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Many high-stake decisions follow an expert-in-loop structure in that a human operator receives recommen-

dations from an algorithm but is the ultimate decision maker. Hence, the algorithm’s recommendation may

differ from the actual decision implemented in practice. However, most algorithmic recommendations are

obtained by solving an optimization problem that assumes recommendations will be perfectly implemented.

We propose an adherence-aware optimization framework to capture the dichotomy between the recommended

and the implemented policy and analyze the impact of partial adherence on the optimal recommendation.

Our framework provides useful tools to analyze the structure and to compute optimal recommendation poli-

cies that are naturally immune against such human deviations, and are guaranteed to improve upon the

baseline policy.
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1. Introduction

While some decisions can be automated and made directly by algorithms based on artificial intelli-

gence (AI), many high-stake decisions follow an expert-in-loop structure in that an expert decision

maker (e.g., a doctor) receives information, predictions, or even recommendations, and decides

which course of action to follow. Consequently, the human decision maker (DM) does not systemat-

ically implement what the algorithm recommended. In other words, they may have a discretionary

power to override/reject the recommendations from the algorithm, hence impacting the poten-

tial benefits from the AI tool. For instance, in a field experiment, Kesavan and Kushwaha (2020)
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observed that merchants overrode the recommendations from a data-driven decision tool 71.24%

of the time, resulting in a 5.77% reduction in profitability.

To understand this phenomenon and its ultimate impact on the quality of the decision being

made, a growing body of literature has investigated the mechanisms driving non- or partial adher-

ence of humans to algorithmic recommendations. In this work, we ask a complementary question:

Given the fact that the decision maker will partially implement recommendations made by an

algorithm, should we adjust these recommendations in the first place and how? In other words,

we investigate the impact of partial adherence on algorithm design and decision recommendation.

Our main contributions are as follows.

A new model of partial adherence. We consider a model of sequential decision-making based

on Markov decision processes (MDPs) and assume that the decision maker currently follows a

baseline policy πbase (or state of practice) and is provided with a recommendation policy πalg by an

algorithm. We propose a framework, namely adherence-aware MDP, to compute recommendations

that are immune against human deviations. Our framework is behavioral in that it models the

human switching behavior between their baseline policy and the algorithmic recommendations,

but without specifying why these deviations are undertaken by the DM. Despite its simplicity,

we show that our model is consistent with five different models for the DM’s adherence decision,

including random or adversarial adherence decisions. Furthermore, we provide examples where the

co-existence of the human DM and the algorithmic recommendations performs either strictly worse

or strictly better than any of the two policies alone, hence illustrating the ability of our model to

capture the rich range of situations observed in practice. In particular, we show that (even rare)

human deviations from algorithmic recommendations can lead to arbitrarily poor performance

compared with both the expected performance of the algorithm and that of the current state of

practice. In other words, we show that deploying a recommendation engine that was designed

assuming its recommendations will be final decisions can have a dramatic impact on the effective

performance. This set of negative results underscores the importance of accounting for the current

baseline and the partial adherence phenomenon when building recommendation systems.
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A tractable, structured, and flexible model. We study the appealing structural and computa-

tional properties of our adherence-aware MDP framework. In particular, we show that an optimal

recommendation policy may be chosen stationary and deterministic, which is important from an

implementation standpoint, and that it may be computed efficiently by a reduction to a classi-

cal MDP problem. We also show several structural properties, such as piecewise constant optimal

recommendation policy and monotonicity of the optimal return (both as regards the adherence

level). We identify classes of MDPs for which the decision maker may overlook the issue of partial

adherence at some states (i.e., where the partial adherence phenomenon has no impact on the algo-

rithmic recommendation to be made). We finally present extensions of our framework, including

models where the adherence levels are state-dependent, action-dependent, uncertain, or where the

baseline policy is not entirely known.

Numerical study. We evaluate the practical impact of our model on a series of numerical exper-

iments. Our simulations highlight the importance of accounting for the potential non-adherence of

the decision maker, showing empirically that severe performance deteriorations can happen when

partial adherence is overlooked in the search for an optimal policy. The magnitude of this perfor-

mance deterioration depends both on the current baseline policy and on the level of adherence of

the decision maker. Consequently, in addition to classical sensitivity and robustness analyses used

in the literature, we encourage practitioners to conduct a systematic adherence-robustness analysis

of their algorithms to assess their effective performance prior to deployment.

The rest of the paper is organized as follows: We present related work from the operations

literature in Section 2. Section 3 introduces our framework for sequential decision-making under

partial adherence, discusses its connection with various models for the DM’s adherence decision,

and provides examples of situations where the co-existence of human and algorithmic decisions leads

to improved or, on the contrary, impaired system performance. In Section 4, we present algorithms

to compute optimal recommendation policies, and we analyze their structural properties and their

sensitivity to the adherence level. We illustrate the practical impact of imperfect adherence and

the value of our framework on numerical experiments in Section 5. Finally, we discuss extensions

of our framework in Section 6.
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2. Literature review

Our paper contributes to the rich literature of behavioral operations that studies the partial adher-

ence of decision makers to machine recommendations. This phenomenon is also referred to in the

literature as discretion, overriding, or deviation.

Many field studies have documented this phenomenon in a wide range of tasks and industries

such as demand forecasting (Fildes et al. 2009, Kremer et al. 2011, Kesavan and Kushwaha 2020),

warehouse operations (Sun et al. 2022), medical treatment adherence (Lin et al. 2021), or task

sequencing (Ibanez et al. 2018). Actually, partial adherence also occurs when the recommendation

does not come from a machine. In the context of chronic diseases, for instance, the World Health

Organization (WHO) defines adherence as “the extent to which a person’s behavior-taking medica-

tion, following a diet, and/or executing lifestyle changes corresponds with agreed recommendations

from a health-care provider” (Sabaté 2003). The WHO notes that adherence of the patients to

therapy for chronic illnesses is as low as 50 % in the long-term, and that this partial adherence leads

to suboptimal clinical outcomes. To anticipate its potential impact on operational performance,

it is important to understand the drivers of partial adherence, such as information asymmetry or

algorithmic aversion.

In the context of operations, assuming that humans have more and better information than

the machine, deviations due to information asymmetry can be beneficial to effective performance.

In an inventory management setting, Van Donselaar et al. (2010) conclude that providing store

manager discretion may result in higher profits due to their superior information. In a field experi-

ment with an automotive replacement parts retailer, Kesavan and Kushwaha (2020) evaluate that

merchants overriding demand forecasts increases (resp. decreases) profitability for growth- (resp.

decline-) stage products, suggesting that the information advantage of merchants increases when

the machine has limited access to historical data on the product. However, on average, they observe

a negative effect of human overriding power. Similarly, Fildes et al. (2009) document the hetero-

geneous impact of human adjustment on prediction accuracy, depending on the company but also
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the magnitude and direction of the adjustment. In another context, Sun et al. (2022) study the

box size recommendation algorithm of Alibaba. Since the algorithm ignores the foldability and

compressibility of the items, they observe that warehouse workers are able to pack some orders in

smaller boxes than the ones recommended.

Partial adherence can also result from multiple conflicting objectives that are weighted differently

by the human and the algorithm. In Alibaba’s warehouses for instance, Sun et al. (2022) hypothesize

that workers switching to larger boxes might do so to save packing effort at the expense of time and

cost. In a healthcare setting, Ibanez et al. (2018) observe that doctors tend to re-prioritize tasks so

as to group similar tasks together and reduce mental switching costs, but that such prioritization

may reduce long-term productivity.

Another reason that could explain why humans fail to follow machine recommendation is algo-

rithm aversion, as first documented by Dietvorst et al. (2015). Algorithm aversion refers to a general

preference to rely on humans instead of algorithms. This general preference could be due to an

inflated confidence in human performance. In a lab experiment, for instance, Logg et al. (2019)

observed that subjects (and in particular experts) were more prone to follow their own judgment

over an algorithm’s advice, or advice provided by another human. Alternatively, Dietvorst et al.

(2018) hypothesize that decision makers seek control over the output. In an empirical study, they

successfully reduced algorithm aversion by offering decision makers some control over the machine’s

output. Lin et al. (2021) propose and empirically evaluate algorithm use determinants in algorithm

aversion.

In an effort to propose alternative explanations to algorithm aversion, de Véricourt and Gurkan

(2023) develop a theoretical framework to study the evolution of the decision maker’s belief about

the performance of a machine and her overruling decisions over time. In their setting, decisions

and recommendations are binary (to act or not to act, e.g., collect a biopsy or not) and the

decision maker only collects performance data when choosing to act. Because of this verification

bias, de Véricourt and Gurkan (2023) identify situations under which a (rational) decision maker
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fails to learn the true performance of the machine, and indefinitely overrules its recommendation

with some non-zero probability.

Understanding the drivers of partial adherence is useful to propose solutions and incorporate

behavioral aspects into the algorithmic recommendations. In a pricing setting, for example, Caro

and de Tejada Cuenca (2023) observe adherence patterns that are consistent with the fact that

inventory and sales are more salient to managers and conduct two interventions aimed at increasing

the salience of revenues. A growing literature has studied features of the recommendation system

or the recommended policy that could increase adoption, such as partial control over the output

(see discussion above and Dietvorst et al. 2018), simplicity (Bastani et al. 2021), or interpretability

(see, e.g., Kallus 2017, Bravo and Shaposhnik 2020, Ciocan and Mǐsić 2022, Jacq et al. 2022).

The underlying intuition is that policies that have simple structural forms are more likely to be

adopted because of legal requirements for a ‘right to explanation’ (Goodman and Flaxman 2017)

and because decision makers and stake-holders value policy they can understand and audit (Bert-

simas et al. 2013, 2022). Assuming that humans are more likely to adhere to recommendations

that constitute small changes to their current practice, Bastani et al. (2021) propose a reinforce-

ment learning approach to compute optimal ‘tips’, i.e., small changes in the current practice, and

validate their approach in a controlled experiment. In an attempt to increase interpretability of

reinforcement learning policies, Jacq et al. (2022) propose the lazy-MDP framework to learn and

recommend when to act (i.e., in what states of the system), on the top of the decisions. Meresht

et al. (2020) propose to learn when to switch control between machines and human decision mak-

ers. Nonetheless, these works assume that the simplicity or interpretability of the recommendation

will not only increase adherence, but will lead to perfect adherence. In this paper, we complement

this literature by challenging this assumption and investigating the impact of partial adherence

directly on the actions to be recommended. We develop a framework to incorporate the potential

departure of the human decision maker within the search for a good recommendation policy. Our

goal resembles that of robust optimization under implementation errors where there is a similar
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discrepancy between the computed solution and the implemented one as in Bertsimas et al. (2010),

Men et al. (2014), except that their error model is purely adversarial and their decision problem

static, and that our model accounts for the current baseline practices.

In a similar vein, Sun et al. (2022) reduce non-adherence in Alibaba’s warehouses by 19.3%

and packing time by 4.5%, by modifying the box size recommendations for the “at-risk” orders

(defined as having > 50% chance of being overruled). In this paper, we have a similar objective of

adjusting the recommendation of the algorithm to the expected adherence level. However, instead

of an ad-hoc adjustment, we propose to account for the adherence level directly in the optimization

problem which the recommendation is a solution of. Furthermore, our objective is not to increase

adherence per se but to adjust the algorithm’s recommendation to the adherence level, so as to

increase the performance of the human-in-the-loop system.

3. Modeling partial adherence in a decision framework

In this section we formally introduce our model of decision under partial adherence.

We consider a human decision maker (DM) which repeatedly interacts with an environment. The

goal of the DM is to maximize a cumulative expected return, which captures both the instantaneous

reward and the long-run objective. A policy of the DM is a map from the set of possible states of

the environment to the set of actions. We assume that we have access to a baseline policy, called

πbase, which models the historical decisions of the DM. In a healthcare setting, for example, the

DM is a medical practitioner, observes the health condition of a patient at each time period, and

chooses a treatment to maximize the chances of survival, e.g., intravenous fluids and vasopressors

for hospital patients with sepsis (Komorowski et al. 2018), proactive transfers to the intensive care

units for patients in the emergency room (?), or drug treatment decisions for heart disease in

patients with type 2 diabetes (Steimle and Denton 2017). The baseline policy πbase captures the

current standard of care.

Classical methods from the operations management literature design models and algorithms to

compute an alternative recommendation policy πalg that leads to improved performance compared
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with the baseline. The underlying assumption is that the DM, convinced by the value of the algo-

rithmic approach, will systematically follow πalg and not revert to πbase. However, in many practical

problems, πalg is only a recommendation. The practitioner does not commit to implementing it.

She has some discretionary power and the resulting policy is likely to be neither πbase nor πalg,

but a mixture of the two. The main objective and contribution of our paper is to incorporate this

partial adherence phenomenon within the optimization problem that defines πalg, i.e., adjust the

recommended policy to the adherence level.

3.1. Preliminaries on Markov decision process

Formally, we adopt the framework of Markov Decision Processes (MDPs; Puterman 2014). The

system or environment is described via a set of possible states S. At every decision period, the

DM is at a given state s ∈ S, chooses an action a ∈ A, transitions to the next state s′ ∈ S with

a probability Psas′ ∈ [0,1] and obtains a reward rsas′ ∈R. The future rewards are discounted by a

factor λ ∈ (0,1) and we assume that S and A are finite sets. An MDP instance M consists of a

tuple M= (S,A,P ,r,p0, λ), with r = (rsas′)s,a,s′ ∈RS×A×S and P = (Psas′)sas′ ∈ (∆(S))S×A
, and

p0 ∈∆(S) is an initial probability distribution over the set of states S. Here, we denote ∆(S) the

simplex over S, defined as

∆(S) =

{
p∈RS | ps ≥ 0,∀ s∈ S,

∑
s∈S

ps = 1

}
.

A policy π maps, for each period t∈N, the state-action history (s0, a0, s1, a1, ..., st) to a probability

distribution over the set of actions A. A policy π is Markovian if it only depends of the current

state st, and stationary if it is Markovian and it does not depend on time. Therefore, a stationary

policy is simply a map π : S →∆(A). We call Π = (∆(A))
S
the set of stationary policies, ΠM the

set of Markovian policies, and ΠH the set of all policies (possibly history-dependent). In an MDP,

the goal of the DM is to compute a policy π to maximize the return R(π), defined as

R(π) =Eπ

[
+∞∑
t=0

λtrstatst+1

]
, (3.1)
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with st the state visited at time period t, at the action chosen with probability πsa, and the

expectation is as regards with the distribution defined by the policy π on the set of infinite-horizon

trajectories. The return R(·) is sometimes called expected reward, and we use the term return to

distinguish it from the instantaneous reward rsa. The value function vπ ∈ RS of a policy π ∈ ΠH

represents the return obtained starting from any state: vπs = Eπ
[∑+∞

t=0 λ
trstatst+1

| s0 = s
]
,∀ s ∈ S.

Note that in all generality, the return function π 7→R(π) is neither convex nor concave on Π. An

optimal policy can be chosen stationary and deterministic and can be computed efficiently (see

Puterman 2014, chapter 6). We will say that a policy π′ is an ϵ-optimal policy if its return is within

ϵ > 0 of the optimal return: R(π′)+ ϵ≥max{R(π) | π ∈Π}.

Remark 3.1 (Finite-horizon setting). In this paper, we only consider MDPs with infinite

horizon. It is straightforward to extend our framework and results to the case of finite-horizon

MDPs by adding an absorbing state with instantaneous reward 0 after the last period.

3.2. Adherence-aware MDP

We now incorporate the phenomenon of partial adherence into an MDP framework. Let M be

an MDP instance, πbase a baseline policy, and πalg a recommendation policy. We assume that πbase

belongs to the set Π of stationary policies. To capture the fact that the DM does not systematically

implement πalg, let us introduce a parameter θ ∈ [0,1], which we call the adherence level. Intuitively,

the adherence-level θ quantifies the compliance of the decision maker to follow the recommendation

policy πalg instead of the baseline policy πbase. Therefore, the policy effectively implemented by the

DM depends on πalg, πbase, and θ. In particular, we consider an effective policy of the form:

πeff(πalg, θ) = θπalg +(1− θ)πbase. (3.2)

According to this model, when θ = 0, the DM always follows the baseline policy πbase, and when

θ= 1, the DM always follows the recommendation policy πalg. When θ ∈ (0,1), the DM follows an

effective policy πeff(πalg, θ), which is a mixture of πalg and πbase. Consequently, the effective return

for the DM is R(πeff(πalg, θ)), with πeff(πalg, θ) = θπalg + (1 − θ)πbase. For a fixed adherence level
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θ, our objective is to compute an optimal recommendation policy such that the effective return

πalg 7→R(πeff(πalg, θ)) is maximized, i.e., our goal is to solve the following decision problem, called

Adherence-aware MDP (AdaMDP):

sup
πalg∈ΠH

R(πeff(πalg, θ)). (AdaMDP)

When the supremum in the above optimization program is attained, we write π⋆
alg(θ) for an optimal

recommendation policy and we write π⋆
eff(θ) for the resulting optimal effective policy, i.e., π⋆

eff(θ) =

πeff(π
⋆
alg(θ), θ). For simplicity, we assume for now that θ is the same for all states s∈ S, an assumption

we will challenge in Section 6. We first note that an optimal policy π⋆
alg(θ) for AdaMDP can be

chosen stationary and deterministic, two properties that are appealing from an implementation

standpoint.

Proposition 3.1. The supremum in AdaMDP is attained at an optimal recommendation policy

π⋆
alg(θ) that can be chosen stationary and deterministic:

sup
πalg∈ΠH

R(πeff(πalg, θ)) = max
πalg∈Π

R(πeff(πalg, θ)).

The proof of Proposition 3.1 uses some more advanced results that we will introduce in Section

4.2. We present the detailed proof in Appendix F.

Remark 3.2. Interestingly, a similar type of mixture policies have been studied in the online

learning literature, yet with a different motivation. To address the exploration-exploitation trade-

off, many policies obtained via reinforcement learning are implemented together with an ad-hoc

exploration mechanism. Instead, Shani et al. (2019) propose to compute “exploration-conscious”

policies that are designed for a particular exploration policy (e.g., choosing actions uniformly at

random) and exploration rate, which play a similar role as πbase and 1 − θ in our framework.

However, they view the exploration policy and exploration rate as additional parameters one can

tune to mitigate the exploration-exploitation tradeoff, while we consider πbase and θ as uncontrolled

inputs (arising from potential human deviations) and study their impact on actual performance.
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3.3. Discussion: Mechanisms for partial adherence and effective policy

Our adherence-aware MDP framework posits that the effective policy can be simply expressed as

a convex combination of the algorithmic and the baseline policies, as presented in (3.2). In this

section, we further justify the practical relevance of our framework by discussing how different

models for the DM’s adherence decision connects with our framework.

To model the DM’s decision to adhere, we introduce a variable us,t ∈ [0,1] indicating, in state

s, at time t, whether she follows the recommended policy πalg (the case us,t = 1) or whether she

follows πbase (the case us,t = 0). We call us,t the adherence decision at state s and period t, and we

write u := (us,t)s∈S,t∈N. With this notation, the effective policy at state s at time t is given as

πeff(πalg, u)s,t = us,tπalgs,t +(1−us,t)πbases,t, (3.3)

and specifying an adherence mechanism is equivalent to specifying how the DM chooses u.

Random model. For example, the DM could sample us,t following any distribution with support

included in [0,1] and with a mean θ. For instance, in the case of a Bernoulli distribution with

parameter θ, at each time period, the decision maker follows πalg with probability θ and πbase with

probability 1 − θ. In practice, this random model of adherence decisions can be interpreted as

being agnostic to the reasons for partial adherence. Whatever the cause (e.g., algorithm aversion,

information asymmetry), they are inaccessible to the algorithm, hence are perceived by the algo-

rithm as random deviations from the recommended policy. In other words, this model mimics the

observed behavior of DM but does not capture from first principles why she sometimes decides to

deviate from the recommendations. For example, in a stylized setting with a rational DM trying

to learn whether a machine is more accurate than her, de Véricourt and Gurkan (2023) identify

regimes where the DM’s belief oscillates permanently, hence justifying models like this one, where

the DM’s adherence decisions us,t and us,t′ may be different for t ̸= t′, even though the state is the

same. In the next theorem, we show that this model with random adherence decision u is exactly

equivalent to AdaMDP.
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Theorem 3.1. Consider the following model of random adherence decisions, where each

(us,t)s∈S is sampled from a distribution with mean (θ, ..., θ) ∈ [0,1]S, independently across t ∈ N.

Then

sup
πalg∈ΠH

Eu [R(πeff(πalg, u))] = max
πalg∈Π

R(πeff(πalg, θ))

and an optimal recommendation may be chosen stationary and deterministic in the left-hand side

of the above equation.

We present a detailed proof in Appendix A. Note that under the assumption of Theorem 3.1,

the random variables us,t and us′,t may be dependent for s ̸= s′. In fact, the proof relies on showing

that Eu [R(πeff(πalg, u))] =R (Eu [πeff(πalg, u)]), despite the return R (·) being non-linear. This follows

from the properties that us,t and us′,t′ are independent across pairs (s, t), (s′, t′) such that t ̸= t′.

Noting that Eu [πeff(πalg, u)] = πeff(πalg, θ) concludes the proof.

Adversarial model. Alternatively, as discussed in the literature review in Section 2, partial adher-

ence can be driven by information asymmetry or conflicting objectives between the algorithm and

the DM. In other words, the decision maker could choose to follow the recommendation policy πalg

or the baseline policy πbase according to a different MDP instance M′ than the MDP instance M

that parametrized the algorithm. Adopting a conservative view, one can assume the DM picks each

us,t ∈ [θ,1] adversarially in a set B ⊆ [θ,1]S×N:

sup
πalg∈ΠH

min
u∈B

R (πeff(πalg, u)) . (3.4)

Without any restrictions, i.e., in the case B = [θ,1]S×N, the DM could decide to follow the algorithm

in state s at time t and, when visiting the same state s at a later stage, decide to override it. Hence,

we can enrich the set B with several consistency constraints to model more realistic situations. In

some settings, for instance, it might be more realistic to assume a time-invariant adversarial model,

i.e., to assume that the DM’s adherence behavior depends on the state but is consistent over time.

For example, one could assume that she chooses an adherence decision us ∈ [θ,1] adversarially for

each state s and adopts this policy throughout, i.e., us,t = us,∀ t∈N. Note that the time-invariant
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adversarial model assumes that the decision maker has some discretionary power at the beginning

but commits to one policy for the rest of the trajectory, which can be seen as contradictory. Another

realistic model consists of state-invariant adherence decisions, i.e., us,t = ut ∈ [0,1] across all pairs

(s, t) ∈ S × N. A fourth model could assume that the adherence decisions are time- and state-

invariant, i.e., that us,t = u∈ [0,1] across all pairs (s, t)∈ S×N. Fortunately, as stated (informally)

in Theorem 3.2, studying our effective policy (3.2) is equivalent to studying any of these three

adherence mechanisms:

Theorem 3.2. (Informal statement) An optimal algorithmic recommendation π⋆
alg(θ), solution

to AdaMDP, is an optimal solution of the decision problem (3.4), whenever the adherence decision

u is chosen according to one of the following adversarial models: for all (s, t)∈ S ×N,

• (Unconstrained Adversarial) us,t chosen independently and adversarially in [θ,1].

• (Time-invariant Adversarial) us,t = us with us chosen independently and adversarially in

[θ,1].

• (State-invariant Adversarial) us,t = ut with ut chosen independently and adversarially in

[θ,1].

• (Time- and State-invariant Adversarial) us,t = u with u chosen adversarially in [θ,1].

Additionally, strong duality holds for these models of adversarial adherence decisions.

We defer a formal statement and proof of Theorem 3.2 to Appendix B. Theorem 3.2 shows that

AdaMDP can be interpreted as the robust counterpart of the aforementioned adversarial models,

and perhaps surprisingly, that these robust models yield the same worst-case return, and from the

proof of Theorem 3.2, the same optimal policy as well. The strong duality results show that the

case where πalg is chosen before the adherence decisions u and the case where πalg is chosen after

the adherence decisions u are equivalent. We should emphasize, however, that Theorem 3.2 only

claims an equivalence in terms of optimal effective return. For a given (sub-optimal) policy, its

effective return under each model (AdaMDP or one of the adversarial models) can differ.
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Remark 3.3. The proof of Theorem 3.2 shows that for these adversarial models, a worst-case

us,t can be chosen as us,t = θ,∀(s, t) ∈ S ×N. Therefore, when θ = 0, we recover the fact that the

agent never follows the algorithmic recommendation πalg.

Overall, Theorems 3.1 and 3.2 show that our simple proposal for adherence-aware MDPs sub-

sumes a collection of DM-level models of partial adherence, hence justifying our subsequent analysis

of the effective policy (3.2) and the optimal recommendation problem (AdaMDP).

We summarize the equivalences obtained in this section in Table 1. For the adversarial model,

time-invariance and state-invariance are described in Theorem 3.2. For the random model of adher-

ence decisions, time-invariance corresponds to a model where there exist two periods t ̸= t′ for which

the random variables us,t and us′,t′ are dependent for some states s, s′ ∈ S, and state-invariance

corresponds to the case where there exist s ̸= s′ and t ∈ N for which us,t and us′,t are dependent

random variables. The assumption in Theorem 3.1 corresponds to random models that are not

time-invariant. We provide more discussion on these time-invariant and state-invariant random

models at the end of Appendix A.

Constraints Model of adherence decisions

Time-invariance State-invariance Random Adversarial

× × AdaMDP AdaMDP

× ✓ AdaMDP AdaMDP

✓ × unknown AdaMDP

✓ ✓ unknown AdaMDP

Table 1 Summary of the adherence decision models considered in this paper and their relations with AdaMDP.

Cardinality-constrained model. Under an adversarial lens, one could model the DM’s unwilling-

ness to implement a large number of changes to her current practice by, e.g., imposing a limit

on the number of states where she adheres. For example, let us assume that adherence decisions
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are time-invariant and let us model the DM’s adherence problem as that of finding up to k states

where she follows the algorithmic recommendation, with k ∈N:

min
u∈{0,1}S ,

∑
s∈S us≤k

R(πeff(πalg, u)). (Constrained-AdaMDP)

The evaluation problem above (let alone the problem of then optimizing for πalg) is hard, as we

characterize in the following result:

Theorem 3.3. Constrained-AdaMDP is APX-hard, i.e., there exists a constant α> 0, for which

it is NP-hard to approximate Constrained-AdaMDP within a factor smaller than 1+α.

Our proof of Theorem 3.3 is based on a reduction from the constrained assortment optimization

under the Markov Chain-based choice model (Désir et al. 2020) and we provide the details in

Appendix C. This shows that adding a simple cardinality constraint to AdaMDP makes the deci-

sion problem intractable. For the sake of completeness, and since Constrained-AdaMDP may be of

independent interest, we provide a mixed-integer optimization formulation for solving Constrained-

AdaMDP in Appendix D.

3.4. Examples of competition/complementarity between the human and the
algorithm

Before turning to a more formal analysis of our framework, we demonstrate the implications of the

effective policy (3.2) on a simple MDP instance, to provide some intuition on the interactions at

play between πalg and πbase as well as illustrate the rich range of situations that can arise in our

framework. Indeed, we provide an example where the co-existence of the algorithmic and baseline

policies can lead to arbitrarily bad performance and another example where, on the contrary, they

complement each other.

We consider the MDP instance from Figure 1. There are 5 states, the rewards are independent

from the chosen action and only depend on the current state. We assume that the transitions are

deterministic and are represented with dashed arcs in Figure 1a, along with the rewards above

the states. The actions consist in choosing the possible next states. The MDP starts in State 1,
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and State 4 and State 5 are absorbing. The MDP instance is parametrized by ϵ ∈ {−1,1}, which

impacts the reward of State 5.

The current policy πbase is represented in Figure 1b. Observe that πbase prescribes to transition

from State 2 to State 5 but that, according to πbase, State 2 should not be visited in the first place.

For example, in a healthcare setting, State 2 could correspond to a newly introduced treatment,

which the practitioner is not used to prescribing. The expected return of πbase is

R (πbase) =
λ2

1−λ
,

where λ ∈ (0,1) is the discount factor. Note that, by definition of the effective policy πeff , for any

θ ∈ [0,1], πbase = πeff(πbase, θ). In other words, for any adherence level θ ∈ [0,1], recommending πbase

leads exactly to the implementation of πbase. We further consider that the algorithm prescribes the

policy πalg represented in Figure 1c, whose expected return is

R (πalg) = 0.1λ+
λ2

1−λ
>R (πbase) .

Detailed computations of policy returns reported in this section are presented in Appendix E.
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(a) MDP instance.
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(b) Baseline policy πbase.
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(c) Representation of πalg.

Figure 1 Details on the transitions and rewards of our MDP instance.

Case 1: partial adherence hurts. We first assume that ϵ=−1. In this case, it is easy to verify that

πalg is optimal under perfect adherence (θ= 1). If adherence is not perfect, however, continuing to

recommend πalg can lead to sub-optimal performance. Indeed, πbase chooses suboptimal actions in

State 2, which πalg recommends to visit (unlike πbase). So, the mixture policy πeff(πalg, θ) can lead to
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worse performance than either πalg or πbase. Formally, the return of the effective policy πeff(πalg, θ)

is equal to

R (πeff(πalg, θ)) =R(πbase)+ 2θ
λ2

1−λ

(
θ− θ̃

)
with θ̃ := 1− 0.1

1−λ

2λ
≤ 1. If θ̃ ≤ 0, the behavior of the effective return function is intuitive: In

this case, we observe that θ 7→R (πeff(πalg, θ)) is increasing. In particular, R (πalg) =R (πeff(πalg,1))≥

R (πeff(πalg, θ)), i.e., partial adherence degrades the effective return obtained by recommending πalg

compared with the perfect adherence case. Furthermore, R (πeff(πalg, θ))≥R (πbase), i.e., recommend-

ing πalg improves over the current standard of practice, πbase.

However, the analytic expression above reveals surprising behaviors when θ̃ > 0. In this case, the

function θ 7→R (πeff(πalg, θ)) is non-monotone (see Figure 2a, obtained with λ= 0.5, hence θ̃= 0.95):

It decreases on [0, θ̃/2] and increases on [θ̃/2,1]. Since the effective policy is a convex combination

of πalg and πbase, it is intuitive to believe that its performance will be bounded above and below

by R(πalg) and R(πbase) respectively. This example disproves this intuition. In particular, we have

R
(
πeff(πalg, θ̃)

)
<R (πbase). In other words, overlooking the adherence level θ and recommending the

same policy πalg may lead to lower return than the baseline policy itself! Actually, as we formally

prove in the next section, this sub-optimality gap can be made arbitrarily large.

Finally, via backward induction, we can find an optimal recommendation policy π⋆
alg(θ) for any

value of θ ∈ [0,1]. In particular, we find an optimal recommendation policy of the following form

(see derivations in Appendix E): π⋆
alg(θ) = π⋆ if θ >max(0, θ̄) for π⋆ that chooses 1→ 2,2→ 4,3→ 4

and θ̄= 1−0.1(1−λ)/λ; and π⋆
alg(θ) = πbase if θ≤max(0, θ̄). Note that by varying λ, the breakpoint

max(0, θ̄) can be made arbitrarily close to 1. In the following section, we show that, for any MDP

instance, the optimal recommendation policy π⋆
alg(θ) enjoys such piecewise constant structure.

Case 2: partial adherence helps (complementarity). We now consider the case where ϵ = 1 so

that neither πalg nor πbase are optimal and there is room for improvement. Actually, we show in this

example that partial adherence improves upon both policies, illustrating complementarity benefits
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between the human DM and the algorithm. We now compute the expected return of the effective

policy πeff(πalg, θ) = θπalg +(1− θ)πbase. In particular, we obtain that

R (πeff(πalg, θ)) =R(πalg)+ 2R(πbase)(1− θ)(θ− (1− θ̃)),

with θ̃ previously defined. Thus, if 1− θ̃ < 1, we observe that R (πeff(πalg, θ))>max{R(πalg),R(πbase)}

for any θ ∈ (1− θ̃,1). In other words, there exists a regime where the partial implementation of πalg

leads to greater performance than πalg or πbase alone.

These examples show that, despite its simple form, the class of effective policies defined in (3.2)

can capture many realistic situations where the co-existence of the algorithm and the DM hurts or

benefits the overall system performance. Because our objective is prescriptive and we are interested

in informing the design of the algorithmic recommendations πalg, we assume in the rest of the paper

that recommendations are optimal for the true MDP parameter r,P , λ and the adherence level θ,

i.e., where πalg = π⋆
alg(θ) with π⋆

alg(θ) an optimal solution to the optimization problem (AdaMDP).

This corresponds to the case where there is no model misspecification, and where θ is known. In

particular, under this assumption, algorithmic recommendations that ignore the issue of partial

adherence correspond to πalg = π⋆
alg(1), and Case 1 in this section shows that R(π⋆

eff(θ)) may be

much greater than R(πeff(πalg, θ)). Given an estimate of the adherence level θ, our objective is thus

to compute an optimal recommendation π⋆
alg(θ) as a solution of an optimization problem, enabling

us to prove important structural properties and tractability results in the next sections. We should

emphasize that diverting from the assumption that the algorithmic recommendation is the solution

of an optimization model leaves open the question of how to define (and compute) the algorithmic

recommendation in practice.

Remark 3.4. In our MDP instance for the second case (complementarity), neither πalg nor πbase

are optimal. Indeed, by definition, if πalg or πbase is an optimal policy for the nominal MDP, then it is

impossible that R (πeff(πalg, θ))>max{R(πalg),R(πbase)}, i.e., complementarity cannot occur. More

complex models of partial adherence could lead to interesting human-machine complementarity,

for instance in the case where both the algorithm and the human only have access to partial
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information on the state or action sets or have different objectives. Our agnostic model may

adequately complement these cases where more is known (or assumed) about the rational behind

partial adherence. Because decision models are necessarily a simplification of real-life decisions,

integrating more complex behavioural models behind partial adherence is an important direction

for future work.
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Figure 2 Illustrating the impact of the partial adherence phenomenon (hence the coexistence of a baseline and

algorithmic policy) in the MDP instance from Figure 1a. We choose λ= 0.5 in our simulations.

4. Analyzing adherence-aware MDPs

We now theoretically analyze the class of adherence-aware MDPs we introduced in the previous

section. As a motivation, we first provide negative results showing the worst-case performance

deterioration that can be experienced by overlooking the partial adherence phenomenon, i.e., by

recommending π⋆
alg(1) instead of π⋆

alg(θ). We then show how to compute optimal adherence-aware

recommendations efficiently and investigate how they depend structurally on θ.

4.1. Worst-case analysis of the performance of π⋆
alg(1)

As the example in Section 3.4 shows, an optimal recommendation policy π⋆
alg(θ) may be different

from an optimal nominal policy π⋆
alg(1), which itself can lead to worse performance than the baseline

policy πbase alone. We now formalize these observations.
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First, we analyze the performance of πeff(π
⋆
alg(1), θ) for π⋆

alg(1) an optimal nominal policy and

show that recommending π⋆
alg(1) (i.e., ignoring the partial adherence effect) can lead to arbitrarily

worse returns than the baseline policy.

Proposition 4.1. For any scalar M ≥ 0, for any adherence level θ ∈ (0,1), there exists an MDP

instance M such that R (πbase)≥M +R
(
πeff(π

⋆
alg(1), θ)

)
, where π⋆

alg(1) is an optimal policy for the

nominal MDP instance M.

Proof of Proposition 4.1 Fix M ≥ 0 and θ ∈ (0,1) and consider the MDP instance of Section

3.4 with ϵ=−1, with π⋆
alg(1) as in Figure 1c. In the limit where λ→ 1, we have R

(
πeff(π

⋆
alg(1), θ)

)
−

R (πbase)∼ 2θ λ2

1−λ
(θ− θ̃)→−∞ since θ < 1. Hence, we can have R

(
πeff(π

⋆
alg(1), θ)

)
−R (πbase)≤−M

for λ close to 1. □

Proposition 4.1 generalizes the observation that πeff(π
⋆
alg(1), θ) can lead to arbitrarily worse per-

formance than the current baseline policy itself (e.g., the current state of practice). As elicited in

the example from Section 3.4, this phenomenon happens when the baseline policy πbase chooses

sub-optimal actions in some states. As a result, the effective policy πeff(π
⋆
alg(1), θ) can also end

up in these bad states that are overlooked by π⋆
alg(1), which assumes that the actions are always

chosen from π⋆
alg(1). Consequently, for any value of θ ∈ (0,1), the policy π⋆

alg(1) can be arbitrarily

sub-optimal.

Corollary 4.1. For any scalar M ≥ 0, for any adherence level θ ∈ (0,1), there exists an MDP

instance M such that R (π⋆
eff(θ))≥M +R

(
πeff(π

⋆
alg(1), θ)

)
.

Proof of Corollary 4.1 The result follows from Proposition 4.1 since R (πbase) =

R (πeff(πbase, θ))≤R (π⋆
eff(θ)). □

While Proposition 4.1 and Corollary 4.1 show that ignoring the adherence level θ can lead to

arbitrarily large losses in performance, there are worst-case statements where, for each value of

θ ∈ [0,1), a particular MDP instance M is constructed. In practice, one might be interested in a

single MDP instance and the impact of varying θ ∈ [0,1] on this instance in particular, which is

the focus of the rest of this section.
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4.2. Solving adherence-aware MDPs

We now show how to efficiently compute an optimal policy π⋆
eff(θ) for adherence-aware MDPs.

Note that when θ = 1, the DM is simply solving a classical MDP problem, which can be done

efficiently with various algorithms such as value iteration, policy iteration, and linear programming

(see chapter 6 in Puterman 2014). Additionally, for the classical MDP problem, it is well-known

that an optimal policy can be chosen stationary and deterministic without loss of optimality, which

greatly simplifies implementation and interpretation of such policies in practice. We show that the

same holds for the adherence-aware MDP problem in the next proposition.

Proposition 4.2. There exists a unique vector v∞ ∈RS defined as

v∞s = max
πs∈∆(A)

θ ·
∑
a∈A

πsaP
⊤
sa (rsa +λv∞)+ (1− θ) ·

∑
a∈A

πbase,saP
⊤
sa (rsa +λv∞) ,∀ s∈ S, (4.1)

and an optimal recommendation policy π⋆
alg(θ) can be computed as a stationary deterministic policy

attaining the argmax of Equation (4.1) for each s∈ S.

The proof of Proposition 4.2 is akin to our proof of Proposition 3.1, presented in Appendix F, and

we omit it for conciseness. We note that we can rewrite Equation (4.1) as

v∞s = max
πs∈∆(A)

∑
a∈A

πsa

(
r′sa +λP ′⊤

sa v
∞) ,∀ s∈ S, (4.2)

with P ′ ∈ (∆(S))S×A
,r′ ∈RS×A defined as

P ′
sa := θ ·Psa +(1− θ) ·

∑
a′∈A

πbase,sa′Psa′ ,

r′sa := θ ·P⊤
sarsa +(1− θ) ·

∑
a′∈A

πbase,sa′P
⊤
sa′rsa′ ,

(4.3)

for all (s, a)∈ S ×A. This shows that for any θ ∈ [0,1], an optimal recommendation π⋆
alg(θ) can be

viewed as the optimal policy for another MDP instance M′ = (S,A,P ′,r′,p0, λ), where the new

transition probabilities P ′ and the new rewards r′ are defined as (4.3), and, interestingly, where the

instantaneous rewards only depend on the current state-action pair (s, a) but not on the subsequent

state s′. In the context of “exploration-conscious” reinforcement learning and in the simpler case
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where rsas′ = rsa,∀ (s, a, s′) ∈ S ×A×S in the MDP instance M, Shani et al. (2019) refer to the

MDP instance M′ as the surrogate MDP. This shows that we can efficiently compute an optimal

recommendation policy by computing an optimal policy of the surrogate MDP. Note that even

though π⋆
alg(θ) can be chosen deterministic since it is an optimal policy to the surrogate MDPs, the

effective policy π⋆
eff(θ) may be randomized, since by definition π⋆

eff(θ) = θπ⋆
alg(θ)+ (1− θ)πbase.

For the sake of completeness, we now describe two efficient methods to compute v∞.

Iterative method: value iteration. Let us define the operator f :RS →RS as

fs(v) = max
πs∈∆(A)

θ ·
∑
a∈A

πsaP
⊤
sa (rsa +λv)+ (1− θ)

∑
a∈A

πbase,saP
⊤
sa (rsa +λv) ,∀ s∈ S. (4.4)

Note that when θ= 1, this is the classical Bellman operator. The operator f is a contraction for ℓ∞:

for any v,w ∈ RS , we have ∥f(v)− f(w)∥∞ ≤ λ∥v −w∥∞. Therefore, as for classical MDPs, the

fixed-point v∞ can be computed efficiently via value iteration (VI): v0 = 0,vt+1 = f(vt),∀ t∈N. To

obtain an ϵ-optimal recommendation policy, we can stop as soon as ∥vt−f (vt)∥∞ ≤ ϵ(1−λ)(2λ)−1,

which is satisfied after O (log (ϵ−1)) iterations (Puterman 2014, theorem 6.3.3).

Linear programming formulation. The optimal value function v∞ ∈ RS can also be computed

with linear programming (Puterman 2014, section 6.9). In particular, v∞ is the unique solution

to the optimization problem min
{∑

s∈S vs | vs ≥ fs(v),∀ s∈ S
}
, which can reformulated in the fol-

lowing linear program with |S| decision variables and |S|× |A| linear constraints:

min {p⊤
0 v | vs ≥ θP⊤

sa (rsa +λv)+ (1− θ)
∑
a′∈A

πbase,sa′P
⊤
sa′ (rsa′ +λv) ,∀ (s, a)∈ S ×A}.

4.3. Structure and sensitivity of π⋆
alg(θ) with respect to the adherence level

We now investigate how the optimal recommendation π⋆
alg(θ) and its performance R(πeff(π

⋆
alg(θ), θ))

depend on the adherence level θ.

First, the example from Section 3.4 illustrates that the mapping θ 7→ R(πeff(π, θ)), for a fixed

policy π, is not necessarily monotone. Still, we can recover monotonicity when considering π⋆
alg(θ)

instead, as shown in the next proposition.
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Proposition 4.3. For any MDP instance M, the map θ 7→R(π⋆
eff(θ)) is non-decreasing on [0,1].

Proof. This is straightforward from the equivalence of AdaMDP and the models of adversarial

adherence decisions from Theorem 3.2. We provide a simple, more direct proof below. Let θ1, θ2 ∈

[0,1] with θ1 ≤ θ2. We will show that R(π⋆
eff(θ1))≤R(π⋆

eff(θ2)). Following the definition of π⋆
eff(θ1),

we have π⋆
eff(θ1) = θ1π

⋆
alg(θ1)+ (1− θ1)πbase. We can rewrite this as

π⋆
eff(θ1) = θ2

(
θ1
θ2
π⋆
alg(θ1)+

θ2 − θ1
θ2

πbase

)
+(1− θ2)πbase,

and π̂ := θ1
θ2
π⋆
alg(θ1) +

θ2−θ1
θ2

πbase is a policy since 0 ≤ θ1 ≤ θ2 ≤ 1. Overall, we conclude that

R(π⋆
eff(θ1)) =R(πeff(π̂, θ2))≤R(π⋆

eff(θ2)), by optimality of π⋆
alg(θ2). □

Proposition 4.3 shows that as the DM deviates more and more from the recommendation policy

(i.e., as θ decreases), the optimal effective return decreases. Note that this result holds because we

consider π⋆
alg(θ), in other words because we adjust our recommended policy as the adherence level

varies. Since π⋆
eff(0) = πbase, Proposition 4.3 also implies that R(π⋆

eff(θ)) ≥ R(πbase): recommending

π⋆
eff(θ) can only improve performance compared with the current baseline, which may not be the

case when recommending π⋆
alg(1), as highlighted in Proposition 4.1. Overall, Proposition 4.3 also

suggests that it is always beneficial to try to increase the compliance of the decision maker (i.e.,

increase the value of θ), as this leads to more returns for the optimal effective policy π⋆
eff(θ).

Actually, we now show that the optimal recommendation π⋆
alg(θ) does not vary continuously in

θ but rather enjoys a piecewise constant structure:

Proposition 4.4. For any MDP instance M:

1. There exists θ̄ ∈ [0,1), such that π⋆
alg(θ) = π⋆

alg(1) for any θ ∈ [θ̄,1].

2. There exists n ∈ N and 0 = θ1 < θ2 < · · ·< θn = 1 such that, for any i ∈ {1, ..., n− 1}, π⋆
alg(θ)

can be chosen constant over the interval [θi, θi+1].

3. If πbase = π⋆
alg(θ) for some θ ∈ [0,1], then π⋆

alg(θ) = πbase for any θ ∈ [0, θ].

Combined with the fact that π⋆
alg(1) is an optimal recommendation for θ = 1, Statement 1 shows

that, when the adherence level is sufficiently close to 1, we can overlook the issue of partial adherence
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and output the same recommendation as when θ= 1, which reduces to the classical MDP model.

More generally, Statement 2 in Proposition 4.4 shows that, in general, π⋆
alg(θ) has a piecewise

constant structure. The piecewise constant structure of π⋆
alg(θ) combined with the fact that πbase is

an optimal recommendation for θ = 0 also ensures that πbase is an optimal recommendation in a

neighborhood of 0. Statement 3 generalizes this observation and states that if the baseline policy

is an optimal recommendation policy for an adherence level θ, then it is optimal for any lower

adherence level. A trivial example is the case where θ= 1, i.e., when πbase is optimal in the classical

MDP model, then we should systematically recommend the baseline. To motivate our study, we

implicitly assumed that R(πbase)<R(π⋆
alg(1)), i.e., that the baseline policy could be improved.

Lastly, we uncover two conditions on the MDP instance under which the partial adherence phe-

nomenon can be ignored by the decision-maker. We start with a simple example where the optimal

recommendation π⋆
alg(θ) does not depend on θ and πbase. We observe that when the transitions

Psa ∈∆(S) do not depend on the action but only on the current state: Psa =Ps ∈∆(S) and when

rsas′ = rsa for all (s, a, s′)∈ S ×A×S, then the optimality equation (4.1) becomes

v∞s = θ · max
πs∈∆(A)

{
π⊤

s rs

}
+ θ ·λP⊤

s v∞ +(1− θ) ·π⊤
base,srs +(1− θ) ·λP⊤

s v∞,∀ s∈ S,

and we can choose an optimal recommendation policy π⋆
alg(θ) that is independent from θ and πbase.

In other words, partial adherence only impacts the effective return but it does not change the

optimal recommendation. This special case occurs, for example, when the DM faces a sequence

of independent single-stage decision problems (e.g., patients arriving independently to be treated)

where each decision provides an immediate reward but does not impact the next decision problem,

see de Véricourt and Gurkan (2023) for a detailed study of this case in a learning setting.

We now describe a condition under which the decision-maker may ignore partial adherence at a

given state. Inspecting the surrogate MDP defined in Equation (4.3), we note that the new pair of

rewards and transitions (r′,P ′) is a convex combination of the nominal parameters (r,P ) and the

rewards and transitions induced by πbase. Therefore, if πbase chooses an optimal action at a state

s̄∈ S, we may expect that the algorithmic recommendation coincides with πbase at s̄. We show that

this intuition is true in the next proposition.
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Proposition 4.5. Let s̄ ∈ S such that v
π⋆
alg(1)

s̄ = v
πbase
s̄ . Then for any θ ∈ [0,1], we have v

π⋆
eff(θ)

s̄ =

v
πbase
s̄ and we can choose π⋆

alg(θ)s̄ = πbase,s̄.

We provide the proof of Proposition 4.5 in Appendix H. Proposition 4.5 shows that if the baseline

policy obtains the optimal nominal value at a given state s̄ ∈ S, then the decision-maker can

guarantee this same value at s̄ for any value of the adherence level θ ∈ [0,1] by recommending the

same action as the baseline policy. We conclude this section by noting that obtaining a meaningful

bound on the suboptimality of a policy πalg against π
⋆
alg(θ) for a given value θ ∈ [0,1] of the adherence

level is an interesting direction for future work. We derive a bound in Appendix I, noting that it

may be hard to interpret, due to the piece-wise constant structure of the optimal recommendation

policies (Proposition 4.4).

5. Numerical experiments

In this section, we numerically study the impact of the adherence level and of the baseline policy on

two decision-making examples, in machine replacement and healthcare respectively, that have been

studied in the MDP literature. We solve all the decision problems using the value iteration algorithm

presented in Section 4.2. Among others, these numerical results illustrate the importance of taking

into account the current state of practice and the adherence level when designing algorithmic

recommendations. In particular, the adherence-aware optimization framework we develop in this

paper provides simple tools to evaluate the robustness of a policy with respect to the adherence

level and to obtain improved solutions in situations where the performance is the most impacted.

5.1. Machine replacement problem

We start with the a machine replacement problem introduced in Delage and Mannor (2010) and

studied in Wiesemann et al. (2013), ?.

MDP instance. We represent the machine replacement MDP in Figure 3. The set of states is

{1,2,3,4,5,6,7,8,R1,R2} and the set of actions is {repair, wait}. Each state models the condition

of the same machine. In State 8 the machine is broken, while State R1 and State R2 model some

ongoing reparations. State R1 is a normal repair while State R2 is a long repair. We use the same
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rewards and transitions as in Delage and Mannor (2010). In particular, there is a reward of 0 in

State 8, a reward of 18 in State R1, a reward of 10 in State R2, and a reward of 20 in the remaining

states. We set a discount factor of λ= 0.99 and the DM starts in State 1.
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(a) Transition probabilities for
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(b) Transition probabilities for

action wait.

Figure 3 Transition probabilities for the machine replacement MDP. There is a reward of 18 in state R1, of 10

in state R2 and of 0 in state 8. All others states have a reward of 20.

Numerical results. Assuming θ = 1, an optimal policy π⋆
alg(1) is to choose action wait in States

1,2,3,4,R2 and action repair in States 5,6,7,8,R1. We now compare the effective return of π⋆
alg(1)

with that of the best recommendation π⋆
alg(θ), for varying values of the adherence level θ. We first

consider the case where πbase chooses to always wait instead of repairing the machine. We present

the results of our empirical study in Figure 4. In Figure 4a, we report the effective return of

both policies, namely R(π⋆
eff(θ)) and R(πeff(π

⋆
alg(1), θ)), for varying θ ∈ [0,1]. We also compute the

proportional deterioration in performance,
(
R(π⋆

eff(θ))−R(πeff(π
⋆
alg(1), θ))

)
/R(π⋆

eff(θ)) in Figure 4b.

As expected from Proposition 4.4, when θ is sufficiently close to 1 (here, for θ ≥ 0.88), we have

π⋆
eff(θ) = π⋆

eff(1) and there is no deterioration in performance. However, as the value of θ decreases

towards 0, overlooking the adherence level and recommending π⋆
alg(1) can lead to as much as 13.34%

proportional deterioration compared with the optimal return R(π⋆
eff(θ)). We also note in Figure 4b

that small changes in θ can lead to very severe deterioration, for instance in the region θ ∈ [0,0.20],

i.e., for very low adherence from the human decision maker. The different regions over which the
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optimal decision θ 7→ π⋆
alg(θ) is constant are shown in Figure 4c, which highlights that the optimal

recommendation policy may change many times as the adherence level decreases.
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Figure 4 Numerical results for the machine replacement MDP with πbase always choosing action wait.

We also study the impact of the adherence level when πbase is the policy that avoids being

trapped in the “bad” states (States 8,R1,R2). In particular, let us consider a policy πbase that

always waits when the machine is not broken (State 1 to State 7) or in the normal repair state

(State R2), but chooses to repair in State 8 and in the long repair state (State R1). The numerical

results are presented in Figure 5. In this case, we see that the performance of π⋆
alg(1) are robust

for θ≥ 0.35, with a proportional deterioration of only 0.5% compared to the return of the optimal

recommendation policy π⋆
alg(θ) (Figure 5b). However, for θ ≤ 0.35, there is a significant drop in

performance, leading to a 4.01% reduction in effective return.

5.2. Stylized healthcare decision problem

We consider an MDP instance inspired from sequential decision-making in healthcare. In particular,

we approximate the evolution of the patient’s health dynamics using a Markov chain, using a

simplification of the models in Goh et al. (2018) and ?.

MDP instance. The dynamics of the MDP is represented in Figure 6. There are 5 states repre-

senting the severity of the health condition of the patient, and an absorbing mortality state m. State

1 represents a healthy condition for the patient while State 5 is more likely to lead to mortality.
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Figure 5 Numerical results for the machine replacement MDP with πbase repairing in the absorbing states 8,R1

and waiting in the other states.

There are three actions {low, medium, high}, corresponding to prescription of a given drug dosage

at every state. In any given state (except mortality), there is a reward of 20 for choosing action

low, a reward of 15 for choosing action medium, and a reward of 10 for choosing action high. There

is a reward of 0 in the mortality state m. The goal of the decision maker is to choose a policy to

keep the patient alive (by avoiding the mortality state m) while minimizing the invasiveness of the

treatment. We choose a discount factor of λ= 0.99 and the patient starts in State 1.
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Figure 6 Transition probabilities for the healthcare MDP instance.

Numerical results. An optimal policy π⋆
alg(1) is to choose action low in States 1,2, and to choose

action high in States 3,4,5. We now test the robustness of π⋆
alg(1) to partial adherence of the

patient. In particular, we consider three different baseline policies πbase. In Figure 7, Figure 8 and
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Figure 9, we consider baseline policies πbase that always chooses action low, medium or high in every

health states, respectively. Our simulations highlights the sensitivity of the effective performance of

π⋆
alg(1), with respect to both the baseline policy and the adherence level. In particular, while π⋆

alg(1)

may loose up to 6.52% of the optimal effective return when the baseline policy always chooses low

dosage (Figure 7b), it only loses a maximum of 0.97% of the optimal effective return when the

baseline policy always chooses medium dosage (Figure 8b), and loses close to 0% of the optimal

effective return when the baseline policy always chooses high dosage (Figure 9b). In addition, we

observe that the range of the θ-values for which π⋆
alg(1) is optimal differs greatly from one baseline

policy to another (Figures 7c-8c-9c): when πbase always chooses low dosage, π⋆
alg(1) is optimal for

θ ≥ 0.82, whereas when πbase always chooses medium dosage, π⋆
alg(1) is optimal for θ ≥ 0.51, and

when πbase always chooses high dosage, π⋆
alg(1) is optimal for θ≥ 0.20.
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Figure 7 Numerical results for the healthcare MDP with πbase choosing action low in all states.
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Figure 8 Numerical results for the healthcare MDP with πbase choosing action medium in all states.
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Figure 9 Numerical results for the healthcare MDP with πbase choosing action high in all states.

6. Extensions and discussion

Finally, we discuss additional properties and potential extensions of our adherence-aware decision

framework.

6.1. Heterogeneous adherence levels across states

We have restricted our previous analysis to the case of a homogeneous adherence level θ ∈ [0,1],

common to all states s ∈ S. However, in practice, it is possible that the adherence level differs

across states. For instance, in a healthcare setting, practitioners may be more prone to overlook

the algorithms’ recommendations when the patient is in a critical health condition because any

error may have life-threatening consequences. To model this practical consideration, we can extend

our model to heterogeneous adherence levels, θs ∈ [0,1] for each state s∈ S. In this model, at every
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decision period t∈N and visited state st, the decision maker decides to follow the recommendation

policy πalg (with probability θs) or the baseline policy πbase (with probability 1− θs). The effective

policy πeff(πalg,θ) is now defined as

πeff(πalg,θ)s = θsπalg,s +(1− θs)πbase,s,∀ s∈ S. (6.1)

All the structural results from Section 4.1 would generalize to this simple extension. In particular,

Proposition 4.3 still holds provided the non-decreasing property of θ 7→R(π⋆
eff(θ)) is replaced with

an order-preserving property:

θs ≤ θ′s,∀ s∈ S ⇒R(π⋆
eff(θ))≤R(π⋆

eff(θ
′)).

Importantly, we can still efficiently find an optimal recommendation policy π⋆
alg(θ) for any adherence

level θ ∈ [0,1]S , by adapting the value iteration and the linear programming formulation to the

map fθ :RS →RS , defined as

fθ,s(v) = max
πs∈∆(A)

θs ·
∑
a∈A

πsaP
⊤
sa (rsa +λv)+ (1− θs) ·

∑
a∈A

πbase,saP
⊤
sa (rsa +λv) ,∀ s∈ S.

6.2. Heterogeneous adherence levels across states and actions

Furthermore, it is plausible in practice that recommendations that are close to the baseline actions

are more likely to be followed than drastically different ones, e.g., in a healthcare setting where the

actions correspond to drug dosages. To model this situation, we can extend our framework further

to involve an adherence level that depends on each state s∈ S and each action in a∈A. Formally,

we could study policies of the form

πeff(πalg,θ)sa = θsaπalg,sa +(1− θsa)πbase,sa,∀ (s, a)∈ S ×A.

However, for every state s∈ S, we need πeff(πalg,θ)s ∈∆(A), which imposes some non-trivial restric-

tions on the values of θsa (which would depend on the probability of playing each action according

to πalg and πbase).
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To circumvent this issue, we propose an alternative model where πeff(πalg,θ)s ∈∆(A) by design.

For the sake of simplicity, in this section, we assume that πbase is a deterministic stationary policy:

for each state s∈ S we write πbase(s)∈A for the action chosen by the policy πbase. At a state s∈ S,

a recommended action a is sampled from the probability distribution πalg,s ∈ ∆(A). Then with

probability θsa ∈ [0,1] the DM follows the recommendation (action a), otherwise the action selected

by the DM is πbase(s). With this model, the effective policy πeff(πalg,θ) for some (θsa)(s,a)∈S×A ∈

[0,1]S×A is such that

πeff(πalg,θ)sa =


πalg,saθsa if a ̸= πbase(s),

1−
∑

a′∈A\{πbase(s)}
πalg,sa′θsa′ if a= πbase(s).

Note that the expression for the case a= πbase(s) simply follows from

1−
∑

a′∈A\{πbase(s)}

πalg,sa′θsa′ = πalg,sπbase(s) +
∑

a′∈A\{πbase(s)}

πalg,sa′(1− θsa′), (6.2)

i.e., action πbase(s) is chosen either because it has been sampled following πalg,s or because another

action a′ was sampled but the decision maker chose to follow πbase, which happens with probability

1− θsa′ . We can now write the value function of a policy πeff(πalg,θ). For any s ∈ S, we obtain,

using (6.2):

v
πeff(πalg,θ)
s =

∑
a∈A

πsa

(
θsaP

⊤
sa

(
rsa +λvπeff(πalg,θ)

)
+(1− θsa)P

⊤
sπbase(s)

(
rsπbase(s) +λvπeff(πalg,θ)

))
.

Overall, we have obtained that the value function vπeff(πalg,θ) satisfies

v
πeff(πalg,θ)
s =

∑
a∈A

πsa

(
r′sa +λP ′⊤

sa v
πeff(πalg,θ)

)
,∀ s∈ S

with P ′ ∈ (∆(S))S×A
,r′ ∈ RS×A the transition probabilities and the instantaneous rewards of

another surrogate MDP M′ with transitions and rewards defined as P ′
sa := θsa ·Psa + (1− θsa) ·

Psπbase(s), r
′
sa := θsa ·P⊤

sarsa+(1−θsa) ·P⊤
sπbase(a)

rsπbase(a), for all (s, a)∈ S×A. This shows that for this

model of state-action-dependent adherence level, we can efficiently find an optimal recommendation

policy by computing an optimal (nominal) policy for the surrogate MDP M′.
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6.3. Uncertain adherence level

In our framework, we have assumed that the adherence level θ ∈ [0,1] was known and used as

an input to design the recommendation policy πalg. This assumption is likely violated in prac-

tice, where θ is not perfectly known. Instead, we can assume that the true adherence level θ is

uncertain but belongs to an interval [θ, θ̄]. Under this assumption, we take a robust optimization

approach (Bertsimas and Sim 2004, Ben-Tal et al. 2009) and model the uncertainty in the value of

θ as an adversarial choice from the set [θ, θ̄] of all possible realizations. The goal is to compute an

optimal robust recommendation policy, that optimizes the worst-case objective over all plausible

values of the adherence levels:

sup
πalg∈ΠH

min
θ∈[θ,θ̄]

R(πeff(πalg, θ)). (6.3)

The optimization problem (6.3) is reminiscent to robust MDPs, which consider the case where the

rewards and/or the transition probabilities are unknown (Iyengar 2005, Wiesemann et al. 2013),

but in our setting the same adherence level θ has an impact on the transition probabilities out of

every states s∈ S in the surrogate MDP, which contradicts the classical rectangularity assumption

for robust MDPs. However, thanks to the structural properties highlighted in Section 4.1, the

optimization problem (6.3) can be solved as efficiently as AdaMDP, the adherence-aware decision-

making problem with known adherence level θ. Crucially, an optimal recommendation policy can

still be chosen stationary (i.e., in the set Π) instead of history-dependent (i.e., in the set ΠH), and

deterministic. Formally, we have the following theorem (proof detailed in Appendix J):

Theorem 6.1. An optimal robust recommendation policy in (6.3) may be chosen stationary:

sup
πalg∈ΠH

min
θ∈[θ,θ̄]

R(πeff(πalg, θ)) = max
πalg∈Π

min
θ∈[θ,θ̄]

R(πeff(πalg, θ)).

Additionally, the pair
(
π⋆
alg(θ), θ

)
with π⋆

alg(θ) a deterministic policy is an optimal solution to (6.3).

Theorem 6.1 is remarkable in that it shows that the same value of θ (in particular, the most

pessimistic value θ) is attaining the worst-case return for all policies. In practice, it reduces the

problem of estimating the true adherence level to the (admittedly easier) task of obtaining a valid
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lower bound only. Furthermore, Theorem 6.1 also has significant computational impact since it

shows that solving (6.3) can be done by applying the same algorithms as the one described in

Section 4.2 with θ= θ. The resulting recommendation will also be a deterministic policy, which is

desirable in practice. The proof is very similar to the case of time- and state-invariant adversarial

adherence decision in Theorem 3.2 and we present it in Appendix J.

6.4. Uncertain baseline policy

Similarly, the baseline policy πbase is currently a known input to our adherence-aware MDP frame-

work. However, in practice it is possible that the algorithm only has access to an estimation π̂base of

the baseline policy, learned from a finite dataset, and that the true baseline policy differs from π̂base.

We consider a robust approach where the recommendation policy optimizes over the worst-case

baseline policy πbase ∈ Γ, where the set Γ⊆ (∆(A))
S
represents feasible baseline policies that are

close to the estimation π̂base, i.e., we consider

sup
πalg∈ΠH

min
πbase∈Γ

R(θπalg +(1− θ)πbase). (6.4)

The following theorem shows that (6.4) is still a tractable optimization problem under some mild

assumption on Γ. We provide the detailed proof in Appendix K.

Theorem 6.2. Assume that the set of feasible baseline policies Γ satisfies the following rectan-

gularity assumption: Γ=×s∈AΓs where Γs ⊆∆(A) is a convex, compact set for each s∈ S. Then an

optimal solution to (6.4) exists and can be chosen stationary. Additionally, if the set Γ is a polytope

or defined with conic constraints, then an optimal solution to (6.4) can be computed efficiently.

Our proof is based on showing that the optimization problem (6.4) can be reformulated as an

s-rectangular robust MDP (Wiesemann et al. 2013) with uncertain pair (r,P ) of instantaneous

rewards and transition probabilities. This follows from the interpretation of AdaMDP as solving a

surrogate MDP, where the rewards and transitions, defined in (4.3), are dependent on πbase.
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6.5. Varying adherence level

The adherence level θ may also vary over time. As the DM observes the recommendation made by

the algorithm over time, her trust in the recommendation, hence her adherence, may increase (or

decrease).

One could endogeneize these dynamics by making θ explicitly dependent on the recommended

policy πalg. However, the works of Boyacı et al. (2023), de Véricourt and Gurkan (2023) highlight

how complex these dynamics can be, even for highly stylized decision problems, because of cognitive

limitations and asymmetric performance evaluation. Therefore, we conjecture that such game-

theoretic approaches (where πalg and θ are updated at each step) would be intractable for the type

of complex multi-stage decision problems we consider in this paper. Furthermore, as discussed

in Section 2, many mechanisms could explain partial adherence. Consequently, any method that

restricts the reasons for non-adherence (e.g., information asymmetry, algorithm aversion, cognitive

limitations) and derives update rules for the adherence level θ based on these mechanisms could

suffer from model misspecification.

Alternatively, one could capture the dynamic nature of θ by estimating it from past observa-

tions in an online fashion. At a high-level, the optimization problem to which π⋆
alg(θ) is a solution

resembles that of an MDP whose transition probabilities depend on θ (and πbase). Hence, a varying

adherence level would lead to non-stationary transition probabilities. In the multi-armed bandit

literature, two types of assumptions are used to address non-stationarity. Garivier and Moulines

(2011) introduced a piecewise stationary assumption, where the parameters are constant over cer-

tain time periods and change at unknown time steps. Alternatively, Besbes et al. (2014, 2015)

considered a slowly varying setting where the absolute difference between parameters at two con-

secutive time-steps are bounded (by a so-called variation budget). Although originally derived for

multi-armed bandit problems, both these frameworks have been extended and used to solve non-

stationary MDPs (or non-stationary reinforcement learning problems) as well. We refer to Auer

et al. (2008) and Cheung et al. (2023) for an analysis of non-stationary MDPs under the piecewise
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stationary and slowly varying assumptions respectively. Beyond the technical difficulties addressed

by the aforementioned works, learning θ from past historical data also suffers from a censorship

issue: if both πalg and πbase recommend the same action at a given state st, then it is impossible to

distinguish adherence from non-adherence.

We see our model based on partial adherence in offline sequential decision-making as a first

step towards a better understanding of the phenomena arising in expert-in-loop systems and a

better design of algorithmic recommendations. The online extension of our framework, where the

adherence level (and potentially the baseline policy πbase) needs to be continuously learned from

past observations constitutes an interesting future direction, as well as the case where the real MDP

parameters (r,P ) themselves are only partially known to the human agent and the algorithm and

must be learned over time.
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Appendix A: Proof of Theorem 3.1

Proof of Theorem 3.1. Let us assume that the random variables (us,t)s,t are such that us,t an us′,t′

are independent for any t ̸= t′, and that for any t ∈ N, Eu

[
(us,t)s∈S

]
= (θ, ..., θ) ∈ [0,1]S . We prove that

maxπalg∈Π R (θπalg +(1− θ)πbase) = supπalg∈ΠH
Eu [R(πeff(πalg, u))]. The proof proceeds in three steps.

Step 1. We first show that we can restrict ourselves to Markovian policies: supπalg∈ΠH
Eu [R(πeff(πalg, u))] =

supπalg∈ΠM
Eu [R(πeff(πalg, u))]. Note that for some fixed values of u ∈ [0,1]S×N, the map πalg 7→R(πeff(πalg, u))

is a function of the values of Pπalg (st = s, at = a) for (s, a) ∈ S × A and t ∈ N. Following Puterman

(corollary 5.5.2, 2014), for any history-dependent policy πalg ∈ ΠH, there exists a Markovian policy

π′
alg ∈ ΠM, potentially randomized, such that for any pair (s, a) ∈ S × A and any time t ∈ N, we have

Pπalg (st = s, at = a) = Pπ′
alg (st = s, at = a) . Therefore, for any history-dependent policy πalg ∈ΠH, we can find

a Markovian policy π′
alg such that Eu [R(πeff(πalg, u))] = Eu

[
R(πeff(π

′
alg, u))

]
. From this we conclude that

supπalg∈ΠH
Eu [R(πeff(πalg, u))] = supπalg∈ΠM

Eu [R(πeff(πalg, u))] .

Step 2. We now show that for any πalg ∈ ΠM, we have Eu [R(πeff(πalg, u))] = R(πeff(πalg, θ)). Indeed, let

us define, for π ∈ (∆(A))
S
, the transition matrix P π ∈ RS×S as P π

ss′ =
∑

a∈A πsaPsas′ ,∀ (s, s′) ∈ S × S and

rπ ∈RS , rπ,s =
∑

a∈A πsaP
⊤
sarsa. Note that P π and rπ depend linearly on π. Then by definition we have, for

a Markovian policy π= (πt)t∈N with πt ∈ (∆(A))
S
for t∈N,

R(π) =Eπ

[
+∞∑
t=0

λtrstatst+1

]
= p⊤

0

(
+∞∑
t=0

λt

t−1∏
t′=0

P πt′rπt

)
.

We have

Eu [R(πeff(πalg, u))] = p⊤
0

(
Eu

[
+∞∑
t=0

λt

t−1∏
t′=0

P (πeff(πalg,u))t′r(πeff(πalg,u))t

])

= p⊤
0

(
+∞∑
t=0

λtEu

[
t−1∏
t′=0

P (πeff(πalg,u))t′r(πeff(πalg,u))t

])
(A.1)

= p⊤
0

(
+∞∑
t=0

λt

t−1∏
t′=0

Eu

[
P (πeff(πalg,u))t′

]
Eu

[
r(πeff(πalg,u))t

])
(A.2)

= p⊤
0

(
+∞∑
t=0

λt

t−1∏
t′=0

P Eu[(πeff(πalg,u))t′ ]rEu[(πeff(πalg,u))t]

)
(A.3)

= p⊤
0

(
+∞∑
t=0

λt

t−1∏
t′=0

P (πeff(πalg,θ))r(πeff(πalg,θ))

)
(A.4)

=R (πeff(πalg, θ))

=R (θπalg +(1− θ)πbase) (A.5)
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where (A.1) follows from the dominated convergence theorem, (A.2) follows from the adherence decisions

being independent across time, (A.3) follows from linearity of the expectation and the definition of P π

and rπ, (A.4) follows from Eu [πeff(πalg, u)] = πeff(πalg, θ), and finally (A.5) follows from the definition of

R (θπalg +(1− θ)πbase).

Step 3. In Step 1, we have shown supπalg∈ΠH
Eu [R(πeff(πalg, u))] = supπalg∈ΠM

Eu [R(πeff(πalg, u))]. In Step

2, we have shown supπalg∈ΠM
Eu [R(πeff(πalg, u))] = supπalg∈ΠM

R(πeff(πalg, θ)). Proposition 3.1 shows that

supπalg∈ΠM
R(πeff(πalg, θ)) =maxπalg∈Π R(πeff(πalg, θ)), which concludes our proof. □

Other random models of adherence decisions. We briefly discuss here the viability of Time-invariant

random adherence decision models, where there are some correlations across the adherence decisions across

times. One possible time-invariant random models corresponds to

πeff(πalg, u)s,t = usπalgs,t +(1−us)πbases,t

with us sampled following a distribution with mean θ independently across all s∈ S. Another random model

of adherence decisions corresponds to Time- and State-invariant random adherence decisions, where

πeff(πalg, u)s,t = uπalgs,t +(1−u)πbases,t,

with u sampled following a distribution with mean θ and support in [0,1]. These models appear harder

to analyze than the random models of deviation from Theorem 3.1, where the fact that the decisions are

independent over time plays a crucial role in our proof. We simply note that an interesting property arises

when the adherence decisions us,t is common across all states and times: us,t = u,∀ (s, t) ∈ S × N, and

chosen at random following a distribution supported in {0,1}, with mean θ ∈ [0,1]. In this case, the decision

maker chooses either to follow πalg (in every state and at every period) with probability θ, or to follow

πbase with probability 1− θ. This situation may occur in the case where the decision maker is reluctant to

changing policy along a trajectory and is constrained to follow the same policy at all states, e.g. because of

concerns about the consistency of the resulting effective policy. Consequently, we have Eu [R(πeff(πalg, u))] =

θR(πalg) + (1− θ)R(πbase), so that an optimal recommendation policy π⋆
alg(θ) may be chosen independent of

the true value of the adherence level θ and it is equal to the optimal nominal policy for the MDP instance

M.
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Appendix B: Proof of Theorem 3.2

In this section we study the adversarial models of adherence decisions and their equivalence with AdaMDP.

For concision, we denote

B∞ := [θ,1]S×N, (Unconstrained Adversarial)

B1 := {u∈ [θ,1]S×N | us,t = us,t′ ,∀s∈ S,∀ t, t′ ∈N}, (Time-invariant Adversarial)

B2 := {u∈ [θ,1]S×N | us,t = us′,t,∀s, s′ ∈ S,∀ t∈N}, (State-invariant Adversarial)

B3 := {u∈ [θ,1]S×N | us,t = us′,t′ ,∀s, s′ ∈ S,∀ t, t′ ∈N} (Time- and State-invariant Adversarial)

We will prove the following theorems, showing the connection between adversarial models of adherence

decisions and AdaMDP. We then turn to showing strong duality in Appendix B.3.

Theorem B.1 (Unconstrained Adversarial). For a given adherence level θ ∈ [0,1], we have the fol-

lowing equality:

max
πalg∈Π

R (θπalg +(1− θ)πbase) = sup
πalg∈ΠH

min
u∈B∞

R(πeff(πalg, u)).

Additionally, there exists an optimal stationary deterministic policy that is a solution to the right-hand side

optimization problem above.

Theorem B.2 (Other Adversarial models). Let B ⊂ [θ,1]S×N be either B1 (Time-invariant Adver-

sarial), B2 (State-invariant Adversarial), or B3 (Time- and State-invariant Adversarial). For a

given adherence level θ ∈ [0,1], we have the following equality:

max
πalg∈Π

R (θπalg +(1− θ)πbase) = sup
πalg∈ΠH

min
u∈B

R(πeff(πalg, u)).

Additionally, there exists an optimal stationary deterministic policy that is a solution to the right-hand side

optimization problem above.

The proofs of Theorem B.1 and Theorem B.2 proceed in several steps.

• First, we show that the optimization problem with adversarial adherence decisions in B∞:

sup
πalg∈ΠH

min
u∈B∞

R(πeff(πalg, u)) (B.1)

admits a robust Bellman equation in Proposition B.1.
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• In Corollary B.1, we then show that this robust Bellman equation can be interpreted as the Bellman

equation of an alternate MDP, which shows the equivalence between (B.1) and AdaMDP as in

max
πalg∈Π

R (θπalg +(1− θ)πbase) , (B.2)

hence concluding the proof of Theorem B.1.

• The proof for Theorem B.2 follows from B1 ⊂B∞,B2 ⊂B∞,B3 ⊂B∞, and from the worst-case u∞ ∈B∞

for the Unconstrained Adversarial model being u∞
s,t = θ,∀ (s, t) ∈ S ×N, which is feasible in B1,B2 and

B3.

B.1. Proof of Theorem B.1 (Unconstrained Adversarial)

For the sake of conciseness, for a given stationary policy π and v ∈ RS , we define T π(v) ∈ RS as T π
s (v) =∑

a∈A πsaP
⊤
sa (rsa +λv) ,∀ s∈ S. Note that for each s∈ S, the scalar T π

s (v) only depends on πs ∈∆(A) and

not on πs′ for s
′ ̸= s. The next proposition shows that (B.1) admis a robust Bellman equation.

Proposition B.1. Let v∞ ∈RS satisfying

v∞
s = max

πs∈∆(A)
min

u∈[θ,1]
u ·T π

s (v
∞)+ (1−u) ·T πbase

s (v∞),∀ s∈ S. (B.3)

Additionally, let π∞ be a stationary policy attaining the maximum in the right-hand side in (B.3) for each

s∈ S. Then π∞ can be chosen deterministic, and π∞ is an optimal solution to (B.1).

Proof. We first note that the vector v∞ is well defined and is unique because the following map f :RS →

RS is a contraction for the ℓ∞-norm:

f : v 7→
(

max
πs∈∆(A)

min
u∈[θ,1]

u ·T π
s (v)+ (1−u) ·T πbase

s (v)

)
.

Since f is a contraction, there exists a unique vector v∞ ∈RS such that v∞ is a fixed-point of f , i.e., such

that f(v∞) = v∞. Let us define π∞ as the policy attaining the argmax in (B.3) and u⋆
s ∈ [θ,1] attaining its

worst-case on each state s ∈ S. We define u∞ ∈ [θ,1]S×N with u∞
s,t = u⋆

s,∀ (s, t) ∈ S ×N. We will show that

(π∞, u∞) is an optimal solution to supπalg∈ΠH
minu∈B∞ R(πeff(πalg, u)). To show this, we will show that π∞ is

an ϵ-optimal policy to supπalg∈ΠH
minu∈B∞ R(πeff(πalg, u)), for any ϵ > 0.

• Let ϵ > 0. Recall that the infinite-horizon return of a policy π is defined as R(π) =Eπ
[∑+∞

t=0 λ
trstatst+1

]
.

Let T ∈N. For any policy π, we define RT (π), the truncated return with terminal reward v∞, as

RT (π) =Eπ

[
T−1∑
t=0

λtrstatst+1
+λT v∞

sT

]
. (B.4)
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Since S,A are finite sets, the rewards rs,a,s′ are bounded. Therefore, for any ϵ > 0, there exists a corre-

sponding T such that |RT (π) − R(π)| ≤ ϵ for any policy π ∈ Π. For instance we can take T such that

λT
(

maxs,a |rs,a|
1−λ

+ ∥v∞∥∞
)
< ϵ.

• We can define the worst-case truncated return with terminal reward v∞ as

min
u∈B∞

RT (πeff(π,u)) = min
u∈B∞

Eπeff(π,u)

[
T−1∑
t=0

λtrstatst+1
+λT v∞

sT

]
. (B.5)

Note that the worst-case return and the worst-case truncated return of π∞ coincide:

min
u∈B∞

RT (πeff(π
∞, u)) = min

u∈B∞
R(πeff(π

∞, u)).

This is by definition of π∞ and v∞ as the fixed-point of f , i.e., as the continuation values of π∞.

• We claim that for any value of T ∈N, the decisions πeff (π
∞, u∞) , ..., πeff (π

∞, u∞) (repeated T times) are

optimal for (B.5). Indeed, the terminal rewards are given by (v∞
s )

s∈S , and f is the Bellman operator that

relates the worst-case values at period t∈ {1, ..., T} to the worst-case values at period t−1. Since v∞ = f(v∞)

and π∞
s , u∞ is a solution to fs(v

∞) as a saddle-point program for each s ∈ S, we conclude that repeating

πeff (π
∞, u∞) T -times optimizes the worst-case truncated return.

• Overall, we have shown the following inequalities. First, we have shown that the worst-case return

and the worst-case truncated return of π∞ coincides: minu∈B∞ RT (πeff(π
∞, u)) = minu∈B∞ R(πeff(π

∞, u))

and we have shown that π∞ is optimal for the worst-case truncated return: minu∈B∞ RT (πeff(π
∞, u)) ≥

minu∈B∞ RT (πeff(π,u)),∀ π ∈ΠH. Let π
⋆ an optimal policy for the worst-case adherence model (B.1). Then

we have

min
u∈B∞

R(πeff(π
∞, u)) = min

u∈B∞
RT (πeff(π

∞, u))≥ min
u∈B∞

RT (πeff(π
⋆, u))≥ min

u∈B∞
RT (πeff(π

⋆, u))− ϵ.

where the last inequality follows from the worst-case truncated return approximating the worst-case return

up to ϵ. This shows that for any ϵ > 0, we have minu∈B∞ R(πeff(π
∞, u))≥minu∈B∞ R(πeff(π

⋆, u))− ϵ, from

which we conclude that minu∈B∞ R(πeff(π
∞, u)) ≥ minu∈B∞ R(πeff(π

⋆, u)). Since we have chosen π⋆ as an

optimal policy for (B.1), we can conclude that π∞ is an optimal policy for (B.1). This concludes our proof

of Proposition B.1. □

We now have the following corollary, which shows the equivalence (at optimality) between the model with

worst-case time-varying adherence and our model of adherence-aware MDP (B.2).
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Corollary B.1. For v∞ defined as in (B.3), we have

v∞
s = max

πs∈∆(A)
θ ·T π

s (v
∞)+ (1− θ) ·T πbase

s (v∞),∀ s∈ S, (B.6)

i.e., the worst-case deviation at optimality in (B.1) is attained at u∞
s,t = θ for all (s, t)∈ S ×N. In particular,

we have the following equality:

sup
πalg∈ΠH

R(πeff(πalg, u
∞)) = min

u∈B∞
R(πeff(π

∞, u)). (B.7)

Proof. Because the inner objective function is linear in u, we have

max
πs∈∆(A)

min
u∈[θ,1]

u ·T π
s (v

∞)+ (1−u) ·T πbase
s (v∞) = max

πs∈∆(A)
min

u∈{θ,1}
u ·T π

s (v
∞)+ (1−u) ·T πbase

s (v∞)

= max
πs∈∆(A)

min{θ ·T π
s (v

∞)+ (1− θ) ·T πbase
s (v∞), T π

s (v
∞)}.

Therefore, we want to prove that the minimum min{θ · T π∞

s (v∞) + (1− θ) · T πbase
s (v∞), T π

s (v
∞)} is always

attained at θ ·T π∞

s (v∞)+ (1− θ) ·T πbase
s (v∞), i.e., we want to show that θ ·T π∞

s (v∞)+ (1− θ) ·T πbase
s (v∞)≤

T π∞

s (v∞). Note that by choosing π= πbase in the max-min program (4.1), we always have

v∞
s ≥ T πbase

s (v∞),∀ s∈ S. (B.8)

Now if for some s∈ S we have θ ·T π∞

s (v∞)+(1−θ) ·T πbase
s (v∞)>T π∞

s (v∞), then T πbase
s (v∞)>T π∞

s (v∞). But

since T π∞

s (v∞) = v∞
s , we would obtain T πbase

s (v∞)> v∞
s , which is a contradiction with (B.8). Therefore, we

always have θ · T π∞

s (v∞) + (1− θ) · T πbase
s (v∞)≤ T π∞

s (v∞), which shows that v∞
s =maxπs∈∆(A) θ · T π

s (v
∞) +

(1−θ) ·T πbase
s (v∞),∀ s∈ S. Therefore, the worst-case adherence decisions u∞ for π∞ can be chosen as u∞

s,t = θ

for any pair (s, t) ∈ S ×N, which concludes the proof of Corollary B.1. This also shows that we can choose

an optimal policy for (B.1) as a stationary deterministic policy, because π∞ attains the right-hand side in

(B.6), which maximizes a linear form over the simplex ∆(A). □

We can now interpret the equation (B.6) as the Bellman equation of a decision maker which chooses πalg

and where the effective policy is θπalg + (1− θ)πbase. This is because for any v ∈ RS , s ∈ S and πalg ∈ Π, we

have

θ ·T πalg
s (v)+ (1− θ) ·T πbase

s (v) = T θπalg+(1−θ)πbase
s (v)

which shows that (B.1) is equal to (B.2) and that the sets of optimal policies of (B.1) and (B.2) share a

common stationary deterministic policy π∞, attaining the argmax in (B.6).
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B.2. Proof of Theorem B.2 (other adversarial models)

We now study the other models of adversarial adherence decisions presented in Theorem 3.2. We provide

the proof of Theorem B.2 below.

Proof of Theorem B.2. Let B ⊂ [θ,1]S×N be either B1 (Time-invariant Adversarial), B2 (State-

invariant Adversarial), or B3 (Time- and State-invariant Adversarial).

Let u∞ ∈ [θ,1]S×N be defined as u∞
s,t = θ,∀ (s, t)∈ S×N, and π∞ be defined as in Proposition B.1. We have

sup
πalg∈ΠH

min
u∈B

R(πeff(πalg, u))≤ sup
πalg∈ΠH

R(πeff(πalg, u
∞)) = min

u∈B∞
R(πeff(π

∞
alg, u))≤min

u∈B
R(πeff(π

∞
alg, u))

where the first inequality comes from u∞ ∈ B, the equality comes from (B.7), and the second inequality

comes from B ⊂B∞. This shows that π∞ is an optimal policy in supπalg∈ΠH
minu∈B R(πeff(πalg, u)) and the two

saddle-point formulations are equal: supπalg∈ΠH
minu∈B R(πeff(πalg, u)) = supπalg∈ΠH

minu∈B∞ R(πeff(πalg, u)). We

have proved in Theorem B.1 that the right-hand side in the previous equation is equal to maxπalg∈ΠR(θπalg+

(1− θ)πbase), which concludes the proof of Theorem B.2. □

B.3. Proof of strong duality for the adversarial models

We now turn to proving that strong duality holds for all the adversarial models considered in Theorem 3.2.

In particular, we show the following theorem.

Theorem B.3. Let B ⊂ [θ,1]S×N be either B∞ (Unconstrained Aversarial), B1 (Time-invariant

Adversarial), B2 (State-invariant Adversarial), or B3 (Time- and State-invariant Adversarial).

Then

sup
πalg∈ΠH

min
u∈B

R(πeff(πalg, u)) =min
u∈B

sup
πalg∈ΠH

R(πeff(πalg, u)).

Proof. Let B ∈ {B∞,B1,B2,B3}. Since weak duality always holds, we only have to prove that

min
u∈B

sup
πalg∈ΠH

R(πeff(πalg, u))≤ sup
πalg∈ΠH

min
u∈B

R(πeff(πalg, u)).

We have

min
u∈B

sup
πalg∈ΠH

R(πeff(πalg, u))≤ sup
πalg∈ΠH

R(πeff(πalg, u
∞)) = min

u∈B∞
R(πeff(π

∞
alg, u))≤ sup

πalg∈ΠH

min
u∈B

R(πeff(πalg, u))

where the first inequality comes from u∞ ∈ B, the equality comes from (B.7), and the second inequality

comes from B ⊂B∞ and from maximizing over ΠH. Therefore strong duality holds. □
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Appendix C: Proof of Theorem 3.3

We will show that the constrained assortment optimization with a Markov chain-based choice

model (Blanchet et al. 2016, Désir et al. 2020) can be reduced to Constrained-AdaMDP. We first introduce

the Markov chain-based choice model below. We follow the lines of Désir et al. (2020) here.

Markov chain model. Let n ∈ N. The set N = {1, ..., n} represents n items. The no-purchase option is

represented by 0 and we write N+ =N ∪ {0}. There are scalars νi ≥ 0 which represents the initial arrival

probabilities for every state i∈N+ and some transition probabilities ρij ∈ [0,1] for all (i, j)∈N 2
+. The return

for each item i is written as ξi ≥ 0. The goal of the decision maker is to choose a subset of items I ⊆N to

display to the customers, in order to maximize its expected return RMC(I), computed as follows:

• For any state i in the chosen set of items I, the state i is absorbing.

• A customer arrives in state i ∈ N+ with an initial probability νi. If the state i is non-absorbing, the

customer transitions to a different state j ∈N+, j ̸= i with probability ρij .

• The process continues until an absorbing state is reached (either in I or in {0}).

• Let γ(i,I) be the probability that item i ∈ I is chosen by the customer when the assortment I ⊂ N

is offered. Note that γ(i,I) is equal to the probability that the customer reaches state i before any other

absorbing states. Then the return RMC(I) associated with a chosen subset I is

RMC(I) =
∑
i∈I

γ(i,I)ξi. (C.1)

The cardinality assortment (Card-Assort) problem is the following optimization problem, which solves for

an optimal assortment I with constraints on the number of items selected for display:

max {RMC(I) | I ⊂N , |I| ≤ k}. (Card-Assort)

The authors in Désir et al. (2020) prove the following hardness result for Card-Assort, even under some

conditions on the parameters ρ, ξ and ν.

Theorem C.1 (Reformulation of Theorem 5, Désir et al. (2020)). Card-Assort is APX-hard, even

when ρi0 = 1/4 and ξi = 1, νi = 1/n for all i∈N .

Our proof of Theorem 3.3 follows from Theorem C.1. On the one hand, we can interpret Constrained-

AdaMDP as an optimization problem where there are two Markov chains, one induced by πalg and one by

πbase, and where the variable us decides to follow the Markov chain induced by πalg or the Markov chain
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induced by πbase at each state s ∈ S. On the other hand, Card-Assort can be interpreted as follows: given a

Markov chain following a transition matrix ρ, the decision maker chooses a subset I (with |I| ≤ k) for which

the states in I become absorbing. Based on this interpretation of Constrained-AdaMDP and Card-Assort,

we can reformulate any instance of Card-Assort as an instance of Constrained-AdaMDP in a straightforward

manner. The only technical difficulty is that RMC(I) a priori does not involve a discount factor, whereas

we have defined the objective function in Constrained-AdaMDP based on the discounted return (3.1), which

depends on a discount factor λ. We show how to circumvent this issue in our proof below. In particular, we

prove Theorem 3.3 in two steps.

Step 1: reformulating the objective in Card-Assort. We consider the instance of Card-Assort from the

proof of Theorem 5 in Désir et al. (2020). In this instance, ρi0 = 1/4 in all state i ∈ N , and for each item

i ∈ N there is a subset Ni ⊂ N{i} such that |Ni| = 3 and ρij = 1/4,∀ j ∈ Ni. Additionally, the return ξi

is equal to 1 for each item i ∈ N . We first note that RMC(I), defined as RMC(I) =
∑

i∈I γ(i,I)ξi, is equal

to Eπ
[∑+∞

t=0 r̃statst+1

]
for a certain MDP instance M̃ and a certain policy π that represents the subset I

of chosen items. In particular, let us consider the following MDP instance M̃ with states S̃ =N+, actions

{a0, a1} which represent choosing or not an item to display, and where the instantaneous rewards r̃ and the

transition probabilities P̃ are defined as follows:

• All the instantaneous rewards are equal to 0, except rsa1s = 1/4,∀ s∈N .

• P̃sa0s′ = 1/4 if s′ ∈Ns ∪{0},∀ s∈N ,

• P̃sa1s = 3/4, P̃sa10 = 1/4,∀ s∈N ,

• P̃0a00 = P̃0a10 = 1.

A stationary deterministic policy π is a map N+ →{a0, a1}, and we can construct a policy π representing

an assortment I as follows: π chooses action a1 in state s if and only if s∈ I; otherwise, π chooses action a0.

Finally, the initial probability distribution is just p0,i = νi = 1/n,∀ i ∈N . Let us give some intuition on the

values of r̃ and P̃ given above. In a state where action a0 is chosen (which corresponds to a state not included

the subset I), the Markov chain induced by P̃ evolves exactly as for the kernel ρ defined above and no

instantaneous reward is obtained. When action a1 is chosen at a state s, i.e. when s is chosen to be included

in I, the decision maker transitions to the absorbing state 0 after a number of period that follows a geometric

distribution with parameter λ = 3/4, earning an instantaneous reward of 1− λ = 1/4 while remaining in

state s and then an instantaneous reward of 0 while in state 0. Overall, we have shown that Card-Assort can
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be reformulated as optimizing an undiscounted return, in contrast to the discounted returns considered in

this paper. However, the Markov chain M̃ has a very particular structure: from any state s ∈N , there is a

probability 1/4 to reach the absorbing state 0, and no reward is obtained when transitioning to state 0. We

now show in the next step that this can be interpreted as computing a discounted return with a discount

factor of λ= 1− 1/4 = 3/4.

Step 2: from undiscounted objective to discounted objective. In this section we show that

we can reformulate the undiscounted objective function Eπ
[∑+∞

t=0 r̃statst+1

]
as a discounted objective

Eπ
[∑+∞

t=0 λ
trstatst+1

]
for a certain discount factor λ and a certain Markov chain M. We follow the lines

of Section 5.3 in Puterman (2014), which shows that the discount factor λ ∈ [0,1) can be interpreted as

a termination probability. This idea dates back to Derman (1970). More precisely, we have the following

proposition, which is a reformulation of the results in Section 5.3 in Puterman (2014).

Proposition C.1. Let M be any MDP instance and π be a policy. Then the discounted return R(π) =

Eπ
[∑+∞

t=0 λ
trstat

]
is equal to the following undiscounted return R̃(π) = Eπ

[∑+∞
t=0 r̃statst+1

]
, where r̃ ∈

RS+×A, P̃ ∈ RS+×A×S+ are the instantaneous rewards and the transition probabilities for an MDP instance

M̃ defined over an augmented state space S+ = S ∪{∆}, defined as follows:

• r̃sas′ = rsas′ ,∀(s, a)∈ S ×A,∀ s′ ̸=∆,

• r̃sa∆ = 0,∀(s, a)∈ S+ ×A

• P̃sas′ = λPsas′ ,∀(s, a, s′)∈ S ×A×S,

• P̃sa∆ = 1−λ,∀ s∈ S,

• P̃∆a∆ = 1.

Applying Proposition C.1 to the MDP instance M̃ defined in the first step of this proof, we find that the

objective function Eπ
[∑+∞

t=0 r̃statst+1

]
can be reformulated as the discounted return in the following MDP

instance M: the set of states is N , the set of actions is {a0, a1}, the discount factor is λ= 3/4, the initial

probability distribution p0 for the MDP instance M̃ is equal to the probability distribution ν for the instance

of Card-Assort, and the instantaneous rewards r and the transition probabilities P are defined as follows:

rsa0s′ = 0, rsa1s = 1/4,∀ (s, s′)∈N ×N , Psa0s′ = 1/3, Psa1s = 1,∀s′ ∈Ns,∀ s∈N . (C.2)

Overall, we have shown the following proposition.
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Proposition C.2. Let us consider the instance of Card-Assort from the proof of Theorem 5 in Désir et al.

(2020). Then RMC(I) can be reformulated as R(π) = Eπ
[∑+∞

t=0 λ
trstat

]
for the MDP instance described in

(C.2) with πs = a1 if and only if s∈ I for s∈N and λ= 3/4.

Let I ⊂ N a subset of displayed items and let π be the policy representing I in the MDP M. Then

πs = πeff(πalg, u) = usπalg s + (1− us)πbase s, with πbase the policy that chooses a0 in all states, πalg the policy

that chooses a1 in all states, and u ∈ {0,1}S . The cardinality constraint |I| ≤ k can be directly rewritten∑
s∈S us ≤ k, which concludes our proof.

Appendix D: Mixed-integer optimization formulation for Constrained-AdaMDP

In this section we provide a mixed-integer optimization formulation for Constrained-AdaMDP. We start with

the following lemma, which is a direct consequence of a classical contraction lemma, see for instance Lemma

2 in ? or Lemma 3.1 in ?.

Lemma D.1. Let π ∈Π. Then R(π) =min{p⊤
0 v | vs ≥

∑
a∈A πsaP

⊤
sa (rsa +λv) ,∀ s∈ S,v ∈RS}.

Based on Lemma D.1, for a fixed πalg ∈Π we can reformulate Constrained-AdaMDP as follows:

min

{
p⊤
0 v | vs ≥

∑
a∈A

usπalg,saP
⊤
sa (rsa +λv)+ (1−us)πbase,saP

⊤
sa (rsa +λv) ,∀ s∈ S,

∑
s∈S

us ≤ k,u∈ {0,1}S ,v ∈RS

}
.

(D.1)

In the optimization program above, the terms us×
(∑

a∈A(πalg,sa −πbase,sa)P
⊤
sav
)
are bilinear in the variables

(us,v) ∈ {0,1}×RS for any s ∈ S. However, us ∈ {0,1}, vs ∈ [0, r∞/(1− λ)],
∑

s′∈S Psas′ = 1 for any s, a ∈ S,

so we can use classical reformulation techniques to linearize the bilinear constraints. In particular, it is well-

known that we can linearize the term x×y with x∈ {0,1}, y ∈ [L,U ] with L≤U by introducing an auxiliary

variable z ∈R such that z ≥Lx, z ≤Ux, z ≥ y− (1−x)max{|L|, |U |}, z ≤ y+(1−x)max{|L|, |U |}. Applying

this method with x= us ∈ {0,1} and y=
∑

a∈A(πalg,sa −πbase,sa)P
⊤
sav ∈ [− r∞

1−λ
,2 r∞

1−λ
] to linearize the bilinear

terms appearing in the reformulation (D.1), we obtain a mixed-integer program for Constrained-AdaMDP,

only involving a linear objective and linear constraints over continuous and binary variables:

min p⊤
0 v

vs ≥ λzs +
∑
a∈A

(usπalg,sa +(1−us)πbase,sa)P
⊤
sarsa +λπbase,saP

⊤
sav,∀ s∈ S,

− 2
r∞
1−λ

(1−us)≤ zs −
∑
a∈A

(πalg,sa −πbase,sa)P
⊤
sav≤ 2

r∞
1−λ

(1−us),∀ s∈ S,
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− r∞
1−λ

us ≤ zs ≤ 2
r∞
1−λ

us,∀ s∈ S,∑
s∈S

us ≤ k,

u∈ {0,1}S ,v ∈RS ,z ∈RS .

Appendix E: Detailed computation for Section 3.4

We detail the computation of the simple MDP instance we presented in Section 3.4.

Considering the policies πbase and πalg represented in Figures 1b and 1c respectively, we compute the return

of the effective policy πeff(πalg, θ) = θπalg + (1− θ)πbase. For concision, let us denote r := r2 = 0.1. Then, for

any ϵ, we have

R (πbase) =
λ2

1−λ
,

R (πalg) = rλ+
λ2

1−λ
,

R (πeff(πalg, θ)) = θ ·
(
rλ+ θ · λ2

1−λ
+(1− θ) · (1+ ϵ)

λ2

1−λ

)
+(1− θ) ·

(
0+ θ · (1+ ϵ)

λ2

1−λ
+(1− θ) · λ2

1−λ

)
= θλr+ θR(πbase)+ θ(1− θ)ϵR(πbase)+ (1− θ)R(πbase)+ θ(1− θ)ϵR(πbase)

= [λr+R(πbase)] + (θ− 1)λr+2θ(1− θ)ϵR(πbase)

=R(πalg)+ [R(πalg)−R(πbase)](θ− 1)+2ϵR(πbase)θ(1− θ).

In other words, R (πeff(πalg, θ)) is a second-order polynomial in θ that equals R(πalg) (resp. R(πbase)) for θ= 1

(resp. θ= 0). Since we would like to compare R (πeff(πalg, θ)) with both R(πalg) and R(πbase), we provide two

convenient reformulations:

R (πeff(πalg, θ)) =R(πbase)+ θ ([R(πalg)−R(πbase)] + 2ϵR(πbase)(1− θ))

=R(πalg)+ (1− θ) (2ϵR(πbase)θ− [R(πalg)−R(πbase)])) ,

and define θ̃− 1 :=
R(πalg)−R(πbase)

2ϵR(πbase)
=

λr

2ϵR(πbase)
.

Case 1: partial adherence hurts (ϵ=−1). When ϵ=−1< 0, the reward of State 5 is strictly less than

1 so πalg is optimal and any deviation from πalg can only deteriorate performance. In this case, we have

R (πeff(πalg, θ)) =R(πbase)+ 2ϵR(πbase)θ
(
θ̃− 1+ (1− θ)

)
=R(πbase)+ 2R(πbase)θ

(
θ− θ̃

)
,

as announced in Section 3.4.
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Furthermore, for any value of θ ∈ [0,1], we can find an optimal recommendation policy π⋆
alg(θ) via backward

induction. Let us write vi for the value derived by the DM starting from state i ∈ {1,2,3,4,5}. Clearly,

v5 = 0, v4 = 1/(1− λ). In State 3, v5 < v4 so the best action is to choose to go to State 4. Since πbase also

chooses to go to State 4, we obtain v3 = λ/(1 − λ). In State 2, the best action is to choose to State 4.

Since we follow the recommendation policy with probability θ and the baseline policy with probability 1−θ,

we have v2 = 0.1 + θλ · v4 + (1− θ)λ · v5 = 0.1 + θ λ
1−λ

. Finally, for the best action in State 1, we have to

choose between going to State 2 and going to State 3. If we recommend going to state i ∈ {2,3}, then the

value derived by the DM from state 1 will be v1 = θλ · vi + (1− θ)λv3. Hence, the optimal recommendation

depends on the comparison between v2 and v3. If v2 > v3, we should recommend to go to State 2 from State

1 and v1 = θλ · v2 + (1− θ)λv3. Otherwise, we recommend State 3 and v1 = v3. Observe that v2 ≥ v3 ⇐⇒

0.1+ θ λ
1−λ

≥ λ
1−λ

⇐⇒ θ≥ 1− 0.1 · 1−λ
λ

=: θ̄. All in all, we have the following two cases,

• If θ ≤ θ̄, v2 ≤ v3 and an optimal recommendation policy π⋆
alg(θ) should recommend the following tran-

sitions: π⋆
alg(θ) is 1→ 3, 3→ 4. Observe that, as long as π⋆

alg(θ) recommends 1→ 3, πeff(π
⋆
alg(θ), θ) will never

visit State 2. As a result, πbase is also an optimal recommendation policy in this case, despite the fact that

it prescribes a sub-optimal action at State 2.

• If θ ≥ θ̄, v2 ≥ v3 and an optimal recommendation policy π⋆
alg(θ) should recommend the following tran-

sitions: 1→ 2, 2→ 4, 3→ 4. Unlike in the previous case, πeff(π
⋆
alg(θ), θ) will visit State 3 even if π⋆

alg(θ) does

not recommend 1→ 3. Consequently, an optimal recommendation recommends State 4 when at State 3.

Case 2: partial adherence helps (ϵ= 1). When ϵ= 1, the human DM is currently taking the optimal

decision when visiting State 2 (but never visits State 2 in the first place), while the algorithm plays optimally

in State 3 but never visits it. In this case, a mixture of πalg and πbase can lead to greater performance than

any of the two policy alone. Formally, in this case,

R (πeff(πalg, θ)) =R(πalg)+ 2R(πbase)(1− θ)
(
θ− [θ̃− 1])

)
,

which is increasing over the interval [θ̃− 1,1].

Appendix F: Proof of Proposition 3.1

Proof of Proposition 3.1. Our proof is very similar to the proof of Theorem B.1 and we only give a

sketch here. The gist of the proof is to show that AdaMDP admits a Bellman equation, i.e., to show that

the stationary deterministic policy π∞ as defined in Equation (4.1) is an optimal recommendation policy.
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We first note that the vector v∞ ∈RS , defined as the unique solution to Equation (4.1), does exist since the

following map is a contraction for ∥ · ∥∞:

v 7→

(
max

πs∈∆(A)
θ ·
∑
a∈A

πsaP
⊤
sa (rsa +λv)+ (1− θ) ·

∑
a∈A

πbase,saP
⊤
sa (rsa +λv)

)
s∈S

.

This is a straightforward consequence of πs ∈∆(A),πbase,s ∈∆(A) and Psa ∈∆(S) for each pair (s, a)∈ S×A.

We can then show that π∞ is ϵ-optimal in AdaMDP, for any value of ϵ > 0. This is done in the same way

as for our proof of Theorem B.1, where we build a time T such that the instantaneous rewards obtained

after more than T +1 periods only accounts for at most ϵ in the (untruncated) return R(·). We then use a

truncated return RT (·) with continuation value v∞ ∈RS for v∞ as defined in Equation (4.1). The policy π∞

is an optimal recommendation policy for RT (·), so that it is ϵ-optimal for the untruncated return R(·). Since

this holds for all ϵ > 0, we conclude that π∞ as defined in Proposition 4.2 is an optimal recommendation

policy. Since π∞ is stationary and deterministic, this concludes the proof of Proposition 3.1. □

Appendix G: Proof of Proposition 4.4

Proof. 1. The proof uses similar ideas as the proof of Blackwell optimality for classical MDPs (Feinberg

and Shwartz 2012) and robust MDPs (?), which studies the sensitivity of optimal policies as regards the

values of the discount factor λ∈ [0,1). In particular, we recall the following lemma from Puterman (2014).

Lemma G.1 (Lemma 10.1.2, Puterman (2014)). Let ϕ : I →R be a rational function on an interval

I ⊂R, that is, ϕ is the ratio of two polynomials and the denominator does not have any zeros in the interval

I. Then either ϕ(θ) = 0 for all θ ∈ I, either ϕ(θ) = 0 for finitely many values of θ ∈ I.

We now proceed with the proof of this statement. From Proposition 3.1, for any value of θ ∈ [0,1], an optimal

recommendation policy π⋆
alg(θ) can be chosen stationary and deterministic. Since there are finitely many

deterministic policies, the map θ 7→ π⋆
alg(θ), [0,1] → Π takes a finite number of values. This shows that at

least one deterministic policy is visited infinitely often as θ→ 1. In particular, let (θn)n≥1 ∈ [0,1]N such that

θn → 1 and the same deterministic recommendation policy π̂alg is optimal for this sequence of adherence

levels: R(πeff(π̂alg, θn))≥R(πeff(π, θn)),∀ π ∈Π,∀ n∈N. In particular, for each deterministic recommendation

policy π, let us write ϕπ : [0,1]→R for the map ϕπ(θ) =R(πeff(π̂alg, θ))−R(πeff(π, θ)). We know that ϕπ(θn)≥

0,∀ n ≥ 1. We want to show that this inequality ϕπ(θ) ≥ 0 holds for all values of θ sufficiently close to

1. From Lemma 10.1.3 in Puterman (2014), we know that ϕπ is a rational function. From Lemma G.1,

we know that either ϕπ is identically equal to 0, or it is equal to 0 for finitely many values of θ in the
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interval [0,1]. If ϕπ is identically equal to 0, then indeed ϕπ(θ)≥ 0 holds for all θ ∈ [0,1]. Otherwise, ϕπ is

equal to 0 only for a finite number of values in [0,1], which implies that ϕπ can change sign only finitely

many times. Since ϕπ(θn) ≥ 0,∀ n ≥ 1, for θn → 1, there exists a threshold θπ ∈ [0,1], such that ϕπ(θ) ≥ 0,

for all θ ∈ [θπ,1]. If we take θ̂ ≥ θπ for any deterministic policy π, we find that for all θ ∈ [θ̂,1], we have

R(πeff(π̂alg, θ))≥R(πeff(π, θ)),∀ π ∈Π. This concludes the proof.

2. We can extend the proof of the previous statement to any θ ∈ (0,1). In particular, for any θ ∈ (0,1),

there exists an open interval Iθ ⊂ (0,1) containing θ such that the optimal recommendation policy is constant

on I+
θ = Iθ

⋂
[θ,1] and constant on I−

θ = Iθ

⋂
[0, θ]. If the optimal recommendation policies on I−

θ and I+
θ

are different, then they are still both optimal at θ. We can construct two additional intervals, I0 = [0, θ′)

and I1 = (θ′′,1], on which the optimal recommendation policy is constant. Note that I0,I1 are open sets

for the subspace topology of [0,1] induced by the classical topology of R. Overall, we obtain a covering of

the compact set [0,1] with open sets {Iθ | θ ∈ [0,1]}:
⋃

θ∈[0,1] Iθ = [0,1]. From the Heine-Lebesgue covering

theorem, there exists a finite number of adherence levels θ′1, ..., θ
′
m ∈ [0,1] such that

⋃m

i=1 Iθ′
i
= [0,1]. Finally,

from the set {θ′i | i= 1, ...,m}, for some p∈N we can construct θ1 = 0< θ2 < ... < θp = 1 such that the optimal

recommendation policy is constant on each of the interval [θi, θi+1] for each i ∈ {1, ..., p}, with multiple

optimal policies at the breakpoints θi for i∈ {1, ..., p− 1}.

3. We show this statement for θ= 1. Let θ ∈ [0,1] and assume that πbase = π⋆
alg(1). Note that

πeff(π
⋆
alg(1), θ) = θπ⋆

alg(1)+ (1− θ)πbase = θπ⋆
alg(1)+ (1− θ)π⋆

alg(1) = π⋆
alg(1).

By definition, R(πeff(πalg(θ), θ)) ≥ R(πeff(πalg, θ)),∀ πalg ∈ Π. But we have shown in Proposition 4.3 that

R(π⋆
eff(θ))≤R(π⋆

eff(1)) and R(π⋆
eff(1)) =R(πeff(π

⋆
alg(1), θ)). We conclude that π⋆

eff(θ) = π⋆
eff(1) and that π⋆

alg(θ) =

πalg(1). The proof of this statement for θ < 1 is similar and we omit it for conciseness.

□

Appendix H: Proof of Proposition 4.5

Proof of Proposition 4.5. Let s̄ ∈ S such that vπbase
s̄ = v

π⋆
alg(1)

s̄ . We first prove that v
π⋆
eff(θ)

s̄ = vπbase
s̄ for any

θ ∈ [0,1]. We can adapt the proof of Proposition 4.3 to show that for any s ∈ S, the map θ 7→ v
π⋆
alg(θ)

s is

non-decreasing. Since we can choose π⋆
alg(0) = πbase, this shows that

vπbase
s ≤ vπ⋆

eff(θ)
s ≤ v

π⋆
alg(1)

s ,∀ s∈ S,∀ θ ∈ [0,1]. (H.1)
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Combining (H.1) with vπbase
s̄ = v

π⋆
alg(1)

s̄ , we obtain that v
π⋆
eff(θ)

s̄ = vπbase
s̄ for any θ ∈ [0,1]. Now let θ ∈ [0,1]. We

show that we can choose π⋆
alg(θ)s̄ = πbase,s̄. Recall that there exists a unique vector v∞

θ such that

v∞
θ,s̄ = max

πs̄∈∆(A)
θ ·
∑
a∈A

πs̄aP
⊤
s̄a (rs̄a +λv∞

θ )+ (1− θ) ·
∑
a∈A

πbase,s̄aP
⊤
s̄a (rs̄a +λv∞

θ ) (H.2)

and v∞
θ = vπ⋆

eff(θ). To show π⋆
alg(θ)s̄ = πbase,s̄, we need to show that

πbase,s̄ ∈ arg max
πs̄∈∆(A)

θ ·
∑
a∈A

πs̄aP
⊤
s̄a (rs̄a +λv∞

θ )+ (1− θ) ·
∑
a∈A

πbase,s̄aP
⊤
s̄a (rs̄a +λv∞

θ ) . (H.3)

Since v∞
θ,s ≥ vπbase

s ,∀ s∈ S, we have

(1− θ) ·
∑
a∈A

πbase,s̄aP
⊤
s̄a (rs̄a +λv∞

θ )≥ (1− θ) ·
∑
a∈A

πbase,s̄aP
⊤
s̄a (rs̄a +λvπbase) = (1− θ)vπbase

s̄ (H.4)

where the equality follows from the fixed-point equation for the value function of a policy. Similarly, we

obtain

max
πs̄∈∆(A)

θ ·
∑
a∈A

πs̄aP
⊤
s̄a (rs̄a +λv∞

θ )≥ θ ·
∑
a∈A

πbase,s̄aP
⊤
s̄a (rs̄a +λv∞

θ )≥ θvπbase
s̄ .

Overall, we obtain that

θ ·
∑
a∈A

πbase,s̄aP
⊤
s̄a (rs̄a +λv∞

θ )+ (1− θ) ·
∑
a∈A

πbase,s̄aP
⊤
s̄a (rs̄a +λv∞

θ )≥ vπbase
s̄ .

But vπbase
s̄ = v∞

s̄ , and v∞
s̄ satisfies Equation (H.2). Therefore, (H.3) holds, and we can choose π⋆

alg(θ)s̄ = πbase,s̄.

□

Appendix I: Bounding the suboptimality of a recommendation policy

In this section we show the following proposition, which provides a bound between vπeff(π
⋆
alg(θ),θ), the optimal

value functions at a given adherence level θ, and vπeff(πalg,θ), the value function of πalg.

Proposition I.1. Let πalg ∈Π be a recommendation policy and θ ∈ [0,1]. Then we have

∥vπeff(π
⋆
alg(θ),θ) −vπeff(πalg,θ)∥∞ ≤ θ

1−λ
·max

s∈S
∥π⋆

alg(θ)s −πalg,s∥1 · ∥vπeff(π
⋆
alg(θ),θ)∥∞. (I.1)

Proposition I.1 bounds the difference between the value function of the optimal recommendation, π⋆
alg(θ) and

that of any policy πalg. We delay the proof of Proposition I.1 below and we first analyze the bound. Several

comments are in order:

• Our bound is parametrized by the ℓ1-norm between the distribution induced by π⋆
alg(θ) and πalg at each

state s∈ S; note that if both policies are deterministic, we always have ∥π⋆
alg(θ)s−πalg,s∥1 ∈ {0,2}. This term

also reflects the piecewise constant structure of optimal recommendation policies as regards the adherence

level, see Proposition 4.4.
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• Our bound reflects the fact that when θ= 0, we have πeff(πalg, θ) = πbase for any πalg, so that in this case

all recommendation policies have the same performances.

• The multiplicative factor in 1/(1−λ) is common for bounds on the difference between two value func-

tions. However, the multiplicative factor ∥vπeff(π
⋆
alg(θ),θ)∥∞ may also be of order 1/(1− λ), in which case our

bound (I.1) is not tight.

Proof of Proposition I.1. Recall the notation T π(v) ∈ RS , defined as T π
s (v) =∑

a∈A πsaP
⊤
sa (rsa +λv) ,∀ s ∈ S. For the sake of clarity, in this proof we use the notation πeff(π

⋆
alg(θ), θ) =

π∞
eff , π

⋆
alg(θ) = π∞

alg, πeff(πalg, θ) = πeff . We want to obtain a bound on ∥vπeff(π
⋆
alg(θ),θ) − vπeff(πalg,θ)∥∞ =

∥vπ∞
eff −vπeff∥∞. By definition, we have the following two fixed-point equations: for all s∈ S,

vπ∞
eff

s = θT
π∞
alg

s (vπ∞
eff )+ (1− θ)T πbase

s (vπ∞
eff ), vπeff

s = θT πalg
s (vπeff )+ (1− θ)T πbase

s (vπeff ).

Therefore, for all s ∈ S, vπ∞
eff

s − vπeff
s = θ

(
T

π∞
alg

s (vπ∞
eff )−T

πalg
s (vπeff )

)
+ (1− θ)

(
T πbase
s (vπ∞

eff )−T πbase
s (vπeff )

)
. Since

v 7→ T πbase
s (v) is a contraction, we have, for all s∈ S,

|T πbase
s (vπ∞

eff )−T πbase
s (vπeff )| ≤ λ∥vπ∞

eff −vπeff∥∞. (I.2)

We now consider the term T
π∞
alg

s (vπ∞
eff )−T

πalg
s (vπeff ). We have, for all s∈ S,

T
π∞
alg

s (vπ∞
eff )−T πalg

s (vπeff ) = T
π∞
alg

s (vπ∞
eff )−T πalg

s (vπ∞
eff )+T πalg

s (vπ∞
eff )−T πalg

s (vπeff ).

Note that v 7→ T
πalg
s (v) is a contraction, therefore we have, for all s∈ S,

|T πalg
s (vπ∞

eff )−T πalg
s (vπ∞

eff )| ≤ λ∥vπ∞
eff −vπeff∥∞. (I.3)

Combining (I.2) and (I.3), we obtain that, for all s∈ S,

vπ∞
eff

s − vπeff
s ≤θ ·λ · ∥vπ∞

eff −vπeff∥∞ + θ · ∥T π∞
alg (vπ∞

eff )−T πalg(vπ∞
eff )∥∞ +(1− θ) ·λ · ∥vπ∞

eff −vπeff∥∞.

This shows that ∥vπ∞
eff −vπeff∥∞ ≤ θ

1−λ
· ∥T π∞

alg (vπ∞
eff )−T πalg(vπ∞

eff )∥∞.

There remains to bound ∥T π∞
alg (vπ∞

eff )−T πalg(vπ∞
eff )∥∞. We have, for all s∈ S,

T
π∞
alg

s (vπ∞
eff )−T πalg

s (vπ∞
eff ) =

∑
a∈A

(
π∞
alg,sa −πalg,sa

)
P⊤

sa

(
rsa +λvπ∞

eff
)
≤ ∥π∞

alg,s −πalg,s∥1∥
(
P⊤

sa

(
rsa +λvπ∞

eff
))

a∈A ∥∞.

Now note that from Corollary B.1, we have ∥
(
P⊤

sa

(
rsa +λvπ∞

eff

))
a∈A ∥∞ ≤ ∥vπ∞

eff ∥∞. This shows that

∥T π∞
alg (vπeff )− T πalg(vπeff )∥∞ ≤

(
maxs∈S ∥π∞

alg,s −πalg,s∥1
)
· ∥vπ∞

eff ∥∞. Combining this with (I.2) and (I.3) con-

cludes the proof of Proposition I.1. □
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Appendix J: Proof of Theorem 6.1

Proof. We want to show that supπalg∈ΠH
minθ∈[θ,θ̄]R(πeff(πalg, θ)) = maxπalg∈Πminθ∈[θ,θ̄]R(πeff(πalg, θ)) and

that
(
π⋆
alg(θ), θ

)
is an optimal solution to the optimization problem in the above equation. Recall that in

Theorem B.2 in Appendix B we have studied the Time- and State-invariant Adversarial model, for

which we have shown that supπalg∈ΠH
minu∈[θ,1]R(πeff(πalg, u)) = maxπalg∈Πminu∈[θ,1]R(πeff(πalg, u)) and that(

π⋆
alg(θ), θ

)
is an optimal solution to the optimization problem above. Therefore, we can prove Theorem 6.1

by applying the exact same proof as for Theorem B.2 but replacing the interval [θ,1] by the interval [θ, θ̄].

We omit the proof for the sake of conciseness.

Appendix K: Proof of Theorem 6.2

We start from the surrogate MDP M′ defined in Section 4.2, where the transition probabilities P ′ ∈

(∆(S))S×A
and the instantaneous rewards r′ ∈ RS×A are defined in (4.3). In particular, recall that the

Bellman equation of the surrogate MDP (4.2) is v∞
s =maxπs∈∆(A)

∑
a∈A πsa (r

′
sa +λP ′⊤

sa v
∞) ,∀ s ∈ S. From

this, we see that the optimization problem (6.4) is an s-rectangular robust Markov decision process (Iyengar

2005, Wiesemann et al. 2013), where the set U of admissible pairs of instantaneous rewards and transition

probabilities (r′,P ′) is described as

U = {(r′,P ′) | r′ ∈RS×A,P ′ ∈ (∆(S))S×A
, πbase ∈ Γ,

P ′
sa := θ ·Psa +(1− θ) ·

∑
a′∈A

πbase,sa′Psa′ ,∀ (s, a)∈ S ×A

r′sa := θ ·P⊤
sarsa +(1− θ) ·

∑
a′∈A

πbase,sa′P⊤
sa′rsa′ ,∀ (s, a)∈ S ×A}.

By construction, the set U is s-rectangular, i.e., it can be written U =×s∈S Us with Us ⊂∆(S)A convex for

each s ∈ S. From Wiesemann et al. (2013), we conclude that an optimal policy for the decision problem

(6.4) can be chosen stationary. Additionally, an optimal policy can be computed efficiently when the sets Γs

are described by affine and conic constraints, see corollary 3 in Wiesemann et al. (2013) for a more precise

complexity statement.


