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To optimize nurse staffing in the Emergency Department (ED), Hartford Hospital has been collaborating

with academics and consultants to schedule nurse-shifts over each 6-week staffing cycle. We develop and

implement two-phase optimization models: a robust optimization model to find optimal staffing levels given

the uncertainty in patient demands, followed by a pair of mixed-integer problems to generate individual

schedules including work, trainee, and preceptor shifts for each nurse. Our approach leads to less costly

(5–8%) staffing with better coverage of patient care (8–25%) and higher nurse satisfaction (5%). Moreover,

nurses can work fewer shifts on week-ends (17%), holidays (14%), and overtime (85%) as well as be assigned

to more diverse positions (3.6) and more daily training opportunities (0.95). We implement our framework

into an automated end-to-end scheduling optimization software, deployed for use at Hartford Hospital since

March 2023. The software collects preferences from over 200 ED nurses and enables managers to optimize

schedules with guided dynamic adjustments. This transformative implementation streamlines a previous

labor-expensive staffing process (currently taking over 88 manual hours per cycle) and delivers schedules

that are more suitable for patients and nurses together, with an annual projected cost saving of around

$720,000.

Key words : robust optimization; mixed integer optimization; software automation; nurse scheduling;

emergency department

Introduction

Emergency Departments (ED) are a crucial component of hospitals, providing urgent care

to patients in need. However, ED overcrowding can lead to increased waiting times, com-

promise care, and result in adverse outcomes for patients, such as dissatisfaction and
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increased mortality rates (Bernstein et al. 2009). Additionally, ED congestion can affect

patient flows into the hospital, further impacting care delivery (Elder et al. 2015).

Nurse staffing is vital for patients, especially ED patients in critical condition, having

a direct impact on their health outcomes. Among other evidence, more hours of care pro-

vided by registered nurses, a lower nurse workload, and a higher nurse skillset have been

associated with reduced mortality rate and shorter hospital stays (Needleman et al. 2002,

Aiken et al. 2014, Twigg et al. 2019). For the ED as a whole, shortage of nurses also neg-

atively impacts throughput metrics, such as length of stay or abandonment (i.e., patient

leaving without being seen; Ramsey et al. 2018). However, healthcare systems are facing

increasing difficulties to meet appropriate nurse-to-patients ratios, due to nurse shortages,

burnout, and dissatisfaction (Aiken et al. 2002), as exacerbated since the COVID-19 pan-

demic (Peters 2023). For example, systemic overtime and dissatisfaction with schedule

flexibility are common reasons for nurses to leave the profession (Leineweber et al. 2016).

One challenge is to schedule the “right” number of nurses, i.e., enough to accommo-

date future patient demand without overstaffing and wasting precious and limited nursing

resources. Another challenge is to increase the satisfaction of each nurse regarding their

individual schedule, by taking into account their individual preferences and requirements.

To improve both patients’ and nurses’ experiences, we use optimization for nurse staffing

and scheduling in the ED and address the aforementioned challenges. Our final objective

is to positively impact nurses, patients, as well as the overall performance of the ED and

the hospital, which we achieve through a tight and long-standing collaboration between

ED practitioners and academics.

ED Nurse Staffing Problem at Hartford Hospital

Hartford HealthCare is Connecticut’s largest healthcare network, operating in over 400

locations and providing a broad range of services. Hartford HealthCare comprises 7 hos-

pitals, with over 2,400 inpatient beds. Hartford HealthCare’s flagship facility is Hartford

Hospital (HH), a teaching hospital and tertiary care center with 867 beds, in partnership

with the University of Connecticut School of Medicine. With over 160 years of experience,

HH is renowned for its exceptional performance in various procedures, conditions, and

specialties. The hospital serves over 40,000 discharges and 100,000 ED visits annually.

Nurses working in the ED are typically assigned to one of 13 ‘positions’. Five positions

cover managerial and logistical duties: Clinical Leader (CNL), first nurse, resource nurse,
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triage nurse, and Front End Provider (FEP). The remaining eight positions, also referred

as ‘pods’, correspond to treating different categories of patients. There are four main pods

(blue, green, orange pods, and their hallways) where most of the patients are treated,

one red pod for resuscitation/emergent patients, one purple pod for behavioral patients,

an iTrack pod for less urgent patients, and one Emergency Department Observation Unit

(EDOU) for observation patients. This organization was disrupted during the early surge

of COVID-19: HH opened up a new position, a ‘trailer pod’, to treat COVID-19 patients

specifically, and stopped using the hallways to reduce patient cross-infection.

Every nurse cannot work at any position. At HH, nurses are classified into nine different

tiers based on their experience and qualifications, which dictate the positions they can fill.

In addition, based on their years of experience, nurses can receive preferential treatment

regarding week-end schedules (see Anderson et al. 2022, for another example of ‘Armstrong’

seniority requirements in nurse scheduling).

Each day is divided into three 12-hour shifts (7 am–7 pm, 11 am–11 pm, and 7 pm–7

am). Accordingly, ED nurse scheduling, i.e., the problem of assigning nurses to pods and

shifts, can be divided into two phases. First, one needs to estimate the ‘right’ number of

nurses needed at each pod for each future shift, i.e., staffing targets. Second, one needs to

find a reasonable assignment of individual nurses to shifts in order to achieve these targets.

In addition, at this phase, the ED leadership might want to schedule additional training

shifts, where a trainee seconds a preceptor.

Regarding the first phase, prior to our effort, HH was using predetermined staffing

targets. These targets were the same for all days (among others, they did not differentiate

between weekdays and week-ends). For most positions (i.e., all positions except triage and

iTrack), the staffing targets were also constant across shifts. However, patient arrivals,

hence the need for ED nurses, vary across days and within each day. Figure 1 demonstrates

such inconsistency between fluctuating demand levels and fixed staffing levels (see more

in Appendix Section Demand Patterns and Standard Scheduling). This contrast can lead

to overstaffing at some times, increasing hospital staffing costs, and understaffing at other

times, compromising patient care quality. Furthermore, COVID-19 has further complicated

the situation by disrupting patient demand patterns and increasing employee attrition.

Regarding the second phase, ED nurse schedules were planned for 6-week periods accord-

ing to the following timeline: Before each staffing cycle, nurses enter their preferences and
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(a) Day-of-week Demand. (b) Hour-of-day Demand. (c) Daily Schedule.

Figure 1 Patterns of Average Patient Demand vs Standard Staffing Levels.

availability. Schedulers and nurse managers manually generate a schedule that aims to bal-

ance staffing levels and preferences between nurses. In addition, the ED leadership manually

adds training sessions to the schedule whenever possible. After the schedule is announced,

nurses can ask for amendments to better satisfy individual preferences and increase fairness

among nurses. In turn, managers and schedulers need to constantly re-compute schedules

to accommodate as many requests as possible. To announce the schedule, scheduling man-

agers take an additional step to manually convert the schedule of approximately 3,600

nurse-shifts (on average, three weekly shifts per nurse for 200 nurses over 6 weeks) into a

“team sheet” of a specified format. HH estimates that the entire scheduling process takes

managers and schedulers 88 hours of manual work per cycle and can be prone to errors.

Since 2020, we, a collaboration of nursing providers, academics, and data consultants,

have been working to improve the ED nurse scheduling process at HH. We develop an

integrated approach consisting of a two-phase optimization methodology and a software

implementation. First, we use a data-driven optimization approach that allocates limited

staffing resources cost-effectively and determines sufficient staffing targets to reach appro-

priate nurse-to-patient ratios, taking into account variability in patient arrivals and needs.

Second, we generate an optimized nurse-to-shift allocation that aims to match their indi-

vidual requests and preferences, increase nurse satisfaction, as well as provide opportunities

to schedule training shifts. Finally, we develop scheduling software that relieves manual

labors and operations burdens for nurse managers and schedulers. Our tool was partially

used at HH ED in March 2023 (in preparation for the staffing cycle of April 9 to May 20)

and started to be fully used for future cycles. Overall, our decision-support tool leverages

a combination of data, optimization, and software to achieve a holistic improvement for

ED staffing.
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Related Work

The operations research literature contains numerous methods for ED operations, which

we summarize here. We refer to Saghafian et al. (2015) for a comprehensive review.

Simulation-based approaches use simulations of the ED environment to evaluate alter-

native scenarios and, combined with optimization, to better allocate resources (Chen and

Wang 2016), staff (e.g., doctors, lab technicians, and nurses; see Ahmed and Alkhamis

2009), and particularly nurses (Draeger 1992). Alternatively, patient arrivals can be well

approximated by Poisson processes with non-stationary (Kim and Whitt 2014) or uncer-

tain (Maman 2009) arrival rates. Hence, queuing approaches have been used to model the

ED and address staffing problems such as, recently, dynamic shift assignment (Chan et al.

2021) or surge staffing (Hu et al. 2021). There is a rich literature on formulating personnel

scheduling problems in general (Brucker et al. 2011), and nurse scheduling problems in

particular (Svirsko et al. 2019), as formal optimization problems with constraints and often

multiple objectives (e.g., workload, staffing costs, individual preferences; see Rerkjirattikal

et al. 2022, Hamid et al. 2020, Ang et al. 2018, Mohammadian et al. 2019), solved via

iteratively solving for each objective or using goal programming techniques.

Optimization methods can account for uncertainty in their input parameters, here in

patient arrivals/needs and in nurse availability. Lim and Mobasher (2011), Van Hulst

et al. (2017), for example, use robust optimization to generate workforce plannings that

are robust against uncertain per-patient workload. In addition to demand uncertainty,

frequent change in nurse availability due to sickness or absenteeism is another bottleneck

for the implementation of optimized schedules in practice. Clark et al. (2015) highlights the

importance and challenges of shift rescheduling and advocates for mathematical models to

support the rescheduling process. For example, Wickert et al. (2019) propose an integer

optimization formulation for the nurse-shift rescheduling problem. In this work, we directly

account for variability in patient arrivals and needs in the first phase of our optimization

approach, by proposing a robust optimization problem to find appropriate staffing targets.

While we do not directly account for uncertainty in nurse availability, we aim to maximize

nurse engagement and adherence to the schedule by developing the second phase of our

approach, which takes into account their individual preferences. In addition, the software

interface we develop allows nurses to update their availability and preferences directly in

the system and enables ED managers to dynamically re-compute schedules with the latest
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input from nurses, hence materializing the rescheduling process advocated by Clark et al.

(2015).

Most related to our work is Ang et al. (2018), who develop a mixed-integer sequential goal

programming model to optimize nurse–to-patient ratio and shift preferences among others.

They integrate their model into an online decision support system to ease practitioners’

adoption. Their paper provoked a vibrant discussion in the nursing community with critics

calling such solutions “unimplementable” (Park et al. 2022). Despite the abundance of

academic work in the past decade on nurse scheduling, there is still a gap between research

and practice, with supposedly only 30% of nurse scheduling models from research ever

being implemented, let alone still being used today (Kellogg and Walczak 2007).

Another obstacle to implementation is the lack of mathematical modeling and optimiza-

tion skills among nurses (Park et al. 2022). To bridge this gap and advance nursing science,

we collaborate closely with nurses and nurse managers, to collectively reach an optimiza-

tion formulation that can be realistically implemented. We also develop a user-friendly

end-to-end software interface for nurses to use and we train nurse leadership to run the

scheduling optimization on their own. Our model-software integration, jointly with trust

built with the medical team, results in the successful deployment at HH.

Main Contributions

We summarize our contributions as follows.

1. We develop a two-phase optimization approach for ED nurse staffing: In the first

phase, we leverage robust optimization and historical data to optimize aggregate nurse

staffing levels. Then, taking these aggregate optimized staffing levels as inputs, we

develop mixed-integer optimization models to generate an individual-level schedule

that prioritizes individual nurse preferences and training opportunities.

2. On computational experiments, we demonstrate the benefit of our two-phase opti-

mization approach: Our first-phase optimization model reduces costs by 5–8% during

overstaffing periods and reduces insufficient nurse-to-patient-ratio coverage by 8–25%

during understaffing periods. In addition, we conduct various experiments that com-

pare different modeling variants, illustrate the trade-offs between the schedule’s dif-

ferent objectives, and provide strategic insights for ED leadership. The second-stage

model for individual-level schedules improves individual nurse satisfaction by 5%, while

increasing position diversity, training opportunities, and fairness.
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3. We implement our optimization models into an end-to-end scheduling software that

covers all staffing steps, from configuration preparation and input collection, to sched-

ule generation and output production. For every scheduling cycle, nearly 200 ED

nurses enter their availability and preferences into the system. Through an interactive

interface, nurse managers can run the optimization models on their own to generate,

edit, and announce schedules in a few clicks. In addition to the benefit of optimization,

this unifying interface and software, has accelerated our collaboration, revolutionized

ED nurse scheduling, and reduced manual burdens to a minimum.

ED Aggregate Staffing Optimization

In the first phase, we develop a robust optimization model to determine the right number

of nurses to staff in the ED, at each position and each shift, for the next six weeks.

Optimization Model Overview

Our key decision variables are the number of nurses to staff for each position j, each shift

i, and each day d of the next 42-day period. We differentiate nurses based on their tier

q and their week-end group g (some nurses can work every other week-end while others

work every third week-end only). So, we denote zqgjid the number of nurses of tier q and

week-end group g that are staffed at position j on the shift i of day d.

We then evaluate our decision based on three concurrent objectives. First, based on

historical data, we can estimate the number of nurses required to treat patients present

in the ED, for each position and each hour. We call insufficiency the number of nurse-

shifts missing, i.e., the gap between the number of nurse-shifts needed and the number

staffed. Since the number of nurse-shifts needed is uncertain, we adopt a robust perspec-

tive and try to minimize the worst-case insufficiency, where the worst-case is taken over

a range of possible scenarios we construct from data, as described in the following para-

graph. Second, we want to minimize staffing costs which can be approximated by the sum

of scheduled nurse-shifts,
∑

q,g,j,i,d zqgjid (one could easily add weights based on tiers for

example). Finally, to increase the adoption of our recommendation, we want to minimize

the number of changes recommended compared with the current schedule. We incorporate

these three objectives into a single objective function with weight parameters, which we

tune based on the desirable trade-offs.

Our model can incorporate many operational constraints. For example, we incorpo-

rate constraints accounting for the maximum number of weekly working hours for each
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nurse, their week-end schedule patterns, or for imposing some week-over-week regularity

in staffing levels. We detail our optimization formulation, its objective, and constraints in

Appendix Section Aggregate Optimization Formulation.

Estimating and Modeling Demand

Using historical data, we estimate how many nurses are needed for each position and each

hour.

Data Collection and Processing. HH’s IT system daily transfers records of ED patients to

our data repository on Amazon Web Services using a secure file transfer protocol server.

The data records detailed information about each patient such as Emergency Severity

Index (i.e., acuity level), service, ICD-10 code, and discharge disposition (e.g., admitted

to ICU, surgery, interventional radiology, or discharge). Based on current ED practice, we

use this information to match every patient to an appropriate pod and a target nurse-to-

patient ratio (1:1 or 1:2 for those in the red pod, 1:7 in the purple pod, 1:12 in iTrack,

and 1:5 in the remaining ones). Hence, at any point in time (in practice, we aggregate the

data at an hourly level), we compute the number of patients present in each pod and the

number of nurses needed.

Modeling Uncertainty. Let us denote h̃jws the number of nurses needed at position j on

week w ∈ {1, . . . ,6} at hour s ∈ {1, . . . ,24× 7 = 168}. The schedule for the next 6-week

cycle is announced three weeks in advance. Hence, we start formulating, calibrating, and

solving our optimization problem five weeks before the beginning of the cycle, as described

in Figure 2. At this time, we estimate the number of nurses needed in the past six weeks

and use it as our baseline estimate for demand in the coming six weeks, h̄jws. The actual

demand for nurses h̃jws, however, might defer from this baseline estimate, in part because

it uses data that will be 10-week old by the time the schedule is implemented. Accordingly,

we consider all demand vectors contained in an uncertainty set U and calibrate the size of

the uncertainty set based on the distance between demand vectors that are ten weeks apart,

using data from w0 − 20. The full uncertainty set construction is described in Appendix

Section Aggregate Model Data.

Executing the Model

Solving the Robust Optimization Model. Due to the fact that both the decision variables and

uncertainties are integers, duality theory is not applicable and thus a closed-form robust
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Figure 2 Timeline of Uncertain Demand Modeling for Every Staffing Cycle.

counterpart cannot be obtained. Hence, we employ a cutting plane approach to identify a

subset of the most restrictive constraints and approximate the worst-case objective value

among the uncertainty set. All models in this work are implemented using the JuMP

package (Dunning et al. 2017) in Julia programming language (Bezanson et al. 2017) and

are solved by the Gurobi solver (Gurobi Optimization, LLC 2023). Details of solving the

model, such as constraint linearization, algorithmic and programming implementation, and

specifications are included in Appendix Section Solving the Robust Optimization Model.

Parameter Tuning. In preparation for each upcoming staffing cycle starting on week w0,

we can manually tune a combination of parameters, including two weights in the objective

terms, the size of the uncertainty set, and relative penalty for each week’s insufficiency

(penalize more on later week’s demand from the uncertainty set). To validate our choices,

we examine the performance of different combinations of parameters over a validation

period of w0−10 to w0−5. By comparing the values of the objective terms, we determine

the optimal combination of parameters. For comparative purposes, we also consider a

deterministic model where we only use the nominal demand instead of incorporating the

uncertainty set. We demonstrate some of the process in Section Results.

Quantifying Strategic Decisions.

Our model not only optimizes staffing levels for each cycle but can also help nurse leadership

inform some strategic decisions for the ED. For example, we can evaluate the impact

of having staffing targets that are the same for all days or the same from one week to

another. We can simulate the benefit of creating a fourth shift (e.g., 2 pm–2 am). Details

on incorporating these variations into the model are presented in Appendix Section Model

Variants for Informing Strategic Decisions.

ED Individual Scheduling Optimization

For the second phase, we develop another optimization model to schedule individual nurses

based on the recommended aggregate staffing levels.
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Optimization Model Overview

Our core decision variables are individual nurse assignments, i.e., when and where each

nurse works (and trains). We use binary variables bℓjid, rℓjid, and pℓjid to denote whether

nurse ℓ works, trains, or mentors, respectively, at position j during shift i on day d.

Our primary objective is to maximize nurse satisfaction across various metrics, such as

individual preference on dates, times, and shift patterns, diversity in pod assignments, and

reduction in week-end, holiday, and overtime shifts. Meanwhile, we penalize shortages and

surpluses in aggregate staffing levels while rewarding scheduled training shifts. We jointly

optimize for a combination of four objective terms with adjustable trade-offs between the

components.

In addition, we include a wide range of constraints. Some are to keep track of the dif-

ferent objective values, such as nurse satisfaction scores and deviations from aggregate

staffing levels. Other constraints enable a feasible assignment, subjective to labor regula-

tions, ED requirements, and eligibility, among others. We present a detailed formulation

of the optimization model in Appendix Section Individual Shift Scheduling Model.

Individual Model Data

One main input of the second phase model is the output from the first phase, namely the

number of nurses of each tier/group to schedule for each position during each shift on each

day. In addition, the model takes into account a range of individual preferences and the

availability of each nurse:

• Feasibility and preference to work at each shift type.

• Total number of weekly shifts, Paid Time Off (PTO), and education time of each week.

• Week-end group.

• Preference and availability to work on each day.

• Preference for different work patterns. Typically, nurses can express a preference for

one of three patterns:

1. All shifts in a row (e.g., working on Monday, Tuesday, and Wednesday consecu-

tively),

2. Every other day (e.g., Monday on, Tuesday off, Wednesday on, . . . ),

3. Two on–two off (e.g., Monday and Tuesday on, Wednesday and Thursday off, . . . ).

• Eligibility to be a trainee or a preceptor (training the trainees) at each position.
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Integer Optimization Model on Preceptor Scheduling

After obtaining the optimal solution for scheduled work and trainee shifts , we develop

and solve another mixed integer linear optimization model to schedule preceptor shifts

to train the corresponding trainees. The overall goal is to distribute trainees more evenly

among eligible preceptors. Thus we set the objective function to minimize the maximum

number of preceptor shifts assigned to each nurse. We formulate the preceptor scheduling

optimization model in Appendix Section Individual Preceptor Scheduling Model.

Flexible Options for Nurse Leadership

We provide various options for ED nurse leadership to generate alternative schedules based

on their preferences. These options include:

• The option to forbid shift type change from each nurse’s pre-assigned shift type.

• The ability to exclude trainee scheduling.

• The option to decompose the model into ED and EDOU and solve for each of the two

partitions separately.

• Control over the priority importance of different terms in the objective function by

adjusting the weighting factors. Currently, the order of importance is shortage, sat-

isfaction, unassigned/surplus, and then training. If training is not intended to be

scheduled, it can be excluded by setting its weight to zero.

• The option to penalize shortages differently for each position j through weights

wshortage
j . Currently, positions that require more senior nurse tiers (such as CNL and

triage) have higher penalization weight for the shortage.

• Fine-tuning of the relative importance of satisfaction score metrics using λ’s. To reduce

model solving time, the preferred pattern and/or unpreferred pattern term(s) can be

turned off by assigning a weight of zero if desired.

• Inclusion of fairness among nurses as a hard constraint controlling worst-case penalty

score, or as a soft constraint by adding the worst-case score term in the objective

function with a corresponding weight factor. Alternatively, fairness can be excluded

altogether, which could also reduce solving time.

Results

In this section, we illustrate the benefits of our two-phase optimization approach. We

decide to report these results chronologically, by following the timeline and progress of the
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collaboration, for three reasons. First, we believe other researchers might find it insightful to

know the successive iterations and milestones our collaboration has gone through. Second,

because of the COVID-19 pandemic, the number of ED visits significantly changed between

the first (end of 2020) and the latest (end of 2022) evaluations of our model. Accordingly,

the value of optimization switched from reducing staffing costs to reducing insufficiency

risk. Finally, at this stage in the project, we had not developed our user-friendly interface

yet. Hence, iterations on the models between the research and nursing teams were slow

and primarily paced by the 6-week staffing cycles. These frictions in our collaboration were

the prime motivation to develop and deploy software for nurses to use directly.

End of 2020: Reducing Staffing Costs during Low-Demand Periods

We first evaluated the benefit of our first-stage optimization problem (staffing levels) at the

end of 2020, using data from October 26 to December 20, 2020. In particular, we generated

three instances of 6-week staffing cycles by considering three overlapping 6-week periods

(beginning one week apart) from October 26 –December 6 to November 9–December 20.

We measure the quality of our staffing levels based on two metrics: Cost, i.e., the total

number of nurses staffed, on average per day. Note that this cost is not subject to any uncer-

tainty. Insufficiency, i.e., the number of extra nurse-shifts needed to satisfy the demand,

on average per day. We obtain this number by computing the number of extra nurses

needed to satisfy the target nurse-to-patient ratios on the realized demand at each hour

of the day, and sum across all hours in a shift and all shifts in a day. We then average

over all days in the 6-week cycle. For example, an average insufficiency of 0.17, as is the

case for the historical schedule (see Table 1), means that we need to add on average 0.17

nurse-shifts per day to satisfy the target nurse-to-patient ratios. We aim to reduce both

costs and insufficiency.

Table 1 reports the daily staffing cost and insufficiency for different policies, as well as

their relative reductions compared with the current staffing levels. The current staffing

levels require 56 nurse-shifts per day and lead to an average insufficiency of 0.17 nurse-

shifts. As a comparison, we compute the optimal staffing level obtained by an oracle that

knows the realized demand for the coming 6-week cycle. It reduces daily costs to 49.81

(11.05% reduction) and insufficiency to 0.02 (86.96% reduction), suggesting significant

potential for improvement from using analytics, on both quality measures. Although the

potential to reduce insufficiency is significant in relative terms, we should emphasize that
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Table 1 Results of Average Outcomes (± Standard Deviation) from 6 Approaches.
Schedule Shift types Daily cost Cost Daily Insufficiency
approach reduction [%] insufficiency reduction [%]

Current 7-7, 11a-11p 56 - 0.17 (± 0.06) -
Oracle 7-7, 11a-11p 49.81 (± 0.46) 11.05 (± 0.82) 0.02 (± 0.00) 86.96 (± 0.33)

Non-robust 7-7, 11a-11p 50.42 (± 0.38) 9.95 (± 0.67) 0.21 (± 0.04) -22.55 (± 79.57)
Robust (a) 7-7, 11a-11p 51.33 (± 0.50) 8.33 (± 0.90) 0.12 (± 0.03) 27.70 (± 81.31)

Robust (b) 7-7, 12p-12a 50.57 (± 0.49) 9.69 (± 0.88) 0.15 (± 0.07) 13.18 (± 72.64)
Robust (c) 7-7, 11a-11p, 2p-2a 50.57 (± 0.38) 9.69 (± 0.67) 0.15 (± 0.07) 11.45 (± 74.95)

the current schedule experiences low insufficiency levels in absolute terms so we are pri-

marily interested in reducing costs at this stage. While these results are reported under

a certain selection of hyper-parameter values, we present metric trade-offs under different

parameters in Appendix Section Supplementary Results during Low Demand Periods.

Our robust optimization approach (Robust (a)) recovers part of the benefit from the

oracle by both costs and insufficiency, to 51.33 (8.33% reduction) and 0.12 (27.70% reduc-

tion) respectively. Compared with the oracle, this optimization model does not use the

realized demand for each 6-week cycle, but estimates it using historical data and constructs

an uncertainty set around this estimate. Indeed, we observe that the non-robust version of

this model, which takes demand estimates at their face value, reduces costs by a compara-

ble amount (to 50.42) but significantly increases insufficiency compared with the current

schedule because it fails to account for variability in nurse needs.

Finally, we leverage our optimization model to inform strategic decisions for the ED

nurse leadership. For example, we consider moving the 11 am–11 pm shift one hour later

(Robust (b)) or introducing a fourth shift, 2 pm–2 am (Robust (c)). Compared with Robust

(a), we observe that these changes can further reduce costs, with comparable (yet slightly

worse) insufficiency. After reviewing these changes with the nurse leadership, we decided

to keep the existing shift structure and recommended the robust schedule (a).

We provide details in Appendix Section Supplementary Results during Low Demand

Periods that illustrate how the recommended schedule patterns better match demand

patterns.

2021: Accounting for Frictions to Implementation

Given the positive results obtained at the end of 2020, our optimization approach gained

support from the hospital executives. Hence, in 2021, we worked closely with the nurse

leadership to refine the model and anticipate any friction to implementation. In particular,

it was during this phase that we started penalizing the number of changes compared with
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the current schedule in our model for the staffing levels and that we started building the

individual nurse-to-shift assignment model.

Thanks to the flexibility provided by our mathematical model, we were able to incorpo-

rate many requirements from the nurse leadership to better align the solution of our model

with the needs of the nursing staff. For instance, we fixed the staffing level in the red pod

(the one for the most critical patients) to the current level. We introduced the possibility

for nurses to ‘float’ (or reassign) between pods, i.e., between main pods or from the red

pod to the main pods when red pod demand is low. These improvements led to the first

staffing level recommendation, displayed in Table 2a, for the May 30–July 10, 2021 cycle.

The optimization-based solution schedules more 11 am–11 pm shifts, but fewer 7 am–7

pm, 7 pm–7 am, and week-end shifts, resulting in an 8% reduction in the total number of

shifts and a better match between demand and staffing levels.

However, the nurse leadership was reluctant to implement such a significant reduction

in staffing levels, citing various concerns. First, the current ED staffing levels had been in

place for decades, thus providing stability and visibility to nurses. To address this concern,

we added the third component in our objective function that penalizes the distance between

the current and the proposed schedule. Second, despite long and extenuating working

hours, nurses tend to prioritize quality of care (i.e., insufficiency) over cost reduction. Based

on this observation, we refined our calibration of the trade-off parameters in the objective

and of the size of the uncertainty set to reflect their preferences and worked on a software

interface that allows them to explore different solutions for different configurations and

chose the one they deem is best. Third, aware of the disruptions and non-stationarities

due to the COVID-19 situation, they raised concerns about the relevance of past data to

predict the next 6-week period demand. In response to this concern, we added weights to

the definition of insufficiency to allow us to put more emphasis on the most recent data,

which should be more predictive of future demand.

After taking into account all these changes, we obtained a second proposal shown in

Table 2b, with less drastic changes, which made the nurse leadership more comfortable with

our tool. These iterative adjustments have undeniably helped build a closer relationship

and trust between the research and nursing teams.
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Table 2 Recommended changes to overall staffing levels.

(a) Iteration 1

Pod Blue Green Orange Purple
Shift 7a 11a 7p 7a 11a 7p 7a 11a 7p 7a 11a 7p

Sun -1 0 -1 -1 0 -1 -2 0 -2 -1 0 -1
Mon -1 +1 -1 0 0 0 -1 +1 -1 0 0 0
Tue 0 0 0 0 0 0 -1 +1 -1 0 0 0
Wed 0 0 0 0 0 0 0 0 0 0 0 0
Thur -1 +1 -1 0 0 0 -1 +1 -1 0 0 0
Fri 0 0 0 0 0 0 -1 0 0 0 0 0
Sat -1 +1 -1 -1 0 0 -2 +1 -2 -1 0 0

(b) Iteration 2

Pod Blue Green Orange Purple
Shift 7a 11a 7p 7a 11a 7p 7a 11a 7p 7a 11a 7p

Sun -1 0 -1 -1 0 -1 -2 0 -2 -1 0 -1
Mon 0 0 0 0 0 0 0 0 0 0 0 0
Tue 0 0 0 0 0 0 -1 +1 -1 0 0 0
Wed 0 0 0 0 0 0 0 0 0 0 0 0
Thur 0 0 0 0 0 0 0 0 0 0 0 0
Fri 0 0 0 0 0 0 -1 0 0 0 0 0
Sat -1 +1 -1 -1 0 -1 -1 0 -1 -1 0 0

2021: Building Individual Schedules

The development of optimized staffing levels justifies the need to automate the design of

individual schedules as well, because optimization might introduce more changes from one

staffing cycle to the next than the current practice (which uses the same staffing levels for

all cycles).

Based on staffing levels from Iteration 2, we solve individual schedules for the May

30–July 10, 2021 cycle on a roster of 110 ED nurses (excluding per diem nurses) and

26 EDOU nurses based on their preferences. Table 3 compares the standard schedule

with the one returned by our optimization model (see Appendix Section Supplementary

Results during Iteration Periods for additional results with alternative model variations).

We observe that the optimization model reduces the number of daily nurse-shifts by 5%,

with a higher reduction during week-ends (17%) and holidays (14%). Additionally, the

optimization leads to a remarkable 85% reduction in overtime shifts. Such savings in staffing

cost and nurse workload is achieved while keeping the insufficiency level below 0.1%. In

addition to cost savings, the optimized schedule has mainly additional practical benefits:

It creates more opportunities for training new nurses by scheduling nearly one training

shift per day (compared with 0 in the current schedule). It provides more diversity to

nurses by assigning them to 4.6 different positions across the staffing cycle compared with
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Table 3 Comparison of Standard vs Optimized Schedule.

Metric Standard Recommended Reduction

Work shifts per day 48.3 45.7 5%
Per week-end day 48.0 40.0 17%
Per holiday 48.5 41.5 14%
Overtime per day 1.3 0.2 85%

Insufficiency per day < 0.1 <0.1 -
Training shifts per day 0 0.95 -
Different positions per nurse 1 4.6 -
Weighted dissatisfaction score 101 96 5%

1 currently. Finally, it decreases the individual nurses’ dissatisfaction penalty score by

5%, while also ensuring fairness among their scores. Overall, our optimization significantly

improves operational efficiency and nurse satisfaction in the ED.

2022: Reducing Insufficiency during High Demand Periods

In 2022, the ED patient volumes recovered to (and exceeded) their pre-COVID-19 levels

compared with our initial evaluation in 2020. Consequently, HH changed the structure of

the ED and decided to increase the number of staffed nurses. We now illustrate how the

same model as the one we developed in 2020 (after some adjustments to account for new

positions and tiers) continues to provide substantial benefits, yet primarily by reducing

insufficiency instead of costs.

Figure 3a shows the insufficiency vs. costs trade-off for different solutions obtained from

our optimization models with different weight parameters—i.e., varying the relative penalty

applied to each objective component and varying the size of the uncertainty set. For sim-

plicity, we do not impose a penalty on the changes compared with the current schedule

for these simulations. First, let us observe that, due to higher demand, the insufficiency

levels are much higher than previously experienced (around 5 nurse-shifts per day vs.

0.17). Qualitatively, this curve informs the ED leadership on how additional staffing trans-

lates into insufficiency reduction. Based on these simulations, we selected a combination

of parameter values (yellow star) that was providing a strict improvement over the current

schedule, both in terms of costs and insufficiency. We then fine-tuned the other parameters

(penalty on deviation from the current schedule in the objective and weight on the most

recent data in the definition of insufficiency) as displayed in Figure 3b. Our final parameter

combination reduces insufficiency by 8% (from 5.08 to 4.66 nurse-shifts) with 2.38% lower

staffing costs (from 66 to 64.43 daily shifts). We provide details of the parameter tuning

process in Appendix Section Supplementary Results during High Demand Periods.
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(a) Tuning insufficiency parameters (weights

and uncertainty set size).

(b) Fine-tuning other parameters (penaliza-

tion on changes and recency).

Figure 3 Objective Trade-offs during Staffing Cycle December 4, 2022 - January 14, 2023.

To further facilitate automating the scheduling in adjustment to demand variation, we

investigate the benefit of resolving the aggregate model and adjusting the schedule every

week during the 6-week staffing cycle in Appendix Section Supplementary Results during

High Demand Periods.

Implementation

In collaboration with a data consultancy company and a development team, we integrate

our models into end-to-end software interface.

The process, described in Figure 4, outlines the four phases of the scheduling process:

preparation, input collection, solution generation, and schedule production. The flowchart

depicts the interactions between the software (blue rounded rectangle), ED nurse managers

(red rectangle), and individual nurses (green oval) at HH. Our software revolutionizes the

ED nurse scheduling process as follows: The process starts with nurse managers setting up

general configurations and nurse information in the software, which then enables individual

nurses to log into their accounts and enter general preferences. This phase is completed

prior to the first use and can be updated whenever necessary, whereas the remaining three

phases are performed for every 6-week staffing cycle. Approximately five weeks before the

start of each cycle, the software collects nurses’ and managers’ requests specific to the

upcoming cycle and then passes them as inputs to the optimization model. Four weeks

before the cycle, the software automatically solves the first-stage aggregate model, allowing

managers to edit the output aggregate levels and run the program to generate schedules
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Figure 4 Process of Integrating Decision-support Software into ED Nurse Staffing.

with parameters of their choice. After managers edit, compare, and select the schedules,

the software outputs reports based on templates for managers to announce to nurses three

weeks ahead of the staffing cycle. If nurses request to swap or change shifts from the

announced schedule, the software guides managers to accept or reject the changes based on

staffing shortages and surpluses at each shift. The end-to-end implementation was partially

used in March 2023 and fully deployed since April 2023.

Software Illustration

In this section, we demonstrate various components of the software from input collection

to output generation.

Collecting input. The software has two sections to gather input from nurse managers and

individual nurses. The Config tab enables nurse managers to set general staffing inputs:

the RN Tier page specifies eligibilities for nurses of each tier to work at each position; the

Groups page assigns nurses into different cohorts with corresponding unavailability dates

for each cohort (e.g., holiday); the Schedule Date page defines the start and end date of

the staffing cycle to be scheduled. These settings define the structure of the Employee

tab shown in Figure 5. Managers (ED leadership, head nurses, and scheduling assistants)

can modify the nurse roster by adding/removing employees or importing an Excel file.

They can also edit each nurse’s account settings and basic information. Once the forms are

released, nurses can log into their accounts and enter their shift availability, shift pattern

preferences, dates they prefer to work on, plus any request for paid or unpaid time off.
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Figure 5 Software Section for Employee Information and Preference Collection.

After nurses enter their preferences, managers approve/deny their request for days off,

hence validating the inputs for the subsequent optimization models.

Generating solutions. After collecting nurse input, nurse managers can use the software’s

output sections. In the Solutions tab, managers can set some parameters (e.g., penalties

for the different objective components), solve the model, and obtain a solution (identified

using a user-specified name). They can review and compare the recommended aggregate

staffing levels in a table, and select some modeling options such as whether or not to allow

nurses to change shift types, to include training schedules, and to incorporate fairness

considerations. The software offers additional flexibility to solve for a subset of nurses or

tiers, such as solving for ED only or EDOU nurse only. The managers can experiment with

different parameters and compare alternative aggregate/individual solutions, as shown in

Figure 6. In the schedule table in Figure 6, each nurse is represented by a row containing

the assigned shifts, positions (in different colors), and dates for that nurse.
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Adjusting schedules. Due to dynamic changes in staffing needs and nurse availabilities, the

support for schedule adjustments is deemed essential. As seen at the bottom of Figure 6,

aggregate staffing levels from the individual schedule above (first number) are presented in

comparison to target levels (second number) for each shift and any subset of positions. For

example, Friday, April 14 has a surplus of one nurse during the 7p–7a shift (highlighted

in red), whereas Saturday, April 15, has a shortage of one nurse during the 7a–7p shift

(highlighted in orange). Every week, the software also resolves the model with updated

demand and alerts managers of any expected changes. This component raises managers’

attention on potential shortages or surpluses across the pods, suggesting adjustments to

be made. Also demonstrated in Figure 6, managers can execute any schedule changes

by editing shifts, dates, positions, or nurses with simple clicks. The combination of these

functionalities supports a variety of schedule adjustments: It suggests how each shortage

can be filled if specific nurses can work overtime, advising managers of specific nurses that

can help reduce the shortages best. Since some nurses sometimes request shift swaps due

to changes in their availability, the aggregate summary helps their managers approve these

requests by visualizing whether the affected shifts are currently experiencing a surplus or

shortage of nurses. Similarly, if two nurses request to swap with each other, the software

automatically checks the feasibility of the switch. To cover additional shortages, managers

can add shifts on per diem nurses (who do not work full-time but pick up shifts on demand

anytime) to fill in the shortage shifts.

Announcing Outputs. Finally, the Schedule tab shows the determined schedule, where

nurse managers have a holistic view and each nurse can view their own schedule. In addi-

tion, the Report tab enables managers to download and print reports of the schedule based

on the ED template, including a summary of staffing for each cycle and a daily team sheet

for each date. Figure 7 includes an example team sheet on April 9, 2023, which assigns

nurse names at each position during each time block for both day and night shifts of the

day. Overall, the software provides decision support as well as aligns with ED operations.

Financial Benefit Estimation

The schedule optimization with its implementation translates into substantial financial

benefits projected by HH. The reduction of nursing hours from Table 3 and Table 4 converts

into estimated cost savings in Table 5. By saving 2.6 shifts (12-hour long) daily, ED will

save an average of 31.2 nurse-hours per day, 11,388 hours per year. With overtime salary
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Figure 6 Software Section for Generating and Adjusting Alternative Individual Schedules.

Figure 7 Software Section for Outputting Final Schedules.

being 50% above the base salary, the reduction of 1.1 overtime shifts per day cuts the

cost by an additional $25 per hour. Combined with the 88-hour manual work per 6 weeks
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Table 4 Estimated Time Spent by ED Leaders on Manual Scheduling.

Responsibility component Responsible staff Total time

Schedule build/balancing Scheduler 12 hours

Schedule approval Scheduler/Manager 1 hour

Management of shift switches Scheduler/Manager/Assistants 4 hours weekly

Orientation scheduling Educators/Managers/Scheduler 3 hours

Daily team sheet building Manager/Assistants 8 hours weekly

Total hours per 6-week staffing cycle 88 hours

Table 5 Projected Savings of Nursing Hours and Cost for HH ED.

Component Daily hours Annual hours Hourly cost Annual cost

Base shifts 31.2 11,388.00 $50 $569,400.00

Overtime (extra) 13.2 4,818.00 $25 $120,450.00

Manual scheduling 2.1 764.76 $50 $38,238.10

Total $728,088.10

that could be saved from Table 4, the hospital financial department projects that the

optimization could save $728,088.10 annually in nursing costs.

Overcoming Challenges in Deployment

Deploying an optimization tool for ED nurse staffing, which impacts the lives of 200 nurses,

nurse schedulers, and managers, carries numerous challenges. The deployment of the tool

also involved transitioning from an offline to an online scheduling process. In this section, we

discuss how we overcame these challenges, progressed with the deployment, and achieved

practical impact.

Offline strategic adoption. The development started with offline iterations in late 2020.

Researchers generated schedules offline for ED leadership to review, and then incorporated

feedback and constraints into the models. As described in Section 2021: Accounting for

Frictions to Implementation, researchers adapted the optimization models and parameters

to overcome the nurse leadership’s conservatism in reducing staffing levels. With refined

models, the team communicated with hospital leadership to adopt our optimized sched-

ules. The model suggested fewer 7-7 shifts and more 11-11 shifts in response to demand
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patterns. However, as each nurse was pre-assigned to a fixed shift type upon being hired,

it was difficult to swap shifts without disrupting their lives. After strategic discussions,

hospital leadership decided to hire more 11 am–11 pm shift nurses as opposed to 7-7 shift

nurses to be able to realize the recommendation. The ED reports having tripled the num-

ber of 11 am–11pm positions (from 4.9% to 14.7% of total nurses). During this overstaffing

period, the optimized schedule needed fewer nurse-shifts than previously as shown in Sec-

tion End of 2020: Reducing Staffing Costs during Low-Demand Periods. This presented

another challenge as the hospital was still required to utilize all nursing hours as per the

contract. After evaluating several options, the ED decided to turn the saved work shifts

into additional training shifts, which are counted as working hours but do not serve patient

demand. Besides, scheduling fewer week-end shifts also changed the ED’s conventional

policy to move nurses from working every other week-end to every third week-end after

working for two years as a seniority incentive. Since January 2021, the ED was able to move

a total of 80 nurses from every other week-end to every third week-end early (between two

and seven months prior to the 2 year mark), which enhances retention rewards to nurses.

Motivation from offline to online. Following the successful strategic adoptions at the ED,

our next goal was to implement the generated individual nurse schedule for the ED to

use. However, experimentation for the next staffing cycle showed that offline iterations

between researchers solving models and managers providing feedback were not feasible to

be adopted. Managers needed to propose changes to the schedule frequently for reasons such

as nurse dissatisfaction, availability changes, and manager preferences. The frequent back-

and-forth communications with the research teams caused delays and were not sustainable.

On the other hand, manually reshuffling the machine-generated schedule was infeasible

for nurse managers without optimization training. To address these issues, we decided

to develop our software tool, which automates the optimization part and allows nurse

managers to regenerate and edit schedules in an online fashion.

Online implementation. In 2022, we began the software development for staffing automa-

tion. The research team collaborated with the consultancy and IT teams and integrated

the optimization models into the software. Given imported input data, users were able to

solve the models and obtain the schedule under the Solution and Schedule tabs. However,

the upcoming main challenge was to connect the software with the hospital to collect input

from nurses and pass output for the ED to use. One complication arose as the entire nurse
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staffing at Hartford HealthCare relied on commercial software that links shift assignments

to the nurse payroll system. Despite the team’s attempts to integrate with the commer-

cial software throughout 2022, the complexity of involving a third-party organization was

beyond our control. After careful discussions between the team and executives at Hartford

HealthCare, a decision was made to build a standalone software instead. In early 2023, we

built the information collection component of the software. After frequent weekly meetings

and iterations between researchers, the development team, nurse managers, and schedulers,

the interface evolved to cover all ED nurse staffing functionalities. We further improved

the schedule generation process, enabling dynamic schedule changes by nurse leadership

to adapt to quick information changes. The ED executed more model recommendations

after the long collaboration, such as swapping shift types for some nurses. The fine-tuned

schedule announced on April 30, 2023 has no overtime shifts, satisfies 92% preferred date

assignments, only 1 undesirable shift pattern among all nurses across 6 weeks, and assigns

nurses with desirable diversity to average 2.43 different positions per week. The impact of

the tool’s deployment can be evaluated more deeply as more data after the implementation

is collected in the future. Following the pilot ED deployment at HH, the Hartford Health-

Care executive team aims to extend the models and software to cover all nurse staffing in

7 hospitals of the network in the future.

Conclusions

Under a collaboration between Hartford HealthCare, MIT, and Dynamic Ideas, we develop

and implement optimization models to automate the nurse staffing process in the Emer-

gency Department at HH. Our methodology consists of two phases to optimize each 6-week

staffing cycle. First, we learn an uncertainty set from patient demand data and develop

a robust optimization model, solved via a cutting planes algorithm to compute aggregate

staffing levels. Next, we develop two mixed-integer optimization models to assign individual

nurses to work, trainee, and preceptor shifts across the coming 6-week period.

Experimental results demonstrate the versatile benefit of the first-phase aggregate model:

reducing staffing costs by 5–8% in pre-COVID periods where demand was relatively low

compared to nurse supply versus reducing insufficiency by 8–25% since the COVID-19

pandemic. In addition, we analyze how the outcomes change with different model variations

and parameter trade-offs as well as illustrate schedule iterations and demand patterns.
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The second optimization phase produces individual schedules of nurses to shifts and brings

significant benefits to ED nurses by reducing 17% week-end, 14% holiday, and 85% overtime

shifts while increasing 5% satisfaction score, 3.6 more diverse positions, and 0.95 training

per day.

The models are integrated into end-to-end software that supports scheduling from

staffing preparation, input collection, and solution generation, to schedule output. After

overcoming numerous implementation challenges, the software was deployed starting March

2023 at HH, automating and transforming the nurse scheduling at the Emergency Depart-

ment. The implementation relieved manual scheduling burdens (78 hours per 6-week

period) and is projected to save $728,088.10 in annual nursing costs. The integration

brought more cost-effective, sufficient, and desirable staffing into practice, benefiting vari-

ous stakeholders in the hospital system.
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Demand Patterns and Standard Scheduling

Demand trend over time. Figure A1a displays the number of ED patient arrivals for each day since late

2016. Before March 2020, the ED volume was about 250–350 patient arrivals per day with small fluctuations.

At the beginning of the COVID-19 pandemic, the number of ED arrivals dropped significantly and then

gradually increased throughout 2021, up to a level slightly lower than before, around 200–300 arrivals per day.

As the pandemic progressed through different stages, people were recovering from the COVID-19 isolation

period, which brought the ED volume back to 250–350 arrivals per day, while having larger fluctuations over

time compared with pre-COVID-19. Given the significant disruption incurred during and since the COVID-19

outbreak, we use data starting from June 22, 2020 for our analysis, which we highlight in Figure A1b.

Demand patterns and baseline staffing levels. In Figure 1, we present the demand patterns from

November 2 - December 13, 2020. In this period, the average number of patient stays over 6 weeks and

the number of nurses recommended to staff each week in each pod type from Monday to Sunday (starting

from 7 am to 7 am each day) are shown in Figure 1a and Figure A2a. For intra-day patterns, we show the

average number of patients over 6 weeks in each pod type at each hour of the day (from hours starting at

0:00 to 23:00) in Figure 1b. For the main, red, and iTrack pods, we have higher demands in the afternoons

and evenings, where the variability is highest for main pods. For the purple pod, demand is more constant

throughout the day with slightly higher demand at nighttime. Conventionally, every day applies the schedule

shown in Figure 1c for the number of nurses working in each position at each hour of the day. Only the

staffing level in iTrack changes within the day, with more nurses in afternoons and evenings and fewer at

night. However, in the red and main pods, where we also observe variability in demand (especially in the

main pods), staffing levels remain constant throughout the day and throughout the week.

Robust Optimization Model for Aggregate Staffing

In this Appendix Section, we provide details on the robust optimization model for determining the aggregate

staffing levels described in Section ED Aggregate Staffing Optimization.

(a) From November 7, 2016 to March 6,

2023. (b) From June 22, 2020 to March 6, 2023.

Figure A1 ED Historical Volume Over Time.
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Aggregate Model Data

Main Components. Allocating ED nurse staffing levels contains the following basic components.

ED positions: Nurses work among J = 13 positions: CNL, first nurse, resource, triage, FEP, blue, green,

orange, hallway, red, purple pod, iTrack, and EDOU. As some of the pods have the same functionalities of

treatment, we define N = 5 pod types as main pods (blue, green, organge, and hallway), red pod, purple

pod, iTrack, and EDOU. As nurses can ‘float’ between iTrack, red, and main pods within the same shift, we

define M = 3 pod floating groups where each group is a set of pods among which nurses can float between.

Nurses: Based on each nurse’s years of experience and training qualifications, they are categorized into

Q = 9 nurse tiers, and are also classified by the hospital into G = 2 groups that restrict the frequency of

week-end shifts to every other week-end or every third week-end.

Time: There are I = 3 shift types: 7 am–7 pm, 7 pm–7 am, 11 am–11 pm. The optimization model schedules

for an entire staffing cycle (6-week period) with some week-over-week regularity. We divide each cycle into

W = 6 weeks or D = 42 days or T = 1,008 1-hour time periods. Since there might be some week-over-week

regularity, we also introduce indices to divide a typical week of a cycle into E = 7 days or S = 168 hours.

Other sets: For each component of size J , we use the corresponding lower case letter j to index the element,

which takes values in set [J ] denoting {1,2, . . . , J}. We define other discrete subsets needed: Jn, Jm ⊆ [J ]: sets

of pods j of type n and of floating group m, respectively; Dn⊆ [D]: week-end days of the cycle; De⊆ [E]:

days of the first week of the cycle; Dw, Dnw ⊆ [D]: days and week-end days in week w, respectively.

Demand uncertainty set. For a 6-week cycle starting on week w0, we construct an uncertainty set around

the demand for each pod floating group m, on each week w ∈ {w0, . . . ,w0 + 5} and each hour of the week

s∈ [S], h̃mws in the following way: First, we compute a nominal demand h̄jws from the historical demand on

weeks w0− 10–w0− 5, i.e.,

h̄mws := hhist
ms(w−10), ∀w ∈ {w0, . . . ,w0 +5}.

Second, we estimate the pairwise absolute differences of historical demands that are 10 weeks apart, for the

weeks between w0− 20 and w0− 5:

ε̂msw = |hhist
msw−hhist

msw−9|, ∀m∈ [M ], s∈ [S],w ∈ {w0− 11, . . . ,w0− 5}.

Finally, we define the final uncertainty set as:

U :=


h̃msw ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣h̄msw− h̃msw

∣∣∣≤ ϵ1ms, ∀m∈ [M ], s∈ [S],w ∈ [W ]∣∣∣∑s∈[S] h̄msw−
∑

s∈[S] h̃msw

∣∣∣≤ ϵ2m, ∀m∈ [M ],w ∈ [W ]∣∣∣∑m∈[M],s∈[S] h̄msw−
∑

m∈[M],s∈[S] h̃msw

∣∣∣≤ ϵ3, ∀w ∈ [W ].


,

where we calibrate ϵ1ms (i.e, the bound on pairwise inter-10-week demand fluctuations) as the 80th percentile

of the ε̂msw we estimated on historical data. We scale , for each m,s , and scale ϵ1ms accordingly to obtain

ϵ2m and ϵ3. From large deviation bounds (see, e.g., table 2 Bertsimas et al. 2021), we know that ϵ2m and ϵ3

should scale as
√
S and

√
MS respectively, so we use

ϵ2m = βϵ

1√
S

∑
s∈[S]

ϵ1ms, ∀m∈ [M ], ϵ3 = βϵ

1√
MS

∑
m∈[M],s∈[S]

ϵ1ms,

with an adjustable discount factor βϵ ∈ (0,1].
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Other data and parameters. Other than the demand data, we collect the following data from ED

leadership: Zq, Z
g
q : total number of nurses of tier q, and those of week-end group g. zcurrjie : number of nurses in

position j during shift i on day e of the week in standard schedule. nj , nj : minimum and maximum number

of nurses required at position j, respectively. Tnq: maximum total number of shifts each nurse of tier q can

work in a week. NU : set of pairs (q, j) such that nurse of tier q cannot work in position j due to qualifications.

Eqt: number of nurses of tier q available to work during the one-hour period t. We also introduce σidt (or

equivalently σidsw) to indicate whether shift i on day d contains time period t.

Aggregate Optimization Formulation

Decision Variables. In the next 6-week cycle, on each day of the week, we decide:

• zqjidg ∈Z+: number of nurses of tier q, week-end group g working at position j on shift i, day d.

To capture some aspects of our objectives to minimize insufficiency as well as deviation from the current

schedule, we introduce two auxiliary decision variables:

• npr: the weighted sum of insufficiency in the worst case (w.r.t. the demand uncertainty set), where

insufficiency is defined as the number of nurse-shifts missing to satisfy the target nurse-to-patient ratios

to treat the patients.

• ∆zjie: the absolute difference in the number of scheduled nurses working at position j during shift i on

day e of the week compared with the standard schedule.

Objective. The objective of the model is to minimize the total number of nurse-shifts scheduled while

penalizing shortage for demand and changes from the standard schedule, with parameters to control trade-offs

between the three terms. Hence, our objective is to minimize a weighted combination of three terms:

min
∑

q∈[Q],j∈[J],i∈[I],d∈[D],g∈[G]

zqjidg (Minimize number of scheduled work shifts)

+ µ1 ·npr (Penalize when staffed below target ratios)

+ µ2

∑
j∈[J],i∈[I],e∈[E]

∆zjie (Penalize number of changed work shifts),

where the parameters µ1, µ2 ≥ 0 control the relative importance of each term of the objective.

Constraints. We now present the constraints. Some of these constraints correspond to the definition of

the auxiliary variables and the others capture various staffing requirements. We use the notation f(x)+ to

denote the positive part of the function f(x), i.e., f(x)+ :=max{f(x),0}.
For defining the auxiliary variables, we impose the following constraints:

npr≥
∑

m∈[M],s∈[S],w∈[W ]

ωw

h̃msw−
∑

q∈[Q],j∈Jm,i∈[I],d∈[D],g∈[G]

zqjidgσidsw


+

, ∀h̃∈ U , (1)

∆zjie ≥

∣∣∣∣∣∣zcurrjie −
∑

q∈[Q],d∈De,g∈[G]

zqjidg

∣∣∣∣∣∣ , ∀j ∈ [J ], i∈ [I], e∈ [E]. (2)

Constraint (1) computes the difference between the nurse demand for each position/hour/week h̃msw and the

total number of nurse-shifts scheduled for this position/hour/week —the coefficients σidsw{0,1} map shifts

(i) and day (d) to each hour s and week w. It is a robust constraint imposed for all demand realization h̃∈ U .
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It also involves a weighting parameter ωw, which allows us to put more weight on some weeks. For example,

by increasing ωw with w, we place higher penalties for the weeks estimated with the more recent data, hence

emphasizing the most recent demand trend.

The schedule must adhere to a range of staffing constraints to be feasible. These include:

• Each position j has a minimum and maximum number of nurses to staff (staffing levels are typically

fixed at logistical positions e.g., CNL and first nurse, to be the same as before, while some pods can be

adjusted to demand): nj ≤
∑

q∈[Q],i∈[I],d∈[D],g∈[G]

zqjidg ·σidt ≤ nj , ∀j ∈ [J ], t∈ [T ].

• Certain units are not eligible based on nurse tiers: zqjidg = 0, ∀(q, j)∈NU , i∈ [I], d∈ [D], g ∈ [G].

• Staffing levels are kept to be consistent from week to week for a stable schedule:

∑
q∈[Q],g∈[G]

zq,j,i,k+E(w−1),g =
∑

q∈[Q],g∈[G]

zq,j,i,k+E(W−1),g, ∀k ∈ [E],w ∈ [W − 1], i∈ [I], j ∈ [J ]. (3)

ED leadership indicates a preference to consider only the constraints above when deciding on staffing

levels, based on demand only. However, they have the option to also consider nurse availability and supply

information in this stage of scheduling by including additional constraints in the model:

• Assignments are capped by the number of available nurses of each tier during each period:∑
j∈[J],i∈[I],d∈[D],g∈[G]

zqjidg ·σidt ≤Eqt, ∀q ∈ [Q], t∈ [T ].

• Total number of weekly working hours:
∑

d∈Dw,j∈[J],i∈[I],g∈[G]

zqjidg ≤ TnqZq, ∀q ∈ [Q],w ∈ [W ].

• Week-end shifts on consecutive weeks for nurses working every other week-end (and analogous contrsints

for every third week-end):
∑

d∈Dnw∪Dnw+1,j∈[J],i∈[I],g∈[G]

zqjidg ≤ 2Z1
q , ∀q ∈ [Q],w ∈ [W − 1].

Solving the Robust Optimization Model

We now describe our method and implementation of solving the robust optimization problem. We use a

cutting plane approach shown in Algorithm 1. At each iteration κ, we solve a mixed-integer linear opti-

mization problem (a master problem) similar to the one described earlier, except that the uncertainty set U

in Constraint (1) is replaced by a finite subset Uκ. To solve the master problem, we linearize the positive

part in Constraint (1) and the absolute values in Constraint (2) via additional auxiliary variables and linear

constraints. At each iteration, we augment Uκ with the worst-case demand scenario hκ, and solve the master

problem up to 0.01 optimality within a 20-minute time limit. We implement the cutting-plane algorithm

using lazy callbacks to accelerate the model compilation and solving process. As termination criteria, we use

a sub-optimality gap target η= 0.1 and a maximum number of iterations κmax = 20.

We fine-tune a combination of parameters, βϵ, µ1, µ2, ωw, to select the best-performing values for the model.

To solve the deterministic model version, we solve a single master problem using the optimization model

defined in Section Optimization Model Overview, but with U replaced by the set of historical demand only

{hhist} in constraint (1), which is equivalent to setting ϵ1 = ϵ2 = ϵ3 = 0 in U .
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Algorithm 1 Cutting plane algorithm

1: Given the nominal demand hhist : U0←
{
hhist

}
, κ← 1, and tolerance η, initiate the master problem

2: repeat

3: Solve the master problem and obtain a solution zκ

4: nprκ(h̃, z
κ)←

∑
m∈[M],s∈[S],w∈[W ]

ωw(h̃msw−
∑

q∈[Q],j∈Jm,i∈[I],d∈[D],g∈[G]

zκ
qjidgσidsw))+

5: hκ← argmax
h̃∈U

nprκ(h̃, z
κ) ▷ Maximize insufficiency w.r.t. demand uncertainty set

6: Uκ←
{
hhist, h1, . . . , hκ

}
7: κ← κ+1

8: until (nprκ−nprκ−1)/nprκ−1 < η or κ= κmax ▷ Reach violation gap or maximum iterations

Model Variants for Informing Strategic Decisions

Stable staffing levels. Motivated by the within-week variability of demand, we allow the staffing levels

to vary by day of the week—but remaining the same week over week as per Constraint (3). To evaluate

the benefits of this additional flexibility, we compare it to two alternatives: Daily stability : Staffing levels

can be forced to be the same every day, by making weekly constraints (3) daily. This option is easier for

the leadership to manage but might result in unnecessary overstaffing and understaffing on some days. It

corresponds to the historical practice at HH. No stability : Staffing levels can be allowed to vary every day,

by excluding constraint (3). This option provides even more flexibility to fit demand patterns that may differ

from one week to another but is more at risk of overfitting the data. We compare the operational costs and

benefits of these options.

Change shift designs. ED leadership also considers changing or adding shift types. Shift changes would

be disruptive and require nurses to change their lifestyles, to accommodate for the new working hours.

However, new shifts could lead to more cost-effective staffing and a better matching of the demand patterns.

With many potential shift type options available, it is essential to determine which ones could yield the

greatest improvement. We support this investigation by introducing binary variables yi ∈ {0,1} that indicate
whether a shift type i is introduced. We have the set of existing shift types Iexist and consider a feasible set

of potential shift types Ifeasible ⊇ Iexist with σidt for each i∈ Ifeasible. We add the following constraints:

• A shift type is generated if and only if used in any shifts:
∑

q∈[Q],j∈[J],d∈[D],g∈[G]

zqjidg ≤My · yi, ∀i ∈ [I]

with a constant My.

• The number of shifts types is bounded with a parameter Ymax:
∑

i∈Ifeasible

yi ≤ Ymax.

• If considering only new shift types without changing the existing shift types, then all current shift types

are kept: yi = 1, ∀i∈ Iexist.
By solving different variations and comparing their objective values, we can identify the most valuable shift

type candidates.

Mixed-Integer Optimization Models for Individual Scheduling

We provide details on the individual shift and preceptor scheduling optimization models from Section ED

Individual Scheduling Optimization.
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Individual Level Data

We define additional indices, sets, and data inputs to Section Individual Model Data.

Additional Components. We consider each individual nurse ℓ (with L ≈ 200 total nurses), with Lq

denoting the set of nurses of tier q. There are multiple ways to measure a nurse’s dissatisfaction. We identify

6 possible criteria: the number of shifts on dates supposed to be off, of unassigned week-ends turned on, of

overtime shifts, and the number of unpreferred shift types, dates, or patterns. We also have three criteria

for satisfaction: the number of preferred shift dates, patterns (U = 3 on/off patterns for assigned shifts), and

the number of unique positions a nurse is assigned to (as a measure of job diversity). We index these criteria

via a subscript o ∈ [O] (O= 9). For the ED, J slack represents set of positions j where a shortage or surplus

of at most one is allowed.

Data input. One of the inputs is the output aggregate levels zaggjid , representing the number of nurses to

schedule for position j during shift i on day d from the first phase solution z⋆
qjidg:

zaggjid =
∑

q∈[Q],g∈[G]

z⋆
qjidg, ∀j ∈ [J ], i∈ [I], d∈ [D].

While the assignment per nurse tier q and week-end group g in the first phase is included to ensure a feasible

assignment, it is subject to change during the second phase. The other type of input is a range of individual

preferences and availabilities for each nurse: Iprefℓi , Iunprefℓi , I feasℓi : whether nurse ℓ prefers (typically their current

shift type), does not prefer, and has the feasibility to work at shift type i, respectively. Fℓw: maximum number

of shifts for nurse ℓ on week w, obtained by subtracting Paid Time Off (PTO) and education time of each

week from the total number of weekly shifts. kℓw: whether nurse ℓ is assigned to work on the week-end of

week w. P pref
ld , P unpref

ld , P off
ld , P avail

ld : whether nurse ℓ prefers, does not prefer, is off, and is available to work

on day d, respectively. Apref
ℓu , Aunpref

ℓu : whether nurse ℓ prefers to have, and not to have the work pattern u,

respectively. rfeasℓj , pfeasℓj : whether nurse ℓ is eligible to be a trainee, and a preceptor (training the trainees),

respectively, at position j.

Individual Shift Scheduling Model

To generate an individual schedule that prioritizes various staff preferences as well as training opportunities

given these inputs, we develop a mixed integer linear problem that comprises the following components.

Decision variables. The core decision variables track nurse assignments:

• bℓjid, rℓjid ∈ {0,1}: whether nurse ℓ works, and resp. trains at position j during shift i on day d.

• sℓi ∈ {0,1}: whether nurse ℓ is assigned to shift type i.

Objective. We introduce main auxiliary variables to track different terms of the objective:

• cℓo ∈R: computing nurse ℓ’s dissatisfaction penalty score according to the criterion o.

• z−
jid, z

+
jid ∈ [0,1]: whether there is one shortage or surplus at position j during shift i on day d, resp.

• f−
ℓ ∈R+: number of unassigned shifts for nurse ℓ.
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Our objective function is to minimize a weighted combination of four terms:

min µ3

∑
ℓ∈[L],o∈[O]

λocℓo (Minimize total weighted dissatisfaction score)

+ µ4

∑
j∈[J],i∈[I],d∈[D]

wshortage
j z−

jid (Penalize shortage to aggregate staffing levels)

+ µ5(
∑

j∈[J],i∈[I],d∈[D]

z+jid +
∑
ℓ∈[L]

f−
ℓ ) (Penalize unassigned nurse-shifts and surpluses)

− µ6

∑
ℓ∈[L],j∈[J],i∈[I],d∈[D]

rℓjid (Reward total training shifts assigned)

with parameters:

• λ1, . . . λ5, λ6 > 0, λ7, λ8, λ9 < 0 as weights for each penalty score metric,

• µ3, µ4, µ5, µ6 > 0 to control the trade-off between the objective terms,

• wshortage
j ≥ 0 as penalization weights for shortage at position j.

To optimize computational efficiency, we implement all variables as sparse matrices and tensors under

conditions as follows. For instance, binary variables bℓjid are only needed if the values are allowed to be

one, and thus are only defined for indices ℓ, j, i, d such that nurse ℓ is eligible to work at position j and is

available during shift i on day d. Such sparse indexing naturally incorporates some eligibility, availability,

and feasibility constraints.

Constraints. To facilitate the model constraints, we define additional auxiliary binary variables on

whether nurse ℓ: works an overtime shift on week w (f+
ℓw); works on a week-end of week w supposed to be

off (k+
ℓw); has at least one shift at position j during the staffing cycle (vℓj); and starts work pattern u on day

d (aℓud). We then impose associated constraints to bound the objective function:

• Computes individual nurse penalty score for each l ∈ [L] counting the number of:

—Shifts on dates supposed to be off: cℓ1 =
∑

d∈[D],j∈[J],i∈[I]

P off
ℓd (bℓjid + rℓjid).

—Unassigned week-ends turned on: cℓ2 =
∑

w∈[W ]

k+
ℓw, where

∑
d∈Dnw,j∈[J],i∈[I]

(bℓjid + rℓjid) ≤ 2(kℓw +

k+
ℓw), ∀ℓ∈ [L],w ∈ [W ].

—Overtime shifts: cℓ3 =
∑

w∈[W ]

f+
ℓw, where

∑
d∈Dw,j∈[J],i∈[I]

(bℓjid+rℓjid)≤ Fwℓw+f+
ℓw, ∀ℓ∈ [L],w ∈ [W ].

—Unpreferred shift types: cℓ4 =
∑

d∈[D],j∈[J],i∈[I]

Iunprefℓi bℓjid.

—Unpreferred dates: cℓ5 =
∑

d∈[D],j∈[J],i∈[I]

P unpref
ℓd (bℓjid + rℓjid).

—Preferred dates: cℓ6 =
∑

d∈[D],j∈[J],i∈[I]

P pref
ℓd (bℓjid + rℓjid).

—Different positions assigned: cℓ7 =
∑

j∈[J]

vℓj , where vℓj ≤
∑

d∈[D],i∈[I]

bℓjid, ∀ℓ∈ [L], j ∈ [J ].

—Unpreferred patterns: cℓ8 =
∑

d∈[D−2],u∈[2]

Aunpref
ℓu aℓud +

∑
d∈[D−3]

Aunpref
ℓ3 aℓ3d.

—Preferred patterns: cℓ9 =
∑

d∈[D−2],u∈[2]

Apref
ℓu aℓud+

∑
d∈[D−3]

Apref
ℓ3 aℓ3d, where all shifts in a row is tracked

by
∑

j∈[J],i∈[I],d′∈{d,d+1,d+2}
(bℓ,j,i,d′ +rℓ,j,i,d′)−2≤ 3aℓ1d ≤

∑
j∈[J],i∈[I],d′∈{d,d+1,d+2}

(bℓ,j,i,d′ +rℓ,j,i,d′),∀ℓ∈

[L], d∈ [D− 2], and other patterns by analogous constraints.
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• The individual nurse schedule matches aggregate staffing levels with shortages and surpluses: zaggjid =

z−
jid − z+jid +

∑
ℓ∈[L]

bℓjid, ∀j ∈ J slack, i ∈ [I], d ∈ [D], where some positions do not allow shortages or

surpluses: z−
jid = z+jid = 0, j ∈ J \ J slack, i∈ [I], d∈ [D].

• The number of unassigned shifts for each nurse is the number of maximum shifts minus assigned shifts:

f−
ℓ ≥

∑
w∈[W ]

Fℓw−
∑

j∈[J],i∈[I],d∈[D]

(bℓjid + rℓjid).

Besides these constraints bounding the objective, the schedule is enforced to satisfy a variety of feasibility

constraints, such as:

• Eligibility and availability:

—Nurse tier eligibility in positions: bℓjid = 0, ∀q ∈ [Q], (q, j)∈NU , ℓ∈Lq, i∈ [I], d∈ [D].

—Shift only at one location on available dates:
∑

j∈[J]

(bℓjid + rℓjid)≤ P avail
ℓd , ∀ℓ∈ [L], i∈ [I], d∈ [D].

• Shift type:

—Assigned at most one shift type over the 6-week period:
∑
i∈[I]

sℓi ≤ 1, ∀ℓ∈ [L].

—Each nurse can be only assigned a feasible shift type: sℓi ≤ I feasℓi , ∀ℓ∈ [L], i∈ [I].
—Work on assigned shift type:

∑
d∈[D],j∈[J]

(bℓjid + sℓjid)≤Ms · sℓi, ∀ℓ∈ [L], i∈ [I] with Ms = 2D.

• Training:

—Trainee eligibility: rℓjid ≤ rfeasℓj , ∀ℓ∈ [L], j ∈ [J ], i∈ [I], d∈ [D].

—At most three shifts per training:
∑

i∈[I],d∈[D]

rℓjid ≤ 3, ∀ℓ∈ [L], j ∈ [J ].

—Capped by number of eligible preceptors:
∑

ℓ∈[L]

rℓjid ≤
∑

ℓ∈[L]

bℓjid pfeasℓj , j ∈ [J ], i∈ [I], d∈ [D].

• To ensure fairness among nurses, each nurse’s penalty score cannot exceed a bound cmax:∑
o∈[O]

cℓo ≤ cmax, ℓ∈ [L]. (4)

Individual Preceptor Scheduling Model

The preceptor scheduling model from Section Integer Optimization Model on Preceptor Scheduling is as

follows.

Decision variables. We introduce decision variables:

• pℓjid ∈ {0,1}: whether nurse ℓ serves as a preceptor at position j during shift i on day d.

• pmax ∈R: tracking the maximum number of preceptor shifts assigned among all nurses.

Objective. We set the objective function to:

min pmax (maximum number of preceptor shifts assigned to each nurse).

Constraints. The model is subject to several constraints, where b⋆ℓjid and r⋆ℓjid denote the optimal solution

from solving the model defined in Section Individual Shift Scheduling Model.

• pmax is at least the number of preceptor shifts for each nurse: pmax ≥
∑

j∈[J],i∈[I],d∈[D]

pℓjid, ∀ℓ∈ [L].

• Eligibility to train the trainees at each position: pℓjid ≤ pfeasℓj , ∀ℓ∈ [L], j ∈ [J ], i∈ [I], d∈ [D].

• Preceptor and work shifts in tandem at the same position: pℓjid ≤ b⋆ℓjid,∀ℓ∈ [L], j ∈ [J ], i∈ [I], d∈ [D].

• Each trainee shift is covered by a preceptor:
∑

ℓ∈[L]

r⋆ℓjid ≤
∑

ℓ∈[L]

pℓjid, ∀j ∈ [J ], i∈ [I], d∈ [D].
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(a) Over a typical week. (b) Within a day (averaged).

Figure A2 Recommended Schedules for the November 2 - December 13, 2020 cycle.

Supplementary Experimental Results

In this section, we provide additional experimental results to Section Results on each of the three periods.

Supplementary Results during Low Demand Periods

We augment Section End of 2020: Reducing Staffing Costs during Low-Demand Periods on data from October

26 to December 20, 2020, including the illustration of schedule patterns, additional information on different

approaches, and elaboration on metric trade-offs.

Patterns of demand vs. staffing. Figure A2 provides a more detailed illustration of the recommended

schedule for November 2 - December 13, 2020 obtained from the Robust (a) approach. A comparison with

demand patterns from Figure 1 shows that our recommendation matches staffing with demand patterns and

results in a more cost-effective schedule. For the main pods and the purple pod, as patient demands tend

to be higher on weekdays than week-ends, we staff more nurses on weekdays than week-ends. For the red

pod, we have a particularly higher demand on Friday when we also staff more nurses. Both demand and

staffing for iTrack have less variability throughout days of the week. The recommended schedule shown in

Figure A2b is consistent with the demand patterns by having smoother staffing in the purple pod and more

staffing during 11 am–11 pm for other pods. Even though the schedule is generated with information only

prior to the period, it can capture most of the day-of-week and hour-of-day demand patterns in the period

prospectively, which justifies the robustness of our approach. By matching staffing with demand patterns,

we reduce the staffing cost by 7.40%.

Trade-off between cost and insufficiency. There exists a trade-off between cost and insufficiency, as

staffing more nurses facilitates more sufficiency with increased cost, and vice versa. We illustrate the flexibility

of the optimization model to control such trade-offs by varying parameters µ1 and βϵ in Figure A3, where

scatter points from each approach represent the daily average insufficiency and cost of schedules generated

with different parameters. This earlier version of the model did not include the objective term with µ2 or the

parameter ωw. The current schedule has a daily average cost of 56 and an insufficiency of 0.17. Retrospectively,

given perfect information, schedules optimized with different parameters range from having 50.43 cost and
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0.01 insufficiency to having 48.57 cost and 0.06 insufficiency. Prospectively with the data-driven approach,

the non-robust schedules lead to a reduction of cost to 49.43 - 50.90 with the trade-off of higher insufficiency

between 0.26 and 0.20. The robust schedules (a) incorporate uncertain demand deviations to trade off some

cost reduction for more sufficiency, ranging from giving 50.38 cost and 0.17 insufficiency to 53.24 cost and

0.08 insufficiency.

Figure A3 Cost-insufficiency Trade-offs.

Table A1 Comparison of Alternative Registered Nurse (RN)

Schedules.

Variation Default Less Shift EDOU
overtime change float

Overtime shifts 72 52 8 48
Training shifts 72 60 40 60

Week-ends turned on 11 11 6 11
Holidays turned on 2 2 2 2

RN with shift type changed 0 0 4 0
EDOU RN relocated to ED 0 0 0 2

Supplementary Results during Iteration Periods

Alternative individual scheduling results. In addition to the results shown in Section 2021: Accounting

for Frictions to Implementation, we solve and compare four schedules with alternative settings and parameters

in Table A1. Compared with the solution with default parameters, a variation with increased weights on

overtime shifts reduces overtime with a trade-off of less training. On top of the variation, allowing changes

in nurses’ shift types significantly reduces overtime shifts by changing four nurses’ shift types. Alternatively,

assigning two EDOU nurses to float to work at ED can bring several more overtime reductions. After

reviewing with ED leadership, we decided to use the schedule with shift changes due to its best overall

metrics.

Supplementary Results during High Demand Periods

We provide additional results to Section 2022: Reducing Insufficiency during High Demand Periods.

Parameter tuning details. We first tune the two main parameters, with µ1 drawn from the list {0, 0.2,

0.3, 0.4, 0.6, 0.8, 1} and βϵ from {0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6} with fixed µ2 and ωw. With µ1 = 0.2

and βϵ = 0.3 selected and fixed, we then vary µ2 and ωw. We use an auxiliary parameter ω ∈ [0,1] and let

ω1, . . . , ω6 to be uniformly distributed between 1−ω and 1+ω. We vary µ2 from {0, 0,1, 0.2, 0.3, 0.4, 0.5}

and vary ω from {0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5}. We finally select µ2 = 0.2 and ω= 0.3 together with µ1 = 0.2

and βϵ = 0.3.

Adjustment from resolving aggregate model weekly. We consider another variation to solve the aggre-

gate model every week. We conduct experiments on three adjacent 6-week staffing cycles between July 31

and December 3, 2022. We compare three alternatives: (1) Current schedule. (2) The model is solved every

6 weeks and generates a schedule for each 6-week staffing cycle. This requires solving the model three times

for the three staffing cycles. (3) For each staffing cycle, the model is resolved every week using the training
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(a) Daily Number of Shifts. (b) Daily Insufficiency.

Figure A4 Change from Resolving Weekly during Three Staffing Cycles.

Table A2 Average Daily Results and Change (δ) from Current Schedules on Three Staffing Cycles during July

31 - December 3, 2022.

Schedule approach Cost [δ] Insufficiency [δ] δz from current δz by week

Current 66 1.85 0 0
Solve every 6 weeks 61.67 [-6.57%] 1.59 [-13.86%] 4.71 [7.14%] 0
Resolve weekly 62.37 [-5.51%] 1.39 [-24.83%] 4.26 [6.46%] 2.08 [3.33%]

data one week later and update the schedule for the remaining weeks of the cycle. This involves solving the

model 18 times for the 18-week period.

For each week, we compute the average number of daily shifts and average daily insufficiency during that

week’s schedule, and plot the three variations during the time period in Figure A4. Resolving the model

weekly changes in staffing levels from week to week and leads to improved insufficiency in most weeks. We

summarize the average daily metrics among the 18 weeks for the three alternatives in Table A2. On average,

resolving weekly changes the staffing levels by 2.08 shifts from week to week. This would require the nurse

leadership to ask several nurses to request shift changes from their pre-arranged schedule. Solving the model

every 6 weeks (resp. every week) on average changes the staffing levels from the current schedule by 4.71

(resp. 4.26) shifts. In return, resolving weekly can reduce the shortage of nurse-shifts to meet target nurse-

patient-ratios by 24.83% from the current schedule, which is larger than 13.86% reduction by solving the

model every 6 weeks. The benefit of reducing insufficiency is particularly useful for this period when the ED

is extremely understaffed and is achieved with 5.51% (resp. 6.57%) less staffing cost from solving the model

every 6 weeks (resp. every week).
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