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Abstract
The investment decisions of energy-intensive consumers can alter the balance of 
supply and demand in an electricity market. In particular, they can increase the mar-
ket power of incumbent generators such that prices may increase as a consequence 
of their investments. Whilst it is therefore intuitive that such investors will wish to 
consider their effects on the market, it is a challenging problem analytically and one 
that has been under-researched. In general, the problem can be manifest in any sup-
ply chain where demand-side investments influence endogenous price formation 
in the intermediate product markets. Theoretically, we show how the presence of 
producer market power decreases demand-side investments and then, computation-
ally we formulate a quad-level program to model the operational implications for 
a demand-side investor in more detail. With an innovative reduction in complexity 
to a bilevel model, an efficient solution algorithm for the optimal investment by a 
demand-side investor is facilitated. We demonstrate computability on a small scale 
electricity system and the results confirm the theory.

Keywords Electricity market · Demand investment · Bayesian Nash equilibrium

1  Motivation

The cost of electricity is a crucial input factor for many energy intensive indus-
tries and services. As a consequence, investment decisions on desirable locations 
for these enterprises have always looked carefully at the prospects for sustained low 
prices. Often, this has meant proximity to resources. Thus, we have seen aluminum 
factories located in countries with plentiful hydro, e.g. Norway, Canada or New 
Zealand, or surplus nuclear power, e.g. France, or geothermal springs, e.g. Iceland. 
Going forward we may see more data centers in these locations as well perhaps as 
new hydrogen hydrolysers located close to plentiful renewable energy facilities. This 
is quite natural and intuitive. Thus, Michielsen (2013) observed that energy prices 
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are more important than capital and skilled labor for the location of manufacturing 
industries in the US, whilst (Panhans and Hanley 2017) reports similar findings for 
the EU. Furthermore, at a local level, transmission constraints and market structure 
have similar influences. Thus, location-specific pricing has been implemented in 
some electricity markets in part to incentivize energy intensive users to be attracted 
to the less constrained locations in the supply network. However, price considera-
tions do not only depend upon the local proximity of resources. They also depend 
upon the market structure in the generation sector and the market power of genera-
tors. Evidently, the reason regulators sometimes attempt to limit the exercise of gen-
erator market power is to benefit consumers (Cretì and Fontini 2019). Indeed, active 
lobbying by large industrial consumers has often been the prompt for regulators to 
intervene. Thus, in considering the prospects for sustained low prices, infrastructure 
and market structure will also be important factors for large consumers and retail-
ers, especially if they doubt the strength of market regulation to act strongly and 
in a timely manner. In this context, whilst there has been an extensive literature on 
imperfect competition through the exercise of market power by generators (Hesa-
mzadeh and Biggar 2012; Downward et al. 2010; Murphy and Smeers 2010), there 
has surprisingly been very little formal analysis on how the prospects of genera-
tor market power may influence the investment < 1 > behavior of large consumers 
(Shin and Tunca 2010). Intuitively it is self-evident that a wholesale market with 
high prices will be unattractive to consumers, and vice versa. However, a market 
in which generators have not been raising prices may appear benign, but it may be 
easily disturbed by the introduction of new consumer investment. The demand and 
supply balance could thereby be altered so that generators acquire more ability to 
influence market prices because of the investments on the demand side.

Whilst the electricity supply chain can present a particularly acute manifestation 
of this effect, in fundamental terms this is a general property of supply chains in 
which products are traded through intermediate markets which have the potential 
for producer market concentrations to emerge endogenously. Examples in manufac-
turing are where assembly facilities may be attracted to locate in areas with ready 
access to components or in food processing where processing factories are close to 
the agricultural supplies or in services where the locations already have the skilled 
professionals. All these investments could influence the market prices for the sup-
ply of resources which attracted them in the first place. In this general context, 
various strategies for upstream producers to acquire market power through verti-
cal and horizontal investments have been extensively researched by economists for 
many years [ < 1 > e.g. Laffont and Tirole  (1993)], as well as models for invest-
ment under uncertainty having been a classic problem within operations research 
and real options [ < 1 > e.g. Dixit et al. (1994)]. In fundamental terms, the princi-
ple of changes in demand influencing price is elementary. The subtle point is that 
demand-side investment may be attracted because of low prices, but in doing so may 
increase the prices. Furthermore, the development of practical capacity planning 
methodologies for a demand-side investor to model its anticipated endogenous effect 
on the upstream market power of producers remains apparently under-researched. 
Appropriate formulations in which the demand functions depend upon prospective 
demand-side investments are analytically challenging but, nevertheless, represent an 
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important consideration in practice. We seek to pursue this requirement and in par-
ticular address the following conjectures: 

1. A substantial demand investor will face higher prices in a market with imperfect 
competition than would have been apparent before the investment.

2. It is possible that a market without substantial market power will have substantial 
market power because it has attracted demand investment.

3. A demand investor will find it optimal to invest less than it would have intended 
if an analysis of its effect on generator behavior is considered.

< 9 > In practical world the generator side investment and operations are heavily 
dependent on the long term demand forecasts. This is evident from various national 
grid strategies like (AEMO, Infrastructure  Sweden), and (Power  India). However, 
the least cost plan as anticipated might not always happen due to various reasons. 
One reason being influence of market power in the system (CAISO), which is stud-
ied in this paper. Market power influences could hike the prices in the system and 
this might slow down the demand side investments (IEA). The consumer could 
anticipate the market power influences due to historical precedence set by generator 
or a future-looking analysis and could either reduce or delay demand side invest-
ments (Global). At this point the investments made by generators could be at risk 
as the reduction in demand side investments will play into their forecasted market 
volumes. The demand investment and strategic operation of generators happen at 
different time scales. The demand investor will always look at historical strategic 
behavior of generators (lagged signal) and make an anticipating price forecast (lead-
ing signal) to decide on optimal demand investments. Note that time scales at which 
the demand investment and strategic operation decision are made are different. The 
demand investment preludes the future strategic operation of the generators and 
therefore a Stackelberg model is adopted in this paper with consumer as the leader. 
The leading price forecast signal embodies all possible threats and anticipations 
about the future grid that demand investor considers. The anticipating threat has 
influenced and deterred demand side investment in real world as seen in (Global). 
This is the motivation of modeling the demand investor as a leader (speculative 
of the grid operation in future) in the Stackelberg game. The literature on genera-
tion investment considering market operation models the investment and operation 
at two different levels like (Wogrin et al. 2011) and (Wogrin et al. 2012), and one 
might also draw analogy from there to the two-level model approach taken in this 
paper between demand side investment and strategic operation.

We provide theoretical insights to the above questions. Then, we develop 
a detailed model to represent how in practice a large demand-side investor can 
anticipate the price formation it may induce in the market model and thereby 
determine its optimal investment. This leads to a Bayesian Nash market model 
of imperfect competition, formulated as a quad-level program. A methodological 
contribution is in the reduction of this to an equivalent bilevel mixed-integer lin-
ear program for computational tractability. This, in turn, determines the optimal 
investment of an energy intensive commercial consumer.
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The context of this research is therefore in general terms within the themes of 
investment and imperfect competition in supply chains. We look at the electricity 
supply chain case in detail, not only because energy supply chains are, in them-
selves, crucial to economies and society, but the nature of the product and its deliv-
ery through a network make it particularly susceptible to this general problem. 
Traditionally, demand has been modeled as a passive consumer in power system 
models. The social surplus maximization based models started treating the active 
participation of consumer demands in operational power system models. To the best 
of the authors’ knowledge this is a first attempt in analyzing the participation and 
investment by consumers in a long-term investment model in the context of imper-
fect competition. The paper shows that the imperfect competition equilibrium can 
be impacted by the congestion levels in the system. This in-turn translates into a 
relation between the congestion levels and demand-side consumer investment levels.

2  Background context and research

Whilst research on the behavior of generators with market power is very extensive, 
our perspective starts from an observation (Biggar 2009) that the conventional eco-
nomic analysis tends to assume that the demand-side is essentially passive, that cus-
tomer behavior is summarized in the demand curve. However, in the presence of 
market power, downstream customers are concerned with the risk that, once they 
have made the investment, market power by generators may lead to an increase in 
price with a consequent loss in the value of that investment. Consequently, these 
customers may be deterred from making the necessary investment in the first place. 
Thus, while the short-term demand response of consumers with sunk investments 
may be quite inelastic, in the longer term, their investments may be very price sensi-
tive. As an example, the Tasmanian Electricity Supply Industry Expert Panel refer-
ences just these kinds of effects in its final report.1 They write:

The Panel has concluded that robust, long-term competition in the retail mar-
ket requires the participation of large nationally-based retailers, such as AGL, 
Origin, TRUenergy and Alinta, along with smaller niche retailers. How-
ever, these retailers have indicated they are unlikely to enter Tasmania in the 
absence of more competitive retail and wholesale market structures. They are 
clearly unwilling to enter if it means relying on the benign future strategy and 
conduct of Hydro Tasmania which would be capable of unilaterally stranding 
their entry investments if it chose to do so. In summary, the Panel’s view is 
that the development of a competitive retail market in Tasmania is constrained 
by the market structure in the wholesale energy market. This market structure 
means that there is significant additional risk, and potentially cost, for retailers 
to enter and operate in Tasmania compared to market opportunities elsewhere.

1 http:// www. elect ricity. dpac. tas. gov. au/.

http://www.electricity.dpac.tas.gov.au/
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In this quote, the expert panel emphasizes a possible deterrent role to the entry of 
the larger mass-market retailers, but it also recognizes that similar arguments apply 
to electricity consumers. Latent market power can harm the long-term development 
of competition in the wholesale and retail markets. The presence of a generator with 
latent market power may act as a disincentive to investment by large consumers, 
retailers, or even other generators. This may occur as follows: Consumers and retail-
ers may be concerned that if they invest in a market in which generators have latent 
market power, generators will exercise that power once the consumer or retailer 
enters and its investments are sunk. Whether potential new entrants’ concerns are 
real or perceived matters little, to the extent those concerns deter entry into the mar-
ket, it will result in long term damage to the market’s competitive processes.

It is evident that this perspective is fundamental to the decisions of regulators and 
policymakers, to the extent that their primary economic concern is not the minimi-
sation of deadweight loss, but rather a desire to protect the sunk investments by cus-
tomers. Thus, in the UK, the regulator states that its primary duty is to protect the 
interests of existing and future consumers.2

Looking at the background research on this theme, as it related to electricity, 
He et  al. (2015) and Bragança and Daglish (2017) observed that demand invest-
ment has to be modeled as a strategic expansionary move for a profit maximizing 
retailer or large consumer, appealing to the economic principle that market structure 
determines market conduct and ultimately prices [ < 1 > e.g. Fudenberg and Tirole 
(1989)]. Similarly, Poletti et  al. (2015), Rassenti et  al. (2003) and Nasser  (1997) 
suggest that strategic demand investments can lead to new market power scenarios. 
The research contribution of our work is not primarily about market power but the 
potential for market power to emerge is a crucial ingredient. Thus, more widely there 
is substantial research on the investment impacts of the exercise of market power by 
generators related to network and generation assets [ < 1 > e.g. De  Vries  (2005), 
Tohidi et al. (2016), and Agency  (2003)] and, in particular, somewhat related to the 
theme of our work, Murphy and Smeers (2010), noted that if high prices stimulate 
new generation investment and these are due to the exercise of market power by 
incumbent generators, then any future generation investment will not generate the 
predicted revenues based on existing prices, since the capacity investments will alter 
the market structure.

Turning to modeling market power in electricity markets more generally, it can be 
studied by computing the non-cooperative equilibrium in wholesale market operation 
and comparing it to the cooperative efficient market case. To this end, Pereira et  al. 
(2005), Barroso et al. (2006), Hu and Ralph (2007), Hesamzadeh and Biggar (2012) 
and Steeger and Rebennack (2015) propose Mixed Integer Linear Programs (MILPs) to 
calculate the market equilibrium in electricity wholesale markets. Reference Hesamza-
deh and Biggar (2012) extends the computation of equilibrium in electricity markets to 
analyze the effect of horizontal mergers between the Gencos on the market prices and 
equilibrium. Authors in Hesamzadeh and Biggar (2012); Hobbs et al. (2000) and Hu 
and Ralph (2007) discuss the market equilibrium under oligopolistic conditions while 

2 https:// www. ofgem. gov. uk/ about- us/ our- prior ities- and- objec tives.

https://www.ofgem.gov.uk/about-us/our-priorities-and-objectives
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assuming that the market participants have complete information about their rivals. 
However, the assumption of complete information may not be valid in practice. Thus, 
for example, Tongia et  al. (2017) show that there is a lack of complete information 
about the market participants in the Indian and Australian markets. Reference Léautier 
(2019) shows that the market equilibrium may be affected by incomplete information 
and, as a consequence, Léautier (2001), Li and Shahidehpour (2005) and Acemoglu 
et al. (2017), Moiseeva and Hesamzadeh (2017), propose the computation of Bayesian 
Nash equilibria.

The quad-level mathematical model presented in the paper is fairly new and a few 
works in literature have attempted similar quad-level models. Reference Ramyar and 
Chen (2020) presents a Leader-follower equilibria for power markets in presence of 
prosumers. It presents a Mathematical Program with Equilibrium Constraints (MPEC) 
with Wolfe’s duality to find the Stackelberg equilibria, and concluded that for a pro-
sumer it was always beneficial to be in a Stackelberg Game as a leader than a simulta-
neous competition game. In this paper the consumer is modeled as a Stackelberg leader 
to influence the best demand side investment strategy. Reference Bjørndal et al. (2023) 
presents a quad-level Stackelberg game to analyze the market power exercised by a 
monopolistic energy storage system operator on short term markets (day-ahead market 
and real-time balancing market). Authors in Shivaie et al. (2020) present a quad-level 
vulnerability-constrained model for coordination of generation and transmission invest-
ments. In the power sector literature such quad-level problems are under researched and 
are difficult to solve. In this context, the models proposed in the current paper are one 
of the early works to analyze the effect of market equilibrium on consumer investment 
behavior.

The current paper therefore develops its new analysis as follows. Section 3 < 1 > 
introduces the assumptions and the preliminary concepts needed for the theoretical 
results in Sect. 4 and for the quad-level mathematical program in Sect. 5. A computable 
algorithm for solving the required bilevel MILP is presented in Sect. 5. The computa-
tional results using IEEE 14-node system are presented in Sect. 7. Section 8 concludes.

3  Fundamentals and problem definition

In this section, we discuss the following: 

1. Underlying assumptions for the model presented and their rationale < 1 >.
2. An introduction to Demand Side Investment problem and its modeling premise.
3. Market Clearing Model—Objective and constraints
4. The final quad-level problem set up and interactions between: Demand Side 

Investment Problem, Market Clearing model and Strategic Generator models.
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3.1  Assumptions

Assumption 1 The consumers buy electricity and enjoy a utility w.r.t. demand 
consumption ds for all scenarios s ∈ S . This utility function is approximated by a 
linear function (Fig. 1a green curve) 

where D is the demand. The marginal utility (Fig. 1b green curve) is then simply 
given by

The generator n ∈ N  serves the demand in the system incurring a cost for produc-
tion. This cost function is approximated by a linear function (Fig. 1a red curve) in 
the generation levels gn,s

with installed generation capacity G. The marginal cost (Fig. 1b red curve), is then 
given by

Assumption 2 The generators and demands submit their supply and demand 
functions (which are not necessarily their true marginal cost and utility functions) to 
a market operator, respectively. Based on the received functions, the market operator 
dispatches the generators and loads, while maximizing the social benefit. This step 
is called market clearing and since it leads to physical dispatch we refer to it as the 
spot market (SM). The ISO solves an optimization problem and publishes the market 
prices �s and the volumes cleared for generation gn,s and consumption ds.

Further, we assume that 

(1a)u(ds) ∶ [0,D] → Us ds, ∀s ∈ S,

(1b)u�(ds) ∶ [0,D] → Us ∀s ∈ S.

(1c)c(gn,s) ∶ [0,G] → Cn,s gn,s ∀n ∈ N, s ∈ S,

(1d)c�(gn,s) ∶ [0,G] → Cn,s ∀n ∈ N, s ∈ S.

Fig. 1  a Utility and Cost functions, b Marginal utility and Marginal cost functions (colour figure online)



 P. P. Verma et al.

1 3

   36  Page 8 of 56

 This is a reasonable assumption because if Us < Cn,s , then zero generation and zero 
consumption is optimal in the SM.

In this paper, we compare the case of perfect competition (PC) and imperfect 
competition (IC).

Assumption 3 (Léautier 2019; Nasser  1997) In PC, the generators submit their 
true cost functions to the ISO in the SM (Steeger et  al. 2014). In contrast, in IC 
the generators can submit a “modified" cost function, called price offer (PO), with 
the aim to maximize their profits by influencing the SM prices. A regulatory body 
imposes a market-power mitigation policy on the generators, enforcing the slope of 
the offer function bn ∈ [B,B] for n ∈ N .

Following Assumption 2, we assume that 

 This assumption ensures that the regulatory body has protected the consumers to 
some extent from being exploited even if the market becomes extremely monopolis-
tic in nature. We further assume that Cn,s ≤ B for all n ∈ N  and s ∈ S.

Assumption 4 (Schöne 2009) For ease of discussions, we assume w.l.o.g. that all 
generators have equal generation capacities G.

Assumption 5 The generation capacities G is public information, being disclosed 
for their grid connection agreements, whilst the cost functions of the generators 
remain private. It is assumed that the system has enough generation resources to 
support any future load increment over the planning horizon. In case of transmission 
congestion, we assume that all demand can be served.

Assumption 6 (Biggar and Hesamzadeh 2014) In anticipation of the utility to be 
acquired over a planning horizon T, the consumer makes investments to create the 
load. The consumer incurs a cost for these sunk investments I(D). The investment 
cost function I(⋅) , is a monotonically increasing and differentiable convex function 
in D.

Assumption 7 (Nasser  1997) Typically in SMs, the generators can submit both price 
and volume offers, but the modeling issue is whether competition is predominantly 
in the price or quantity offers. We assume that the competition is predominantly in 
price offers. This leads to a Bertrand game between the generators with imperfect 
information (Assumption 5). The unknown true costs of competing generators are 
approximated by a probability distribution.

(2a)Us ≥ Cn,s ∀n ∈ N, s ∈ S.

(3a)Us ≥ B ∀s ∈ S.



1 3

Optimal investment by large consumers in an electricity market… Page 9 of 56    36 

3.2  Problem setup < 3 >

The consumer needs to decide on the demand investment D. The corresponding opti-
mization problem (DSI) is given by (4). In order to obtain an optimal D, the consumer 
needs to know the electricity prices �s . This information is provided by the ISO, solv-
ing (SM)s for all scenarios s ∈ S . < 2 > The scenario index s represents the uncer-
tainty in the grid. The probability of each scenario s is represented by �s . The ISO itself 
needs to know the bids bn,s of all generators n ∈ N  for all scenarios s ∈ S.

In PC, according to Assumption 3, all generators n ∈ N  submit their true cost Cn,s 
for all scenarios s ∈ S . Thus, the demand investment problem becomes a two-level 
leader-follower Stackelberg game, cf. Sect. 3.3 and Fig. 2. In IC, the electricity price 
bids are made by the N strategic generators n ∈ N  , who play a Nash game against each 
other. The Nash equilibrium is obtained by a bilevel optimization problem, leading to a 
quad-level optimization problem when combined with the leader-follower Stackelberg 
game. This is illustrated in Fig. 2.

In the following paragraph we describe the framework of the quad-level problem 
set up. Any multi-level (quad) optimization problem is a series of nested optimization 
problems (a four level nested problem is called quad-level optimization problem). This 
would usually take the form ( fi and xi correspond to the ith level objective and decision 
variable respectively):

min.
x1

f1(x1, x2, x3, x4)

{x2, x3, x4} ∈ arg.{min.
x2

f2(x1, x2, x3, x4)

{x3, x4} ∈ arg.{min.
x3

f3(x1, x2, x3, x4)

{x4} ∈ arg.{min.
x4

f4(x1, x2, x3, x4)}}}

Fig. 2  Quad-level optimization framework
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As mentioned previously, the DSI problem is where consumer decided on demand 
investment D. As in Fig. 2, this forms the first level optimization problem. The D is 
passed on to a second level problem (SM), we note via the arrow bypass in Fig. 2, 
that this stage is not directly influenced by D. Rather D influences the third and 
fourth level problem (strategic generator’s profit maximization and generator’s view 
of spot market based on rival’s true cost assumptions). It is important to note here 
that Level III and Level IV problems together form a Bayesian Nash Equilibrium 
problem between strategic generators as we will see ahead in this paper. D influences 
the price offers that is discovered in the Bayesian Nash Equilibrium (Level II and 
IV), which influences prices discovered in Spot Market (Level II), and this in-turn 
again feedback influence on DSI (Level I) (Table 1).

3.3  Demand side investments

We formulate the Demand Side Investment (DSI) problem as an anticipatory invest-
ment decision, in which the consumer invests to install new load D. The consumer 
then pays a price �s when consuming electricity ds for demand scenario s ∈ S . Price 
�s is determined by the ISO. We discuss the corresponding optimization problem for 
the ISO in Sect. 3.4.

This leads to a leader-follower Stackelberg game. The pro-active consumer is 
a leader who decides the demand investments (thus dictating D). This D becomes 
an input for the SM stage (follower). At the SM stage, the ISO dispatches the 
generators based on their POs. The follower stage is an horizontal equilibrium 
of all generators (based on POs) and the SM dispatch by ISO. As D changes, the 

Table 1  Nomenclature for Sects. 3 and 4

Symbol Description Original level

Indices
n Index for strategic generators
s, �s Index for stochastic scenarios and probabilities
l Index for lines
T Planning horizon
Parameters
Cn,s True cost of generators

B Upper limit on price offers $∕MWh

Us Customer utility function Level I
I(.) Investment cost function
Kl Line limits MW
Variables
bn,s Price offer $∕MWh Level III
D Demand Side Investment made MW Level I
ds Demand side consumption MWh Level I, II
Cs(bn,s, ds) = �s Marginal Price $∕MWh Level II
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price estimates from the SM also change and with that also the horizontal PO 
equilibrium among the generators. At a complete equilibrium, the leader-follower 
Stackelberg game (between the consumer and ISO) and simultaneous move game 
(between strategic generators submitting their POs to ISO) are in equilibrium. 
This is illustrated in Fig. 2.

For given prices �s for all scenarios s ∈ S , the consumer solves the following 
convex optimization problem: 

 The DSI objective (4a) is the expected value of the net benefit over T periods from 
consumption across all stochastic scenarios, with the sunk investment cost of the 
consumption resource excluded. This is the net long term expected benefit for the 
consumer due to the DSI level D. The constraint (4b) restricts the consumption level 
with the lower and upper bounds (where the upper bound is dictated by variable D). 
Cs(bn,s, ds) = �s represents the marginal cost from SM stage of the ISO. Unless one 
of the cost setting generators is also capacity constrained in the SM, one can assume 
that in the close neighbourhood of ds : < 2 > �Cs

�ds
= 0 (MOSEK  2020). We can there-

fore replace Cs(bn,s, d
∗
s
) with C∗

s
 at optimality.

The following proposition characterizes an optimal investment level.

Proposition 1 An optimal demand side investment levels D of (4a)–(4b) is 
proportional to the expected gap between marginal demand utility and market price, 
specifically,

Proof See “Appendix 1”   ◻

Proposition 1 is important for us because it provides a characterization of the 
optimal investment level D for changes in prices C∗

s
 . Specifically, if C∗

s
 increases 

for all s ∈ S due to market power exploitation, then at optimality, I�(D) decreases. 
With that, the optimal investment level D decreases due to Assumption 6.

3.4  Market clearing

In this subsection we focus on the creation of Cs(bn,s, ds) . Together with the con-
sumer’s installed load capacity D and the POs bn,s of the generators n ∈ N  and 
scenarios s ∈ S , the ISO solves the following dispatch problem as a linear optimi-
zation (LO) problem for all scenarios s ∈ S : 

(4a)(DSI) max
D,ds

T( �
[
(Us − �s)ds

]
) − I(D)

(4b)s.t. �s�s ∶ 0 ≤ ds ≤ D ∶ �s�s, ∀s ∈ S.

(5)I�(D) = T
∑

s∈{s ∶ s∈S & Us≥C∗
s
}

�s(Us − C∗
s
).
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 The objective function (6a) maximizes the utility minus the sum of generation 
cost, as a function of the price bids bn,s , whilst the constraint (6b) balances demand 
and generation for the given scenario s. The transmission constraints are modeled 
through a ‘DC-Power Flow’ model in constraints (6c). Lower and upper bounds on 
demand and generation are modeled by constraints (6d) and (6e), respectively. The 
variables associated with each constraint are the corresponding dual variables of the 
LO problem. For example, �s is the spot market price paid by the consumer and paid 
to the generator(s). We choose a simple transmission model to demonstrate the mar-
ket power effects on demand investment. A more accurate model would involve the 
non-convex AC power flow constraints (Frank and Rebennack 2016) which is out-
of-the scope of this study.

It is important to show that the price signals and consumption levels in SM 
(6a)–(6e) are equal to the variables in DSI (4a)–(4b). If this equality is not 
ensured, then the DSI will have a false estimate of the anticipatory utility it 
would acquire.

Proposition 2 �s and ds values in SM (6a)–(6e) and in DSI (4a)–(4b) are equal.

Proof See “Appendix 2”.   ◻

< 3 > It is important to note that due to Proposition 2, the calculation of ds 
can be determined either via SM or DSI (with a sharing of variable between the 
two problems). This observation is used in two different ways in this paper:

• In proofs related to Sect. 4, we use SM (also referred to as optimal dispatch 
later) to determine the ds.

• In formulations related to Sect. 5, we use DSI to determine the ds.

Therefore Proposition 2 is the key to linking the analytical section of this paper 
with the numerical formulation sections.

(6a)(SM)s max
gn,s, ds

Usds −
∑
n∈N

bn,sgn,s

(6b)s.t.
∑
n∈N

gn,s = ds ∶ �s

(6c)�l(gn,s, ds) ≤ Kl, ∀ l ∈ L

(6d)�D
s

∶ 0 ≤ ds ≤ D ∶ �D
s

(6e)�G
n,s

∶ 0 ≤ gn,s ≤ G ∶ �G
n,s
, ∀n ∈ N.
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4  Analytic results for special cases

In this section, we discuss the following: 

1. Analytic closed form solution to market prices in no congestion case.
2. Analytic closed form solution to price offers by strategic generators in no con-

gestion case (monopoly, duopoly and generalized to oligopoly)—{Perfect and 
Imperfect Competition}.

3. Analytic closed form solution to market prices in 3-node congested case.
4. Analytic closed form solution to price offers by strategic generators in congestion 

case (duopoly)—{Perfect and Imperfect Competition}.

4.1  No transmission network constraints

We consider three different cases: (1) One-generator system, (2) Two-generator sys-
tem, and 3) N-generator system. For the general N-generator system (with N > 2 ), 
we restrict our discussions to the case where D ≤ G.

In the case of no transmission network constraints, (6c) are not binding in (SM)s . 
We refer to this LO problem as (SM)NT

s
 . This has the implication that ds = D in any 

optimal solution of (SM)NT
s

 for any scenario s ∈ � , due to Assumptions 3 and 5. We 
can consequently fix the consumption level ds = D for the discussion around the no 
transmission case.

An optimal SM price, in case of no transmission restrictions, is given by

Corollary 3 An optimal dual variable �s , associated with constraint (6b) of (SM)NT
s

 , 
for scenario s ∈ S is given by 

for the one-generator system and

for the two-generator system and

 for the N-generator system for 0 < D ≤ G.

We provide a formal proof in the “Appendix 3 and 4”. Equations (7a)–(7c) 
are intuitive, as the SM price is the shadow price associated with constraint (6b), 
which is (loosely speaking) the reduction in the objective function value when the 
right-hand-side of (6b) is increased by 1 unit. The results of Corollary 3 are further 

(7a)�s =b1,s

(7b)𝜇s =

{
min{b1,s, b2,s}, 0 ≤ D < G

max{b1,s, b2,s}, G ≤ D < 2G

(7c)�s =min
n∈N

bn,s
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illustrated in Fig. 3. The price �PC
s

 is the y-axis projection of the equilibrium point 
(marked by ×).

4.1.1  Perfect competition—the base case

In PC, as mentioned in Assumption 3, the strategic generators submit a PO equal to 
their true marginal cost Cs . From Corollary 3, we thus obtain for scenario s ∈ S for 
the 1-generator system 

for the 2-generator system

and for the N-generator system

for the case that D ≤ G.

(8a)�PC
s

=C1,s,

(8b)𝜇PC
s

=

{
min{C1,s,C2,s}, 0 ≤ D < G

max{C1,s,C2,s}, G ≤ D < 2G

(8c)�PC
s

=min
n∈N

Cn,s

Fig. 3  a 1-Generator system, b 2-Generator system 0 ≤ D < G , c 2-Generator system G ≤ D < 2G , d 
N-Generator system
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4.1.2  Imperfect competition with market power

In IC, the optimal PO of the generators can vary in the range [B,B] with 
0 < B < B < U (cf. Assumption 3). According to Assumption 5, the true cost of 
rival generators, Ci,s with i ∈ N⧵{n} , is unknown to generator n. Following Li and 
Shahidehpour (2005), generator n estimates the joint probability distribution of all 
other generators’ cost functions. This estimate is a market-wide, rational expecta-
tion, given by F(⋅) . We do not consider strategic generators with heterogeneous 
beliefs, with Fn() corresponding to the nth strategic generator. The rational expecta-
tions distribution F(⋅) is discussed and used in a similar context by Nasser  (1997). 
“Appendix 5 and 6” reiterate important properties of F(⋅) as discussed in Nasser  
(1997). Now we discuss the price offer strategy.

Proposition 4 < 4 > The optimal PO in oligopoly, for 0 ≤ D ≤ G

The proofs for special monoploy and duopoly cases are given in the “Appen-
dix 7 and 8”. The arguments for the oligopoly case are similar to “Appendix 8”. 
The proofs are adapted from Nasser  (1997). The inequality bn,s ≤ B follows from 
“Appendix 9”. The integral terms in Proposition 4 reveal the effect of imperfect 
competition. This shows that the price offers will be above the true cost of genera-
tors and as discussed in “Appendix 9” are strictly greater than zero if F(.) has a posi-
tive mass distribution. The corresponding SM prices, �IC

s
 , are then obtained by com-

bining Proposition 4 with Corollary 3.

4.2  With transmission network constraints

We now consider the case of transmission congestion for the following two topolo-
gies, with two generators each: 

1. Two-node system (with one line),
2. Three-node system (with three lines).

The two systems are shown in Fig. 4.
For the two-node system, congestion occurs for K < min{D,G} and b1,s < b2,s for 

scenario s ∈ S . For simplicity, we assume K < D ≤ G . In the three-node system, the 

bn,s = Cn,s + ∫
B

Cn,s

[ 1 − F(t)

1 − F(Cn,s)

]N−1
dt ∀n ∈ N.

Fig. 4  a Two-node system, b 
three-node system
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grid is congested if K <
D

3
 (Biggar and Hesamzadeh 2014; Nasser  1997). We also 

assume that D ≤ G . This leads to the following

Proposition 5 For scenario s ∈ S , the locational marginal price is given by

for a two-node system with transmission line capacity K < D ≤ G , and

in a three-node system with transmission line capacity 3K < D ≤ G.

See online “Appendix 10 and 11” for the proof.

4.2.1  Perfect competition—the base case

As in the case without transmission constraints, the generators bid at their mar-
ginal (true) cost Cn,s . Together with Proposition 5, this leads the SM prices �PC

s
 with 

congestion.

4.2.2  Imperfect competition with market power

Note that in the two-node system, the SM price is dictated by the PO of generator 
two (cf. Proposition 5). Because this is a strategic bidding problem, generator two 
faces a trade-off between a high price at low dispatch quantity ( D − K ) and a low 
price at high dispatch quantity (D). This trade-off is the reason why a PO of B is not 
optimal, in general.

Proposition 6 The optimal PO 

1. in the two-node system duopoly by generator two is for K < D ≤ G

2. in the three-node system duopoly for 3K < D ≤ G and for n = 1, 2 is 

       where q =
D+3K

2
.

We refer to the “Appendix 12 and 13” for the proof.

�s = b2,s

�s =
b1,s + b2,s

2

b2,s = C2,s + ∫
B

C2,s

D − KF(t)

D − KF(C2,s)
dt.

bn,s = Cn,s + ∫
B

Cn,s

q − 3KF(t)

q − 3KF(Cn,s)
dt,



1 3

Optimal investment by large consumers in an electricity market… Page 17 of 56    36 

4.3  Market power negatively affects demand investment

We are now ready to derive our main result. Due to Proposition 1 and equation (5), 
an increase in the SM price �s leads to a decrease in optimal demand investment D. 
This increase in the SM price in case of IC is stated in < 1 > the following Lemma.

Lemma 7 The SM price, �IC
s

 , in presence of imperfect competition exceeds the SM 
price, �PC

s
 , in presence of perfect competition, i.e.,

for the one-, two- and N-generator system (with D ≤ G ) without transmission and, 
in case of congestion, for the two-node system ( K < D ≤ G ) and three-node system 
( 3K < D ≤ G)).

The proof is given in “Appendix 14 and 15”.
With that, we obtain the main theoretical result of this paper:

Theorem  8 The optimal demand investment, DIC , in presence of imperfect 
competition is lower than the optimal demand investment, DPC , in presence of 
perfect competition, i.e.,

for the one-, two- and N-generator system (with D ≤ G ) without transmission and, 
in case of congestion, for the two-node system ( K < D ≤ G ) and three-node system 
( 3K < D ≤ G )) when considering a convexity of demand investment costs. < 8 >

For the proof, we refer to “Appendix 16”.
Note that Theorem  8 implies that the presence of market power alone leads 

to a decrease in demand investment. The crucial implication is that the strategic 
generators do not even have to exercises market power in order for the decrease 
in demand investment to occur. The threat alone has this impact on demand 
investment.

5  Modeling general systems of N strategic generators

In this section we discuss the following: 

1. Bilevel problem of a strategic generators to find optimal price offers (Level III 
and IV)

2. Bayesian Nash Equilibrium build up from the bilevel problems and its MILP 
reformulations (Level III and IV)

(9)𝜇IC
s

> 𝜇PC
s

∀s ∈ S

(10)DIC < DPC
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3. Demand Side investment problem and interaction with BNE (Level I and II—with 
BNE) and its mixed integer bilevel reformulation

In the table below we enumerate key variables, parameters, and indices that can 
guide as a quick reference. These are further explained in context ahead in detail 
(Table 2).

5.1  Strategic price offer of a single generator

A single strategic generator n ∈ N  solves the following bilevel optimization problem 
{BLP}s,n for a given scenario s ∈ S : 

(11a)max
bn,s

∑
z∈Zn

𝜌z(�̂�s,n,z − Cn,s)gn,s,z

Table 2  Nomenclature for Sect. 5

Symbol Description Original level

Indices
n, i, e, y Strategic generator indices—alias
z, �z Rival cost estimate scenario index and corresponding probability
s, �s Uncertain demand utility scenario index and corresponding probability
l Lines index
k Discretization index
∫ Index of strategies formed by combination of �
Parameters

B Upper limit parameter for strategic price offer $∕MWh Level III

Fl Line limits paramater MW Level IV
� Discretization step parameter of price offer Level III

G Max capacity of generators MW

Variables

bn,s, b̂i,s,z Strategic price offer variables ( ̂.  corresponds to rivals) $∕MWh Level III

𝜆s,z, �̂�s,n,z Market clearing price and Locational Marginal Price variables $∕MWh Level IV

�i,s,z,�i,s,z Dual variables of the generator capacity limits $∕MW Level IV
gn,s,z Generation variable MWh Level IV

Dy
Demand side investment variable MW Level I

Di,s Demand consumed by consumer MWh Level I
Hl,i Power Transfer Distribution Factor parameter Level IV
�l,s,z,�l,s,z

Dual variables of line limits $∕MW Level IV
𝛾k,n,s, �̂�k,i,s,z Discretization binary variable for price offer ( ̂.  corresponds to rivals) Level III
Γk,n,s,z Auxiliary variable replacing a bilinear term Level III, IV
�(n)
s

Profit function corresponding
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As discussed in Sect. 4.1.2, the unknown true cost of rival generators, Ci,s with 
i ∈ N ⧵ {n} , is approximated by the distribution function F(⋅) . We assume that 
there are Z discrete value z ∈ Zn with cost b̂n,s,z having probability �z . Then, gen-
erator n ∈ N  maximizes its expected profits over all rival’s price estimates as the 
expected value of the difference of the spot market price, �̂�s,n,z , and its own true 
generation cost, Cn,s , multiplied by the dispatched quantity, gn,s,z , as formalized in 
(11a). The spot market price, �̂�s,n,z , depends on the bidding price bn,s and rivals’ 
bidding prices b̂i,s,z , given in constraints (11b). The limits of the bidding quantity 
are given by constraint (11c), reflecting Assumption 3. The SM problem, for the 
bid bn,s and all discrete values with index z ∈ Z approximating the rivals’ cost 
function, is given by the second-level optimization problem (11d)–(11h) which 
then yields the SM price needed for the first-level problem. Note that the second 
level problem decomposes into Z independent problems.

Because the second-level problem (11d)–(11h) is a linear optimization prob-
lem for given bn,s , the KKT-conditions are sufficient and necessary for optimality. 
Thus, we can re-write {BLP}s,n equivalently as the following continuous non-lin-
ear and non-convex optimization problem {BP}s,n with the collection of decision 
variables ΩBP

s,n
= 
{
bn,s, gi,s,z, �s,z, �l,s,z, �l,s,z

, �i,s,z,�i,s,z | i ∈ I⧵{n}, l ∈ L, z ∈ Zn
}
.

The non-convex, non-linear problem is a reformulation of (11) where the 
lower-optimization problem is written as the KKT conditions with strong duality. 
The only non-linear terms are the bilinear terms bn,sgn,s,z . They appear both in the 
objective function and the strong duality equation. Because both variables bn,s and 
gn,s,z are continuous, its multiplication leads to a non-convex expression which 
cannot be equivalently reformulated. Therefore, we choose to discretize the PO 
variables, because the product of a discrete variable with a continuous variable 

(11b)s.t. �̂�s,n,z = bn,s + 𝜔n,s,z − 𝜈n,s,z ∀z ∈ Zn

(11c)0 ≤ bn,s ≤ B

(11d)
{
𝜈n,s,z,𝜔n,s,z, gn,s,z

}
∈ argmin

gi,s,z

∑
z∈Zn

𝜌z

(
bn,sgn,s,z +

∑
i∈N⧵{n}

b̂i,s,zgi,s,z

)

(11e)s.t.
∑
i∈I

gi,s,z =
∑
i∈I

Di,s ∶ �s,z ∀z ∈ Zn

(11f)�
l,s,z

∶ − Fl ≤
∑
i∈I

Hl,i(gi,s,z − Di,s) ≤ Fl ∶ �l,s,z

(11g)∀l ∈ L, z ∈ Zn

(11h)�i,s,z ∶ 0 ≤ gi,s,z ≤ Gi ∶ �i,s,z ∀i ∈ I, z ∈ Zn
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can be equivalently re-formulated used big-M constructs, as both variables bn,s 
and gn,s,z are bounded.

In formulation {BP}s,n , the rivals’ PO is fixed. In this case, the terms b̂i,s,zgi,s,z are 
linear. However, we make the rivals’ PO a variable later. Therefore, we discuss the dis-
cretization bn,s ≈ �

∑
k∈K �k,n,s and b̂i,s,z ≈ 𝛼

∑
k∈K �̂�k,i,s,z together, where � =

B

|K| and 
� ∈ {0, 1} is a binary variable. This dicretization leads to problem {BPd}s,n , being an 
approximation of problem {BP}s,n : 

(12a)max
ΩBPd

s,n

∑
z∈Zn

�z

(∑
k∈K

Γk,n,s,z + �n,s,zGn − Cn,sgn,s,z

)

(12b)s.t. bn,s = �
∑
k∈K

�k,n,s

(12c)b̂i,s,z = 𝛼
∑
k∈K

�̂�k,i,s,z ∀z ∈ Zn, i ∈ I ⧵ {n}

(12d)0 ≤ bn,s ≤ B

(12e)
∑
i∈I

gi,s,z =
∑
i∈I

Di,s ∀z ∈ Zn

(12f)− Fl ≤
∑
i∈I

Hl,i(gi,s,z − Di,s) ≤ Fl ∀l ∈ L, z ∈ Zn

(12g)0 ≤ gi,s,z ≤ Gi ∀i ∈ I, z ∈ Zn

(12h)
b̂i,s,z − 𝜆s,z − 𝜈i,s,z + 𝜔i,s,z +

∑
l∈L

Hl,i(𝜇l,s,z − 𝜇
l,s,z

) = 0

∀i ∈ I ⧵ {n}, z ∈ Zn

(12i)bn,s − �s,z − �n,s,z + �n,s,z +
∑
l∈L

Hl,n(�l,s,z − �
l,s,z

) = 0 ∀z ∈ Zn

(12j)�l,s,z,�l,s,z
,�i,s,z, �i,s,z ≥ 0 ∀i ∈ I, l ∈ L, z ∈ Zn

(12k)�s,z free ∀z ∈ Zn
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 with ΩBPd
s,n

= 
{
bn,s, gi,s,z, �k,n,s, Γk,n,s,z, �s,z, �l,s,z, �

l,s,z
, �i,s,z, 

�i,s,z | i ∈ I⧵{n}, l ∈ L, z ∈ Zn
}
 . Constraint group (12m)–(12n) and (12o)–(12p) 

model Γk,n,s,z = �k,n,sgn,s,z and Γk,i,s,z = �̂�k,i,s,zgn,s,z for i ∈ I⧵{n} , respectively. b̂i,s,z are 
treated as parameters in (12). This assumption however will change as we move to 
incorporating strategic rival price offers discussed ahead in (15), and necessitated 
the dicretization via �̂�k,i,s,z and Γk,i,s,z.

We assume that the rival PO is fixed for (12). At this stage we recast the problem 
(12) in the form of an exhaustive search using set of inequalities. We enumerate the 
set of strategies defined by �k,n,s in a set Sn . The profit calculation for the strategic 
generator n is now a function of �k,n,s and �̂�k,i,s,z . Assuming rival POs are fixed (i.e. 
�̂�k,i,s,z are known), for any strategy �k,n,s the profit made by the strategic generator n is 
described by: 

 Let the different strategies in Sn be represented by {�∫n,n,s} . The profit maximization 
for strategic generator n can be written as: 

(12l)

∑
z∈Zn

∑
k∈K

(
Γk,n,s,z +

∑
i∈I⧵{n}

Γk,i,s,z

)
=

∑
z∈Zn

(
�s,z

∑
i∈I

Di,s −
∑
i∈I

�i,s,zGi

∑
l∈L

(
(−�l,s,z + �

l,s,z
)
∑
i∈I

Hl,iDi,s − (�l,s,z + �
l,s,z

)Fl

))

(12m)
− Gn(1 − �k,n,s) + gn,s,z ≤ Γk,n,s,z ≤ Gn(1 − �k,n,s) + gn,s,z

∀k ∈ K, z ∈ Zn

(12n)Γk,n,s,z ≤ Gn�k,n,s ∀k ∈ K, z ∈ Zn

(12o)
− Gi(1 − �̂�k,i,s,z) + gi,s,z ≤ Γk,i,s,z ≤ Gi(1 − �̂�k,i,s,z) + gi,s,z

∀k ∈ K, i ∈ I ⧵ {n}, z ∈ Zn

(12p)Γk,i,s,z ≤ Gi�̂�k,i,s,z ∀k ∈ K, i ∈ I ⧵ {n}, z ∈ Zn

(12q)Γk,i,s,z ≥ 0 ∀k ∈ K, i ∈ I, z ∈ Zn

(12r)�k,n,s, �k,i,s,z ∈ {0, 1} ∀k ∈ K, i ∈ I ⧵ {n}, z ∈ Zn

(13a)

PROFIT (n)
s
(

�k,n,s, �̂k,i,s,z
)

: = {�(n)
s
(

�k,n,s, �̂k,i,s,z
)

=
∑

z∈Zn

�z

(

∑

k∈K
Γk,n,s,z + �n,s,zḠn − Cn,sgn,s,z

)

(13b)(12b) − (12r)}
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 We note that in (14), we identify particular strategy �k,n,s from the set S , that maxi-
mizes the strategic generator’s profits through a set of constraints

5.2  Strategic price offer of a rival

The rival tries to optimize its PO strategies by �̂�k,i,s,z with an objective of profit maximi-
zation ∀i ∈ I ⧵ {n}, z ∈ Zn . The profit calculation for a rival generator at node e in the 
informed scenario z when the PO of strategic generator n and the other rival generators 
e| − i (including the main strategic generator n discussed in last Section) are known can 
be represented as: 

(14a)PRmax(n)
s

∶= {PROFIT (n)
s
(𝛾k,n,s, �̂�k,i,s,z)

(14b)PROFIT (n)
s
(𝛾∫n,n,s, �̂�k,i,s,z), ∀ 𝛾∫n,n,s ∈ Sn

(14c)𝜋(n)
s
(𝛾k,n,s, �̂�k,i,s,z) ≥ 𝜋(n)

s
(𝛾∫n,n,s, �̂�k,i,s,z), 𝛾∫n,n,s ∈ Sn}

(15a)

PROFIT (e,z)
s

(

�k,n,s, �̂k,e,s,z, �̂k,i|−e,s,z
)

:

= {�(e,z)
s

(

�k,n,s, �̂k,e,s,z, �̂k,i|−e,s,z
)

=

(

∑

k∈K
Γk,e,s,z + �e,s,zḠe − Ce,s,zge,s,z

)

(15b)
subject to ∶

bn,s =
∑
k∈K

��k,n,s

(15c)b̂i,s,z =
∑
k∈K

𝛼�̂�k,i,s,z, ∀ i ∈ I ⧵ {n}

(15d)
∑
i∈I

gi,s,z =
∑
i∈I

Di,s

(15e)− Fl ≤
∑
i∈I

Hl,i(gi,s,z − Di,s) ≤ Fl, ∀ l ∈ L

(15f)0 ≤ gi,s,z ≤ Gi, ∀ i ∈ I

(15g)b̂i,s,z − 𝜆s,z − 𝜈i,s,z + 𝜔i,s,z +
∑
l∈L

Hl,i(𝜇l,s,z − 𝜇
l,s,z

) = 0, ∀i ∈ I ⧵ {n}
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 We enumerate the set of strategies defined by �̂�k,e,s,z in a set Se,z . Let the different 
elements of the strategy set Se,z be represented by �̂�∫e,z,e,s . The profit maximization for 
rival generator e in the informed scenario z can be written as: 

5.3  The Bayesian Nash Equilibrium (BNE) of competing generators (proposed 
MILP model)

The Bayesian Nash Equilibrium from the perspective of strategic generator n in sto-
chastic scenario s can be calculated by solving the strategic PO problem (14) and 
(16) together. The model allows us to consider all the POs to be variables.

Before we delve into the formulation for a BNE, one might ask the need for a 
limited rationality model, i.e. need to model information scenarios rather than going 
ahead with a deterministic Nash Equilibrium model. The reason is more practi-
cal rather than technical. The practical information about true heat rates and vari-
able operation costs of generators are proprietary to the generator and not gener-
ally disclosed publicly. The generators can only make a guess as to what the true 
costs of the rival generators could be based on estimated fuel costs and estimate heat 

(15h)bn,s − �s,z − �n,s,z + �n,s,z +
∑
l∈L

Hl,n(�l,s,z − �
l,s,z

) = 0

(15i)

∑
k∈K

Γk,n,s,z +
∑

i∈I⧵{n}

∑
k∈K

Γk,i,s,z = �s,z

∑
i∈I

Di,s −
∑
i∈I

�i,s,zGi

∑
l∈L

((−�l,s,z + �
l,s,z

)
∑
i∈I

Hl,iDi,s − (�l,s,z + �
l,s,z

)Fl)

(15j)−M(1 − �k,n,s) + gn,s,z ≤ Γk,n,s,z ≤ M(1 − �k,n,s) + gn,s,z, ∀k ∈ K

(15k)−M�k,n,s ≤ Γk,n,s,z ≤ M�k,n,s, ∀k ∈ K, z ∈ Zn

(15l)
−M(1 − �̂�k,i,s,z) + gi,s,z ≤ Γk,i,s,z ≤ M(1 − �̂�k,i,s,z) + gi,s,z,

∀k ∈ K, i ∈ I ⧵ {n}

(15m)−M�̂�k,i,s,z ≤ Γk,i,s,z ≤ M�̂�k,i,s,z, ∀k ∈ K, i ∈ I ⧵ {n}}

(16a)PRmax(e,z)
s

∶= {PROFIT (e,z)
s

(𝛾k,n,s, �̂�k,e,s,z, �̂�k,i|−e,s,z)

(16b)PROFIT (e,z)
s

(𝛾k,n,s, �̂�∫e,z,e,s,z, �̂�k,i|−e,s,z), ∀ �̂�∫e,z,e,s,z ∈ Se,z

(16c)
𝜋(e,z)
s

(𝛾k,n,s, �̂�k,e,s,z, �̂�k,i|−e,s,z) ≥ 𝜋(e,z)
s

(𝛾k,n,s, �̂�∫e,z,e,s,z, �̂�k,i|−e,s,z),

∀ �̂�∫e,z,e,s,z ∈ Se,z}
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rates—which is obtained by finding the make of the generator boiler and turbines 
and comparing with information available of a similar generator in public domain. 
The details of open sources for such information < 1 > are given in Verma et  al. 
(2021).

Since the true cost of rival generators is unknown, the strategic generator creates 
informed scenarios z. The strategic generator n optimizes its PO in such a way 
that its expected profit, over all information scenarios is maximized. In each of the 
informed scenarios z, the rivals submit their price offers b̂i,s,z with the objective to 
maximize their individual profits. This is shown for one strategic generator G1 and 
one rival generator over two information scenarios ( G2z=1 and G2z=2 ) in conceptual 
form in Fig. 5.

As shown in Fig. 5, each rival has different virtual models over different informed 
scenarios z ( G2z=1 and G2z=2 ). The full BNE model is condensed as (17) 

5.4  Multiple Nash Equilibria

There can exist multiple BNEs. The best strategic PO for generator n is obtained 
from a MILP problem as follows: 

 This allows the most rational move to be selected by the strategic genera-
tor to increase profits. As a consequence of (18) we obtain the strategic PO of n: 
bn,s = BNE(n)

s
(Cn) . Similar POs are calculated from the perspectives of all the strate-

gic generators bi,s = BNE(i)
s
(Ci),∀i ∈ I.

(17a)PRmax(n)
s

(17b)PRmax(e,z)
s

, ∀e ∈ I ⧵ {n}, z ∈ Zn

(18a)BNE(n)
s
(Cn,s) ∶= {Maximize 𝜋(n)

s
(𝛾k,n,s, �̂�k,i,s,z)

(18b)
subject to

(17a), (17b)}

Fig. 5  The Bayesian Nash 
equilibrium and virtual rivals
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5.5   The electricity demand investment (MILP model)

In the previous section the stochastic scenarios s have not been discussed in 
depth. These stochastic scenarios appear because the demand investor does not 
have true cost information over all generators and, in addition, the future utility 
of consumption may be uncertain. From a joint probability distribution of gener-
ator cost and future utility estimates, the demand investor samples costs as sce-
nario inputs. It is further assumed that the cost estimates made by the demand 
side investor on the costs of the generators match the estimates that individual 
generators make about the costs of their rivals. This is the rational expectations 
hypothesis assuming that all the generators and demand investors have access 
to common information and interpret it rationally. There are no heterogene-
ous beliefs. The Demand Side Investor calculates bi,s = BNE(i)

s
(Ci,s),∀i ∈ I on 

all these samples s ∈ S . We represent the POs calculated on these samples as: 
bi,s = BNE(i)

s
(Ci,s),∀i ∈ I, s ∈ S . The POs at each sample s ∈ S leads to an opti-

mal dispatch—spot market problem (SM) and yields a Locational Marginal 
Price (LMP) at the demand investor’s node represented by �y,s . These samples 
are associated with a probability �(2)

s
. The demand investor solves an optimiza-

tion problem to select the most optimal investment level. Let the demand inves-
tor invests at a node y, then it solves (Fig. 6): 

(19a)Maximize
Dy,Dy,s

E[(Us − �y,s)Dy,s] − I(Dy)

(19b)
subject to:

0 ≤ Dy,s ≤ Dy

(19c)�y,s ∈ arg{SM(bi,s,Dy,s)}, ∀ s ∈ S

Fig. 6  Problem formulation
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< 2 > Note that the determination of Dy,s is made at DSI stage and shared with OD. 
This is critically possible due to Proposition 2 as mentioned before in this paper.

5.6  The mixed‑integer bilevel program

We presented the full formulation in (19). We note (19c) and (19d) are condensed 
representation of OD and BNE. Further we see that there are two issues with prob-
lem (19) 

1. Since the load at node y is now a variable, we find that the strong duality equations 
in (19c) and (19d) have new bilinear terms in the form of �s,zDy,s.

2. Constraint (19d) is a set of optimization problems.

The first issue for new bilinear terms is addressed by discretizing the Dy,s variable 
and creating new disjunctions in (19c) and (19d) similar to (12). Now the whole 
problem (19) is expressed as two stage MILP problem as described below in Fig. 7.

The OD optimality conditions and the objective for DSI forms the upper level of 
a 2-stage MILP problem while the BNE calculation forms the lower level of MILP 
problem.

6  The proposed solution algorithm for Bilevel MILP

In this section we develop a technique to recast the bilevel MILP problem posed into 
a single-level MILP problem. We start by making the following assumptions regard-
ing the bilevel MILP problem: 

1. All the upper-level variables are discrete (this is true as we have proposed the 
discretization of upper-level variables to counter the non-convexity arising due 
to the bilinear terms)

2. The lower-level problem is a general MILP with discrete and continuous vari-
ables.

(19d)bi,s = BNE(i,y)
s

(Ci,s,Dy,s),∀i ∈ I, s ∈ S

Fig. 7  2-Level MILP 
formulation for Demand investor
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We understand that if the lower-level problem were to be linear, then we could have 
replaced it with its optimality conditions and recast the problem into single stage. 
But currently we find integer variables in lower-level problem. If we were able to 
identify cuts for every possible upper-level realization of x, we could replace the 
lower level problem with its required LP relaxation and cuts. However, there is one 
issue: we do not know a priori these cuts. There are two ways we can generate these 
required cuts: 

1. Gomory cuts method proposed in Küçükyavuz and Sen (2017)
2. Manually look for these cuts at suitable intervals.

The parametric Gomory cuts method proposed in Küçükyavuz and Sen (2017) is 
lexiographic in nature and not suitable for the algebraic modeling in the problem 
discussed in this paper. We propose a more practical approximate cut generation to 
recast the bilevel MILP problem to a single-stage MILP problem.

6.1  From continuous upper level to integer upper level

Lemma 9 There exists a closed ball B(x, �) and � ≥ 0 around x ∈ X  in the upper-
level feasible region, for which a unique lower-level cut, f (y) ≤ 0 , leads to an 
integer lower-level solution ∀ x ∈ B

Proof Let us assume that f1(y) ≤ 0 is a required cut for x1 ∈ B that leads to a 
feasible integer solution at lower level. Let {x2 ∈ B} . By making this assumption, 
we have not ruled out a scenario where B is a singleton set and x1 = x2 . In 
general let us join these with a line {m ∈ M ∶ m = �x1 + (1 − �)x2, ∀� ∈ [0, 1]} . 
By convexity of B, we identify line segment M ∈ B . We postulate that at some 
q ∈ [0, 1], m(�) ∀� ∈ [0, q] which is close enough to x1 , the cut f1(y) ≤ 0 will lead 
to integral solution for lower-level problem. This postulate is not true in the case 
� = 0 and B is a singleton set [for counter example see example 1 in page 913 of 
reference Moore and Bard (1990)]. One cannot prove that an open set around x 
would ever exist due to this counter example but still a closed set can be proven 
while including the singleton.   ◻

This lemma can be rewritten for integer upper-level problems as:

Lemma 10 There exists a closed set partition B(x) and � ≥ 0 around x ∈ X  in the 
upper-level feasible region such that ||x − x1|| ≤ � ∀x1 ∈ B(x) , for which a unique 
lower-level cut, f (y) ≤ 0 , leads to integer lower-level solution ∀ x ∈ B.

We can conclude that the nature of cuts required for integer lower-level solutions 
can change for every x ∈ X  . However, if we assume suitable � , then we can control 
the error with non-singleton partitions.
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We start by making partitions on the upper-level search space. The partitions are 
made in such a way, that, for the elements in each partition, the maximum distance 
between the median element and any other element is less than a tolerance level. 
This tolerance level determines the accuracy of the technique.

It is still necessary to show the existence of an � that will lead to non-singleton 
partitions and lead to optimal integral lower-level solutions. The existence of such a 
constant is attributed to the finite number of demand investment levels that will lead 
to a change in the BNE at the lower level, as in Lemma 11.

Lemma 11 For the demand investment problem, the upper-level feasible region can 
be broken into open set portions, each of which is associated with a unique lower-
level cut for integer optimality.

Proof There are finite number of transmission lines and generators. It is clear from 
previous results that the BNE changes whenever the demand level rises and one of 
the constraints become active. This implies the lower-level integer solution changes 
whenever there are certain active constraints in the system which are directed by 
the upper-level variable (demand investment). Therefore a particular lower-level cut 
is valid for a range of demand investment levels (upper-level partition) for integer 
optimality in the lower-level up until another constraint binds and the BNE changes. 
Since the number of generators and lines are finite, therefore the possible constraints 
that can change the lower level BNE are finite. This will lead to an open set partition 
in the upper level that associates with a unique lower-level cut for integer optimality, 
wherein no new constraint becomes active and BNE does not change.   ◻

We notice that if the upper-level variable is fixed, the bilevel MILP problem col-
lapses into a single-level MILP problem. In the next step, the median element from 
each partition is selected. Let us consider the median of any partition. The lower-
level MILP and a relaxed lower-level LP problem are solved by keeping the upper-
level variable fixed at the median. The relaxed LP solution and MILP solution may 
not match necessarily. In case they do not match, cuts are added to the relaxed LP 
lower-level problem in order to force a match. We go through all the partitions in 
this way, adding cuts to the lower-level problem. In this way we generate a unique 
LP corresponding to each partition of the upper-level search space.

6.2  Approximate cuts method

In the approximate cuts method, we postulate that the entire search space of the 
upper-level variable x can be segmented into non-empty partitions, in such a way 
that a unique cut for each partition leads to an integer solution of the relaxed lower-
level problem. However, due to Lemma 10, and non existence of open set partitions, 
it may require that we partition upper-variable search space into singleton sets. In 
some cases, it may happen that the singleton partition of the upper-level variable 
may result in a huge number of cuts and, in turn, a huge number of independent 
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lower-level relaxed problems. The approximate cuts method partitions upper-level 
space into non-singleton partitions in such a way that ||x − x1|| ≤ � ∀x1 ∈ B(x) and 
∪N
i=1

B(xi) = X  and assigns a unique cut to each partition. This leads to the following 
approximation errors: 

1. Error due to non-integer solution
2. Error due to sub-optimal lower level solution

These errors can be reduced by reducing � constant.
We have added cuts to the lower-level problems corresponding to each partition 

based on the median upper-level variable fixes introduced in the previous step. We 
assume, that this cut is valid for all members of the partition to enforce the LP solu-
tion to match the exact MILP lower-level solution. This is an approximation and 
may not necessarily hold true at all specific cases (see Moore and Bard 1990 exam-
ple). However, one can clearly see that with a sufficiently low tolerance level, we 
may achieve an acceptably low approximation error.

6.2.1  Generating the cuts for each partition

1. We choose one member from each partition of upper-level partitions.
2. Solve MILP and LP relaxation for this member x as constant.
3. Enforce a cut f (y) ≤ 0 for each member so that LP relaxation matches MILP 

solution (This is achieved by manually tuning the cuts or enforcing y = YMILP in 
a crude implementation)

6.2.2  After generating cuts

After generating cuts, we make a unique copy of lower-level LP relaxation with 
appropriate cuts for each copy representing each partition over X  . Optimality condi-
tions for each copy of LP relaxation are now added to the upper-level problem. The 
optimality conditions for a particular partition should be activated when the solver 
searches and fixes the upper-level variable in the corresponding partition. This is 
achieved in the next step by synthesizing a larger MILP problem that allows a switch 
between the optimality conditions by using binary switches and disjunction tech-
niques. An illustrative example for recasting a bilevel MILP problem to a single-
level MILP problem is shown in “Appendix 17”.

7  Numerical studies

We test the computability of proposed Demand Side Investment problem (19) on 
the Modified IEEE 14-node benchmark system and use the Approximate Cuts 
method discussed in Sect.  6.2 < 6 > The problem was formulated and solved 
using GAMS with a i7-7700K CPU and 16 GB RAM. Most of the data for 
the modified IEEE 14-node benchmark system was taken from “https:// matpo 

https://matpower.org/docs/ref/matpower5.0/case14.html
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wer. org/ docs/ ref/ matpo wer5.0/ case14. html" and the line limits were modified 
to 50 MW. The system under study has 4 strategic generators at Bus No 1, 2, 3, 
and 6. The corresponding true costs of these strategic generators are modified to 
2$∕MWh, 2$∕MWh, , 5$∕MWh, 5$∕MWh . In case of PC, the POs are fixed to the 
generators’ true cost while in case of IC, we assume that the strategic generators 
can submit a PO in the interval [0, 100]. It was assumed that the utility of a demand 
investor varies in different stochastic scenarios s as Us ∈ [20, 30] . The demand 
investor has three possible options DI = {0, 25, 50}MW to invest at node 3 of the 
system. We calculated the expected net utility for this demand investor under PC 
and IC. Table 3 shows the expected LMP values under different Demand Investment 
strategies in PC and IC. These results endorse the previous theory.

The optimal demand investment levels are shown in Table 4
It can be observed that the Demand Investor invests less under IC as compared to 

PC. < 6 >The social benefit shows that the IC can have harmful impact on consum-
ers as well as discourage the higher demand investment. The run times for IC was 
720 min, while the run time for PC case was 15 min.

7.1  Why bother with such a sophisticated model?—illustative example

Consider a two-strategic-generator system with two generators G1 and G2 and 
no congestion in the network, and no capacity limits. For illustration and under-
standing the impact of the sophisticated model let us assume that the PC and IC 

Table 3  Estimated LMP at node 
3 in the modified IEEE 14-node 
system

Demand investment PC IC

0 MW 5 5
25 MW 5 5
50 MW 5 35.313

Table 4  Optimal demand 
investment at node 3 in the 
modified IEEE 14-node system

Competition Demand lnvestment Social benefit

PC 50 MW 6180 $∕h
IC 25 MW 5020 $∕h

Table 5  Spot market and Nash equilibrium—illustrative example < 5 >

Competition PO G1 PO G2 System price Forecast Demand investment
($∕MWh) ($∕MWh) ($∕MWh) MW MW

Level: III, IV Level: III, IV Level: II Level: I

PC 5 5 5 9 10
IC 10 10 10 9 5

https://matpower.org/docs/ref/matpower5.0/case14.html
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price offers (POs) are given below in Table 5. By doing so we are condensing the 
bi-level BNE model, to a “look up table" in this illustrative example for clarity. 
Let us further assume that the utility function of demand investor is determinis-
tic and U = 6$∕MWh . The demand investment variable 5MW ≤ D ≤ 10MW  . The 
strategic generators have made a demand forecast of 9 MW based on historical 
data for the planning horizon. This type of demand forecast is typical treatment of 
the consumer as a passive entity in standard modeling tools such as PLEXOS and 
PROMOD used in the industry.

In both the cases IC and PC, we see that the price could be set by any strate-
gic generator and the system price is shown in Table 5. To this system price, the 
demand investor would react and decide the investment levels. We see in Table 5 
that the optimal demand investment levels could be drastically different between 
PC and IC, and further the forecasted demand could be an over or under estimate 
of real consumer demand in future. A forecast based on the historical data might 
hold true if the inflation in demand utility matches the inflation in system equi-
librium prices (influenced by true cost inflation). A mismatch in inflation rates in 
the demand sector and generation sector could lead to a situation where forecast 
based on historical data does not always hold true for active demand consumers.

8  Conclusion

Whilst it is quite intuitive that large demand-side investors will consider their 
effects on the supply and demand balance of the market before investing, research 
on how this may affect prices through increasing the market power of incumbent 
generators has not previously been undertaken. Furthermore, how this in turn 
leads to the optimal investments by large consumers has been a open question. 
We have provided a theoretical analysis and a computational methodology which 
has led to support for the following conjectures that we introduced. Thus a sub-
stantial demand investor will face higher prices in a market with imperfect com-
petition than would have been apparent before the investment. It is possible that 
a market without substantial market power will have substantial market power 
because it has attracted demand investment. A demand investor will find it opti-
mal to invest less than it would have intended if an analysis of its effect on gen-
erator < 1 > behavior is considered. In particular, we have developed a new meth-
odology to determine this optimal size of investment by a large consumer facing 
latent market power on the generation side.

< 7 > We started this paper in Sect.  1 with the following conjectures which 
have now been clearly addressed. 

1. A substantial demand investor will face higher prices in a market with imperfect 
competition than would have been apparent before the investment. This is clearly 
due to Lemma 7.
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2. It is possible that a market without substantial market power will have substantial 
market power because it has attracted demand investment. This is clear due to 
Proposition 4 and 6. See “Appendices 8, 12, and 13” to see the analysis regarding 
rate of change of price offers with respect to system demand.

3. A demand investor will find it optimal to invest less than it would have intended 
if an analysis of its effect on generator behavior is considered. This is clear due 
to Theorem 8.

It is the short-term exercising of market power by generators, which sets a precedence 
in system operation and results in a lower demand side investment.

Methodologically, for a general nodal power system, we proposed a quad-level pro-
gram to capture the market interaction between the different players. This was reformu-
lated as a bilevel model to facilitate an efficient solution algorithm. A realistic applica-
tion was to a case study based on the IEEE 14-bus system. The computational results 
confirmed the theoretical result that the optimal demand investment decreases in the 
presence of latent market power.

Apart from developing a methodology to aid the investment deliberations of a large 
demand side investor, there are some policy and regulatory observations that follow 
form this work. Generally, market power and competition remedies are activated by the 
regulators and the competition authorities in response to manifest abuse. This research 
however shows the need to be more proactive. If consumer investment is deterred by 
the potential exercise of market power, there is economic harm through the lack of effi-
cient market entry. Mitigation of potential, or latent, market power should therefore be 
more proactively considered as part of industrial policy.

< 9 > We note that in this paper, as motivated in Sect. 1 we use consumer as a leader 
in a Stackelberg game. However, it might be true that strategic generators might start 
anticipating such lower demand side investments in future and resort to a Parrondo’s 
game equilibrium in shorter term for long term benefits. This will require modeling 
the strategic generators at the same level as demand side investor and leads to a future 
extension of the work presented in this paper. To the best of authors’ knowledge this is 
the first work to study the influence of strategic market operation on long term demand 
side investments. Traditionally the consumer is always modeled as a passive demand 
forecast as is the case in industry leading software packages like PLEXOS and PRO-
MOD. Another future extension of this work could be analyzing the same results under 
the assumption that startegic generators are leaders and demand investor is a follower.

Appendix 1: Proof of Proposition 1

Under Assumption 1, one can safely say that in the close neighbourhood of ds : 
�Cs

ds
= 0 

(This is true unless the one of the cost setting generators is also capacity constrained in 
SM.). We can replace Cs(bn,s, d

∗
s
) with C∗

s
) at optimality.

The Lagrangian for (4a)–(4b) and its stationary and complementary slackness con-
ditions can be written as:
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Consider two cases: 

1. Us < C∗
s

2. Us ≥ C∗
s

Case 1:  Us < C∗
s
 : From (21):

From (25), and complementary slackness conditions (23)–(24), it can be concluded 
that ds = 0 , �s ≥ 0 and �s = 0.

Case 2:  Us ≥ C∗
s
 : From (21):

From (26), and complementary slackness conditions (23)–(24), it can be concluded 
that ds = D , �s = 0 and �s ≥ 0 . From (22):

(20)L =
∑
s∈S

{T�s(Us − Cs(bn,s, ds))ds} − I(D) +
∑
s∈S

{�s�s(D − ds) + �s�s(ds)}

(21)
�L

�ds
= T(Us − C∗

s
) − �s + �s = 0, ∀s ∈ S

(22)
�L

�D
= −I�(D) +

∑
s∈S

�s�s = 0

(23)�s(D − ds) = 0, ∀s ∈ S

(24)�s(ds) = 0, ∀s ∈ S

(25)T(Us − C∗
s
) = 𝜏s − 𝜎s < 0 ⟹ 𝜏s < 𝜎s

(26)T(Us − C∗
s
) = �s − �s ≥ 0 ⟹ �s ≥ �s

(27)I�(D) =
∑
s∈S

�s�s

(28)⟹ I�(D) =
∑

s∈{s∶s∈S & Us≥�s}

�s�s (due to Case 1 and Case 2 above)

(29)
⟺ I�(D) = T

{ ∑
s∈{s∶s∈S & Us≥�s}

�s(Us − C∗
s
)

}

(due to (21) and Case 2 above)
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Appendix 2: Proof of Proposition 2

Let us consider the variable �s . This happens to be the shared variable between the 
leader DSI and follower SM problem. Due to this, equality of �s on DSI and SM is 
ensured. To see the equality of ds , we write the Lagrange function, stationary condi-
tions, and complementary slackness conditions of (6a)–(6e):

From Sect. 3, Assumption 3, we can state that Us ≥ bn,s, ∀n ∈ N  . Let us consider 
the following cases: 

1. 𝜇s > Us ≥ max{bn,s, ∀n ∈ N}

2. Us ≥ min{bn,s, ∀n ∈ N} > 𝜇s

3. Us ≥ �s ≥ min{bn,s, ∀n ∈ N}

Case 1: �s > Us ≥ max{bn,s, ∀n ∈ N}

From (31) and (32) the problem is infeasible. However infeasible, we note that in 
this case:

(30)
L =

(
Usds −

∑
n∈N

bn,sgn,s

)
+ �s

(∑
n∈N

gn,s − ds

)
+ �D

s
(D − ds) + �D

s
ds

+
∑
n∈N

{�G
n,s
(G − gn,s) + �G

n,s
gn,s}

(31)
�L

�gn,s
= −bn,s + �s − �G

n,s
+ �G

n,s
= 0, ∀n ∈ N

(32)
�L

�ds
= Us − �s − �D

s
+ �D

s
= 0

(33)�D
s
(D − ds) = 0

(34)�D
s
ds = 0

(35)�G
s
(G − gn,s) = 0, n ∈ N

(36)�G
n,s
gn,s = 0, n ∈ N

(37)𝜇s > Us ⟹ ds = 0
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Case 2: Us ≥ min{bn,s, ∀n ∈ N} > �s

Similar to 10.1, this case would lead to two conclusions ds = D, gn,s = 0, ∀n ∈ N  , 
which would violate the load balance constraint (6b). Therefore Case 2, describes 
an infeasible solution.

Case 3: Us ≥ �s ≥ min{bn,s, ∀n ∈ N}

Similar to 10.1, this case would lead to two conclusions ds ≤ D, gn,s ≤ G, ∀n ∈ N  , 
which reflects a feasible solution case. From Sect. 3 Assumption 5, since the system 
has enough generation resources to meet the load in all scenarios, it would lead to as 
solution ds = D, gn,s . From 10.2 and 10.3, it can be seen that:

Comparing, (37), (38) with conclusions in 9 Case 1 and 9 Case 2, it can be seen that 
ds has equal values in SM and DSI.

Appendix 3: Proof of Corollary 3: 1‑Generator case

The Lagrange function for 1-Generator case of (6a)–(6e) and its stationary and comple-
mentary slackness conditions can be written as:

From 10.1, 10.2, and 10.3, we see that feasible solution to SM optimal dispatch hap-
pens at: Us ≥ �s ≥ b1,s . From (40) and (41) it can be seen that:

(38)�s ≤ Us ⟹ ds = D

(39)
 =Usds − b1,sg1,s + �s(g1,s − ds)

+ �D
s (D − ds) + �Ds ds + �G

1,s(G − g1,s) + �G1,sg1,s

(40)
�L

�g1,s
= −b1,s + �s − �G

1,s
+ �G

1,s
= 0

(41)
�L

�ds
= Us − �s − �D

s
+ �D

s
= 0

(42)�D
s
(D − ds) = 0

(43)�D
s
ds = 0

(44)�G
1,s
(G − g1,s) = 0

(45)�G
1,s
g1,s = 0
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From (46), (47), and complementary slackness conditions (42)–(45), we can con-
clude that 0 < g1,s ≤ G, 0 < ds ≤ D . Using load balance constraint, we find the 
optimal dispatch at g1,s = D = ds . From Sect. 3 assumption 5, it can be noted that: 
G > D . Therefore, at optimal dispatch g1,s = D = ds < G . From complementary 
slackness condition (44), we can see that �G

1,s
= 0 . The discussion leads to the fol-

lowing values at optimal dispatch:

Appendix 4: Proof of Corollary 3: 2‑Generator case

The Lagrange function for 2-Generator case of (6a)–(6e) and its stationary and com-
plementary slackness conditions can be written as:

(46)
− b1,s + �s = �G

1,s
− �G

1,s
≥ 0

⟹ �G
1,s

≥ �G
1,s

(47)Us − �s = �D
s
− �D

s
≤ 0 ⟹ �D

s
≤ �D

s

(48)0 ≤ ds = D = g1,s < G

(49)�G
1,s

= �G
1,s

= 0

(50)�s = b1,s

(51)
L = Usds − b1,sg1,s + �s(g1,s + g2,s − ds) + �D

s
(D − ds) + �D

s
ds

+ �G
1,s
(G − g1,s) + �G

1,s
g1,s + �G

2,s
(G − g2,s) + �G

2,s
g2,s

(52)
�L

�g1,s
= −b1,s + �s − �G

1,s
+ �G

1,s
= 0

(53)
�L

�g2,s
= −b2,s + �s − �G

2,s
+ �G

2,s
= 0

(54)
�L

�ds
= Us − �s − �D

s
+ �D

s
= 0

(55)�D
s
(D − ds) = 0

(56)�D
s
ds = 0
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From 10.1, 10.2, and 10.3, we see that feasible solution to SM optimal dispatch hap-
pens at: Us ≥ �s ≥ b1,s . From (52) and (54) it can be seen that:

From complementary slackness conditions (55)–(58), it can further be seen that 
at dispatch g1,s ≥ 0, ds ≥ 0 . Since Sect.  3 assumption 5 ensures the availability of 
enough generation resources, i.e D ≤ 2G , we can conclude that ds = D, g1,s ≥ 0 . At 
this point we consider two cases: 

1. 0 ≤ D < G

2. G ≤ D < 2G

Case 1: 0 ≤ D < G

The load balance constraint leads us to the SM dispatch: ds = D, g1,s = D, g2,s = 0 . 
At this dispatch, using complementary slackness conditions (57)–(58), we can fur-
ther say that:

Using (63) in (52), we can conclude that �s = b1,s.

Case 2: G ≤ D < 2G

The load balance constraint leads us to the SM dispatch: 
ds = D, g1,s = G, g2,s = D − G . At this dispatch, using complementary slackness 
conditions (59)–(60), we can further say that:

(57)�G
1,s
(G − g1,s) = 0

(58)�G
1,s
g1,s = 0

(59)�G
2,s
(G − g2,s) = 0

(60)�G
2,s
g2,s = 0

(61)
− b1,s + �s = �G

1,s
− �G

1,s
≥ 0

⟹ �G
1,s

≥ �G
1,s

(62)
Us − �s = �D

s
− �D

s
≤ 0

⟹ �D
s
≤ �D

s

(63)�G
1,s

= �G
1,s

= 0



 P. P. Verma et al.

1 3

   36  Page 38 of 56

Using (64) in (53) we can conclude that �s = b2,s . Using 12.1 and 12.2 we conclude 
that:

Appendix 5: Proof of Lemma 12

Lemma 12 Pr(r < z) = F(Ci,s)

This lemma can be seen in Nasser  (1997, Page no 101).

Appendix 6: Proof of Lemma 13

Lemma 13 𝜕Pr(r<z)

𝜕z
=

𝜕F

𝜕Ci,s

1

z�(Ci,s)

This lemma can be seen in Nasser  (1997, Page no 101).

Appendix 7: Proof of Proposition 4: monopoly

In this case from (48), the SM dispatch ensures that the generator generates g1,s = D . If 
the generator submits a PO z, then the price is �s = z (Due to corollary 3). The profit-
maximization problem that the generator solves can be expressed as:

The Lagrangian function, stationary and complementary slackness conditions of 
(66)–(67) can be written as

(64)�G
2,s

= �G
2,s

= 0

(65)𝜇s =

{
b1,s, 0 ≤ D < G

b2,s, G ≤ D < 2G

(66)�1,s(z) = (z − C1,s)D

(67)� ∶ B ≤ z ≤ B ∶ �

(68)L = (z − C1,s)D + �(B − z) + �(z − B)

(69)
�L

�z
= D − � + � = 0

(70)�(B − z) = 0
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From (69), we can see that 𝜆 − 𝜆 = D > 0 ⟹ 𝜆 > 𝜆 . This inequality along with 
complementary slackness conditions (70)–(71) leads to the optimal profit maximiz-
ing PO in the 1-Generator system as z = B . The optimal PO that generator submits 
is thus, bi,s = B.

Appendix 8: Proof of Proposition 4: duopoly

Let us consider two cases: 

1. Case 1: 0 ≤ D < G

2. Case 2: G ≤ D < 2G

Case 1: 0 ≤ D < G

From Fig. 3b, it can be seen that the cheaper generator serves the load. The estimate of 
profit that the strategic generator sees can be expressed as:

Writing first order conditions for (72):

Solving (75):

Case 2: G ≤ D < 2G

From Fig. 3c, it can be seen that the lower PO generator serves G, while losing genera-
tor serves (D − G) . The price is set at losing generators PO level. The estimate of profit 
that the strategic generator sees can be expressed as:

(71)�(z − B) = 0

(72)𝜋i,s(z) =(z − Ci,s)D × Pr(r > z) = (z − Ci,s)D(1 − Pr(r < z))

(73)
𝜕𝜋i,s(z)

𝜕z
= D(1 − Pr(r < z)) − D(z − Ci,s)

𝜕Pr(r < z)

𝜕z
= 0

(74)(1 − F(Ci,s)) − (z − Ci,s)
�F(Ci,s)

�Ci,s

1

z�(Ci,s)
= 0 (due to Lemma 12, 13)

(75)z�(Ci,s) −
f (Ci,s)

1 − F(Ci,s)
z(Ci,s) = −

f (Ci,s)

1 − F(Ci,s)
Ci,s

(76)z(Ci,s) = Ci,s + ∫
B

Ci,s

1 − F(t)

1 − F(Ci,s)
dt
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Writing first order conditions for (77) using Leibniz Theorem:

Solving (78):

From (76) and (79):

Writing the optimal PO for generator 1 and generator 2:

< 7 > As we increase D in (81) and (82), we move from 0 ≤ D < G case to 
G ≤ D < 2G . The second term in (81) and (82) reacts to the increase in D. Due to 
Leibniz Rule:

We thus show that as the system demand increases, the price offers by strategic play-
ers increase.

(77)�i,s(z) = G∫
B

z

(r − Ci,s)Pr(r)dr + (D − G)∫
z

B

(z − Ci,s)Pr(r)dr

(78)z�(Ci,s) −
2G − D

D − G
z(Ci,s)

f (Ci,s)

F(Ci,s)
= −

2G − D

D − G
Ci,s

f (Ci,s)

F(Ci,s)

(79)z(Ci,s) = Ci,s + ∫
B

Ci,s

(
F(t)

F(Ci,s)

)−
2G−D

D−G

dt

(80)z(Ci,s) =

⎧
⎪⎨⎪⎩

Ci,s + ∫ B

Ci,s

1−F(t)

1−F(Ci,s)
dt 0 ≤ D < G

Ci,s + ∫ B

Ci,s

�
F(t)

F(Ci,s)

�−
2G−D

D−G
dt, G ≤ D < 2G

(81)b1,s =

⎧⎪⎨⎪⎩

C1,s + ∫ B

C1,s

1−F(t)

1−F(C1,s)
dt 0 ≤ D < G

C1,s + ∫ B

C1,s

�
F(t)

F(C1,s)

�−
2G−D

D−G
dt, G ≤ D < 2G

(82)b2,s =

⎧⎪⎨⎪⎩

C2,s + ∫ B

C2,s

1−F(t)

1−F(C2,s)
dt 0 ≤ D < G

C2,s + ∫ B

C2,s

�
F(t)

F(C2,s)

�−
2G−D

D−G
dt, G ≤ D < 2G

(83)

𝜕bi,s

𝜕D
|G≤D<2G = ln

(
F(t)

F(C2,s)

)
�

B

C2,s

(
F(t)

F(C2,s)

)−
2G−D

D−G
𝜕

(
−

2G−D

D−G

)

𝜕D
dt

= ln

(
F(t)

F(C2,s)

)
�

B

C2,s

(
F(t)

F(C2,s)

)−
2G−D

D−G G

(D − G)2
dt ≥ 0
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Appendix 9: Proof of Lemma 14

Lemma 14 In a duopoly: bi,s ≥ Ci,s, ∀i = {1, 2}

From Appendix 16 (81),

We note that in either cases, i.e. 0 ≤ D < 2G , the strategic PO is given by 
b1,s = C1,s +M(Ci,s) . From (81), the second term represented by M(C1,s) ≥ 0 . This 
is due to the fact that the second term is an integral over ratio of probabilities that 
can only take positive values. This leads to b1,s ≥ C1,s . A similar argument can be 
made for b2,s ≥ C2,s from (82).

Appendix 10: Proof of Proposition 5: two‑node

The Spot Market dispatch can be written as:

The Lagrangian function, stationary conditions, and complementary slackness con-
ditions for (84)–(88) can be written as:

b1,s =

⎧
⎪⎨⎪⎩

C1,s + ∫ B

C1,s

1−F(t)

1−F(C1,s)
dt 0 ≤ D < G

C1,s + ∫ B

C1,s

�
F(t)

F(C1,s)

�−
2G−D

D−G
dt, G ≤ D < 2G

(84)Maximize
g1,s,g2,s,ds

(Usds − b1,sg1,s − b2,sg2,s)

(85)
subject to ∶

g1,s + g2,s = ds ∶ �s

(86)�D
s

∶ 0 ≤ ds ≤ D ∶ �D
s

(87)�G
1,s

∶ 0 ≤ g1,s ≤ G ∶ �G
1,s

(88)�G
2,s

∶ 0 ≤ g2,s ≤ G ∶ �G
2,s

(89)g1,s ≤ K ∶ �s

(90)
L = (Usds − b1,sg1,s − b2,sg2,s) + �s(g1,s + g2,s − ds) + �D

s
(D − ds) + �D

s
ds

+ �G
1,s
(G − g1,s) + �G

1,s
g1,s + �G

2,s
(G − g2,s) + �G

2,s
g2,s + �s(K − g1,s)
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Let us assume the following cases: 

1. 𝜇s ≥ Us > max(b2,s, b1,s)

2. Us > 𝜇s ≥ b1,s > b2,s
3. Us > b1,s > 𝜇s ≥ b2,s
4. Us > 𝜇s ≥ b2,s > b1,s
5. Us > b2,s > 𝜇s ≥ b1,s
6. Us > min(b1,s, b2,s) > 𝜇s

Case1: �s ≥ Us > max(b2,s, b1,s)

Due to (92)–(93), this case is an infeasible solution.

(91)
�L

�ds
= Us − �s − �D

s
+ �D

s
= 0

(92)
�L

�g1,s
= −b1,s + �s − �G

1,s
+ �G

1,s
− �s = 0

(93)
�L

�g2,s
= −b2,s + �s − �G

2,s
+ �G

2,s
= 0

(94)�D
s
(D − ds) = 0

(95)�D
s
ds = 0

(96)�G
1,s
(G − g1,s) = 0

(97)�G
1,s
g1,s = 0

(98)�G
2,s
(G − g2,s) = 0

(99)�G
2,s
g2,s = 0

(100)�s(K − g1,s) = 0
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Case2: Us > �s ≥ b2,s > b1,s

A similar argument to Sect. 18.1 shows that this is a feasible solution region with 
ds = D, {g1,s = G ∨ g1,s = K} ∧ g1,s > 0, g2,s ≥ 0 . Considering the line flow con-
straints (89), this would lead to an implication that g1,s = K . Load balance (85) 
would dictate g1,s = K < G, ds = D, g2,s = D − K < G . To ensure generation ade-
quacy we have made sure D < G . This also means �1,s = �1,s = 0 = �2,s = �2,s . Let 
there exist an artificial load limΔx→0Δx at the load center. The Lagrangian function 
changes to

At limΔx→0Δx , we can see from (102) that a minuscule increment in load will reduce 
the social benefit in SM at a rate of �s = b2,s . This is the price that any load at the 
node sees. To analyze the price at the node with generator G1 , we assume an artifi-
cial load limΔx→0Δx at the node. The Lagrangian function changes to:

At limΔx→0Δx , we can see from (104) that a minuscule increment in load will reduce 
the social benefit in SM at a rate of �s − �s . This is the price that the load sees at the 
node. From (92), we see that this price is �s − �s = b1,s.

We can see from these discussions, that the LMP, at the nodes is given by:

Case3: Us > �s ≥ b1,s > b2,s

A similar argument to section 18.1 shows that this assumption leads to an infeasible 
solution

(101)

L = (Usds − b1,sg1,s − b2,sg2,s) + �s(g1,s + g2,s − ds − Δx) + �D
s
(D − ds)

+ �D
s
ds + �G

1,s
(G − g1,s) + �G

1,s
g1,s + �G

2,s
(G − g2,s) + �G

2,s
g2,s + �s(K − g1,s)

(102)
�L

�Δx
= −�s (Envelope Theorem)

(103)

L = (Usds − b1,sg1,s − b2,sg2,s) + �s(g1,s + g2,s − ds − Δx) + �D
s
(D − ds)

+ �D
s
ds + �G

1,s
(G − g1,s) + �G

1,s
g1,s + �G

2,s
(G − g2,s) + �G

2,s
g2,s

+ �s(K − g1,s + Δx)

(104)
�L

�Δx
= −�s + �s (Envelope Theorem)

(105)�(1)
s

= b1,s

(106)�(2)
s

= b2,s
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Case4: Us > b2,s > �s ≥ b1,s

A similar argument to section 18.1 shows that this assumption leads to an infeasible 
solution

Case5: Us > b1,s > �s ≥ b2,s

A similar argument to section 18.1 shows that this assumption leads to a feasible 
solution at g1,s = 0, g2,s = ds = D < G , and �2,s = �2,s = 0 . This ensures the argu-
ments for (106) hold and �(2)

s
= b2,s.

Case4: Us > min(b2,s, b1,s) > �s

A similar argument to section 18.1 shows that this assumption leads to an infeasible 
solution

Appendix 11: Proof of Proposition 5: three‑node

The economic dispatch in spot market can be written as:

The Lagrangian function, stationary conditions, and complementary slackness con-
ditions for (107)–(112) can be written as:

(107)Maximize
g1,s,g2,s,ds

(Usds − b1,sg1,s − b2,sg2,s)

(108)
subject to ∶

g1,s + g2,s = ds ∶ �s

(109)�D
s

∶ 0 ≤ ds ≤ D ∶ �D
s

(110)�G
1,s

∶ 0 ≤ g1,s ≤ G ∶ �G
1,s

(111)�G
2,s

∶ 0 ≤ g2,s ≤ G ∶ �G
2,s

(112)�
s
∶ − K ≤ g1,s − g2,s

3
≤ K ∶ �s
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We know that b2,s > b1,s . It means generator G1 will be dispatched first. This implies 
that the flow on the congested line will be in direction 1 → 2 . Thus, 𝜂s > 0 ∧ 𝜂

s
= 0.

Case1: �s ≥ Us > b2,s > b1,s

From (114) and (117)–(118), we can see that this case is infeasible.

(113)

L = (Usds − b1,sg1,s − b2,sg2,s) + �s(g1,s + g2,s − ds) + �D
s
(D − ds) + �D

s
ds

+ �G
1,s
(G − g1,s) + �G

1,s
g1,s + �G

2,s
(G − g2,s) + �G

2,s
g2,s + �s

(
K −

g1,s − g2,s

3

)

�
s

(
K +

g1,s − g2,s

3

)

(114)
�L

�ds
= Us − �s − �D

s
+ �D

s
= 0

(115)
�L

�g1,s
= −b1,s + �s − �G

1,s
+ �G

1,s
−

�s

3
+

�
s

3
= 0

(116)
�L

�g2,s
= −b2,s + �s − �G

2,s
+ �G

2,s
+

�s

3
−

�
s

3
= 0

(117)�D
s
(D − ds) = 0

(118)�D
s
ds = 0

(119)�G
1,s
(G − g1,s) = 0

(120)�G
1,s
g1,s = 0

(121)�G
2,s
(G − g2,s) = 0

(122)�G
2,s
g2,s = 0

(123)�s

(
K −

g1,s − g2,s

3

)
= 0

(124)�
s

(
K +

g1,s − g2,s

3

)
= 0
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Case2: Us > �s ≥ b2,s > b1,s

A similar argument to Sect. 19.1 will show that due to contradicting inferences, this 
case is infeasible.

Case3: Us > b2,s > �s ≥ b1,s

A similar argument to Sect. 19.1 and load balance (108) will show that

Solving (125)–(126), we see that g1,s =
D+3K

2
, g2,s =

D−3K

2
 , which is a feasible case. 

This also implies that �G
1,s

= �G
1,s

= 0 = �G
2,s

= �G
2,s

 . Let there exist an artificial load 
limΔx→0Δx at the load center. The Lagrangian function changes to

At limΔx→0Δx , we can see from (128) that a minuscule increment in load will reduce 
the social benefit in SM at a rate of �s = �s . This is the price that the load sees at the 
node. Adding (115) and (116), we see that this price is �(3)

s
=

b1,s+b2,s

2
 . It is important 

to note that all these arguments with slight changes will lead to the same �s if we 
had assumed b1,s > b2,s (with dispatch levels in (125)–(126) interchanged).

To find the price at a generator node G1, we assume that there exists an artificial 
load limΔx→0Δx at G1. The Lagrangian function changes to

(125)g1,s + g2,s = ds = D

(126)
g1,s − g2,s

3
= K

(127)

L = (Usds − b1,sg1,s − b2,sg2,s) + �s(g1,s + g2,s − ds − Δx) + �D
s
(D − ds)

+ �D
s
ds + �G

1,s
(G − g1,s) + �G

1,s
g1,s + �G

2,s
(G − g2,s) + �G

2,s
g2,s

+ �s

(
K −

g1,s − g2,s

3

)

(128)
�L

�Δx
= −�s (Envelope Theorem)

(129)

L = (Usds − b1,sg1,s − b2,sg2,s) + �s(g1,s + g2,s − ds − Δx) + �D
s
(D − ds)

+ �D
s
ds + �G

1,s
(G − g1,s) + �G

1,s
g1,s + �G

2,s
(G − g2,s) + �G

2,s
g2,s

+ �s

(
K −

g1,s − Δx − g2,s

3

)

(130)�L

�Δx
= −�s +

�s

3
(Envelope Theorem)
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At limΔx→0Δx , we can see from (130) that a minuscule increment in load will reduce 
the social benefit in SM at a rate of �(1)

s
= �s −

�s

3
 . This is the price that the G1 sees 

at the node.
To find the price at a generator node G2, we assume that there exists an artificial 

load limΔx→0Δx at G2. The Lagrangian function changes to

At limΔx→0Δx , we can see from (132) that a minuscule increment in load will reduce 
the social benefit in SM at a rate of �(1)

s
= �s +

�s

3
 . This is the price that the G2 

sees at the node. From conclusions in this subsection and (115)–(116) we see that 
�(1)
s

= b1,s and �(2)
s

= b2,s.

Case4: Us > b2,s > b1,s > �s

A similar argument to section 19.1 and load balance (108) will show that this 
case is infeasible.

Appendix 12: Proof of Proposition 6: two‑node

From 18, it can be seen that generator G2 serves D if its PO is lower, while G2 
generator serves D − K if its PO is higher than rival’s. The price is set at losing 
generators PO level. From 18, it can also be seen that the price at G2 node is 
set at �s = b2,s . The estimate of profit that the strategic generator G2 sees can be 
expressed as:

Writing first order conditions for (133), using Leibniz Theorem:

(134) is similar to the derivation for equation (75). A similar derivation to (75) leads 
to:

(131)

L = (Usds − b1,sg1,s − b2,sg2,s) + �s(g1,s + g2,s − ds − Δx) + �D
s
(D − ds)

+ �D
s
ds + �G

1,s
(G − g1,s) + �G

1,s
g1,s + �G

2,s
(G − g2,s) + �G

2,s
g2,s

+ �s

(
K −

g1,s + Δx − g2,s

3

)

(132)�L

�Δx
= −�s −

�s

3
(Envelope Theorem)

(133)�2,s(z) = D∫
B

z

(z − C2,s)Pr(r)dr + (D − K)∫
z

B

(z − C2,s)Pr(r)dr

(134)z�(C2,s) − Kz(C2,s)
f (C2,s)

D − KF(C2,s)
= −KC2,s

f (C2,s)

D − KF(C2,s)
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We note that as K → D , i.e. as system goes to uncongested case, we end up with 
exact solution to (75). Similarly we can say

< 7 > As we increase D, the price offer made by strategic generator reacts. Due to 
Leibniz rule:

We thus show that as the system demand increases, the price offers by strategic play-
ers increase

Appendix 13: Proof of Proposition 6: three‑node

From 19, it can be seen that G2 generator serves q =
D+3K

2
 if its PO is lower, while G1 

generator serves D−3K
2

= q − 3K if its PO is higher than rival’s. The price is set at los-
ing generators PO level. From 19, it can also be seen that the price at G1 node is set at 
�s = b1,s . The estimate of profit that the strategic generator G2 sees can be expressed 
as:

Writing first order conditions for (138) using Leibniz Theorem:

(139) is similar to the derivation for equation (75). A similar derivation to (75) leads 
to:

Similarly we can say

(135)z(C2,s) = C2,s + ∫
B

C2,s

D − KF(t)

D − KF(C2,s)
dt

(136)z(C1,s) = C1,s + ∫
B

C1,s

D − KF(t)

D − KF(C1,s)
dt

(137)�z

�D
= �

B

C1,s

K(F(t) − F(Ci,s))

(D − KF(Ci,s))
2
dt ≥ 0

(138)�1,s(z) = q∫
B

z

(z − C1,s)Pr(r)dr + (q − 3K)∫
z

B

(z − C1,s)Pr(r)dr

(139)z�(C1,s) − 3Kz(C1,s)
f (C1,s)

u − 3KF(C1,s)
= −3KC1,s

f (C1,s)

q − 3KF(C1,s)

(140)z(C1,s) = C1,s + ∫
B

C1,s

q − 3KF(t)

q − 3KF(C1,s)
dt
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< 7 > As we increase D, the price offer made by strategic generator reacts. Due to 
Leibniz rule:

We thus show that as the system demand increases, the price offers by strategic play-
ers increase

Appendix 14: Proof of Lemma 7: no congestion

The 1‑Generator System

From the discussion for perfect competition and imperfect competition we can see that:

From Assumption 3, Sect. 3, we can see that Ci,s ≤ B ⟹ �(IC)
s

≥ �(PC)
s

.

The 2‑Generator System

From the discussion for perfect competition and imperfect competition we can see that:

From Lemma 7, we have min(b1,s, b2,s) ≥ min(C1,s,C2,s) and max(b1,s, b2,s) ≥ max(C1,s,C2,s) . Therefore due to (145)–(146), it can further be said that 
�(IC)
s

≥ �(PC)
s

.

Appendix 15: Proof of Lemma 7: with congestion

Consider duopoly in 2-node system. From (135), it can be seen that strategic PO:

(141)z(C2,s) = C2,s + ∫
B

C2,s

q − 3KF(t)

q − 3KF(C2,s)
dt

(142)�z

�D
= �

B

C1,s

3K(F(t) − F(Ci,s))

2(q − 3KF(Ci,s))
2
dt ≥ 0

(143)�(PC)
s

= Ci,s

(144)�(IC)
s

= B

(145)𝜇(IC)
s

=

{
min(b1,s, b2,s), 0 ≤ D < G

max(b1,s, b2,s), G ≤ D < 2G

(146)𝜇(PC)
s

=

{
min(C1,s,C2,s), 0 ≤ D < G

max(C1,s,C2,s), G ≤ D < 2G
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Further from Proposition 5 we know that LMP at load is �(2)
s

= b2,s . Therefore, 
�(2),(IC)
s

= C2,s + ∫ B

C2,s

D−KF(t)

D−KF(C2,s)
dt . We know by definition that b(PC)

2,s
= C2,s . It can be 

further seen from Proposition 5 that, �(2),(PC)
s

= C2,s . It is clear that �(2),(PC)
s

≤ �(2),(IC)
s

 
because the second term in (135) is a positive quantity. A similar argument shows 
�(3),(PC)
s

≤ �(3),(IC)
s

 in duopoly 3-node system as well.

Appendix 16: Proof of Proposition 8

From Proposition 1, we can say that:

Due to Lemma 7 and (147)–(148), we can see that I�(D(PC)) ≥ I�(D(IC)) . Due 
to convexity of I(.) as mentioned in Assumption 6, we can further conclude that 
D(PC) ≥ D(IC) . It should be noted that Proposition 1 works under the linear assump-
tions of Assumption 1.

Appendix 17: Illustrative example: reformulating a bilevel MILP 
problem as an equivalent single‑level MILP problem

We elaborate the recast process using a simple example from Moore and Bard (1990). 

b
(IC)

2,s
= C2,s + ∫

B

C2,s

D − KF(t)

D − KF(C2,s)
dt

(147)I�(D(PC)) = T

{ ∑
s∈{s∶s∈S & Us≥�s}

�s(Us − �(PC)
s

)

}

(148)I�(D(IC)) = T

{ ∑
s∈{s∶s∈S & Us≥�s}

�s(Us − �(IC)
s

)

}

Table 6  Optimal results for 
generating approximate cuts

x ∈ {1,… , 7} MILP LP Cuts LP with Cut

1 y = 2 y = 1.3 y ≥ 2 y = 2

2 y = 2 y = 1.1 y ≥ 2 y = 2

3 y = 1 y = 0.9 y ≥ 1 y = 1

4 y = 1 y = 0.7 y ≥ 1 y = 1

5 y = 1 y = 0.5 y ≥ 1 y = 1

6 y = 1 y = 0.3 y ≥ 1 y = 1

7 y = 1 y = 0.1 y ≥ 1 y = 1
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 We see that 1 ≤ x ≤ 7 and x ∈ ℤ . This means that x can take 7 integer values. For 
each of these 7 integer values of x, we run lower level problem with MILP and LP 
relaxation. We record the solutions in Table 6.

As seen from Table 6, we also run a relaxed LP lower-level problem while enforc-
ing a cut that forces the relaxed LP problem solution to integrality and matches 
MILP solution.

An implementation of the approximate cuts method for (149) with singleton par-
titions is shown below:

(149a)Maximize
x

x + 10y

(149b)
where

1 ≤ x ≤ 7, x ∈ ℤ

(149c)y ∈ argmax{Maximize
y

− y

(149d)
subject to ∶

− 25x + 20y ≤ 10

(149e)x + 2y ≤ 10

(149f)2x − y ≤ 15

(149g)2x + 10y ≥ 15

(149h)y ≥ 0, y ∈ ℤ

(150a)Maximize
x

x + 10
∑
s∈S

qs

(150b)
where

1 ≤ x ≤ 7, x ∈ ℤ, S, T = {1, 2, 3, 4, 5, 6, 7}

(150c)x =
∑
s∈S

bs, bs,ms ∈ {0, 1},
∑
s∈S

ms ≤ 0,
∑
s∈S

asms = x

(150d)− 25x + 20ys ≤ 10, ∀s ∈ S

(150e)x + 2ys ≤ 10∀s ∈ S

(150f)2x − ys ≤ 15,∀s ∈ S



 P. P. Verma et al.

1 3

   36  Page 52 of 56

(150g)2x + 10ys ≥ 15,∀s ∈ S

(150h)ys ≥ 0, ys ≥ cs, ∀s ∈ S

(150i)ys −M(1 − ms) ≤ qs ≤ ys +M(1 − ms),∀s ∈ S

(150j)−Mms ≤ qs ≤ Mms,∀s ∈ S

(150k)�1,s, �2,s, �3,s, �4,s, �5,s, �6,s ≥ 0

(150l)1 − 20�1,s + 2�2,s − �3,s − 10�4,s − �5,s − �6,s = 0,∀s ∈ S

(150m)

ys = −30�1,s − 25
∑
t∈T

k1,t,s − 10�2,s +
∑
t∈T

k2,t,s

− 15�3,s + 2
∑
t∈T

k3,t,s + 15�4,s − 2
∑
t∈T

k4,t,s + cs�6,s,∀s ∈ S

(150n)�1,s −M(1 − bt) ≤ k1,t,s ≤ �1,s +M(1 − bt),∀s, t

(150o)−Mbt ≤ k1,t,s ≤ Mbt,∀s, t

(150p)�2,s −M(1 − bt) ≤ k2,t,s ≤ �2,s +M(1 − bt),∀s, t

(150q)−Mbt ≤ k2,t,s ≤ Mbt,∀s, t

(150r)�3,s −M(1 − bt) ≤ k3,t,s ≤ �3,s +M(1 − bt),∀s, t

(150s)−Mbt ≤ k3,t,s ≤ Mbt,∀s, t

Table 7  Parameters a and c 
(approximate cut coefficients)

a c

1 2
2 2
3 1
4 1
5 1
6 1
7 1
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 The approximate cut coefficients are reported in Table 7. We see that (150) is an 
exact reformulation of (149).
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