

T−1 | s′), as required.
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provided by the induction hypothesis for the continuation game starting in period

t+ 1, when the players have followed strategies (s′, N) up to the end of period t.

We first show that each player’s best-response threshold in period t is increasing in

the corresponding threshold in his opponent’s strategy, for any symmetric threshold

strategy s′ the players have followed up to the end of period t−1 and for a symmetric

continuation strategy determined by the induction hypothesis.31 Subsequently, since

the set of all thresholds in period t forms a finite lattice, we invoke a fixed-point

theorem to conclude that the players’ best-response function has a fixed point N ,

determining a symmetric equilibrium for the continuation game at time t.

Consider a change, first, of the players’ symmetric threshold in period t from N to

N+1, and second, of the players’ symmetric equilibrium strategy for the continuation

game starting at t + 1 from s′′(s′, N) to s′′(s′, N + 1). We examine how this change

affects a player’s best response.

If player i has nit draws of L, then his expected gain from continuing rather than

stopping at the end of period t, against a strategy s(s′,M) = [s′,M, s′′(s′,M)] of

player j, is

∆Vt[(n
i
t | s(s′,M)] = P (njt ≥M |nit, s′)(−L/2)

+ P (njt < M |nit, s′) [Ut+1[n
i
t | s(s′,M)]− L ],

where Ut+1(n
i
t | s(s′,M)), defined recursively by equations (A.1)–(A.6) in the proof of

Lemma 3, is player i’s optimal expected payoff in the continuation game starting in

period t+1, conditional on period t+1 being reached, with player j following a strategy

s(s′,M). Since player j’s continuation strategy s′′(s′,M) is part of a symmetric

equilibrium for that game, given (s′,M), notice that the payoff Ut+1(n
i
t | s(s′,M)) is

31In this argument, notice that we do not find a best-response for the entire continuation game;

we only find each player i’s best response in period t, in the game in which the player is restricted

after period t to follow the strategy provided by the induction hypothesis, determined by player j’s

strategy. However, if this best responde is symmetric, as we eventually show, then it determines a

best-response strategy (and because of symmetry, an equilibrium) for the entire continuation game.
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achieved with player i also following the continuation strategy s′′(s′,M).

When player i’s conjecture about player j’s strategy changes from s(s′, N)) to

s(s′, N + 1), we have

∆Vt[n
i
t | s(s′, N + 1)]−∆Vt[n

i
t | s(s′, N)] = pt(N, n

i
t, s
′) (−L/2)

+ P (njt ≤ N |nit, s′) Ut+1[n
i
t | s(s′, N + 1)]

− P (njt ≤ N − 1 |nit, s′) Ut+1[n
i
t | s(s′, N)]

Since player i cannot gain from deviating from s′′(s′, N + 1) to the strategy of surely

stopping in period t + 1, against s′′(s′, N + 1), in the continuation game following

(s′, N + 1), we have

Ut+1[n
i
t | s(s′, N + 1)] ≥

N∑
nj
t=0

pt(n
j
t , n

i
t, s
′)

P (njt ≤ N |nit, s′)
(1/2) δ [ p(nit + njt) (1− (1− rq)2) (H − L) + L ]

In addition, in the continuation game following (s′, N), we have

Ut+1[n
i
t | s(s′, N)] ≤

N−1∑
nj
t=0

pt(n
j
t , n

i
t, s
′)

P (njt ≤ N − 1 |nit, s′)
(1/2) δ [ p(nit + njt) (1− (1− rq)2(T−t)) (H − L) + L ]

that is, player i’s optimal expected payoff cannot exceed what could be achieved if

the two players shared L or H after performing maximal costless experimentation in

the time remaining until final period T .

Therefore, after some rearrangement of the terms, we have

∆Vt[n
i
t | s(s′, N + 1)]−∆Vt[n

i
t | s(s′, N)] ≥

pt(N, n
i
t, s
′) (1/2) [ δ p(nit +N) (1− (1− rq)2) (H − L) − (1− δ)L ]

−
N−1∑
nj
t=0

pt(n
j
t , n

i
t, s
′) (1/2) δ p(nit + njt) [ (1− rq)2 − (1− rq)2(T−t) ] (H − L)
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In addition, since the function p(·) is decreasing, we have

∆Vt[n
i
t | s(s′, N + 1)]−∆Vt[n

i
t | s(s′, N)] ≥

pt(N, n
i
t, s
′) (1/2) [ δ p(2N) (1− (1− rq)2) (H − L) − (1− δ)L ]

−
N−1∑
nj
t=0

pt(n
j
t , n

i
t, s
′) (1/2) δ p(njt) [ (1− rq)2 − (1− rq)2(T−t) ] (H − L)

Thus, for player i’s expected gain from continuing at the end of period t to be

∆Vt[n
i
t | s(s′, N + 1)] ≥ ∆Vt[n

i
t | s(s′, N)]

it is sufficient that

pt(N, n
i
t, s
′)
[
p(2N) [1− (1− rq)2] − 1−δ

δ
L

H−L

]
+

N−1∑
nj
t=0

pt(n
j
t , n

i
t, s
′) p(njt) [(1− rq)2(T−t) − (1− rq)2] ≥ 0

The expression on the left-hand-side is the expectation of a function increasing in

njt with respect to a distribution of njt that is stochastically increasing in nit, so it

achieves its minimal value for nit = 1. Hence, the above inequality follows directly

from Condition SC.

Hence, under Condition SC, for each strategy s′ prior to period t, for each nit,

player i’s expected gain ∆Vt[n
i
t | s(s′, N

j
t )] from continuing instead of stopping at the

end of period t is increasing in the threshold N j
t parameterizing player j’s continuation

strategy s′′(s′, N j
t ). Thus, for each strategy s′ prior to period t, the threshold N i

t

parameterizing player i’s best-response continuation strategy s′′(s′, N i
t )) in period t,

BRi
t(N

j
t | s′) = max{n = 1, 2, . . . , t : ∆Vt[n | s(s′, N j

t )] > 0 } + 1,

with BRi
t(N

j
t | s′) = 1 when the set is empty, is an increasing function of the threshold

N j
t in player j’ strategy [s′, N j

t , s
′′(s′, N j

t )].
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The set {1, 2, ..., t+1} of possible thresholds in period t is a lattice with respect to

the order ≥, complete because of finiteness. Therefore, since the function BRi
t( · | s′)

is increasing in N j
t , it has at least one fixed point.

For each symmetric threshold strategy s′ prior to period t, we define the players’

common threshold Nt at period t as the maximal fixed point of BRi
T−1( · | s′); and by

construction, the continuation strategy (Nt, s
′′(s′, Nt)) forms a symmetric equilibrium

for the game starting at period t, when the two players have the beliefs induced by

the strategy s′ that they have followed prior to that period.

The argument concludes when it defines a threshold N1 for the first period of the

game, with the impled strategy [N1, s
′′(N1)] forming a symmetric perfect Bayesian

equilibrium for the entire game.

Proof of Proposition 5:

In the case of public learning, suppose that player i has obtained ni1 = 1 draw of L

in period t = 1 and faces an opponent who will continue to period T = 2, the last

period of the game. If player j has obtained nj1 = 1 draw of L in period t = 1, then

player i’s expected payoff from continuing to period T = 2 is

v1(1, 1) = δ [L/2 + pH(2) (H − L)/2 ]

If player j has obtained nj1 = 0 draw of L in period t = 1, then player i’s expected

payoff from continuing to period T = 1 is

v1(1, 0) = δ [L/2 + pH(1)(H − L)/2 + (1− r) [1− p(1) rq] (L/2) ]

Since all terms are positive and pH(1) > pH(2), it follows that v1(1, 0) > v1(1, 1).

Using some simple algebraic manipulations, it is easy to check that the inequalities

v1(1, 1) ≥ L and v1(0, 1) < L are equivalent respectively to conditions (8) and (9).

Now, consider the strategy in which a player continues at the end of period t = 1,

independently of the number of draws he and his opponent have. For this strategy

to be part of a symmetric equilibrium, it is necessary and sufficient that v1(1, 0) ≥ L
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and v1(1, 1) ≥ L, a condition that reduces to v1(1, 1) ≥ L, which is equivalent to

condition (8).

Similarly, consider the strategy in which a player continues at the end of period

t = 1 if and only if he has received no draw. For this strategy to be part of a

symmetric equilibrium, it is necessary and sufficient that v1(1, 1) < L and v1(1, 0) <

L, a condition that reduces to v1(0, 1) < L, which is equivalent to condition (9).

Finally, consider the strategy in which a player continues at the end of period

t = 1 if and only if either he or his opponent has failed to obtain a draw. For this

strategy to be part of a symmetric equilibrium, it is necessary and sufficient that

v1(1, 1) < L and that v1(1, 0) ≥ L, i.e., that conditions (8) and (9) both fail.

Looking at the corresponding setting under private learning, when condition (7)

holds, by Proposition 4, there must exist at least one Bayesian equilibrium.

Suppose that player i has obtained one draw of L in period t = 1 and faces an

opponent who will continue to period T = 2 unless he obtains H. Then player i’s

expected payoff from continuing (and stopping) at T = 2, conditional on his opponent

having not obtained H, is

v1(1) = p1(0, 1) v1(1, 0) + [1− p1(0, 1)] v1(1, 1)

Using the expressions for v1(1, 0) and v1(1, 1) and applying some simple algebraic

manipulations, it is easy to show that the inequality v1(1) < L is equivalent to

condition (10).

When v1(1) ≥ L, the strategy profile in which each player continues to period

T = 2 unless he obtains H forms a symmetric equilibrium under private learning.

When v1(1) < L, this strategy profile is no longer an equilibrium. In this case,

player i’s expected payoff from continuing with one draw of L to period T = 2 against

an opponent who will stop as soon as he receives one draw is

u1(1) = p1(0, 1) v1(1, 0)

Therefore, the strategy profile in which each player stops if he obtains a draw at t = 1
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forms a symmetric equilibrium under private learning if and only if

u1(1) < p1(0, 1)L + [1− p1(0, 1)] (L/2)

which is true when conditions (7) and (10) hold.

We conclude the proof by comparing the equilibria under public and private learn-

ing.

Under condition (8), we have that v1(1, 0) ≥ L and v1(1, 1) ≥ L, so that v1(1) ≥ L.

Therefore, in both settings, the two players continue to period T = 2 unless they

obtain H and then stop, for the same equilibrium outcomes.

Similarly, under condition (9), we have v1(1, 0) < L and v1(1, 1) < L, so that

v1(1) < L. In both settings, each player stops either as soon as he obtains a draw,

again for the same equilibrium outcomes.

Finally, if conditions (8) and (9) both fail, we have v1(1, 1) < L and v1(1, 0) ≥ L,

so, under public learning the two players stop at t = 1 if and only if they both obtain

draws. Under private learning, when condition (10) holds, the game will stop in period

t = 1 even with a single draw, for a shorter expected experimentation horizon. On

the other hand, when condition (10) fails, the game will continue to period t = T = 2

unless H is obtained, for a longer expected experimentation horizon.

When condition (10) holds, less experimentation under private learning implies

also lower expected payoffs, since the generated welfare is respectively increasing /

decreasing in N , the total number of L draws that the players obtain by the time

they stop experimenting.

Proof of Proposition 6

For any probability parameters r, q ∈ [0, 1], we need to show that if condition (10) is

satisfied for some probability p ∈ [0, 1], then it is also satisfied for all probvabilities

p′ ≤ p. For this, we need that the LHS in inequality (10) is increasing in p. Equiva-

lently, we show that the continuation payoff v1(1) = v1(1; p), defined in the proof of

Proposition 5, is increasing in p.

51



Suppose first that H/L > 3/2. Then the continuation payoffs v1(1, 1; p) and

v1(1, 0; p) are both increasing in p, with v1(1, 0; p) ≥ v1(1, 1; p), for all p ∈ [0, 1]. In

addition, the beliefs p1(0, 1) = p1(0, 1; p) are increasing in p. Therefore,

∂
∂p
v1(1; p) = ∂

∂p
p1(0, 1; p) [v1(1, 0; p)− v1(1, 1; p)]

+ p1(0, 1; p) ∂
∂p
v1(1, 0; p) + [1− p1(0, 1; p)] ∂

∂p
v1(1, 1; p) > 0,

since all terms are positive, so that v1(1; p) is increasing in p.

Finally, when H/L < 3/2, then

p(1) [1− (1− rq)2] (H − L)/L + (1− r)[1− p(1) rq]

< p(1) [1− (1− rq)2] , (1/2) + (1− r)[1− p(1) rq]

= 1 − r [1− p(1) rq (1− q/2)] < 1 < (2− δ)/δ,

so that condition (9) and therefore condition (10) are satisfied for all probabilities

p ∈ [0, 1], for the result to hold trivially.

Proof of Proposition 7:

In the case of public learning, by Proposition 1, the equilibrium is characterized by

stopping thresholds N1 and N2 on the number of L draws that the two players obtain,

respectively for the case in which both players or only a single player receives these

draws. Since conditions (8) and (9) do not hold,32 it follows from arguments similar

to those used in Proposition 5 that N1 = 2 while N2 ≥ 2.

In the case of private learning, we construct the unique equilibrium of the game

by arguing backwards, looking at the continuation games in periods t = T − 1, . . . , 1.

As we will show, since condition (10) holds, in equilibrium, each player stops as soon

as he receives a draw.

In period t = T − 1, suppose that each player i has obtained niT−1 ≤ 1 draws of

L and believes with certainty that njT−2 = 0. In this continuation game, the players’

32That condition (8) does not hold is implied by condition (10).
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problem is identical to that analyzed in Proposition 5. Thus, each player i’s decision

to continue or to stop in period T − 1, when niT−1 = 1, depends on condition (10).

Since this condition holds, as argued in the proof of Proposition 5, player i is better-

off stopping with one draw, even if his opponent will not stop in the current period

unless he obtains a draw of H. Therefore, in this continuation game, there is a unique

equilibrium, with each player i stopping if he has a draw.

The above argument also applies to continuation games starting in period T−1, in

which either niT−1 > 1 or player i attaches positive probability to njT−2 > 0, or both.

Again, since condition (10) holds and since player i’ beliefs about the possibility of

H are more pessimistic than those for niT−1 = 1, each player i will prefer to claim L

in the current period, even if he knows that player j will stop only if he obtains H.

Therefore, in all continuation games starting in period T − 1, for any beliefs of each

player i regarding njT−2, there is a unique continuation equilibrium, characterized by

a threshold NT−1 = 1.

Moving to t = T − 2, in any continuation game starting in that period, player

i will trivially continue if niT−2 = 0. Furthermore, if niT−2 ≥ 1, player i knows that

even if he continues, he will surely stop in period T − 1. Thus, he faces a two-period

problem identical to that the continuation game starting at T − 1. It follows that

there is a unique continuation equilibrium, with threshold NT−2 = 1.

Moving backwards, replicating the above argument, we conclude that under pri-

vate learning there is a unique equilibrium, characterized by thresholds Nt = 1, for

all t = 1, . . . , T − 1.

Finally, the comparison of public and private learning in terms of expected ex-

perimentation length and payoffs is trivial. For any sequence of draws that the two

players may receive, if the players stop under public learning, then they also stop

under private learning. And for some sequences, for example, a sequence involving

exactly one draw at t = 1, experimentation will stop under private learning but will
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continue for at least one more period under public learning.33

Appendix B: The two-period problem under private

learning

In this appendix, we identify all symmetric equilibria in the two-period problem

under private learning. In particular, we describe mixed-strategy equilibria.

Since a player is better-off stopping if he draws H and continuing if he receives

no draw in period t = 1, the investigation of each player’s incentives reduces to

determining his best response when he has received a draw of L in the first period.34

Suppose that a player’s opponent continues to period t = 2 if he has a draw of L.

Then that player is better-off also continuing to t = 2 if and only if

p1(0, 1) v1(1, 0) + [1− p1(0, 1)] v1(1, 1) ≥ L,

where the terms

v1(1, 1) = δ [L/2 + pH(2) (H − L)/2 ],

v1(1, 0) = δ [L/2 + pH(1)(H − L)/2 + (1− r) [1− p(1) rq],

defined in the proof of Proposition 5, express the player’s expected payoff when he

continues to t = 2, conditional on his opponent continuing respectively with one and

33That more experimentation results in this case in higher expected payoff for the players follows

from the fact that the cooperative optimal threshold is higher than that under public learning.

34As in the rest of the paper, we ignore the trivial equilibrium in which each player stops at the

end of the first period, independently of his draw in it.
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with no draw of L. A simple algebraic manipulation shows that this equivalent to

[p1(0, 1) p(1) + (1− p1(0, 1)) p(2)] [1− (1− rq)2] H − L
L

+ p1(0, 1) (1− r) [1− p(1) rq] ≥ 2− δ
δ

(B.1)

Suppose that a player’s opponent stops in period t = 1 if he has a draw of L.

Then that player is better-off also stopping if and only if

p1(0, 1) v1(1, 0) ≤ p1(0, 1)L + [1− p1(0, 1)] (L/2))

This is equivalent to the condition

p1(0, 1) δ [L + p(1) (1− (1− rq)2) (H − L) + (1− r)(1− p(1)rq)L) ]

≤ [1 + p1(0, 1)] L (B.2)

The two conditions describing a player’s incentives to continue or to stop at the

end of period t = 1 against an opponent following the same strategy lead to the

following result:

Proposition 8 In the two-period problem under private learning, depending on whether

the parameters of the problem satisfy the conditions (B.1) and (B.2), the following

symmetric equilibria occur:

a. When (B.1) holds and (B.2) fails, there is a single equilibrium, in pure strate-

gies, with each player continuing to period t = 2 with a draw of L.

b. When (B.1) fails and (B.2) holds, there is a single equilibrium, in pure strate-

gies, with each player stopping in period t = 1 with a draw of L.

c. When both (B.1) and (B.2) hold, there are two equilibria in pure strategies,

described in (a) and (b). In addition, there is a mixed-strategy equilibrium.

d. When both (B.1) and (B.2) fail, there is a single equilibrium, in mixed strategies.
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Proof: To prove the above result for the pure-strategy equilibria, it is straightforward

to check that the conditions that hold or fail in each case respectively establish the

best-response behavior required for the equilibria claimed in that case or violate the

equilibrium requirements for the remaining symmetric strategy profiles.

So, it suffices to examine when a mixed-strategy equilibrium exists. For this,

suppose that a player’s opponent follows a strategy such that if he has a draw of L

in period t = 1, he continues to the next period with probability α ∈ [0, 1]. For the

player to be indifferent between continuing and stopping at the end of period t = 1,

when he has one draw of L, we must have

p1(0, 1) v1(1, 0) + [1− p1(0, 1)]α v1(1, 1) = p1(0, 1)L + [1− p1(0, 1)] (1 + α) (L/2)

Rearranging the terms gives the equation

p1(0, 1) [v1(1, 0)−L] + [1−p1(0, 1)]α [v1(1, 1)−L] − [1−p1(0, 1)] (1−α) (L/2) = 0,

which can be also expressed as

[1− p1(0, 1)]α [v1(1, 1)− (L/2)] + p1(0, 1) [v1(1, 0)− (L/2)] − (L/2) = 0,

so that

α∗ =
(L/2)− p1(0, 1) [v1(1, 0)− (L/2)]

[1− p1(0, 1)] [v1(1, 1)− (L/2)]

When conditions (B.1) and (B.2) both hold, by substituting (B.2) into (B.1), we

can show that the sign of the denominator in the expression for α∗ is positive.35 Thus,

condition (B.1) implies that α∗ ≤ 1 while condition (B.2) implies that α∗ ≥ 0, for an

equilibrium in mixed strategies to exist.36

35Notice that this means that condition (7) in section 6, i.e., the sufficient condition for existence

of equilibrium in pure strategies, holds.

36To be precise, for the mixed-strategy equilibrium to exist, conditions (B.1) and (B.2) should

both hold as strict inequalities.

56



Vice versa, when conditions (B.1) and (B.2) both fail, the same argument with

reverse inequalities shows that the sign of the denominator in the expression for α∗ is

negative. Therefore, the failure of condition (B.1) implies that α∗ ≤ 1 and similarly

the failure of condition (B.2) implies that α∗ ≥ 0.

Finally, when one of the conditions (B.1) and (B.2) holds while the other condition

fails, for either a positive or negative denominator in the expression for α∗, it is easy

to show that either α∗ > 1 or α∗ < 0, so that no mixed-strategy equilibrium exists.
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