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Machine-learning methods exploit fund characteristics to select tradable long-only portfolios of mutual funds 
that earn significant out-of-sample annual alphas of 2.4% net of all costs. The methods unveil interactions in the 
relation between fund characteristics and future performance. For instance, past performance is a particularly 
strong predictor of future performance for more active funds. Machine learning identifies managers whose skill 
is not sufficiently offset by diseconomies of scale, consistent with informational frictions preventing investors 
from identifying the outperforming funds. Our findings demonstrate that investors can benefit from active 
management, but only if they have access to sophisticated prediction methods.
1. Introduction

Mutual-fund research consistently shows that the average active 
fund earns negative risk-adjusted returns (alpha) after transaction costs, 
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fees, and other expenses (Sharpe, 1966; Jensen, 1968; Gruber, 1996; 
Ferreira et al., 2013). Moreover, although several studies document the 
existence of a subset of managers that outperform their benchmarks 
(Wermers, 2000; Barras et al., 2010; Fama and French, 2010; Kacper-
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czyk et al., 2014; Berk and Van Binsbergen, 2015), it is notoriously 
difficult to identify the outperforming funds ex ante. We show that 
machine-learning methods that exploit nonlinearities and interactions 
in the relation between fund characteristics and performance can help 
to construct tradable long-only portfolios of mutual funds that earn sig-
nificant out-of-sample alphas net of all costs. Our results imply that 
investors can earn economically significant alpha by investing in active 
mutual funds, but only if they have access to sophisticated prediction 
methods that capture the complexity in the relation between fund char-
acteristics and performance.

To understand the economic mechanism behind our results, we 
study whether the performance of our portfolios can be explained 
by capital misallocation in the mutual-fund market (Roussanov et al., 
2021), and indeed find that nonlinear machine-learning methods select 
funds that are “too small” relative to their managers’ skill. Thus, ma-
chine learning helps to select outperforming funds not only because it 
can identify skilled managers, but also because it can identify managers 
whose skill is not sufficiently offset by diseconomies of scale. This is 
consistent with informational frictions preventing investors from iden-
tifying some of the funds whose managers have the highest skill, and 
thus, these funds remaining small relative to their manager’s skill. Our 
work implies that there is scope for pension-plan administrators and fi-
nancial advisors to integrate machine learning with other tools in order 
to help investors select active mutual funds with positive alpha.

Passive funds have recently surpassed active funds in terms of assets 
under management in U.S. domestic equity mutual funds. Many inter-
pret this victory of passive management as a result of the persistent 
inability of the average active manager to outperform cheaper passive 
alternatives (Gittelsohn, 2019). To determine whether at least some ac-
tive managers outperform, researchers have investigated if future fund 
performance can be predicted using past returns. The consensus that 
emerges from this literature is that positive net alpha does not persist, 
particularly after accounting for the exposure of mutual-fund returns to 
the momentum factor (Carhart, 1997).1

Lack of persistence in fund net alpha is consistent with the model 
of Berk and Green (2004), in which investors supply capital with infi-
nite elasticity to funds they expect to outperform, based on past returns. 
If there are diseconomies of scale in portfolio management, in equilib-
rium funds with positive past alpha attract more assets, and thus, earn 
the same expected net alpha as any other active fund: that of the al-
ternative passive benchmark (zero). However, informational frictions 
may prevent investor flows from driving fund performance to zero (Du-
mitrescu and Gil-Bazo, 2018; Roussanov et al., 2021). Consequently, 
whether mutual-fund performance is predictable is ultimately an empir-
ical question that has received considerable attention in the literature. 
Several studies have shown that mutual-fund characteristics can be used 
to predict fund performance; see Jones and Mo (2020) for a review. 
Typically, these studies rank funds every month or quarter on the basis 
of a mutual-fund characteristic. They then allocate funds to quintile or 
decile portfolios and evaluate the performance of long-short portfolios 
of funds. However, only a small subset of the mutual-fund characteris-
tics considered in the literature can be used to select long-only portfolios 
of funds with positive alpha after transaction costs, fees, and other ex-
penses. This is crucial because open-end funds cannot be easily shorted, 
and thus, investors can only benefit from active management via long-
only portfolios of funds that deliver positive net alpha.

Our goal is to study whether investors can benefit from active man-
agement, and thus, we take on the challenge of identifying long-only 
portfolios of mutual funds with positive future alpha net of all costs. 
Our approach departs from the existing literature along three dimen-
sions. First, we jointly exploit 17 mutual-fund characteristics to predict 
fund performance, which allows us to account for the complex nature of 

1 A notable exception is the study of Bollen and Busse (2005), who find evi-
2

dence of short-term (quarterly) persistence among top-performing funds.
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the problem. Fund performance is determined by a host of different fac-
tors including the manager multifaceted ability, portfolio constraints, 
manager incentives and agency problems, as well as fund trading costs, 
fees, and other expenses. Thus, it seems unlikely that using a single vari-
able to predict performance would be as efficient as exploiting a large 
set of characteristics.

Second, we use three machine-learning methods to forecast fund 
performance: elastic net, gradient boosting, and random forests. These 
methods can accommodate irrelevant or highly correlated predictors, 
and thus, they allow us to consider multiple characteristics with lower 
risk of overfitting than Ordinary Least Squares (OLS). In addition, 
the two decision-tree based methods (gradient boosting and random 
forests) can exploit nonlinearities and interactions, and thus, they may 
uncover predictability that would be missed by linear methods such as 
elastic net or OLS. As a robustness test, Section IA.6 of the Internet Ap-
pendix considers also neural networks.

Third, we focus on identifying tradable portfolios of funds. In par-
ticular, we consider long-only portfolios of mutual funds, we construct 
the portfolios using exclusively past data, and we evaluate their future 
(out-of-sample) performance in terms of alpha net of fees, transaction 
costs, and other expenses. Finally, we employ a dynamic approach—
the decision whether to exploit a fund characteristic is taken every time 
we rebalance the portfolio. By allowing for variation over time in the 
relation between characteristics and performance, our method can ac-
commodate changes in the determinants of fund performance due to 
investor learning or shifts in market conditions.

We compare the out-of-sample and net-of-costs performance of 
the portfolios of funds constructed using the three machine-learning 
methods, OLS, and two naive strategies (equally weighted and asset-
weighted portfolios of all funds). We use monthly data on the returns 
and 17 characteristics of no-load actively managed U.S. domestic eq-
uity mutual funds spanning the 1980 to 2020 period. We consider only 
no-load funds to ensure that our alphas are net of all costs. We use 
the first 10 years of data to train the three machine-learning methods 
and OLS to predict future annual net alpha, estimated using the five-
factor model of Fama and French (2015) augmented with momentum. 
As predictors, we use lagged values of the 17 fund characteristics. We 
then form a long-only equally weighted portfolio of the funds in the top 
decile of predicted net alpha, and compute the net return of the port-
folio in the following 12 months. For every remaining year, we expand 
the training sample forward by one year, construct a new top-decile 
portfolio, and track its net return for the next 12 months. This way, 
we construct a time series of monthly out-of-sample net returns of the 
top-decile portfolio spanning the period from 1990 to 2020. Finally, we 
evaluate the net alpha of the portfolio over the whole out-of-sample 
period with respect to four models: Carhart (1997) four-factor model; 
Fama and French (2015) five-factor model (FF5); FF5 augmented with 
momentum; and FF5 augmented with momentum and the liquidity fac-
tor of Pástor and Stambaugh (2003).

We highlight five findings. First, the two machine-learning meth-
ods that exploit nonlinearities and interactions (gradient boosting and 
random forests) select long-only portfolios of funds that earn statisti-
cally significant alphas net of all costs of 2.36% and 2.69% per year, 
respectively, relative to the FF5 model augmented with momentum. 
These alphas are also economically significant—for instance, they are 
more than double the average expense ratio in our sample (1.11%). 
In contrast, the portfolios based on the linear methods (elastic net and 
OLS) deliver annual net alphas of 1.09% and 1.21%, respectively, which 
are statistically indistinguishable from zero. The equally weighted and 
asset-weighted portfolios earn negative annual net alphas of −0.22% and 
−0.44%, respectively, consistent with existing evidence that the average 
active fund underperforms passive benchmarks after costs. Our findings 
are similar when we evaluate out-of-sample alpha using other factor 
models. In summary, while portfolios that exploit predictability in the 
data help investors to avoid underperforming funds, only the machine-

learning methods that exploit nonlinearities and interactions—gradient 
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boosting and random forests—allow them to earn significantly positive 
net alpha by investing in active funds.

Second, machine learning unveils nonlinearities and interactions 
in the relation between fund characteristics and future performance. 
The most important characteristics for the nonlinear machine-learning 
methods include various measures of past performance and fund ac-
tiveness. We find that the relation between fund activeness and future 
performance is highly nonlinear, with the relation being strongly pos-
itive for the most active funds, but flat for the rest of the funds. The 
nonlinear methods also unveil important interactions between past-
performance and fund-activeness measures. In particular, we find that, 
although investors may generally achieve higher net alpha by holding 
funds with good past performance, past performance is a particularly 
strong predictor of future performance for more active funds.

Third, given the importance of the interactions between past perfor-
mance and fund activeness for the nonlinear machine-learning port-
folios, we explore whether it is possible to achieve positive net al-
pha by double sorting funds across one measure of past performance 
and one measure of fund activeness. We find that, although it is pos-
sible to achieve positive net alpha by double sorting mutual funds, 
the performance of such double-sorted portfolios is quite sensitive to 
the particular measures of past performance and fund activeness con-
sidered. Moreover, we find that the relative predicting ability of the 
measures of past performance and fund activeness varies substantially 
over time, and thus, to achieve superior out-of-sample performance, 
investors should use machine learning dynamically to identify the char-
acteristics and interactions that are important at each point in time 
using only past data.

Fourth, we build on the work by Roussanov et al. (2021) to study 
whether capital misallocation in the mutual-fund market explains the 
performance of the nonlinear machine-learning portfolios. Roussanov et 
al. (2021) estimate managerial skill using a Bayesian approach and find 
that funds in the top decile of the skill distribution are “too small” for 
diseconomies of scale to offset the skill of their managers. We compute 
the average net skill and fund size of the decile portfolios of funds gen-
erated by the four prediction methods and, consistent with Roussanov et 
al. (2021), we find that the top decile of funds are “too small” given the 
skill of their managers, with funds in the top decile of the two nonlinear 
machine-learning methods being particularly small. These findings pro-
vide an economic interpretation of our results: Machine learning helps 
to select mutual funds not only because it can identify skilled managers, 
but also because it can identify managers whose skill is not sufficiently 
offset by diseconomies of scale. This is consistent with a competition 
framework à la Berk and Green (2004) in which informational frictions 
prevent a substantial fraction of the investor population from identify-
ing some of the funds whose managers have the highest skill, and thus, 
these funds remaining small relative to their manager’s skill.

Fifth, Jones and Mo (2020) show that the ability of fund characteris-
tics to predict performance has declined over time due to increased ar-
bitrage activity and mutual-fund competition. Motivated by their work, 
we study how the alpha of the different portfolios varies from 1991 
to 2020. We find that the three prediction-based portfolios (gradient 
boosting, random forests, and OLS) outperform the two naive portfolios 
(equally weighted and asset weighted) from 1991 to 2011. Consistent 
with Jones and Mo (2020), however, the performance of the prediction-
based portfolios is similar to that of the naive portfolios from 2012 until 
2018. Interestingly, all three prediction-based portfolios outperform the 
two naive portfolios in the last two years of our sample (2019 and 
2020). We also find that the difference in the performance of the non-
linear machine-learning portfolios across different business-cycle and 
sentiment regimes is not statistically significant.

We check the robustness of our findings to considering various alter-
native methodological choices in the Internet Appendix. First, we show 
that our results are robust to considering the post-publication decay in 
predictability documented by McLean and Pontiff (2016). Second, our 
3

results continue to hold if we use other performance measures, such 
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as alphas based on the factor models of Cremers et al. (2013), Hou et 
al. (2015), and Stambaugh and Yuan (2017). Third, the performance of 
the top-decile portfolio is just as good or even better if we exclude from 
our sample institutional share classes, which implies that our results 
are not driven by the presence of share classes targeted to sophisticated 
investors. Fourth, performance is only slightly weaker if we construct 
portfolios consisting of funds in the top 5% or 20% of the predicted al-
pha distribution. Fifth, if we extend the holding period to 24 months 
instead of 12 months, the performance of the top-decile portfolios se-
lected by gradient boosting and random forests improves substantially. 
For instance, the annual net alpha for the random-forest portfolio is 
4%. Sixth, we find that although neural networks can deliver portfo-
lios with positive alphas, their alphas are systematically smaller and 
less significant than those obtained with gradient boosting and random 
forests. Seventh, the performance of the machine-learning portfolios is 
similar if we use a cross-validation method that accounts for time-series 
properties of the data. Eighth, the performance of the machine-learning 
methods does not decline if we invest in at most one share class per 
fund. Ninth, the performance of the machine-learning methods is sim-
ilar if we use as a predictor the “value-added” characteristic proposed 
by Berk and Van Binsbergen (2015) estimated over a 36-month win-
dow instead of a 12-month window. Finally, the performance of the 
machine-learning methods is similar if we use alternative methods to 
impute missing observations of fund characteristics.

We emphasize two implications of our work for investment man-
agers and regulators. First, the economically large positive net alphas 
that we document show that investors can benefit from active man-
agement in the mutual-fund industry, but only if they have access to 
the predictions of sophisticated nonlinear methods. Thus, our findings 
suggest that there is scope for managers of funds of funds, pension-plan 
administrators, financial advisors, and independent analysts to integrate 
machine learning with other tools in order to help investors select ac-
tive mutual funds with positive alpha. This may help to improve the 
efficiency of capital allocation in the mutual-fund market. Second, we 
show that mutual-fund characteristics that do not require information 
on fund portfolio holdings are enough to predict positive alpha. This 
is particularly relevant given the recent debate on the SEC proposal to 
raise the asset threshold for mandatory portfolio disclosure (Form 13F) 
from US$ 100 million to US$ 3.5 billion (Aliaj, 2020). While informa-
tion on portfolio holdings is potentially valuable to investors, it can 
also reveal portfolio strategies and reduce active managers’ incentives 
to identify mispriced assets, which can be detrimental for market ef-
ficiency (Aragon et al., 2013; Shi, 2017). Our results imply that even 
if no information on portfolio holdings had been available during our 
sample period, our methods would have identified funds with positive 
net alpha on average.

Our work is related to the literature that documents associations be-
tween a single mutual-fund characteristic and fund performance (Jones 
and Mo, 2020). A strong association between a fund characteristic and 
performance does not guarantee that long-only portfolios of funds based 
on that characteristic earn positive net alphas. For instance, higher 
expense ratios are negatively associated with net fund alphas (in our 
sample, funds in the bottom decile of the expense-ratio distribution 
outperform funds in the top decile by 1% per year relative to the FF5 
model augmented with momentum), but a portfolio that invests only 
in the cheapest funds does not outperform passive benchmarks in net 
terms. Thus, expense ratios help investors to avoid expensive under-
performing funds, but not to select outperforming funds with positive 
net alphas. In fact, only seven of the 27 studies identified by Jones and 
Mo (2020) report positive and statistically significant in-sample Carhart 
(1997) alphas after fees and transaction costs for long-only portfolios of 
mutual funds (Chan et al., 2002; Busse and Irvine, 2006; Mamaysky 
et al., 2008; Cremers and Petajisto, 2009; Elton et al., 2011; Amihud 
and Goyenko, 2013; Gupta-Mukherjee, 2014). We contribute to this lit-

erature by showing that it is possible to select long-only portfolios of 
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mutual funds with significant positive net alpha by exploiting multiple 
characteristics and using machine learning.

Our paper is related to an emerging literature that uses machine 
learning to predict fund performance. Wu et al. (2021) predict fu-
ture hedge-fund returns by exploiting characteristics constructed from 
fund historical returns. Instead, we predict future mutual-fund alphas

by exploiting both fund historical returns as well as other fund char-
acteristics. Like us, Li and Rossi (2020) use machine learning to select 
portfolios of mutual funds, but a fundamental difference between the 
two papers is that they use disjoint sets of predictors: while Li and 
Rossi (2020) exploit data on fund holdings and stock characteristics, we 
exploit data on fund characteristics. Our findings complement theirs 
by showing that investors can select portfolios of mutual funds with 
positive net alpha by exploiting solely the information contained in 
fund characteristics. Kaniel et al. (2023) use neural networks to pre-
dict mutual-fund alpha using a comprehensive set of predictors that 
includes stock characteristics, fund characteristics, and macroeconomic 
variables. They not only corroborate our finding that fund characteris-
tics predict performance, but also show that when fund characteristics 
are included as predictors, stock characteristics no longer help to pre-
dict alpha. A key distinguishing feature of our work is the focus on 
tradable portfolios of mutual funds, which allows us to study whether 
investors can actually benefit from active management. In particular, 
we identify long-only portfolios of mutual funds using exclusively past 
data, and evaluate their future (out-of-sample) performance net of all 
costs (including loads). Kaniel et al. (2023) focus on long-short portfolios 
of mutual funds, forecast performance using three-fold cross validation 
over the entire sample, and do not account for fund loads. Moreover, 
most of the predictability in after-fee alpha documented by Kaniel et al.
(2023, Figure 6b) comes from the short leg of their long-short portfolios 
of funds.

Our paper is also related to studies that use Bayesian methods to con-
struct optimal portfolios of mutual funds (Baks et al., 2001; Pástor and 
Stambaugh, 2002; Jones and Shanken, 2005; Avramov and Wermers, 
2006; Banegas et al., 2013). Unlike these papers, we do not study how 
investors should allocate their wealth across funds given their prefer-
ences and priors about managerial skill and predictability. Instead, our 
goal is to identify active funds with positive alpha that investors can 
combine with passive funds to achieve better risk-return tradeoffs.

Finally, our paper is related to the growing literature that employs 
machine learning to address empirical problems in finance such as pre-
dicting global equity-market returns (Rapach et al., 2013); predicting 
consumer credit-card defaults (Butaru et al., 2016); measuring equity-
risk premia (Gu et al., 2020; Chen et al., 2020a); detecting predictability 
in bond risk premia (Bianchi et al., 2021); building test assets that 
capture nonlinearities and interactions in asset pricing (Feng et al., 
2020; Bryzgalova et al., 2019); forecasting inflation (Garcia et al., 2017; 
Medeiros et al., 2021), and studying the relation between investor char-
acteristics and portfolio allocations (Rossi and Utkus, 2020). In the 
context of mutual funds, Pattarin et al. (2004), Moreno et al. (2006), 
and Mehta et al. (2020) employ machine learning to classify mutual 
funds by investment category, but they do not study fund performance. 
Chiang et al. (1996) and Indro et al. (1999) use neural networks to pre-
dict mutual-fund net asset value and return, respectively. While these 
authors focus on forecasting accuracy, our goal is to identify funds with 
superior performance.

2. Data

In this section, we describe the data we use in our analysis. Sec-
tion 2.1 describes the sample data. Section 2.2 defines the 17 monthly 
mutual-fund characteristics that we consider. Section 2.3 explains how 
we transform these monthly characteristics to generate the annual tar-
4

get and predicting variables for the machine-learning methods.
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2.1. CRSP sample data

We collect monthly information on U.S. domestic-equity mutual 
funds from the CRSP Survivor-Bias-Free US Mutual Fund database. To 
keep our analysis as close as possible to the actual selection problem 
faced by investors, we perform the analysis at the share-class level.2

Moreover, we restrict our analysis to share classes that charge no front-
end or back-end loads, and thus rebalancing our portfolios of mutual 
funds do not incur any costs. Our sample includes both institutional and 
retail share classes and spans from January 1980 to December 2020.3

We apply a few filters that are common in the mutual-fund liter-
ature. First, we include only share classes of actively managed funds, 
therefore excluding ETFs and passive mutual funds.4 Second, we in-
clude only share classes of funds with more than 70% of their portfolios 
invested in equities. Third, to avoid previously documented biases in 
the CRSP database, we exclude observations of a share class before it 
reaches 36 months of age and before the first observation with at least 
US$ 5 million of Total Net Assets (TNA), see Elton et al. (2001) and 
Evans (2010). Our final sample contains 8,767 unique share classes, of 
which 7,921 correspond to diversified equity funds (representing 95% 
of aggregate TNA in the sample) and 846 to sector funds.

2.2. Mutual-fund characteristics

We construct a dataset of 17 share-class characteristics using read-
ily available information on fund characteristics and historical returns. 
None of our characteristics requires information about portfolio hold-
ings, and thus, our set of predictors is disjoint from that used by Li and 
Rossi (2020).

For the 𝑖th share class in the 𝑚th month, we obtain data on its return

in excess of the risk-free rate net of expenses and transaction costs (𝑟𝑖,𝑚), 
total net assets (𝑇𝑁𝐴𝑖,𝑚), expense ratio (𝐸𝑅𝑖,𝑚), and portfolio turnover

ratio.5 In addition, we compute the class age as the number of months 
since its inception; we estimate the monthly flows as the relative growth 
in the class TNA adjusted for returns net of expenses

𝑓𝑙𝑜𝑤𝑖,𝑚 =
𝑇𝑁𝐴𝑖,𝑚 − 𝑇𝑁𝐴𝑖,𝑚−1

(
1 + 𝑟𝑖,𝑚

)
𝑇𝑁𝐴𝑖,𝑚−1

; (1)

we estimate the volatility of flows as the standard deviation of flows in 
the calendar year; and we compute the manager tenure in years.6 All of 
these characteristics have been identified as predictors of mutual-fund 
performance (Chen et al., 2004; Rakowski, 2010; Jones and Mo, 2020).

Moreover, we obtain several characteristics associated with the 
time-series regression of share-class returns on the five Fama and French 
(2015) and momentum factors (hereafter, FF5+MOM). In particular, for 
each share class and month in our sample, we run a “rolling-window” 
regression of the share-class returns on the FF5+MOM factor returns 
for the previous 36 months.7 We then compute alpha 𝑡-stat (the inter-

2 Section IA.8 of the Internet Appendix shows that our findings are robust to 
investing in at most one share class per fund.

3 Section IA.3 of the Internet Appendix shows that our results are robust to 
considering only retail classes and it also studies how the differences between 
retail and institutional classes affect the different prediction methods.

4 We use the index-fund identifier from CRSP, index_fund_flag, to identify 
funds that aim to replicate an index. When the identifier is missing, we use the 
fund name to infer whether it is passively managed.

5 We proxy for the risk-free rate using the one-month T-bill rate downloaded 
from Ken French’s website.

6 We cross-sectionally winsorize flows at the 1st and 99th percentiles; that is, 
each month we replace extreme observations that are below the 1st percentile 
or above the 99th percentile with the value of those percentiles. The computa-
tion of the standard deviation of flows is based on winsorized flows. For each 
calendar year, we require at least ten monthly flow observations to compute 
volatility of flows.

7 To run each regression, we require at least 30 months of non-missing returns 

in the 36-month window.
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Table 1

Share-class characteristics: Definitions. This table lists the 17 monthly mutual-fund 
share-class characteristics that we consider. The first column gives the name of each 
characteristic and the second column provides its definition.

Variable Definition

realized alpha Monthly realized alpha calculated using Equation (2)
flows Monthly flows calculated using Equation (1)
value added Monthly dollar value extracted by the fund’s manager from

asset market calculated using Equation (3)
volatility of flows Standard deviation of monthly flows in calendar year
total net assets (TNA) Total assets minus total liabilities at end of month
expense ratio Annual expenses as percentage of assets under management
age (months) Number of months since share-class’s inception date
manager tenure (years) Number of years since beginning of manager’s mandate
turnover ratio Minimum of annual aggregate sales and annual aggregate

purchases divided by total net assets
alpha 𝑡-stat Alpha 𝑡-stat from rolling-window regression on

FF5+MOM factors for previous 36 months
market beta 𝑡-stat Market beta 𝑡-stat from rolling-window regression on

FF5+MOM factors for previous 36 months
profitability beta 𝑡-stat Profitability beta 𝑡-stat from rolling-window regression on

FF5+MOM factors for previous 36 months
investment beta 𝑡-stat Investment beta 𝑡-stat from rolling-window regression on

FF5+MOM factors for previous 36 months
size beta 𝑡-stat Size beta 𝑡-stat from rolling-window regression on

FF5+MOM factors for previous 36 months
value beta 𝑡-stat Value beta 𝑡-stat from rolling-window regression on

FF5+MOM factors for previous 36 months
momentum beta 𝑡-stat Momentum beta 𝑡-stat from rolling-window regression on

FF5+MOM factors for previous 36 months
𝑅2 R-squared from rolling-window regression on

FF5+MOM factors for previous 36 months
cept scaled by its standard error) and beta 𝑡-stats. We use 𝑡-stats instead 
of raw alphas and betas as predictors to account for estimation error 
(Hunter et al., 2014). In addition, we use the 𝑅2 from the FF5+MOM 
rolling-window regression as a predictor of fund performance, as pro-
posed by Amihud and Goyenko (2013), who explain that 𝑅2 is a mea-
sure of fund activeness because low-𝑅2 funds track the benchmark less 
closely.8 We also compute the monthly realized alpha for the 𝑖th share 
class in the 𝑚th month (𝛼𝑖,𝑚) as:

𝛼𝑖,𝑚 = 𝑟𝑖,𝑚 − 𝛽𝑀𝐾𝑇 ,𝑖,𝑚 𝑀𝐾𝑇𝑚 − 𝛽𝑆𝑀𝐵,𝑖,𝑚 𝑆𝑀𝐵𝑚 − 𝛽𝐻𝑀𝐿,𝑖,𝑚 𝐻𝑀𝐿𝑚

− 𝛽𝑅𝑀𝑊 ,𝑖,𝑚 𝑅𝑀𝑊𝑚 − 𝛽𝐶𝑀𝑊 ,𝑖,𝑚 𝐶𝑀𝑊𝑚 − 𝛽𝑀𝑂𝑀,𝑖,𝑚 𝑀𝑂𝑀𝑚,

(2)

where 𝑀𝐾𝑇𝑚, 𝑆𝑀𝐵𝑚, 𝐻𝑀𝐿𝑚, 𝑅𝑀𝑊𝑚, 𝐶𝑀𝑊𝑚, and 𝑀𝑂𝑀𝑚 are the 
returns in month 𝑚 of the five Fama-French and momentum factors, 
and 𝛽𝑀𝐾𝑇 ,𝑖,𝑚, 𝛽𝑆𝑀𝐵,𝑖,𝑚, 𝛽𝐻𝑀𝐿,𝑖,𝑚, 𝛽𝑅𝑀𝑊 ,𝑖,𝑚, 𝛽𝐶𝑀𝑊 ,𝑖,𝑚, 𝛽𝑀𝑂𝑀,𝑖,𝑚 are the 
factor loadings of the 𝑖th share class excess return with respect to the 
FF5+MOM factors estimated using the 36-month estimation window 
ending in month 𝑚 − 1.

Finally, we use the realized alpha defined in Equation (2) to compute 
the value added for each class and month, which we define as in Berk 
and Van Binsbergen (2015):

𝑣𝑎𝑙𝑢𝑒 𝑎𝑑𝑑𝑒𝑑𝑖,𝑚 = (𝛼𝑖,𝑚 +𝐸𝑅𝑖,𝑚∕12) × 𝑇𝑁𝐴𝑖,𝑚−1. (3)

This variable captures the dollar value extracted by the fund’s manager 
from the asset market.9

Table 1 lists the 17 share-class characteristics and their definitions, 
and Table 2 reports the mean, median, standard deviation, and number 

8 Another popular measure of fund activeness is the active share of Cremers 
and Petajisto (2009). We do not use this measure because we rely only on fund 
characteristics that do not require information on mutual-fund holdings.

9 Berk and Van Binsbergen (2015) estimate before-fee alpha by regressing 
fund gross returns on the gross returns of passive mutual funds tracking differ-
ent indexes. In unreported analysis, we follow their approach and obtain similar 
5

results to those based on the FF5+MOM model.
Table 2

Share-class characteristics: Descriptive statistics. This table reports monthly 
descriptive statistics (mean, median, standard deviation, and number of class-
month observations) for the mutual-fund share-class characteristics we con-
sider. All variables are measured at the share-class level and correspond to U.S. 
domestic equity funds in the 1980 to 2020 period.

Mean Median Standard Class-month
deviation observations

monthly return 0.86% 1.25% 5.23% 718,928
monthly realized alpha -0.14% -0.13% 2.22% 676,147
alpha 𝑡-stat -0.431 -0.430 1.209 676,475
TNA (USD mill.) 679.9 97.4 2,593 719,398
expense ratio 1.11% 1.04% 0.52% 712,564
age (months) 145.7 117.0 109.8 719,398
flows 0.002 -0.004 0.094 718,734
manager tenure (years) 8.219 7.005 5.352 656,418
turnover ratio 0.790 0.550 1.141 711,568
volatility of flows 0.173 0.091 0.240 704,945
value added -0.295 -0.016 37.233 669,727
market beta 𝑡-stat 16.667 15.064 10.591 676,475
profitability beta 𝑡-stat -0.125 -0.125 1.463 676,475
investment beta 𝑡-stat -0.444 -0.495 1.544 676,475
size beta 𝑡-stat 1.460 0.617 3.801 676,475
value beta 𝑡-stat 0.022 -0.081 2.195 676,475
momentum beta 𝑡-stat 0.009 0.026 1.878 676,475
𝑅2 0.907 0.944 0.122 676,475

of class-month observations for each characteristic. Consistent with the 
mutual-fund literature, we observe that the average share class in our 
sample has negative alpha and loads positively on the market factor. 
The average 𝑅2 is 90.7%, which suggests that the FF5+MOM factors 
explain most of the time-series variation in equity mutual-fund returns. 
The total number of class-month observations varies across variables 
from 656,418 to 719,398.

2.3. Target and predicting variables

We now explain how we transform the 17 mutual-fund characteris-

tics to generate the target and predicting variables for machine learning. 
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First, we convert our sample from monthly to annual frequency because 
some of the characteristics are available only at the quarterly or an-
nual frequency, and even some of the characteristics available at the 
monthly frequency are very persistent. For each calendar year, we com-
pute annual realized alpha, value added, and flows as the average of 
their monthly values multiplied by twelve.10 Flow volatility is already 
defined for each calendar year and we multiply it by square root of 
12 to annualize it. For all other characteristics, we use their values in 
December of each year.

Second, like Green et al. (2017) we standardize each characteristic 
so that it has a cross-sectional mean of zero and a standard deviation of 
one. This ensures the estimation process of the machine-learning meth-
ods is scale invariant. We set missing observations of each standardized 
characteristic equal to its cross-sectional mean (zero). Section IA.10 of 
the Internet Appendix shows that our findings are robust to using an 
alternative imputation method for missing observations that exploits 
cross-sectional and time-series dependence in the data.

Third, we build our final dataset consisting of the target variable and 
the characteristics that we use as predictors when training the predic-
tion methods. Our target variable is the share-class realized alpha in the 
calendar year. This choice is consistent with our goal to exploit share-
class characteristics to generate positive alpha. In contrast, Li and Rossi 
(2020) use fund excess returns as their target variable, which allows 
them to study whether the returns of mutual funds can be predicted 
from the characteristics of the stocks they hold. The 17 characteristics 
we use as predictors are the following one-year-lagged standardized 
variables: realized alpha, alpha 𝑡-stat, TNA, expense ratio, age, flows, 
volatility of flows, manager tenure, value added, 𝑅2, and the 𝑡-stats of 
the market, profitability, investment, size, value, and momentum be-
tas.11 Fig. 1 shows the correlation matrix of the target and predicting 
variables. The target variable has low correlation with lagged predic-
tors. However, some predictors exhibit substantial correlations, with 
the highest absolute correlation being that between lagged flows and 
volatility of flows (61%).

3. Machine-learning methods

We use well-known software packages to implement the machine-
learning methods—the interested reader can refer to their documen-
tation for a detailed description of the methods.12 Gu et al. (2020)
also provide an extensive description of various machine-learning meth-
ods in the context of asset pricing. In the remainder of this section, 
we briefly describe the methods we consider and the five-fold cross-
validation procedure we use to tune their hyper parameters.

We organize our data in panel structure, with years indexed as 𝑡 =
1, 2, … , 𝑇 and share classes as 𝑖 = 1, 2, … , 𝑁𝑡. As a benchmark, we use 
the ordinary least squares (OLS) method:

min
𝜃

𝑇−1∑
𝑡=1

𝑁𝑡∑
𝑖=1

(𝛼𝑖,𝑡+1 − 𝑧′𝑖,𝑡𝜃)
2,

where 𝛼𝑖,𝑡+1 is the realized alpha of the 𝑖th share class in year 𝑡 +1, 𝑧𝑖,𝑡 is 
a 𝐾-dimensional vector of standardized characteristics for the 𝑖th share 

10 We require at least ten monthly observations in a calendar year to com-
pute annual realized alpha, value added, and flows in that year. Section IA.9 of 
the Internet Appendix shows that using a 36-month window to estimate value 
added instead of a 12-month window does not help to improve the performance 
of the different portfolios.
11 The target variable and some predictors are not observable and must be 
estimated from the data. While this may pose a problem for inference, our goal 
is to predict future performance rather than conduct inference.
12 Specifically, we use glmnet, randomForest, xgboost, and h2o packages 
to implement elastic net, random forests, gradient boosting, and neural net-
works, respectively. The documentation for these four packages can be found 
in Friedman et al. (2010), Liaw and Wiener (2002), Chen et al. (2020b), and 
6

LeDell et al. (2020), respectively.
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class in year 𝑡, and 𝜃 is the 𝐾-dimensional parameter vector. The OLS 
estimator of realized alpha, 𝑧′

𝑖,𝑡
𝜃, is a linear function of the share-class 

characteristics. Although OLS provides an unbiased and interpretable 
prediction, machine-learning methods often outperform OLS for data 
that exhibit high variance, nonlinearities, and interactions.

We consider three machine-learning methods: elastic net, random 
forests, and gradient boosting. Elastic net is a linear method, like OLS, 
but uses regularization to alleviate overfitting. To capture nonlinearities 
and interactions, we consider two types of ensembles of decision trees 
(random forests and gradient boosting), which often outperform the linear 
methods on structured (tabular) data like our mutual-fund database; 
see, for instance, Medeiros et al. (2021).

Another popular machine-learning method is neural networks, 
which tend to perform well on non-structured data or highly nonlin-
ear structured data. To capture these nonlinearities, neural networks 
employ a large number of parameters, and hence, they require a large 
number of observations to deliver accurate estimates. Consequently, 
neural networks are not as well suited to our setting as ensembles of 
trees. Nonetheless, as a robustness check we evaluate the performance 
of feed-forward neural networks with up to three hidden layers in Sec-
tion IA.6 of the Internet Appendix.13

3.1. Elastic net

Regularization is often employed to alleviate overfitting in datasets 
with a large number of predicting variables. The elastic net of Zou 
and Hastie (2005) uses both 1-norm and 2-norm regularization terms 
to shrink the size of the estimated parameters. The objective function 
for the elastic net, with two regularization terms, is:

min
𝜃

𝑇−1∑
𝑡=1

𝑁𝑡∑
𝑖=1

(𝛼𝑖,𝑡+1 − 𝑧′𝑖,𝑡𝜃)
2 + 𝜆𝜌 ||𝜃||1 + 𝜆(1 − 𝜌) ||𝜃||22, (4)

where ||𝜃||1 =∑𝐾
𝑘=1 |𝜃𝑘| and ||𝜃||2 = (

∑𝐾
𝑘=1 𝜃

2
𝑘
)1∕2 are the 1-norm and 2-

norm of the parameter vector 𝜃, and 𝜆 and 𝜌 are hyper parameters. 
The 1-norm term (𝜆𝜌 ||𝜃||1) can be used to control the sparsity of the 
estimated parameter vector 𝜃 and the 2-norm term (𝜆(1 − 𝜌) ||𝜃||22) to 
increase its stability. For the case with 𝜌 = 0, the objective function in 
(4) includes only the 2-norm term, and thus, elastic net is equivalent 
to ridge regression, which provides a dense estimator of the parameter
vector 𝜃. If, on the other hand, 𝜌 = 1, the objective function includes 
only the 1-norm term, and a Least Absolute Sum of Squares Operator 
(LASSO) regression is performed, which provides a sparse estimator. We 
explain in Section 3.4 how we calibrate the two hyper parameters 𝜌 and 
𝜆.

3.2. Random forests

Random forests are ensembles of decision trees formed by boot-
strap aggregation (Breiman, 2001). Decision trees split a sample re-
cursively into homogeneous and non-overlapping regions shaped like 
high-dimensional boxes. The procedure to generate these boxes is often 
represented as a tree, in which the sample is split at each node based 
on the characteristic that is most relevant at that particular node. The 
tree grows from the root node to the leaf nodes, and the prediction is 
the average value of the target variable for the observations in each leaf 
node.

Decision trees are highly interpretable, but their performance can be 
poor because of the high variance of their predictions. Random forests 
reduce the prediction variance by averaging across the predictions of 
numerous decision trees in a forest. The reduction in prediction variance 

13 We have not considered other classes of machine-learning methods such as 
principal-component regression or partial least squares because they are typi-

cally outperformed by elastic net; see Elliott et al. (2013).
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Fig. 1. Correlation matrix between the target variable and fund characteristics. This figure reports correlation coefficients between the target variable (annual 
realized alpha) and the 17 fund characteristics used as predictors. Predictors are lagged one year with respect to the target variable. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)
is inversely related to the correlation between trees, and thus, ideally 
the trees should be uncorrelated. To accomplish this, random forests 
use bootstrap to select the observations for each tree, and consider a 
random subset of characteristics for each node.

Our random-forest method uses bootstrap with replacement to gen-
erate 𝐵 = 1, 000 samples from the original data. For each bootstrap 
sample, the method grows a decision tree by choosing a random sub-
set of 𝑚 < 𝐾 characteristics at each node, and choosing the best out of 
these 𝑚 characteristics to split the sample. Section 3.4 discusses how 
we tune the hyper parameter 𝑚. The existing literature shows that ran-
dom forests achieve good prediction performance, specially when there 
are many prediction variables and their relation to the target variable 
is nonlinear and contains interactions (Medeiros et al., 2021; Coulombe 
et al., 2020).

3.3. Gradient boosting

Gradient boosting uses ensembles of decision tress, but instead of 
7

aggregating independent decision trees like random forests, gradient 
boosting aggregates decision trees sequentially to give more influence 
to those observations that are poorly predicted by previous trees. As 
a result, the gradient-boosting method starts from weak decision trees 
(those with prediction performance only slightly better than random 
guessing) and converges to strong trees (better performance). In this 
fashion, boosting achieves improved predictions by reducing not only 
the prediction variance, but also the prediction bias (Schapire and Fre-
und, 2012).

At each iteration of gradient boosting, a new decision tree is used to 
fit the residuals of the current ensemble of decision trees. Thus, this new 
decision tree gives more weight to those observations that are poorly 
predicted by the current ensemble. Then, gradient boosting updates the 
ensemble using the new decision tree. A key hyper parameter in gra-
dient boosting is the learning rate, which determines the weight the 
ensemble gives to the most recent decision tree.

Unlike random forests, gradient boosting tends to overfit the data. 
To avoid overfitting, gradient boosting employs several regularization 
techniques that require tuning additional hyper parameters. For in-

stance, gradient boosting often imposes constraints on the number of 
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decision trees aggregated, the depth and number of nodes of each tree, 
and the minimum number of observations in a leaf node.

3.4. Cross validation of hyper parameters

For each estimation window, we tune the hyper parameters of the 
elastic net, random forests, and gradient boosting using five-fold cross-
validation; see Hastie et al. (2009, Chapter 7). Specifically, we select 
a grid of possible values for the hyper parameters. We divide the sam-
ple into five equal intervals or “folds.” For 𝑗 from 1 to 5, we remove 
the 𝑗th fold and use the remaining four folds to obtain the predictions 
corresponding to the different values of the hyper parameters. We then 
evaluate the prediction error (or cross-validation error) of the predic-
tion associated with each value of the hyper parameters on the 𝑗th 
fold. After completing this process for each of the five folds, we select 
the value of the hyper parameters that minimizes the average cross-
validation error.

An alternative to 𝑘-fold cross validation that accounts for the time-
series properties of the data is time-series cross validation, which reserves 
a section at the end of the training sample for evaluation. Section IA.7 
of the Internet Appendix reports the results of a robustness check where 
we use time-series cross validation. We find that five-fold cross valida-
tion performs slightly better, consistent with Bergmeir et al. (2018) and 
Coulombe et al. (2020).

4. Performance of machine-learning portfolios

In this section, we first describe our performance-evaluation method-
ology and then compare the out-of-sample performance of the various 
portfolios.

4.1. Performance-evaluation methodology

We now describe the procedure we use to select share classes and 
evaluate the performance of the resulting portfolios. Although the anal-
ysis is carried out at the share-class level, for simplicity herein we refer 
to share classes as funds.

We use the first 10 years of data on one-year ahead realized alphas 
(from 1981 until 1990) and one-year-lagged fund characteristics (from 
1980 until 1989) to train each machine-learning method and OLS. We 
then use the values of fund characteristics in December of 1990, which 
are not employed in the training process, to predict fund performance 
in 1991. We form an equally weighted portfolio of the funds in the top 
decile of the predicted-performance distribution and track its return 
(net of expenses, fees, loads, and transaction costs) in the 12 months 
of 1991. If, during that period, a fund that belongs to the portfolio 
disappears from the sample, the amount invested in that fund is equally 
distributed across the remaining funds. For every successive year, we 
expand the training sample forward one year, train the algorithm again 
on the expanded sample, make new predictions for the following year, 
construct a new top-decile fund portfolio and track its net return in the 
next 12 months. This way, we construct a time series of monthly out-
of-sample net returns of the top-decile fund portfolio that spans from 
January 1991 to December 2020 (360 months). The average number of 
funds selected into the top-decile portfolios is 159 with a minimum of 
11 and a maximum of 326.

To evaluate the out-of-sample performance of the top-decile fund 
portfolio, we run a time-series regression of the 360 out-of-sample 
monthly portfolio excess returns on contemporaneous risk-factor re-
turns. The portfolio alpha is the intercept of the time-series regression. 
We consider four risk-factor models to evaluate portfolio performance: 
the Fama and French (1993) three-factor model augmented with mo-
mentum (FF3+MOM) proposed by Carhart (1997); the Fama and French 
(2015) five-factor model (FF5); the FF5 model augmented with mo-
mentum (FF5+MOM); and the FF5 model augmented with momentum 
8

and the aggregate liquidity factor of Pástor and Stambaugh (2003)
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Table 3

Out-of-sample alpha of fund portfolios. This table reports the monthly out-
of-sample alphas (in %) net of all costs of the top-decile fund portfolios obtained 
with three machine-learning methods (gradient boosting, random forests, and 
elastic net), with Ordinary Least Squares (OLS), and with two naive strategies 
(equally weighted and asset-weighted portfolios of all available funds). Alphas 
are computed by regressing the out-of-sample excess monthly portfolio returns 
net of all costs against the Fama and French (1993) three-factor model aug-
mented with momentum (FF3+MOM), the Fama and French (2015) five factors 
(FF5), and the FF5 model augmented with momentum (FF5+MOM) and with 
the liquidity risk factor of Pástor and Stambaugh (2003) (FF5+MOM+LIQ). The 
out-of-sample period spans from January 1991 to December 2020. We report 
standard errors with Newey-West adjustment for 12 lags in parentheses. One, 
two, and three asterisks indicate that the alpha is significant at the 10%, 5%, 
and 1% level, respectively.

FF3+MOM FF5 FF5+MOM FF5+MOM
+ LIQ

Gradient boosting 0.178** 0.222*** 0.197** 0.198**
(0.077) (0.085) (0.080) (0.081)

Random forest 0.210** 0.263*** 0.224** 0.226**
(0.086) (0.097) (0.087) (0.089)

Elastic net 0.044 0.075 0.091 0.098
(0.065) (0.067) (0.069) (0.068)

OLS 0.056 0.085 0.101 0.109*
(0.063) (0.065) (0.066) (0.066)

Equally weighted -0.018 -0.007 -0.018 -0.017
(0.045) (0.045) (0.044) (0.045)

Asset weighted -0.043 -0.033 -0.037 -0.036
(0.036) (0.035) (0.035) (0.036)

(FF5+MOM+LIQ). Note however, that in all cases, fund selection is 
based on performance predicted according to the FF5+MOM model.

4.2. Out-of-sample and net-of-costs performance

Table 3 reports the out-of-sample alpha net of all costs of the top-
decile fund portfolios selected by the three machine-learning methods—
gradient boosting, random forests, and elastic net—and by OLS. For 
comparison purposes, we also report the alpha of two naive fund port-
folios: an equally weighted and an asset-weighted portfolio of all share 
classes, both rebalanced annually.

Our main finding is that the two machine-learning methods that 
exploit nonlinearities and interactions (gradient boosting and random 
forests) select long-only portfolios of funds that deliver statistically sig-
nificant net alphas of 19.7 bp and 22.4 bp per month (2.36% and 2.69% 
per year), respectively, relative to the FF5+MOM model. In contrast, the 
portfolios based on linear methods (elastic net and OLS) deliver net al-
phas of 9.1 bp and 10.1 bp per month (1.09% and 1.21% per year), 
respectively, which are statistically indistinguishable from zero. The 
equally weighted and asset-weighted portfolios earn negative net al-
phas of −1.8 bp and −3.7 bp per month (−0.22% and −0.44% per year), 
respectively. Interestingly, the asset-weighted portfolio underperforms 
the equally weighted portfolio, which implies that the average dollar in-
vested in active funds earns lower risk-adjusted after-cost returns than 
the average fund. In summary, while portfolios that exploit predictabil-
ity in the data help investors to avoid underperforming funds, only the 
machine-learning methods that exploit nonlinearities and interactions 
(gradient boosting and random forests) allow them to significantly ben-
efit from investing in actively managed funds. Table 3 shows that these 
findings are remarkably stable when we evaluate out-of-sample alpha 

using the other three factor models we consider, with the only excep-



Journal of Financial Economics 150 (2023) 103737V. DeMiguel, J. Gil-Bazo, F.J. Nogales, and A.A.P. Santos

Table 4

Out-of-sample alpha with respect to OLS. This table reports the monthly out-of-sample 
alphas (in %) net of all costs of the portfolio that goes long in the funds selected by 
one of the methods we consider (gradient boosting, random forests, elastic net, equally 
weighted, asset weighted) and short in the funds selected by OLS. For instance, “gradient 
boosting minus OLS” refers to a long-short portfolio that is long on the prediction-based 
top-decile portfolio obtained with the gradient-boosting method and short on the top-
decile portfolio obtained with the OLS method. Alphas are computed by regressing the 
out-of-sample excess monthly long-short portfolio returns net of all costs against the Fama 
and French (1993) three-factor model augmented with momentum (FF3+MOM), the Fama 
and French (2015) five factors (FF5), and the FF5 model augmented with the momentum 
factor (FF5+MOM) and with the liquidity risk factor of Pástor and Stambaugh (2003)
(FF5+MOM+LIQ). The out-of-sample period spans from January 1991 to December 2020. 
We report standard errors with Newey-West adjustment for 12 lags in parentheses. One, 
two, and three asterisks indicate that the alpha is significant at the 10%, 5%, and 1% level, 
respectively.

FF3+MOM FF5 FF5+MOM FF5+MOM
+ LIQ

Gradient boosting minus OLS 0.122*** 0.136** 0.096** 0.089**
(0.046) (0.056) (0.043) (0.044)

Random forest minus OLS 0.154*** 0.178** 0.123** 0.117**
(0.053) (0.069) (0.050) (0.051)

Elastic net minus OLS -0.012 -0.010 -0.010 -0.010
(0.011) (0.011) (0.011) (0.010)

Equally weighted minus OLS -0.074 -0.092* -0.119** -0.126***
(0.048) (0.052) (0.048) (0.048)

Asset weighted minus OLS -0.100** -0.118** -0.137*** -0.145***
(0.050) (0.054) (0.052) (0.051)
tion being that OLS is statistically significant at the 10% level for the 
FF5+MOM+LIQ factor model.14

The positive net alphas achieved by the long-only portfolios of funds 
selected by gradient-boosting and random forests are also economically 
significant. For instance, the median of the in-sample alpha spreads be-
tween the top and bottom quintile portfolios of funds sorted by the 
predictors considered by Jones and Mo (2020, Table 2) is 21.91 bp per 
month (2.62% per year). Gradient-boosting and random forests achieve 
a similar net alpha for long-only portfolios and out of sample. Note also 
that the out-of-sample net alphas achieved by the portfolios of funds se-
lected by gradient boosting and random forests are more than double 
the average expense ratio in our sample of active funds (1.11%). This 
means that if the average fund decided to cut down all fees and ex-
penses to zero, it would only boost its net performance by less than half 
the size of the alpha we find for our best portfolios.

Our best method, random forests, selects a portfolio of mutual funds 
that earns a net alpha of 21 bp per month (2.52% per year) with re-
spect to the FF3+MOM model, which is very similar to that of the best 
top-decile portfolio of Li and Rossi (2020, Table 4), 2.88% per year. 
This is somewhat surprising given that the two studies use disjoint sets 
of predictors: fund characteristics in our case, and stock characteristics 
combined with fund holdings in Li and Rossi (2020). Thus, our em-
pirical findings complement those of Li and Rossi (2020) by showing 
that just like manager portfolio holdings, fund traits contain informa-
tion that can be used to construct portfolios of funds with large positive 
alpha.15 Moreover, our findings demonstrate that it is possible to select 
mutual funds with positive net alpha even in the absence of informa-

14 Section IA.2 of the Internet Appendix shows that our findings are also ro-
bust to evaluating performance with respect to the factor models proposed by 
Cremers et al. (2013), Hou et al. (2015), and Stambaugh and Yuan (2017).
15 Li and Rossi (2020, Sections 5.3 and 6.3) show that a linear combination of 
fund characteristics cannot improve the information contained in fund holdings 
and stock characteristics about future fund returns. Nonetheless, we show that 
using only fund characteristics with machine learning, one can construct port-
folios of mutual funds with alphas similar to those obtained by exploiting fund 
9

holdings and stock characteristics.
tion on portfolio holdings, which is relevant for the debate on the costs 
and benefits of mandatory portfolio disclosure (Aliaj, 2020).

Although the alphas of the nonlinear machine-learning portfolios 
are significantly different from zero, it is unclear whether they are also 
significantly different from that of the OLS portfolio. To answer this 
question, we evaluate the performance of a self-financed portfolio that 
goes long in each machine-learning portfolio and short in the OLS port-
folio. Table 4 shows that the difference in performance between the 
gradient-boosting and OLS portfolios is positive and significant, ranging 
from 8.9 bp to 13.6 bp per month (1.1% to 1.6% per year) with respect 
to the four factor models we consider. A similar conclusion holds for 
the random-forest portfolio, whose outperformance of the OLS portfo-
lio ranges between 11.7 bp and 17.8 bp per month (1.4% and 2.1% 
per year) depending on the model. In contrast, the performance of the 
elastic-net portfolio is statistically indistinguishable from that of the 
OLS portfolio. Finally, both the equally weighted and asset-weighted 
portfolios underperform OLS, with the difference being generally statis-
tically significant.

Our main goal is to identify funds with positive net alpha. The al-
pha of a fund measures its ability to improve the Sharpe ratio of an 
investor who already has access to the factors in the model (Gibbons 
et al., 1989). However, investors may choose to invest only in mutual 
funds instead of combining them with benchmark portfolios. Thus, it 
is interesting to study how the various portfolios of active funds per-
form in terms of mean return and risk. To answer this question, Table 5
reports the following measures for each portfolio of funds: mean ex-
cess net returns; standard deviation of net returns; Sharpe ratio (mean 
excess net return divided by standard deviation); Sortino ratio (mean 
excess net return divided by semi-deviation); information ratio (alpha 
net of all costs with respect to FF5+MOM model divided by idiosyn-
cratic volatility); maximum drawdown; and value-at-risk (VaR) based 
on the historical simulation method with 99% confidence. The rank-
ing of mean excess net returns closely mirrors the ranking in alphas. 
This result is far from obvious because the target variable we use to 
train the methods is fund alpha, and not fund excess returns, unlike 
the studies of Wu et al. (2021) and Li and Rossi (2020). Higher mean 

excess net returns for the prediction-based portfolios are at least par-
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Table 5

Out-of-sample mean excess return and risk. For each fund portfolio, this table reports the following monthly 
out-of-sample performance metrics: mean excess returns net of all costs; standard deviation; Sharpe ratio (mean 
excess return divided by the standard deviation); Sortino ratio (mean excess return divided by the semi-deviation); 
information ratio (alpha net of all costs with respect to FF5+MOM model divided by idiosyncratic volatility); 
maximum drawdown; and value-at-risk (VaR) based on the historical simulation method with 99% confidence. 
The last column reports the average annual portfolio turnover.

Mean Standard Sharpe Sortino Information Maximum VaR Turnover
deviation ratio ratio ratio drawdown 99%

Gradient boosting 0.90% 4.71% 0.192 0.292 0.174 50.3% 12.0% 1.476
Random forest 0.93% 4.96% 0.188 0.290 0.163 55.4% 13.4% 1.410
Elastic net 0.81% 4.81% 0.168 0.249 0.075 58.3% 12.4% 1.219
OLS 0.82% 4.80% 0.170 0.253 0.083 58.5% 12.3% 1.218
Equally weighted 0.78% 4.39% 0.178 0.263 -0.029 51.4% 10.2% 0.414
Asset weighted 0.73% 4.42% 0.166 0.243 -0.069 52.8% 10.7% 0.369
tially explained by higher standard deviation. However, the two best 
methods in terms of alpha (gradient boosting and random forests) also 
deliver portfolios with the highest Sharpe ratios. Our conclusions do 
not change if we consider downside risk: gradient boosting and random 
forests select portfolios of funds with the highest Sortino ratio. In terms 
of maximum drawdown, the portfolios selected by elastic net and OLS 
appear to be the riskiest, and in terms of VaR, the equally weighted 
and asset-weighted portfolios are the safest. Finally, the relative perfor-
mance of the different portfolios in terms of information ratio closely 
parallels that based on net alpha reported in Table 3.16

Although our measures of performance are net of all costs, it is use-
ful to know how much trading the top-decile portfolios require. The last 
column of Table 5 reports the average annual turnover of the top-decile 
portfolios. Annual turnover is calculated at the beginning of each cal-
endar year, when the portfolio is rebalanced, as the sum of the absolute 
values of changes in portfolio weights with respect to the last month of 
the previous year across all funds in the sample. For instance, a turnover 
value of one means that 50% of the wealth in the portfolio is reallocated 
across funds each year. As expected, the naive portfolios have very low 
turnover. Approximately, only 20% of the portfolio is reallocated from 
year to year due to changes in the pool of available funds and (for the 
equally weighted portfolio) also to changes in fund values. In contrast, 
managing a portfolio based on the performance predictions of elastic 
net and OLS involves trading roughly 60% of the portfolio value each 
year, whereas investing based on gradient boosting and random forests 
requires trading 70% of the portfolio value. These findings suggest that 
to achieve superior performance investing in actively managed funds, 
portfolio managers must also actively trade their wealth across these 
funds, and thus, it is important to account for fund loads when we eval-
uate portfolio performance.

Taken together, the results in this section suggest that it is possible 
to exploit readily available fund characteristics to select portfolios of 
mutual funds that significantly outperform (in terms of net alpha) the 
equally weighted or asset-weighted average mutual fund. This is true 
even if investors use the worst-performing forecasting methods, elastic 
net and OLS, to predict performance. In other words, elastic net and 
OLS help investors to avoid underperforming funds. However, neither 
elastic net nor OLS allow investors to identify funds with significant 
positive net alpha ex-ante. Only methods that allow for nonlinearities 
and interactions in the relation between fund characteristics and subse-
quent performance, namely gradient boosting and random forests, can 
detect funds with large and significant alphas. Moreover, the resulting 

16 Note that there is a close relation between information ratio and alpha t-stat. 
In particular, equation (4) in Gibbons et al. (1989) implies that the alpha 𝑡-stat 
of a portfolio is proportional to its information ratio, with the proportionality 
constant depending on the number of observations and the maximum Sharpe 
ratio of the factors in the model. This explains why the relative performance of 
the different portfolios in terms of out-of-sample information ratio is similar to 
10

that in terms of alpha.
portfolios also have the highest Sharpe, Sortino, and information ratios 
of all the portfolios considered.

5. Which characteristics and interactions matter?

We now study the importance of characteristics and their interac-
tions for the performance of gradient boosting and random forests. We 
also analyze the nature of the nonlinearities and interactions exploited 
by these nonlinear machine-learning methods. Finally, we investigate 
whether it is possible to replicate the performance of the machine-
learning portfolios by using a simple strategy based on double sorting 
funds across two of the most important characteristics.

To study the importance of characteristics, we estimate SHAP val-
ues (Lundberg and Lee, 2017). SHapley Additive exPlanations (SHAP) 
is a method based on cooperative game theory and used to estimate 
the contribution of each characteristic to each individual prediction. 
SHAP is an additive method because aggregating SHAP values across 
characteristics, one recovers the difference between the prediction for 
an individual observation and the average prediction across all obser-
vations.17 Fig. 2 reports characteristic importance for OLS, elastic net, 
gradient-boosting, and random forests. To quantify the importance of a 
characteristic, we compute the mean across all observations of the abso-
lute SHAP value for the characteristic. We evaluate importance within 
the last estimation window, which spans the 1980 to 2019 period.

We highlight two main findings from Fig. 2. First, value added, alpha 
intercept 𝑡-stat, market beta 𝑡-stat, and 𝑅2 are among the top five most 
important characteristics for both nonlinear methods (gradient boosting 
and random forests). This demonstrates that the nonlinear machine-
learning methods can exploit at least two different measures of past 
performance (alpha intercept 𝑡-stat and value added) to predict future 
alpha.18 The nonlinear methods also exploit measures of fund active-
ness to predict future performance. To see this, note that market beta 
𝑡-stat can be interpreted as a measure of fund activeness because one 

17 The SHAP method is model-agnostic, applicable to any type of data, and 
provides additive interpretation (contribution of each characteristic to the pre-
diction) of machine-learning models, including feature importance, feature de-
pendence, interactions, clustering and summary plots. Moreover, the tree-based 
versions take into account the dependencies between characteristics (Lundberg 
et al., 2020). For these reasons, SHAP has recently become the method of choice 
to visualize feature importance and interactions. For a general discussion see 
Molnar (2019) and for applications in finance see Pedersen (2022) and Bali et 
al. (2023).
18 Note that the other measure of past performance we consider (realized al-
pha) is only the eighth most important characteristic for gradient boosting and 
the twelfth for random forests, which demonstrates that alpha intercept 𝑡-stat 
and value added are much more important measures of past performance for 
our nonlinear methods. This finding contrasts with that of Kaniel et al. (2023), 
who find that their 12-month fund-momentum characteristic, which is closely 
related to our annual realized alpha, is the second most important predictor for 

their neural networks.
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Fig. 2. Characteristic importance. This figure reports the importance of each characteristic measured as the average across all observations of the absolute SHAP 
value of the characteristic for ordinary least squares (OLS), elastic net, gradient boosting, and random forests. We compute characteristic importance for the last 
estimation window, which spans the period from 1980 to 2019.
would expect less active funds to have highly statistically significant 
betas on the market. Indeed, Fig. 1 shows that market beta 𝑡-stat has a 
high correlation of 54% with 𝑅2, which Amihud and Goyenko (2013)
consider as a measure of fund activeness.

Our second finding is that nonlinear and linear methods differ in 
characteristic importance. For example, for the two linear methods 
characteristic importance declines sharply beyond the two most impor-
tant characteristics, but it declines much more gradually for the two 
nonlinear methods, for which around seven characteristics are similarly 
important. Another difference is that value added, which is one of the 
two most important characteristics for the nonlinear methods, is not 
very important for the linear methods. Finally, fund expense ratio is the 
sixth most important characteristic for the linear methods, but it is less 
important for the nonlinear methods.

The differences between nonlinear and linear methods in terms of 
both performance and characteristic importance suggest that there ex-
ist nonlinearities and interactions in the relation between characteristics 
and performance that investors can exploit to select actively managed 
equity funds. To explore the nature of these nonlinear relations, Figs. 3
and 4 display SHAP plots for four of the most important characteristics 
for gradient boosting and random forests: alpha intercept 𝑡-stat, value 
added, market beta 𝑡-stat, and 𝑅2. For each SHAP plot, the horizon-
tal axis shows the cross-sectionally standardized characteristic and the 
vertical axis the characteristic SHAP value for each observation (green 
dots) and the mean SHAP value conditional on the value of the charac-
teristic (solid dark green line).19

Comparing Figs. 3 and 4, we find that the nonlinear patterns identi-
fied by the two machine-learning methods are very similar. In particu-

19 To estimate the conditional mean SHAP value, we split the horizontal axis 
11

into a set of bins and compute the average SHAP value for each bin.
lar, the solid lines depicting the conditional mean SHAP value for each 
characteristic are quite similar across the two nonlinear methods.20

Interestingly, we find that there is an approximately linear relation 
between alpha intercept 𝑡-stat and its conditional mean SHAP value. 
This may explain why alpha intercept 𝑡-stat is the most important char-
acteristic for both linear methods, OLS and elastic net.21 However, 
there is a substantial degree of nonlinearity in the relation between 
the other three characteristics, which are important mainly for the non-
linear methods, and predicted performance. For instance, we find that 
the relation between fund activeness and future performance is highly 
nonlinear, with the relation being strongly positive for the most active 
funds, but flat for the rest of the funds. In particular, we observe that 
very low standardized market beta 𝑡-stats predict superior performance, 
but the relation between market beta 𝑡-stat and future performance is 
flat for larger market beta 𝑡-stats. Similarly, consistent with Amihud 
and Goyenko (2013) there is an inverse relation between 𝑅2 and per-
formance for values of 𝑅2 between −2.75 and −2, but the relation is 
roughly flat for values of standardized 𝑅2 above −2. Finally, the re-
lation between value added and its conditional mean SHAP value is 
flat for standardized value added below −0.06, u-shaped for intermedi-
ate value added, monotonically increasing for standardized value added 
between zero and 0.15, and decreasing above 0.15.

20 Comparing Figs. 3 and 4, we also find that one difference between the two 
nonlinear methods is that the SHAP values for random forests are much more 
dispersed that those for gradient boosting. This is because, as explained in Sec-
tion 3, while random forests employ ensembles of uncorrelated regression trees, 
gradient boosting employs a sequence of regression trees that build on each 
other, and thus, are potentially correlated.
21 In unreported results, we also find that there is a linear relation between 
expense ratio and predicted alpha. This is not surprising as the expense ratio is 

linearly subtracted from gross alpha to obtain net alpha.
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Fig. 3. Nonlinearity in the relation between fund characteristics and performance for gradient boosting. This figure displays SHAP plots for the gradient-
boosting method corresponding to four characteristics: alpha intercept 𝑡-stat (top left graph), value added (top right graph), market beta 𝑡-stat (bottom left graph), 
and 𝑅2 (bottom right). For each SHAP plot, the horizontal axis shows the cross-sectionally standardized characteristic and the vertical axis the characteristic’s SHAP 
value for each observation (green dots) and the mean SHAP value conditional on the value of the characteristic (solid dark green line). Estimates are for the last 
estimation window spanning the period from 1980 to 2019.
We now turn our attention to interaction importance. Fig. 5 depicts 
the strength of the 30 most important interactions of characteristics for 
gradient boosting and random forests.22 The figure reveals that past 
performance measures such as alpha intercept 𝑡-stat and value added 
are not only important as standalone predictors as shown in Fig. 2, but 
are also crucial through their interactions with measures of fund active-
ness such as market beta 𝑡-stat and 𝑅2. For instance, the most important 
interaction for random forests is alpha intercept 𝑡-stat with market beta 
𝑡-stat. Also, all four possible interactions between the two aforemen-
tioned measures of past performance and fund activeness are among 

22 As mentioned before, SHAP values are additive across characteristics: aggre-
gating SHAP values for each observation across the characteristics, we recover 
the difference between the prediction for each observation and the average 
prediction across all observations. Moreover, the SHAP value for each charac-
teristic can also be decomposed into the pure effect of the characteristic and 
the SHAP interaction value of the characteristic with each of the other charac-
teristics; see Molnar (2019, Section 9.6.8). Thus, the SHAP method estimates 
interaction strength by computing the mean across all observations of the abso-
12

lute SHAP interaction value for each pair of characteristics.
the top 30 most important interactions.23 Similarly, for gradient boost-
ing three of the four possible interactions between the aforementioned 
measures of past performance and fund activeness are among the top 
30. This suggests that the ability of fund past performance to predict 
future performance may depend on the activeness of the fund.

To further explore this conjecture, Figs. 6 and 7 illustrate the inter-
action between measures of past performance (alpha intercept 𝑡-stat or 
value added) and measures of fund activeness (market beta 𝑡-stat or 𝑅2) 
for gradient boosting and random forests. For each interaction, we split 
all observations into deciles of the fund-activeness characteristic and 
depict, for each decile, the conditional mean SHAP value of the past-
performance characteristic. For instance, the top-left graph in Fig. 6
illustrates the interaction between alpha intercept 𝑡-stat and market 
beta 𝑡-stat for gradient boosting. As expected, the SHAP values increase 
with alpha intercept 𝑡-stat for every decile of market beta 𝑡-stat, but the 
increase is much steeper for lower deciles of market beta 𝑡-stat (blue 
solid lines). That is, alpha intercept 𝑡-stat is a particularly strong predic-

23 Note that there is a total of 136 pairwise interactions between the 17 char-
acteristics in our dataset, and thus, all interactions among the top 30 are at the 

top quartile of importance.
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Fig. 4. Nonlinearity in the relation between fund characteristics and performance for random forests. This figure displays SHAP plots for the random-forest 
method corresponding to four characteristics: alpha intercept 𝑡-stat (top left graph), value added (top right graph), market beta 𝑡-stat (bottom left graph), and 𝑅2

(bottom right). For each SHAP plot, the horizontal axis shows the cross-sectionally standardized characteristic and the vertical axis the characteristic’s SHAP value 
for each observation (green dots) and the mean SHAP value conditional on the value of the characteristic (solid dark green line). Estimates are for the last estimation 
window spanning the period from 1980 to 2019.
tor of future performance for more active mutual funds. In other words, 
although investors may generally achieve higher net alpha by holding 
funds with good past performance, the effect is much stronger for more 
active funds. Similarly, the top-right graph in Fig. 6 shows that alpha 
intercept 𝑡-stat is particularly helpful to predict the future performance 
of funds with low 𝑅2, that is, funds whose returns are not explained by 
common risk factors. The bottom-left and bottom-right graphs in Fig. 6
show that the effect of the interactions between value added and the 
two measures of fund activeness is similar, albeit weaker. Fig. 7 shows 
very similar effects for random forests.24

24 To understand the impact on portfolio composition of the nonlinearities and 
interactions exploited by machine learning, we compute the fund overlap for 
the portfolios of the four prediction methods averaged over the out-of-sample 
period. We find that while the fund portfolios selected by the two linear meth-
ods (OLS and elastic net) are very similar, with an average 94% fund overlap, 
the overlap between the portfolios of the two nonlinear methods and OLS is 
much smaller, around 45%. This shows that while the shrinkage of elastic net 
has negligible impact on portfolio composition, the nonlinearities and interac-
tions exploited by gradient boosting and random forests lead to portfolios of 
13

funds that differ substantially from the OLS portfolios.
Given the importance of the measures of past performance and fund 
activeness and their interactions for the nonlinear machine-learning 
portfolios, it is interesting to study whether it is possible to earn posi-
tive net alpha by using a simple strategy based on double sorting funds 
across one measure of past performance and one measure of fund ac-
tiveness. To do this, at the beginning of each year in our out-of-sample 
period, we first sort all funds in terms of the performance measure for 
the previous year and select funds that are above the top-

√
10th per-

centile. Second, we sort the selected funds in terms of the activeness 
measure at the end of the previous year and select funds below the 
bottom-

√
10th percentile.25 This procedure results in a portfolio that 

contains 10% of the funds. Table 6 reports the monthly out-of-sample 
alphas net of all costs of the resulting long-only portfolios of funds 
obtained by combining one of two past-performance measures (alpha 
𝑡-stat and value added) with one of two fund-activeness measures (𝑅2

and market beta 𝑡-stat).

25 Note that 𝑅2 and market beta 𝑡-stat are inverse measures of fund activeness, 
and thus, we select funds below the bottom-

√
10th percentile of their distribu-
tion.
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Fig. 5. Interaction importance. This figure reports the interaction strength of the 30 most important interactions for the gradient-boosting and random-forest meth-
ods. We compute interaction strength as the average across all observations of the absolute SHAP interaction value for each pairwise combination of characteristics. 
14

We compute interaction importance for the last estimation window, which spans the period from 1980 to 2019.
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Fig. 6. Interactions between past performance and activeness measures for gradient boosting. Each graph illustrates the interaction between one past-
performance characteristic (alpha intercept 𝑡-stat or value added) and one fund-activeness characteristic (market beta 𝑡-stat or 𝑅2 ) for gradient boosting. For each 
graph, the horizontal axis depicts the cross-sectionally standardized past-performance characteristic and the vertical axis the characteristic’s SHAP value for each 
observation (green dots). To visualize the interaction, we split all observations into deciles of the fund-activeness characteristic and depict, for each decile, the 
conditional mean SHAP value of the past-performance characteristic (solid lines). Estimates are for the last estimation window spanning the period from 1980 to 

2019.

Table 6 shows that it is indeed possible to achieve positive net al-
pha by double sorting mutual funds based on past performance and 
fund activeness. For instance, the portfolios of funds based on a double 
sort of alpha 𝑡-stat and 𝑅2 achieve alphas that are statistically signifi-
cant at the 10% level, albeit slightly smaller than those attained by the 
nonlinear machine-learning methods in Table 3. Interestingly, the port-
folios of funds based on a double sort of alpha 𝑡-stat and market beta 
𝑡-stat achieve even higher alphas that are generally statistically signif-
icant at the 5% level and comparable in magnitude to those attained 
by the nonlinear machine-learning methods. This confirms the impor-
tance of the interaction of 𝑅2 with measures of past performance as 
documented by Amihud and Goyenko (2013), but also reveals market 
beta 𝑡-stat as an alternative measure of fund activeness whose inter-
action with past performance helps to identify outperforming funds. 
However, Table 6 also shows that the performance of the portfolios of 
funds based on the double sorts is quite heterogeneous across differ-
ent pairs of characteristics. For instance, the out-of-sample net alphas 
of the double-sorted portfolios based on value added and either mar-
ket beta 𝑡-stat or 𝑅2 are not significantly different from zero, and their 
magnitude is substantially smaller than those of the nonlinear machine-
15

learning portfolios. Moreover, it is important to note that the results in 
Table 6 suffer from look-ahead bias because the pairs of characteristics 
for the double sort have been selected based on characteristic and in-
teraction importance computed using the entire sample. The results in 
Table 6 demonstrate that although the portfolios obtained from a sim-
ple double sort can achieve good out-of-sample performance, investors 
should resort to nonlinear machine-learning methods in order to iden-
tify the relevant characteristics and interactions at each point in time 
(based only on past data) and achieve good performance in real time.

To investigate whether the predictive ability of some characteristics 
changes over time, Figs. 8 and 9 depict the importance of each pre-
dictor in each year of the out-of-sample period for gradient boosting 
and random forests, respectively. Figs. 8 and 9 exhibit some remark-
able similarities, which suggests that the two methods identify similar 
patterns in the data. More importantly, the figures show that the impor-
tance of characteristics such as alpha 𝑡-stat, value added, and 𝑅2 varies 
substantially over time.

Overall, our findings suggest that various measures of past perfor-
mance and fund activeness and their interactions are important for the 
ability of the nonlinear machine-learning portfolios to achieve signif-
icant positive net alphas. We also find that, although it is possible to 

achieve positive net alpha by double sorting mutual funds based on 
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Fig. 7. Interactions between past-performance and activeness measures for random forests. Each graph illustrates the interaction between one past-
performance characteristic (alpha intercept 𝑡-stat or value added) and one fund-activeness characteristic (market beta 𝑡-stat or 𝑅2 ) for random forests. For each 
graph, the horizontal axis depicts the cross-sectionally standardized past-performance characteristic and the vertical axis the characteristic’s SHAP value for each 
observation (green dots). To visualize the interaction, we split all observations into deciles of the fund-activeness characteristic and depict, for each decile, the 
conditional mean SHAP value of the past-performance characteristic (solid lines). Estimates are for the last estimation window spanning the period from 1980 to 

2019.

past performance and fund activeness, the performance of such double-
sorted portfolios is heterogeneous across different pairs of characteris-
tics. Moreover, the relative predicting ability of the measures of past 
performance and fund activeness varies substantially over time, and 
thus, to achieve superior out-of-sample performance, investors should 
use machine learning dynamically to identify the characteristics and in-
teractions that are important at each point in time.

6. Capital misallocation and machine learning

To investigate the economic mechanism behind our results, we now 
build on the work by Roussanov et al. (2021) and study whether capital 
misallocation in the mutual-fund market can explain the performance 
of the nonlinear machine-learning portfolios. To do this, we compute 
the average net skill and size of funds in the decile portfolios gener-
ated by the four prediction methods. Our main finding is that funds in 
the top decile are “too small” for diseconomies of scale to completely 
offset the skill of their managers, with funds in the top decile gener-
ated by the nonlinear methods being particularly small. This provides 
an economic interpretation of our results: Nonlinear machine-learning 
16

methods help to select outperforming mutual funds, not only because 
they can identify skilled managers, but also because they can identify 
managers whose skill is not offset by diseconomies of scale.

In the perfectly competitive equilibrium of Berk and Green (2004), 
fund size is such that diseconomies of scale and fees completely offset 
the manager’s ability to generate gross alpha, and thus, expected net al-
pha is zero for every fund. However, Roussanov et al. (2021) show that, 
in a structural model where investors face informational frictions, funds 
do not necessarily reach their Berk and Green (2004) equilibrium size. 
Consequently, in expectation a subset of funds may earn positive net 
alpha while others may earn negative net alpha. Using data on U.S. ac-
tive domestic equity funds from 1964 to 2015, Roussanov et al. (2021)
employ a Bayesian approach to estimate managerial skill and find that 
about 80% of funds manage assets above their efficient size, while funds 
in the top decile of skill are “too small” relative to their manager’s skill.

Following Roussanov et al. (2021), we assume that the net alpha 
of a fund can be decomposed into skill, diseconomies of scale, expense 
ratio, and a zero-mean idiosyncratic shock. Thus, the expected net alpha 
of fund 𝑖 can be written as:

( )

𝐸 𝛼𝑖,𝑡+1|𝑡 = 𝑎̂𝑖,𝑡+1 −𝐷(𝑄𝑖,𝑡) − 𝑝𝑖,𝑡, (5)
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Table 6

Out-of-sample alpha of double-sorted portfolios. This table reports the monthly out-of-
sample alphas (in %) net of all costs of the portfolio of funds obtained by double sorting 
the funds in terms of past performance and fund activeness. Specifically, at the beginning of 
each year in the out-of-sample period, we sort all funds in terms of the performance mea-
sure for the previous year and select funds that are above the top-

√
10th percentile. Second, 

we sort the remaining funds in terms of the activeness measure at the end of the previous 
year and select funds below the bottom-

√
10th percentile. This procedure results in a port-

folio that contains 10% of the funds. We consider two past-performance measures (alpha 
𝑡-stat and value added) and two fund-activeness measures (𝑅2 and market beta 𝑡-stat). The 
portfolio alphas reported in the table are computed by regressing the out-of-sample excess 
monthly portfolio returns net of all costs against the Fama and French (1993) three-factor 
model augmented with momentum (FF3+MOM), the Fama and French (2015) five factors 
(FF5), and the FF5 model augmented with the momentum factor (FF5+MOM) and with the 
liquidity risk factor of Pástor and Stambaugh (2003) (FF5+MOM+LIQ). The out-of-sample 
period spans from January 1991 to December 2020. We report standard errors with Newey-
West adjustment for 12 lags in parentheses. One, two, and three asterisks indicate that the 
alpha is significant at the 10%, 5%, and 1% level, respectively.

FF3+MOM FF5 FF5+MOM FF5+MOM
Double sort on +LIQ

Alpha 𝑡-stat and 𝑅2 0.179** 0.195** 0.177* 0.179*
(0.088) (0.097) (0.090) (0.092)

Alpha 𝑡-stat and market beta 𝑡-stat 0.181* 0.235** 0.207** 0.211**
(0.096) (0.108) (0.099) (0.100)

Value added and 𝑅2 0.109 0.154 0.113 0.111
(0.091) (0.102) (0.095) (0.096)

Value added and market beta 𝑡-stat 0.110 0.181 0.137 0.136
(0.098) (0.113) (0.102) (0.104)
where 𝑎̂𝑖,𝑡+1 =𝐸
(
𝑎𝑖,𝑡+1|𝑡

)
is the expected skill of fund 𝑖 conditional on 

the information set 𝑡, 𝐷(𝑄𝑖,𝑡) is the impact of diseconomies of scale 
given the size of fund 𝑖 at time 𝑡, 𝑄𝑖,𝑡, and 𝑝𝑖,𝑡 is the expense ratio of 
fund 𝑖 at time 𝑡, which, given the persistence of fund expense ratios, 
is a reliable predictor of the expense ratio at time 𝑡 + 1. Roussanov et 
al. (2021) further assume that the diseconomies of scale are logarith-
mic, 𝐷(𝑄𝑖,𝑡) = 𝜂 log

(
𝑄𝑖,𝑡

)
. Thus, in the perfectly competitive equilibrium 

of Berk and Green (2004), the efficient size of fund 𝑖 should satisfy 
log

(
𝑄𝐵𝐺
𝑖,𝑡

)
= (𝑎̂𝑖,𝑡+1 − 𝑝𝑖,𝑡)∕𝜂, where 𝑎̂𝑖,𝑡+1 − 𝑝𝑖,𝑡 is the net skill of fund 𝑖 at 

time 𝑡 + 1.
To estimate the expected skill for fund 𝑖 in year 𝑡, 𝑎̂𝑖,𝑡+1, we follow 

Zhu (2018) and average the fund’s (annual) realized alphas before fees 
and diseconomies of scale from the fund’s inception. We compute the 
diseconomies of scale as 𝐷(𝑄𝑖,𝑡) = 𝜂 log

(
𝑄𝑖,𝑡

)
where 𝜂 = 0.0048, as es-

timated by Roussanov et al. (2021), and 𝑄𝑖,𝑡 equals the assets under 
management of all of the fund’s share classes at the end of year 𝑡, ex-
pressed in 2015 dollars.26

Fig. 10 illustrates capital misallocation for the decile portfolios gen-
erated by the four prediction methods. For the 𝑗th decile portfolio of 
funds ranked by predicted alpha, the horizontal axis gives the mean net 
skill, 𝐸(𝑎̂𝑖,𝑡+1 − 𝑝𝑖,𝑡|𝑖 ∈𝐷𝑗 ), where 𝐷𝑗 is the set of funds in the 𝑗th decile, 
and the vertical axis the mean log size, 𝐸(log

(
𝑄𝑖,𝑡

) |𝑖 ∈𝐷𝑗 ). The colored 
lines plot the mean log size for each decile portfolio generated by OLS 
(orange stars), elastic net (yellow squares), gradient boosting (purple 
crosses), and random forests (green diamonds). For every method, the 
first decile portfolio has the lowest net skill and mean log size. We also 
plot the efficient (Berk-Green) log size, log

(
𝑄𝐵𝐺
𝑖,𝑡

)
, for each level of net 

skill (straight black line).
Fig. 10 shows that mean net skill increases monotonically for the 

decile portfolios of all four prediction methods; that is, the four pre-

26 To adjust assets under management for inflation, we follow Roussanov et al. 
(2021) and multiply assets in year 𝑡 by the Consumer Price Index (CPI) at the 
end of 2015 divided by the CPI at the end of year 𝑡. We download data for CPI 
using the FRED series “Consumer Price Index for All Urban Consumers: All Items 
17

in U.S. City Average, Index 1982-1984=100, Monthly, Seasonally Adjusted.”.
diction methods identify managers with higher net skill. The figure 
also shows that fund size also increases monotonically for the bottom 
nine decile portfolios, consistent with investors being generally able to 
identify funds with higher net skill. However, we observe that funds 
in the top decile of alpha predicted by all four methods manage on 
average substantially smaller portfolios than funds in the second-best 
decile. This pattern is particularly striking for funds in the top decile of 
alpha predicted by the two nonlinear machine-learning methods (gra-

dient boosting and random forests), which are surprisingly small with 
size similar to that of funds in the bottom fourth decile of the predicted 
alpha distribution.

These findings suggest that informational frictions prevent investors 
from identifying some of the funds whose managers have the highest net 
skill, and thus, these funds remain small relative to their manager’s skill. 
Comparing the mean log size of the decile portfolios of the four predic-

tion methods to the straight black line that depicts the efficient (Berk 
and Green) log size, we observe that our findings are largely consistent 
with those of Roussanov et al. (2021) despite the different method-

ologies employed in the two papers. Funds in the bottom 80% of the 
predicted net alpha distribution are “too large” for their estimated skill 
while funds in the top 10% of the distribution are below their efficient 
size.

Overall, the findings in this section suggest that the conclusions 
of Roussanov et al. (2021) regarding capital misallocation in the U.S. 
mutual-fund industry are robust to the method of finding misallocated 
funds. Moreover, the findings provide an economic interpretation of 
our results. Nonlinear machine-learning methods help to select mutual 
funds not only because they can identify skilled managers, but also be-

cause they can identify managers whose skill is not sufficiently offset 
by diseconomies of scale. Our findings are consistent with a competi-

tion framework à la Berk and Green (2004) in which frictions prevent a 
substantial fraction of the investor population from identifying some of 
the funds whose managers have the highest skill, and thus, these funds 

remaining small relative to their manager’s skill.
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Fig. 8. Time evolution of characteristic importance for gradient boosting. This figure plots the time evolution of the importance of each characteristic for 
gradient boosting. We measure the importance of each characteristic as the average across all observations of the absolute SHAP value of the characteristic. We 
scale characteristic importance so that it ranges between zero for the least important characteristic and 100 for the most important characteristic and report relative 
importance for each year from 1980 to 2019.
7. Performance over time and across market conditions

Jones and Mo (2020) show that the ability of fund characteristics 
to predict performance has declined over time due to increased arbi-
trage activity and mutual-fund competition. Motivated by their work, 
we study how the alpha of the different portfolios varies over time. To 
do this, we compute the cumulative net alpha of the top-decile port-
folio for gradient boosting, random forests, and OLS in each month of 
the out-of-sample period from 1991 to 2020 as well as those of the 
equally weighted and asset-weighted portfolios.27 Fig. 11 shows the 
time-series of cumulative abnormal returns. The three prediction-based 
portfolios (gradient boosting, random forests, and OLS) outperform the 
two naive portfolios (equally weighted and asset weighted) over the 
whole 30-year out-of-sample period. In particular, while the gradient-
boosting, random-forests, and OLS portfolios achieve cumulative net 
alphas of 69%, 78%, and 34%, respectively, the equally weighted and 
asset-weighted portfolios earn negative cumulative net alphas of −7% 
and −13%, respectively. Consistent with Jones and Mo (2020), how-
ever, the performance of the prediction-based portfolios is similar to 
that of the naive portfolios from 2012 until 2018. Nevertheless, all three 

27 We compute monthly net alphas as the portfolio excess returns net of all 
costs each month minus the product of the factor realization in that month and 
the portfolio betas estimated over the whole out-of-sample sample period using 
18

the FF5 model augmented with momentum.
prediction-based portfolios outperform the two naive portfolios in the 
last two years of our sample (2019 and 2020). In particular, while the 
gradient-boosting, random-forests, and OLS portfolios achieve cumula-
tive (2019–2020) net alphas of 4.7%, 2.2%, and −0.1%, respectively, 
the equally weighted and asset-weighted portfolios earn negative cu-
mulative net alphas of −2.8% and −3.9%, respectively.

Li and Rossi (2020) study whether the ability of mutual-fund holdings 
and stock characteristics to predict fund performance varies across mar-
ket conditions. Inspired by their work, we now investigate whether the 
ability of fund characteristics to select funds with positive alpha changes 
across market conditions. Like Li and Rossi (2020), we condition esti-
mates of performance on expansions and recessions, as well as on high 
and low investor sentiment. Specifically, we regress the out-of-sample 
monthly excess returns of the top decile portfolios selected by gradi-
ent boosting and random forests on the Fama and French (2015) five 
factors and momentum as well as indicator variables for expansions 
and recessions, and high and low investor sentiment. Expansions and 
recessions are defined following the NBER convention. The high (low) 
investor sentiment indicator equals one if investor sentiment, as defined 
in Baker and Wurgler (2006, 2007), is above (below) the median of the 
July 1965 to December 2020 period. Specifically, we download from 
Jeffrey Wurgler’s website the version of investor sentiment based on 
the first principal component of five sentiment proxies, where each of 

the proxies has first been orthogonalized with respect to six macroeco-
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Fig. 9. Time evolution of characteristic importance for random forests. This figure plots the time evolution of the importance of each characteristic for 
random forests. We measure the importance of each characteristic as the average across all observations of the absolute SHAP value of the characteristic. We scale 
characteristic importance so that it ranges between zero for the least important characteristic and 100 for the most important characteristic and report relative 
importance for each year from 1980 to 2019.

Table 7

Out-of-sample alpha of fund portfolios under different market conditions. This table reports the 
monthly out-of-sample alphas (in %) net of all costs for the top-decile fund portfolios obtained with 
gradient boosting and random forests under different market conditions. Alphas are computed by 
regressing the out-of-sample excess monthly portfolio returns net of all costs against the Fama and 
French (2015) five factors and momentum as well as indicator variables for expansions and recessions 
(Panel A), and high and low investor sentiment (Panel B). Expansions and recessions are defined 
following the NBER convention. The high (low) investor sentiment indicator equals one if investor 
sentiment, as defined in Baker and Wurgler (2006, 2007), is above (below) the median of the July 
1965 to December 2020 period. The out-of-sample period spans from January 1991 to December 
2020. We report standard errors with Newey-West adjustment for 12 lags in parentheses. One, two, 
and three asterisks indicate that the alpha is significant at the 10%, 5%, and 1% level, respectively.

Panel A. Business Cycle Panel B. Investor Sentiment

Expansion Recession Exp.− Rec. High Low High − Low

Gradient boosting 0.179** 0.375 -0.196 0.233*** 0.150 0.083
(0.082) (0.228) (0.226) (0.085) (0.109) (0.106)

Random forests 0.202** 0.445* -0.243 0.266**** 0.169 0.097
(0.087) (0.248) (0.236) (0.102) (0.118) (0.131)
nomic indicators. Table 7 reports estimated alphas for different market 
conditions and their standard errors with Newey-West adjustment for 
12 lags. We also report differences in alphas across market conditions. 
19

Our main finding is that the gradient-boosting and random-forest port-
folios achieve positive alphas across all market conditions, and although 
they perform better in recessions and times of high investor sentiment, 
the differences in alpha across different market conditions are not sta-
tistically significant.
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Fig. 10. Capital misallocation and machine learning. This figure illustrates capital misallocation for the decile portfolios generated by the four prediction methods 
we consider. For the 𝑗th decile portfolio of funds ranked by predicted alpha, the horizontal axis gives the mean net skill, 𝐸(𝑎̂𝑖,𝑡+1 − 𝑝𝑖,𝑡|𝑖 ∈𝐷𝑗 ), where 𝐷𝑗 is the set of 
funds in the 𝑗th decile, and the vertical axis the mean log size, 𝐸(log

(
𝑄𝑖,𝑡

) |𝑖 ∈𝐷𝑗 ). The colored lines plot the mean log size for each decile portfolio generated by OLS 
(orange stars), elastic net (yellow squares), gradient boosting (purple crosses), and random forests (green diamonds). For every method, the first decile portfolio has 
the lowest mean net skill and mean log size. We also plot the efficient (Berk-Green) log size, log

(
𝑄𝐵𝐺

𝑖,𝑡

)
, for each level of net skill (straight black line). Net skill is the 

average of past realized alpha before fees and diseconomies of scale estimated using the approach of Zhu (2018) minus the current expense ratio. Diseconomies of 
scale are computed based on Roussanov et al. (2021) as the log of fund size multiplied by the diseconomies of scale parameter, 𝜂 = 0.0048 as estimated by Roussanov 
et al. (2021). The efficient (Berk and Green) fund sizes for each level of skill are computed by dividing net skill by the diseconomies of scale parameter, 𝜂.

Fig. 11. Cumulative portfolio alpha. This figure plots the time series of cumulative out-of-sample portfolio realized alphas of the excess returns net of all costs 
of the top-decile fund portfolios. Realized portfolio alphas are based on the regressions on the five Fama-French factors augmented with momentum (FF5+MOM). 
Portfolios are obtained with gradient boosting (GB), random forests (RF), OLS, and with two naive strategies (equally weighted (EW) and asset-weighted (AW) 
20

portfolios of all available funds).
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8. Conclusions

The question of whether mutual-fund investors can earn positive net 
alpha by investing in active mutual funds has received much attention 
from academics, practitioners, and regulators. We posit that the pes-
simistic results that dominate the literature could be a consequence of 
the methods employed to exploit predictability in fund performance. 
In particular, we show that machine-learning methods can dynamically 
identify and exploit nonlinearities and interactions in the relation be-
tween fund characteristics and performance and help investors to select 
funds that earn significant and positive alphas net of fees and transac-
tion costs. The machine-learning methods reveal that the interactions 
between measures of past performance and fund activeness help to pre-
dict future fund performance. Our results demonstrate that investors 
can benefit from actively managed mutual funds, but only if they have 
access to sophisticated predictions that allow flexibility in the relation 
between fund characteristics and performance.

To understand the economic mechanism behind our results, we 
study whether the performance of our portfolios can be explained by 
capital misallocation in the mutual-fund market, and find that indeed 
machine learning selects funds that are small relative to their managers’ 
skill, consistent with informational frictions preventing some investors 
from identifying the outperforming funds. Our work implies that there 
is scope for pension-plan administrators and financial advisors to inte-
grate machine learning with other tools in order to help investors select 
active mutual funds with positive alpha.

Finally, our finding that mutual-fund characteristics that do not re-
quire information on fund portfolio holdings are enough to predict 
positive alpha implies that even if no information on portfolio hold-
ings had been available during our sample period, our methods would 
have identified funds with positive net alpha on average. This is rel-
evant to the debate around the recent SEC proposal to raise the asset 
threshold for mandatory portfolio disclosure.
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