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Abstract. Increasing ocean plastic pollution is irreversibly harming ecosystems and 
human economic activities. We partner with a nonprofit organization and use optimization 
to help clean up oceans from plastic faster. Specifically, we optimize the route of their plas
tic collection system in the ocean to maximize the quantity of plastic collected over time. 
We formulate the problem as a longest path problem in a well-structured graph. However, 
because collection directly impacts future plastic density, the corresponding edge lengths 
are nonlinear polynomials. After analyzing the structural properties of the edge lengths, 
we propose a search-and-bound method, which leverages a relaxation of the problem solv
able via dynamic programming and clustering, to efficiently find high-quality solutions 
(within 6% optimal in practice) and develop a tailored branch-and-bound strategy to solve 
it to provable optimality. On one year of ocean data, our optimization-based routing 
approach increases the quantity of plastic collected by more than 60% compared with the 
current routing strategy, hence speeding up the progress toward plastic-free oceans.
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ShareAlike 4.0 International License. You are free to download this work and share with others for 
any purpose, except commercially, if you distribute your contributions under the same license as 
the original, and you must attribute this work as “Operations Research. Copyright © 2024 The 
Author(s). https://doi.org/10.1287/opre.2023.0515, used under a Creative Commons Attribution 
License: https://creativecommons.org/licenses/by-nc-sa/4.0/.” 
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1. Introduction
Oceans are vital to life on earth: they home a vast array 
of plant and animal species and play a critical role in 
regulating the climate. In addition, they provide impor
tant economic benefits, for example, by supporting 
industries such as fishing, aquaculture, tourism, and 
the extraction of minerals. However, oceans are being 
threatened by growing and severe plastic pollution. As 
of 2015, 80% of the 6.3 billion tons of plastic waste ever 
generated ended up in landfills or the natural environ
ment (Geyer et al. 2017). As of 2020, there were around 
three million tons of plastic waste floating in the oceans 
(Kaandorp et al. 2023). Furthermore, the amount of 
plastic emissions in the ocean increases by 4% every 
year (Kaandorp et al. 2023) with 0.5–2.7 million tons 
emitted via rivers every year (Lebreton et al. 2017, 
Schmidt et al. 2017, Meijer et al. 2021). Plastic pollution 

is posing a threat to the marine ecosystem and the spe
cies that rely on it (Gall and Thompson 2015, Wilcox 
et al. 2015). It also has a detrimental impact on human 
activities. We refer to Li et al. (2016) for a comprehen
sive review of marine plastic pollution and its sources 
and effects. Because of its environmental and economic 
relevance, the reduction of ocean pollution is listed as 
an explicit target in the United Nations’ Sustainable 
Development Goal 14: Life Below Water.

The reduction of marine plastic pollution requires 
two concurrent actions: reducing yearly emissions and 
removing persistent legacy plastic pollution. Regarding 
the first effort, many legislative and nonlegislative 
actions have been taken to ban (or discourage) the use 
of single-use plastic (e.g., plastic bags or straws) with 
varying degrees of efficiency (see Schnurr et al. 2018 for 
a review). Given the importance of land-based pollution 
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and the role of rivers in transporting land-based pollu
tion into the oceans, solutions also include improved 
in-land plastic waste management, recycling, and plas
tic interception in rivers (see, e.g., Dijkstra et al. 2021, 
Winterstetter et al. 2021). On the other hand, the active 
removal of plastic already emitted in the oceans has 
received lower attention and may be regarded as less 
efficient than preventing emissions because of the low 
average concentration of floating plastic in the oceans.

Fortunately, floating plastic debris get trapped in large 
circulating currents, called gyres, and tends to accumulate 
in specific areas called garbage patches. The largest of 
these five patches, the Great Pacific garbage patch (GPGP), 
is located halfway between California and Hawaii. Nearly 
80,000 tons of plastic float inside this area of 1.6 million 
km2 or three times the size of France (Lebreton et al. 2018). 
Figure 1 displays yearly average plastic density estimates 
in the GPGP. In short, plastic density in the GPGP is about 
20 times higher than in the rest of the ocean.

The Ocean Cleanup is a Dutch nongovernmental 
organization whose mission is to clean up oceans from 
plastic. In addition to interception activities in rivers, it 
has developed a technology to collect plastic debris in 
the oceans. It has been trialing solutions in the GPGP 
since 2018 and operating its newest system since 2021. 
The system consists of a large (600-meter-wide and 
4-meter-deep at the beginning of our collaboration) 
U-shaped screen, slowly dragged by two ships, which 
can capture floating plastics without capturing any 
marine animals. In this collaboration, we investigate the 
potential for improving the efficiency of the plastic col
lection system by optimizing its route in the GPGP. In 
particular, we use data and models about weather con
ditions and plastic density in the GPGP to construct an 
optimization-based routing algorithm that directly max
imizes the quantity of plastic collected, hence speeding 
up the progress toward cleaner and healthier oceans.

1.1. Problem Description
The Ocean Cleanup’s plastic collection system (which 
we later refer to as the system) is composed of two ships 

and a U-shaped screen (or net) as shown in Figure 2. In 
its original configuration (system 002/B), the screen 
had a span of 600 meters, but it has been increased to 
1.4 km in the latest version of the system (system 03). It 
acts as an artificial coastline that intercepts floating 
debris. These floating plastic particles then gradually 
accumulate in a partially closed contraption at the apex 
of the screen called the retention zone.

Routing the system in the GPGP needs to satisfy 
some navigation requirements. To preserve the physical 
integrity of the screen, for example, the system can only 
slowly change course and cannot make any sharp turns. 
In addition, in order not to catch any fish or other 
marine life, the system moves at a fixed and low speed 
of around 1.5 knots (2.78 km/h). Finally, as any sea ves
sel, it is sensitive to weather and navigation conditions 
such as waves and wind. For example, when the wave 
height exceeds 4.5 meters, the system has to head 
against the waves to protect the screen. Above six-meter 
waves, the screen no longer intercepts any plastic.

The retention zone has a limited capacity of 25 metric 
tons and needs to be emptied regularly. The process of 
emptying the retention zone is called an extraction and is 
a complex operation: the screen is closed, the retention 
zone is hauled onto the ship deck and lifted by a crane, 
and the collected plastic is discharged on deck before 
being sorted and sent ashore for recycling. In particular, 
the crane cannot be operated when the wave height 
exceeds 2.5 meters. Overall, an extraction takes around 
24 hours, during which the collection is stopped. Hence, 
extractions play an important role in the overall collection 
efficiency, and extraction scheduling should be incorpo
rated in our search for a better routing system.

Our primary objective is to maximize the quantity of 
plastic collected. The Ocean Cleanup has developed a 
suite of models to estimate the dispersion and density 
of plastic in the GPGP (Klink et al. 2022) by using hind
cast and forecast models of ocean currents, waves, and 
wind. Assimilation methods (Peytavin et al. 2021) and 
plastic-specific transport models have also been inves
tigated (Sainte-Rose et al. 2022). On the sensing front, 
satellite imaging (Park et al. 2021, 2022) and remote 
sensing techniques (de Vries et al. 2021) are being Figure 1. (Color online) Yearly Plastic Density Map in the 

GPGP 

Figure 2. (Color online) The Ocean Cleanup’s System 
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developed to acquire field data. These models provide 
a picture of where plastics are located and how they 
move within this region, hence creating a dynamic 
view of present and future plastic density (similar to 
Figure 1 yet evolving over time). Our objective is to 
integrate these predictions directly into an optimal 
routing problem, so the system naturally accounts for 
plastic movements, which is crucial because both the 
system and the plastics are moving at comparable 
speeds. A central challenge is to account for the fact 
that the collection process removes plastic from the 
oceans and, as such, should directly impact the (esti
mate of) future plastic density. Hence, plastic density 
cannot be seen as an exogenous input to our model 
only; it is also impacted by our routing decisions.

To summarize, our objective is to find a route for the 
system and to schedule extractions of the retention 
zone in order to maximize the total quantity of plastic 
collected by the system. In particular, we need to 
account for weather and operational constraints, plastic 
dynamics, and the direct impact of our decision on 
future plastic density.

1.2. Contributions and Structure
In this work, we develop and validate an optimization 
approach to jointly optimize the routing and the extrac
tions of the plastic collection system. After reviewing 
the relevant literature in Section 2, we make the follow
ing contributions: 
• In Section 3, by discretizing space and time, we 

model the routing and scheduling decisions as paths in 
a directed acyclic graph (DAG). Among others, this 
model can account for relevant operational and weather 
constraints and provides efficient dynamic program
ming (DP) algorithms for the longest path type of opti
mization problems.
• Under this lens, the quantity of plastic collected 

can be seen as edge length in this graph and our prob
lem as a longest path optimization problem. However, 
because of the direct impact of our routing decisions on 
future plastic density, our resulting optimization prob
lem is a nonlinear and nondecomposable longest 
path problem. In Section 4, we formally analyze the 
structure of our path-dependent edge lengths, which 
resembles structure arising in covering problems. We 
derive lower and upper bounds on the estimation error 
obtained when ignoring the path dependency, which 
serves as the basis for our algorithmic strategy.
• We propose a search-and-bound strategy to effi

ciently find a high-quality solution for this class of pro
blems with certificates of near optimality (Section 4). Our 
algorithm leverages a linear relaxation of the problem 
solvable via dynamic programming to efficiently search 
through the space of trajectories by combining geographi
cal clustering with terminal values of the DP approach. 
We also propose a tailored branch-and-bound (B&B) 

scheme to solve this class of problems exactly, using our 
search-and-bound algorithm as the root node analysis. On 
small instances (up to three-day planning), our search- 
and-bound strategy finds an optimal solution, scaling bet
ter with respect to the problem size than exact approaches.
• Finally, we evaluate the benefit of our search-and- 

bound algorithm on a one-year data set of ocean weather 
conditions and plastic density in Section 5. We find that 
our optimization approach yields at least a 60% improve
ment in terms of average collection efficiency compared 
with the current routing strategy. In particular, we 
observe greater benefits (+100%) during winter months 
because weather conditions (and wave height in particu
lar) are limiting the ability to extract, hence exacerbating 
the benefit of jointly optimizing the route and the extrac
tion schedule. In addition, our algorithm allows The 
Ocean Cleanup to explore the nonlinear impact of strate
gic system dimensioning decisions (e.g., span of the sys
tem and size of the retention zone).

2. Literature Review
Our problem can be summarized as a ship joint routing 
and scheduling problem, in which the objective is to 
steer the system in the GPGP and schedule extractions 
(i.e., emptying of the retention zone) in order to maxi
mize the quantity of plastic collected. In Section 2.1, we 
review the optimization literature related to marine 
operations and ship routing. We then focus on methods 
for fishing optimization, which is similar to our plastic 
collection problem. Eventually, we model our problem 
as that of a longest path in an appropriately defined 
graph, so we review the literature on longest path opti
mization in Section 2.3.

2.1. Optimization for Ship Routing Problems
Following Granado et al. (2021), we divide the litera
ture into weather and tactical routing.

In weather routing, the objective is to find a route 
that connects a given origin with a given destination 
and minimizes travel time or fuel consumption, which 
depend on weather and navigation conditions. The 
typical planning horizon in weather routing is a few 
weeks. The great circle passing through these two loca
tions provides the shortest route in terms of travel dis
tance. So an optimal route is often to be found in the 
vicinity of the shortest route. Most approaches create a 
discrete grid of potential locations around the great cir
cle using isochrone lines (James 1957, Hagiwara and 
Spaans 1987) or a fixed grid (Zoppoli 1972, de Wit 
1990). By representing a trajectory as a sequence of 
locations, the weather routing problem can, thus, be 
formulated as a shortest path problem, which can be 
solved efficiently by DP (Zoppoli 1972, de Wit 1990, 
Ting and Tzeng 2003, Meng and Wang 2011, Aydin 
et al. 2017) or Dijkstra’s algorithm (Takashima et al. 
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2009, Skoglund 2012, Sen and Padhy 2015). Additional 
decision variables, such as engine power in Shao et al. 
(2012), can be modeled within a shortest path formula
tion by extending the description of the state of the 
ship. Heuristic methods are also used to deal with 
more complex objectives or constraints, such as simu
lated annealing (Kosmas and Vlachos 2012), the A* 
algorithm (Langbein et al. 2011, Yoon et al. 2018), or 
particle swarm optimization methods (Zheng et al. 
2019). Recently, Cheng and Zhang (2018) and Chen 
et al. (2019) use a reinforcement learning approach to 
optimize the route, learning the complex dynamics 
between waves and speed or fuel consumption. We 
refer to Zis et al. (2020) for a comprehensive review on 
ship weather routing.

For our problem, we adopt a similar modeling para
digm by discretizing the location of the system in the 
GPGP. However, we adopt a more fine-grained discre
tization of time (three-hour time steps) and space 
(8 km) and extend the state variable to account for 
extraction decisions as well, so our resulting graph is of 
much larger scale, that is, in the order of 106 nodes. In 
addition, the destination in our problem is not fixed, 
which can lead to more complex trajectories, such as 
circling or crossing. In terms of objective, we assume 
that the fuel efficiency does not depend on the routing 
decision because of the limited propelling speed, so 
our primary objective is to maximize the amount of 
plastic collected in a given amount of time. After 
appropriately defining edge weights, we formulate our 
problem as a longest path optimization problem and 
solve it using DP strategies similar to the ones used in 
weather ship routing.

Tactical ship routing consists in finding the lowest 
cost route for a ship that needs to visit different loca
tions (e.g., a cargo ship visiting different ports). Because 
the time horizon is long (several weeks or months) and 
the ports are fixed isolated locations, the problem can 
be formulated as a traveling salesperson problem (TSP) 
solved by branch-and-bound (Appelgren 1971, Stalhane 
et al. 2015), branch-cut-and-price (Battarra et al. 2014), 
or heuristic methods (Malaguti et al. 2018) or DP (Fager
holt and Christiansen 2000). We refer to Christiansen 
et al. (2004) for a comprehensive review of the literature 
and its connection to supply chain management.

2.2. Fish Routing
Among all maritime activities, fishing is the most com
parable to our plastic collection problem because the 
objective is to capture floating elements in the oceans.

Before solving any route optimization problem, one 
needs to first predict the density of fish at different 
locations. However, unlike plastic, fish are actively 
moving, which makes their precise location highly 
unpredictable. Instead, most works describe fish den
sity with coarse granular distributions (see Robinson 

et al. 2017 for a review). Unfortunately, estimating the 
accuracy of these different approaches remains an 
open challenge. Indeed, 94% of the studies reviewed by 
Robinson et al. (2017) failed to report the uncertainty of 
their model.

In the weather routing literature, algorithms that 
consider wave and wind forecast to design safe and 
efficient routes have been applied to fishing (e.g., Vet
tor et al. 2016). In these use cases, the objective of maxi
mizing the quantity of fish collected is captured in the 
choice of the target destination and is typically left to 
the end user. This implementation bypasses the issue 
of inaccurate predictions by letting the human user 
identify (based on quantitative models and intuition) 
the destination. To the best of our knowledge, no 
weather ship routing approach uses quantitative fish 
density predictions directly as an input to optimize the 
short-term (within the next days) route of fishing ships. 
Instead, predictions on the presence and movements of 
fish banks or clusters are mostly used as locations in a 
tactical ship routing problem. For tuna fishing, for 
example, floating devices are dispersed in the ocean to 
attract fish. Groba et al. (2015, 2018, 2020) model the 
problem of visiting all devices as a dynamic TSP, in 
which locations can drift because of sea current.

2.3. Optimization for Longest Path
Given weights on the edges of a graph, the length of a 
path is defined as the sum of the weights of the edges 
composing the path. The problem of finding the lon
gest path in a graph is shown to be NP-complete as a 
generalization of the Hamiltonian path problem (Karp 
2010). Actually, the longest path problem cannot be 
approximated in polynomial time unless P �NP as 
proved by Karger et al. (1997) for undirected and 
Björklund et al. (2004) for directed graph.

In contrast, finding the shortest path in a graph can 
be solved in polynomial time using algorithms such as 
the greedy-type Dijkstra’s algorithm (Dijkstra 1959, 
Dantzig 1960) or the Bellman–Ford algorithm (Shimbel 
1955, Ford 1956, Bellman 1958, Moore 1959). We refer 
to Pollack and Wiebenson (1960) and Schrijver (2012) 
for comprehensive reviews. Understanding the struc
tural differences between the longest and shortest path 
problems and their implications for problem complex
ity has been a vivid research topic (see, e.g., Cormen 
et al. 2022), unraveling conceptual connections between 
shortest path algorithms and DP (Sniedovich 2006).

Nonetheless, polynomial time algorithms for longest 
path problems exist for particular classes of graphs, 
such as trees (Bulterman et al. 2002, Uehara and 
Uno 2007), block graphs, cactus graphs (Uehara and 
Uno 2007), and cocomparability graphs (Ioannidou 
and Nikolopoulos 2013). The graph we propose in Sec
tion 3.1 is a DAG. The longest path problem in a DAG 
can be solved in linear time by transforming it into the 
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shortest path problem (Pandit 1962, Cormen et al. 2022) 
or using DP on the topological sort of the DAG 
(Madraki and Judd 2019). The DAG in our project has a 
natural topological sort, and we use DP in Section 3.2
to solve linear longest path problems.

3. Graph-Based Routing Model
In this section, we propose a graph-based formulation 
for our problem. By discretizing time and space, we 
show in Section 3.1 how the routing decision can be 
modeled as a path in a sparse directed acyclic graph. 
Accordingly, longest path optimization problems can 
be solved efficiently over this graph using DP as pre
sented in Section 3.2. We conclude this section by dis
cussing how extraction scheduling decisions can be 
incorporated as well—details are deferred to Online 
Section A.3 of the electronic companion—and identify
ing a set of tractable optimization problems we can 
solve in Section 3.3.

3.1. Discretization and Graph Representation
To describe the system’s trajectory and model the key 
decisions and constraints of our problem, we discretize 
space onto a finite grid as represented in Figure 3. Simi
larly, we divide our planning horizon using a fixed 
time step. In our implementation, we use an 8-km step 
to discretize space and a three-hour time step. Denot
ing L as the set of all possible locations and T :�

{0, 1, : : : , T} as the set of time periods, we can represent 
a system trajectory as a sequence of locations, {ℓt}t∈T 

with ℓt ∈ L.
However, as explained in Section 1.1, the steering 

direction also plays an important role in our problem 
because of operational (e.g., no sharp turn) and weather 
constraints (e.g., if the wave height exceeds 4.5 meters, 
need to navigate against the waves). Hence, at a given 
time t, knowledge of the current location ℓt is not suffi
cient to determine whether the constraints are satisfied 
and what the accessible next locations are. Accordingly, 

we describe a trajectory by a sequence {(ℓt, dt)}t∈T , 
where ℓt is the location at time t and dt ∈D is the steer
ing direction at time t. Here, D denotes the (finite) set 
of allowable steering directions in our grid, D :� {↑ , 
↗ , → , ↘ , ↓ , ↙ , ← , ↖}. For example, we can eas
ily enforce the no-sharp-turn constraint by limiting the 
change in direction between t and t+ 1, that is, the angle 
between dt and dt+1 (no more than 45◦ in our case).

Figure 3(a) shows an example of a discretized trajec
tory. For simplicity, we associate L with a set of dis
crete coordinates in R2, which are in a one-to-one 
correspondence with the latitude and longitude of the 
system. In this example, at t � 0, the system is at loca
tion (0, 0), moving southeast (↘). It keeps the same 
steering direction at t � 1 and reaches (1, 1). At t � 2, 
it can reach three different locations depending on 
whether it continues southeast (d2 �↘) or decides to 
change course and move → or ↓. Because the propel
ling speed of our system is limited (in order not to catch 
any marine life), we use discretization steps for time 
(three hours) and space (8km) that are consistent with 
this low propelling speed (1–1.5 knots) and assume 
that the system in one location can only reach the 
neighboring locations at the next time period. We could 
relax this assumption and adopt a finer discretization 
strategy to account for travel time differences between 
diagonal and horizontal/vertical moves or allow for 
different propelling speed depending on the steering 
direction (e.g., to maintain a constant speed relative to 
water).

Using terminology from DP, we refer to the triplet 
s :� (ℓ, d, t) ∈ L ×D ∈ T as the state of the system. For 
each state s � (ℓ, d, t), we can then define its set of suc
cessors, that is, the set of admissible next states s′ �
(ℓ′, d′, t+ 1) that satisfy all operational and weather 
constraints, such as 
• Consistency between locations and directions: The 

next location ℓ′ needs to correspond to the location 
reached from ℓ after following the direction d′, which 

Figure 3. (Color online) Example: Routing in a Small Grid 

(a) (b)

Notes. (a) Discretization of path. (b) High wave region and direction at t � 1.
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we can express algebraically as d′ � ℓ′� ℓ”after appro
priately mapping L and D to vectors in R2.
• No sharp angles: In our problem, the angle between 

the steering directions d and d′ is at most 45◦ (or π=4). 
For example, for s � ((2, 2), ↘ , 1) in Figure 3(a), we 
must have d′ ∈ {→ , ↘ , ↓}.
• High-wave regions: When the wave height exceeds 

4.5 meters, the system has to navigate against the 
waves. For example, in Figure 3, (a) and (b), assume 
that the location at t � 1 is in a high-wave region with 
waves going north–northeast. Then, according to this 
constraint, the next direction d′ can only be ↙ or ↓.

Our model can, thus, account for any constraint 
defined on the location or direction of the system; we 
provide a list of the operational constraints of our prob
lem in Online Section A.1. In Online Section A.3, we 
describe how to extend the state space further to incor
porate the decision of extraction scheduling and impose 
the associated constraints (in particular, extraction can 
only be performed when the wave height is below 2.5 
meters). Altogether, these constraints define the succes
sors of a state s, which we concisely denote succ(s). For 
the example, in Figure 3, we have succ((2, 2), ↘ , 1) �
{((3, 2), ↓ , 2)}. In other words, the system only has one 
feasible next state given the current state and weather 
conditions.

With these notations, we can represent admissible 
trajectories as paths on a graph G � (S,E). The set of 
nodes S can be naturally partitioned by the time period 
t ∈ T , that is, S � ∪t∈T St, where St is the set of feasible 
states at time t and is defined recursively. At time t � 0, 
if we are given an initial location ℓ0 only, then the set of 
all possible initial states is S0 � {(ℓ0, d, 0) : d ∈D}. We 
then apply the recursion St+1 � ∪s∈St succ(s). This offers 
the flexibility to fix (or not) the starting/ending point 
of the trajectory. Similarly, the set of edges can be 
decomposed into E �∪T

t�1 Et, with Et+1 � {(s, s′) ∈ St ×

St+1 : s′ ∈ succ(s)}. In particular, observe that the 
graph G is a DAG. Furthermore, it is relatively sparse. 
Because of the no-sharp-turn constraint, the number of 
edges satisfies |Et | �O( |St | ). Online Figure A.1 shows 
the graph corresponding to the example of Figure 3. In 
our implementation, we plan for seven days with 
three-hour time steps, so T � 7 × 8 � 56 and the grid of 
all reachable locations is of size |L | � (56+ 1+ 56) ×
(56+ 1+ 56) � 12, 769. Hence, for each time t, the num
ber of possible states for time t is bounded as follows: 
|St | ≤ |S | × |D | ≈ 105.

3.2. Efficient Search for Longest Path
Thanks to the convenient structure of the graph G, 
given fixed weights on the edges, we for e ∈ E, we can 
efficiently find the longest path, that is, the reward- 
maximizing trajectory. Assuming that we is associated 
with the quantity of plastic collected when the system 
moves along edge e at time t, our plastic collection 

problem is equivalent to finding the longest path in G 

with edges weighted by w. Because G is a DAG, the 
longest path can be found using a DP algorithm. We 
present the key ingredients and intuition in this section 
for the sake of completeness and defer a complete 
description of the longest path algorithm (Algorithm 
A.1) in the appendix.

For any state s ∈ St+1, let Vt+1(s) denote the length of 
the longest path connecting s to S0:

Vt+1(s) :� max
s0∈S0, : : : , st∈St

Xt

τ�0
wsτ , sτ+1 with st+1 � s:

The key idea in the DP algorithm is that a solution of 
the optimization problem above can be computed 
recursively by connecting the longest path between S0 
and s′ and the edge (s′, s) for some s′ ∈ St, that is, 
Vt+1(s) �maxs′∈St :s∈succ(s′) {ws′, s +Vt(s′)}. The latter max
imization problem is solved by exhaustively searching 
through St.

Algorithm A.1 proceeds by recursively computing 
the values Vt(s) for t � 0, : : : , T. At the end, Algorithm 
A.1 returns, for every possible terminal state s ∈ ST, the 
value of the longest path problem across all possible 
paths terminating at s, VT(s), alongside a candidate 
path achieving this value. Figure 4 shows an example 
of a seven-day collection route obtained by applying 
Algorithm A.1.

3.3. Summary: Power of the Graph-Based 
Modeling

In this section, we propose a graph-based model to rep
resent the routing decision as a path in a sparse DAG, G. 
In Online Section A.3, we show how we can extend the 
state space S of our system and the graph G to also 
account for extraction scheduling. Hence, we obtain a 
similar DAG in which each path now corresponds to a 
sequence of routing and extraction scheduling decisions.

The DP algorithm described in Section 3.2 (Algo
rithm A.1) is an efficient approach for solving longest 
path problems over this graph. In this work, we are 
particularly interested in problems in which rewards 
are associated with states instead of edges, that is, lon
gest path problems of the form

max
x∈X

X

t∈T

X

s∈St

rt
sx

t
s, (1) 

where xt
s ∈ {0, 1} indicates whether the system is in 

state s at time t and X denotes the set of admissible 
such binary variables. A formal definition of the feasi
ble set X is provided in G.4. Of course, problems of the 
form (1) can be solved by Algorithm A.1 as longest 
path problems with weights ws, s′ � rt

s′ for (s, s′) ∈ Et. 
Conceptually, one can interpret the DP approach as 
an efficient partitioning of the set X . At the end of 
Algorithm A.1, the set of trajectories X is partitioned 
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according to the terminal state they reach. The quantity 
VT(s) corresponds to the value of the longest path 
problem across all paths terminating at s, and we can 
get one path achieving this value, denoted xs.

4. Path-Dependent Reward Structure and 
Algorithms

Because our graph-based formulation presented in Sec
tion 3.1 allows us to efficiently find trajectories that 
maximize a given reward, a natural approach is to cast 
our plastic collection problem as a longest path prob
lem. Because plastics are freely floating in the oceans, 
however, plastic particles are constantly moving, and 
the plastic collecting system directly impacts these 
dynamics. We present the dynamics of plastic move
ments in the absence of any collection in Section 4.1 and 
then derive the resulting dynamics for our objective 
function in Section 4.2. In particular, the rewards (or 
edge length) we need to consider are path-dependent; 
that is, they depend on the entire past trajectory of 
the system. We analyze the structure of such path- 
dependent rewards in Section 4.3. Based on this analysis, 
we propose an efficient search-and-bound algorithm to 
find near-optimal solutions to the resulting nonlinear 
optimization problem efficiently (Section 4.4), and a 
tailored branch-and-bound scheme that solves it to opti
mality (Section 4.5). We evaluate our algorithms numeri
cally in Section 4.6.

4.1. Fluid Mechanics Model of Free-Floating Plas
tic Dispersal

Plastic particles move passively in the oceans, and 
as such, their movements can be modeled and pre
dicted using fluid dispersal models. Among others, the 

engineering team at The Ocean Cleanup models the 
velocity of plastic particles in the oceans using data on 
sea currents and waves and taking into account the 
Stokes drift (Stokes 1847) and Eddy diffusivity (Taylor 
1915) phenomena.

Denoting rt
ℓ as the quantity of plastic present at time 

t ∈ T and at location ℓ ∈ L, these fluid dispersal models 
provide us with estimates on the quantity of plastic pre
sent in the region at times (r0, : : : , rT) as well as struc
tural relationships connecting the vectors. Formally, 
from the models developed by The Ocean Cleanup, we 
also obtain matrices Qt ∈ RL×L

+ such that

rt+1 �Qtrt: (2) 

Each entry Qt
ℓ, ℓ′ of the matrix Qt indicates the fraction 

of plastic present at location ℓ′ at time t that moves to 
location ℓ at time t+ 1. If the total quantity of plastic is 
constant (which is a reasonable assumption given our 
relatively short planning horizon), then the matrix Qt 

should be left stochastic (i.e., 
P
ℓ∈LQt

ℓ′, ℓ � 1 for all 
ℓ ∈ L). In this case, we could interpret Qt as the transi
tion matrix of a Markov process. In our approach, we 
only require that Qt has nonnegative entries.

Remark 1. In practice, the matrices Qt are large, 
125,000 × 125,000 in our implementation, so matrix vec
tor products involving Qts can be computationally chal
lenging. Actually, the construction of the matrices Qt 

from the particle-level fluid dispersal model is the most 
time-consuming step. We discuss computational aspects 
of the plastic dynamics model in Online Section C.

4.2. Path Dependency
Given this information, we now define a relevant objec
tive for our longest path problem. Whereas the plastic 

Figure 4. (Color online) Example of an Optimal Seven-Day Route (Starting at the Diamond Location on Day 1), Represented on 
Days 3 and 5 (Triangle Locations) on Top of the Plastic Density Map for Each Day 
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density vectors (or maps) rt, t ∈ T , defined in the previ
ous section describe the plastic dynamics in absence of 
any collection process, our system actively removes 
plastic from the ocean, and the collected plastic no lon
ger evolves according to (2). In other words, the quan
tity of plastic collected by our system (and the locations 
where this plastic has been collected) directly impacts 
the future spatial distribution of plastic. It is relevant to 
our optimization problem because our system moves 
at a speed comparable to that of the plastic. We refer to 
this phenomenon as path dependency and now appro
priately define a reward (or length) vector for our opti
mization problem that takes this phenomenon into 
account.

Let us denote the location of the system at time t 
through a one-hot vector xt ∈ {0, 1}L, where xt

ℓ � 1 if 
and only if the system is in ℓ at time t. We denote by 
rt
|x0:t�1 ∈ RL

+ the quantity of plastic present (or reward) 
associated with each location at time t, where x0:t�1 con
cisely denotes the sequence {x0, : : : , xt�1} and empha
sizes the dependency on the past trajectory. If the 
system is in location ℓ at time t, it collects a fraction α ∈
[0, 1] of the plastic present. Hence, it collects αrt

ℓ |x0:t�1 

and the remaining (1� α)rt
ℓ |x0:t�1 continues to float in 

the ocean, together with the plastic present in other 
locations, rt

ℓ′ |x0:t�1 for ℓ′ ≠ ℓ. Altogether, the spatial den
sity of plastic at time t+ 1, rt+1

|x0:t , should depend on 
rt
|x0:t�1 and xt through the following recursion:

rt+1
|x0:t �Qt(rt

|x0:t�1 � α rt
|x0:t�1 ◦ xt), (3) 

where ◦ denotes the Hadamard or element-wise prod
uct between two vectors. Hence, rt

|x0:t�1 � α rt
|x0:t�1 ◦ xt 

corresponds to the density map on which we remove a 
fraction α of the plastic in the location of the cleaning 
system.1 Note that, because Qt, xt, and r0 have nonneg
ative entries, one can show by induction that rt+1

|x0:t ≥ 0.
With these dynamics in mind, the problem of jointly 

routing the system and scheduling the extractions in 
order to collect the maximum amount of plastic possi
ble can be formulated as the following longest path 
optimization problem:

max
x∈X

X

t∈T

X

s∈St

rt
s |x0:t�1 xt

s s:t: rt+1
|x0:t � Qt(rt

|x0:t�1 , xt),

(4) 

which is analogous to the longest path problem (1) 
except that the rewards are no longer fixed, but also 
depend on the past decisions, x0:t. Unfortunately, Prob
lem (4) is much more challenging to solve than (1) 
because the objective is nonlinear. To better understand 
the dynamics and complexities of the problem, we 
study analytically the path-dependent reward vectors 
defined by Recursion (3) in the following section.

Remark 2. Note that, with a slight abuse of notation, 
we use the variable xt

s in Problem (4) to encode for the 

state of the system at time t, whereas plastic dynamics 
(3) are described using binary variables xt

ℓ encoding 
for the location of the system (location being one com
ponent of the state only) and similarly for the associ
ated rewards. However, it should be clear that we can 
recover the location from the system’s state via a sim
ple affine mapping and that the reward dynamics 
described at a location level in (3) imply similar 
dynamics for the state rewards. We formally define 
this mapping in Online Section B.1 and introduce a 
generic operator Qt in the optimization problem (4) to 
concisely capture the resulting dynamics on the state 
variables/rewards. In the remainder of this section, 
for ease of notation, we implicitly work with location- 
based x variables when analyzing the structure of the 
rewards generated by the recursive Equation (3) but 
refer to the state-level variables when describing opti
mization problems and algorithms. This simplification 
is valid because the mapping between the two descrip
tions is monotonous.

4.3. Reward Decomposition
We analyze the structure of the path-dependent reward 
rt+1
|x0:t to inform our algorithmic strategy.
To build intuition, we start by the special case in which 

plastic does not move, that is, when the matrices Qt are 
the identity matrices. In this case, in the absence of any 
plastic collection, the plastic density maps rt defined by 
Equation (2) are constant over time, r0 �⋯� rT ≕ r. 
Accordingly, we drop the time superscript although the 
path-dependent reward, r |x0:t�1 still depends on time t 
through the past trajectory x0:t�1. In this case, we have 
the following expansion.

Lemma 1. When the matrices Qt are all equal to the iden
tity matrix, we have

r |x0:t � r+
X

1≤ k≤ t
(�α)k

X

0≤ t1<⋯< tk ≤ t
r ◦ xt1 ◦⋯ ◦xtk :

Proof of Lemma 1. In this case, the plastic dynamics 
(3) simplify as

r |x0:t � r |x0:t�1 � α r |x0:t�1 ◦ xt � r |x0:t�1 ◦ (1� αxt)

� r ◦ (1� αx0) ◦ ⋯ ◦ (1� αxt):

The Hadamard product being commutative and asso
ciative, we can use the classical polynomial expansion 
technique to obtain

r |x0:t � r ◦
X

0≤ k≤ t
(�α)k

X

0≤ t1<⋯< tk ≤ t
xt1◦ ⋯ ◦ xtk

" #

�
X

0≤ k≤ t
(�α)k

X

0≤ t1<⋯< tk ≤ t
r ◦ xt1◦ ⋯ ◦ xtk : w 

Lemma 1 shows that the path-dependent reward 
r |x0:t can be computed from r by applying successive 
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corrections. The kth order correction in this expansion 
involves Hadamard products of the form xt1 ◦⋯ ◦xtk , 
each of them being different from the 0 vector if and 
only if there exists a location ℓ such that xt1

ℓ �⋯�
xtk � 1. In other words, the first order correction con
sists in removing a fraction α of the plastic in locations 
visited at least once by the system, the second order 
correction adds a fraction α2 of the plastic in locations 
visited as least twice by the system, and so on. In the 
general case, the plastic particles move according to the 
matrix Qt, so they are not assigned to a fixed location. 
Still, the intuition of Lemma 1 holds: the path-dependent 
rewards rt

|x0:t�1 can be obtained from the original rewards 
rt by removing a fraction α of the plastic particles 
encountered once, adding a fraction α2 of the plastic par
ticles encountered twice, etc. We derive analytically the 
order two expansion (in α) of the path-dependent 
reward in the general case in Online Section B.2.

Remark 3. The terms in the expansion in Lemma 1
decay exponentially in k because of the αk term 
and because the number of locations being updated 
decreases:

X

0≤ t1<⋯< tk< tk+1≤t
xt1◦⋯ ◦xtk ◦xtk+1 ≤

X

0≤ t1< ⋯ <tk≤ t
xt1◦⋯ ◦xtk ,

∀k≥ 0:

The structure of these expansions is analogous to the 
inclusion–exclusion principle from probability. From 
this analogy, one can expect that truncating the expan
sion at a fixed order k with k even (respectively, odd) 
leads to an upper (lower) bound on the path-dependent 
reward. Indeed, Proposition 1 shows that zeroth and 
first order expansion provides valid upper and lower 
bounds, respectively, on the path-dependent reward.

Proposition 1. The path-dependent reward rt+1
|x0:t satisfies 

the following bounds:

rt+1� α
X

0≤ t1≤ t
(Qt ×⋯×Qt1)(rt1 ◦ xt1) ≤ rt+1

|x0:t ≤ rt+1: (5) 

Proof of Proposition 1. We prove the result by 
induction. For t � 0, r1

|x0:0 � r1� αQ0(r0 ◦ x0). Hence, in 
this case, r1

|x0:0 is exactly equal to the lower bound in 
(5). Because Q0, r0, and x0 have nonnegative entries, 
Q0(r0 ◦ x0) ≥ 0, and the upper bound in (5) holds 
as well.

Let us now assume that Bounds (5) hold for some 
t ≥ 0, and let us show that they also hold for t+ 1.

For the upper bound,

rt+2
|x0:t+1 � Qt+1rt+1

|x0:t � αQt+1(rt+1
|x0:t ◦ xt+1) ≤ Qt+1rt+1

|x0:t

≤ Qt+1rt+1 � rt+2:

For the lower bound,

rt+2
|x0:t+1 � Qt+1[rt+1

|x0:t ◦ (1� αxt+1)]

≥ Qt+1
��

rt+1 � α
X

0≤ t1≤ t
(Qt ×⋯ × Qt1)(rt1 ◦ xt1)

�

◦ (1� αxt+1)

�

� Qt+1rt+1 � αQt+1
X

0≤ t1≤ t
(Qt ×⋯× Qt1)(rt1 ◦ xt1)

� αQt+1(rt+1 ◦ xt+1) + α2 : : :|{z}
≥0

≥ rt+2 � α
X

0≤ t1≤ t+1
Qt+1 × (Qt ×⋯ × Qt1)(rt1 ◦ xt1), 

which concludes the proof. w

Our analysis of the structure of the path-dependent 
rewards highlights the fact that path dependency is 
essentially a double-counting issue: the path-dependent 
rewards count the quantity of plastic that can be col
lected by the system. If a plastic particle has already 
been captured by the system in the past, it should not 
be counted again to estimate future rewards. This struc
ture is also present in optimization problems with 
coverage objectives. In the maximal covering location 
problem (Church and ReVelle 1974), for example, the 
total coverage is not the sum of the regions covered by 
each facility separately because regions covered by 
more than one facility should not be counted multiple 
times. Our problem offers a novel real-life example of 
this classical structure with the following twists: a large 
number of regions to cover (plastic particles in the 
GPGP in our language), dispersion dynamics, and the 
presence of an efficiency ratio (α ∈ (0, 1]).

Conceptually, the reward vectors rt
|x0:t�1 are order-t 

polynomials in x, leading to the hard nonlinear opti
mization problem (4). However, by Section 3.2, we 
know how to efficiently maximize linear functions 
over the feasible set X . Hence, in the rest of this sec
tion, we develop and validate the following algorith
mic strategy: a linear relaxation of the path-dependent 
reward and an efficient feasible solution search to find 
high-quality solutions quickly combined with a tai
lored branching scheme to refine this approximation 
and ultimately converge to an optimal solution.

Remark 4. Proposition 1 motivates us to relax (or 
upper bound) rt

|x0:t�1 by a reward vector that does not 
depend on x and to refine this approximation by 
branching. Alternatively, we could construct tighter 
relaxations by using the last k locations (k ≥ 0) and 
converge to an optimal solution by taking k→ T. 
Although less scalable than our tailored branch and 
bound, we present and evaluate this alternative strat
egy in Online Section D.5.
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4.4. Search-and-Bound Heuristic
In this section, we propose an algorithm for finding a 
provable near-optimal solution to Problem (4) quickly. 
Our algorithm (Algorithm 1) relies on a linear relaxa
tion solvable by DP (Algorithm A.1), followed by a 
search through the feasible space, which is informed by 
a clustering of the trajectories based on their last loca
tion and the terminal values obtained from the DP 
algorithm, VT(s). Algorithms A.1 and 1 can be inter
preted as relaxation-induced searches (Danna et al. 
2005) that constitute the root node analysis in our 
branch-and-bound scheme.

Instead of solving (4), we solve the linear longest- 
path problem (1) with the path-independent rewards rt 

as the objective. According to Proposition 1, this linear 
problem provides an upper bound on (4), that is, consti
tutes a valid relaxation. This result is intuitive: ignoring 
the effect of our collection on future plastic collection 
leads to an optimistic (i.e., over) estimate of the plastic 
we can actually collect. Furthermore, for any t, Proposi
tion 1 states that ‖rt� rt

|x0:t�1‖ �O(αt); hence, the total 
relaxation error scales at most like αT2.

For concision, let us omit the time superscript in this 
section and concisely denote r as the plastic density 
maps obtained by applying the fluid advection Equa
tions (2) without any active collection and r |x its path- 
dependent version. Both Problem (4) and its linear 
relaxation optimize over the same feasible space, x ∈ X , 
but differ in their objective function, 〈r |x, x〉 and 〈r, x〉, 
respectively, where we use 〈 · , · 〉 to denote the inner 
product between two vectors indexed by time t ∈ T 

and state s ∈ S. Let us denote x?(r |x) and x?(r) as their 
respective solutions.

With these notations, x?(r) is the solution returned 
by Algorithm A.1. Because r |x ≤ r (Proposition 1) and 
because flows are nonnegative,
〈r |x?(r | x), x?(r |x)〉 ≤ 〈r, x?(r |x)〉 ≤ 〈r, x?(r)〉≕ UB, 

where the last inequality follows from the fact that 
x?(r |x) ∈ X is feasible for (1) and the optimality of x?(r). 
In addition, x?(r) ∈ X is feasible for (4), so

LB :� 〈r |x?(r), x?(r)〉 ≤ 〈r |x?(r | x), x?(r |x)〉:

Note that the reward vectors in the two sides of this 
inequality are different because they correspond to dif
ferent paths x?(r) and x?(r |x). Hence, the path-dependent 
reward achieved by x?(r) also provides a valid lower 
bound on the value of (4). Altogether, Algorithm A.1 can 
be used to return a feasible solution to Problem (4) along
side an optimality gap.

Furthermore, any other feasible solution x ∈ X pro
vides a valid and potentially better solution. In Algo
rithm 1, we propose a procedure to search for a better 
feasible solution x ∈ X , which we illustrate in Figure 5. 
Remember that, for any terminal state s, Algorithm A.1
returns the length (according to r) of the longest path 

reaching s, VT(s), as well as one path of that length, xs. 
First, we exclude the terminal states s ∈ ST such that 
VT(s) < LB because they cannot contain any solution 
better than x?(r) (the outer gray zone in Figure 5). 
Then, we cluster the space of remaining terminal states 
into K regions S(k)T based on geographical coordinates 
(we have K � 3 in Figure 5). For each region, we con
sider one candidate trajectory, corresponding to the 
state within S(k)T with the largest terminal value VT(s)
and evaluate its path-dependent reward. This step, (?), 
is the most computationally expensive part of Algo
rithm 1. Alternatively, one could have searched through 
ST by decreasing terminal value VT(s). As illustrated in 
Figure 5, however, searching by geographical cluster 
enforces diversity among the candidate trajectories and 
leads to better performance. We compare these two 
search strategies extensively in Online Section D.2.

Algorithm 1 (Search-and-Bound Algorithm for Problem (4))
Data: Weighted graph G with dynamic plastic 
density estimates r0, {Qt}t∈T ; 

1 Initialize: Compute rt for all t ∈ T according to (2);
2 Stage 1: Run Algorithm A.1, obtain values VT(s)

and solutions xs for s ∈ ST;
3 Stage 2: Search-and-bound;
4 Initialize upper bound UB �maxs∈ST VT(s);
5 Find s? ∈ arg maxs∈ST VT(s) and define x? � xs? ;
6 Initialize lower bound LB � 〈r |x? , x?〉, best solution 

x̂ � x?;
7 Apply K-means clustering to construct the parti

tion {s : VT(s) ≥ LB} �∪K
k�1 S

(k)
T ;

Figure 5. (Color online) Illustration of Our Cluster-Based 
Search Strategy on One Seven-Day Planning Instance (Janu
ary 15, 2002) 

Notes. We first exclude locations that are provably suboptimal (gray 
region), cluster the remaining area into K clusters (here, K � 3), and 
then evaluate one trajectory per cluster (circle dots). The starting loca
tion is indicated by a diamond at the center of the map.
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8 for each region S(k)T , k � 1, : : : , K do
9 Find s(k) ∈ arg maxs∈S(k)T

VT(s) and define x � xs(k) ;
10 (?) Compute the path-adjusted reward r |x;
11 if 〈r |xs , xs〉 > LB then
12 Update lower bound LB � 〈r |xs , x〉;
13 Update best solution x̂ � x;
14 end
15 end
16 return the solution x̂ and optimality gap (UB�

LB)=UB.

Overall, Algorithm 1 uses the value of the relaxed 
problem (1) as an upper bound on the final value and 
efficiently searches for high-quality feasible solutions to 
obtain a lower bound, hence the term search and bound.

4.5. Tailored Branch and Bound
In this section, we propose a tailored branch-and- 
bound algorithm to iteratively refine our upper bound 
on the value of (4) and converge toward an optimal 
solution. Recall that, in the relaxation, we use the raw 
density maps rt (path-independent) as edge lengths. 
This relaxation is valid because, for any admissible 
path x, rt+1

|x0:t ≤ rt+1 (Proposition 1). We now show how 
to refine this approximation when fixing the specific 
locations visited by the system and use this principle as 
the basis for our branching scheme.

Let us consider a subset of trajectories X̃ ⊆ X such 
that trajectories within X̃ must pass through k locations 
at k particular time points. Formally, we consider an 
integer k, times t1, : : : , tk ∈ T , and locations ℓ1, : : : , ℓk ∈ L 

and assume that X̃ � {x ∈ X : xti
ℓi
� 1, ∀i � 1, : : : , k}. We 

construct an upper bound on the path-dependent 
reward, r̃, as follows:

r̃0 � r0,

r̃ t+1 �
Qt(r̃ t� αr̃ t ◦ xt) if t ∈ {t1, : : : , tk},

Qtr̃ t otherwise:

(

(6) 

These new reward vectors are indeed tighter upper 
bounds on rt+1

|x0:t :

rt+1
|x0:t ≤ r̃ t+1 ≤ rt+1, ∀t ≥ 0, ∀x ∈ X̃ : (7) 

We defer a formal proof of (7) to Online Section D.3. 
Because of this property, we can relax the path- 
dependent Problem (4) over the restricted feasible 
space X̃ into a linear longest path optimization prob
lem with edge lengths r̃, which is tighter than the original 
relaxation using r. We can apply Algorithm A.1 or 1 on 
this restricted problem to obtain an upper and lower 
bound. To refine this approximation, we pick a time t0 ∈
T and a location ℓ0 ∈ L and partition X̃ into

where X̃ 0 :� {x ∈ X̃ : xt0
ℓ0
� 1}. In other words, X̃ 0 fixes 

a new time/location for the admissible trajectories. 
Hence, we can construct a tighter upper approximation 
of the path-dependent rewards over X̃ 0 (the left child 
node) by applying (6) again. The subproblem X̃ 0 bene
fits from both a tighter approximation and a reduced 
search space, so we should expect to effectively reduce 
the optimality gap on this child node. For the right child 
node, however, the benefit only comes from reducing 
the search space from X̃ to X̃ \ X̃ 0. Because of this 
imbalance, we expect this branching scheme to experi
ence slow convergence toward an optimal solution, 
especially for large instances. Nonetheless, theoreti
cally, this branching strategy eventually enumerates all 
possible trajectories and so is guaranteed to converge to 
an optimal solution after a finite yet exponential num
ber of iterations. We evaluate its numerical behavior 
alongside Algorithm 1 in the following section. Details 
about the implementation of our branch and bound are 
provided in Online Section D.3.

4.6. Numerical Validation
In this section, we evaluate the numerical performance 
of Algorithm A.1, Algorithm 1, and tailored B&B. All 
numerical experiments are conducted on a desktop 
computer with an 11th-generation Intel i7 3.60 GHz 
CPU and 64 GB of memory, implemented in Python 
3.9.16.

For Algorithm 1, we use K � 12 clusters. For the tai
lored branch and bound, we impose a limit on the max
imum number of branches (50 or 150). We impose no 
gap or time limit.

First, we consider 250 instances of our seven-day 
routing problem (see Section 5.1 for a description of the 
weather and plastic ocean data), so T � 8 × 7 � 56. We 
generate the instances by considering 50 different start
ing times (the beginning of each week except for the 
first and last weeks of the year) and five different initial 
locations. Table 1 reports the average lower bound, 
upper bound, optimality gap, and computational time 
achieved by each method on these instances.

Comparing the performance of Algorithms A.1 and 
1, we observe that Algorithm 1 improves the quality of 
the best solution from 51.378 up to 52.763 (+2:7%), the 
returned upper bound being the same (as expected). 
This improvement translates into a reduction in the 
optimality gap returned by the algorithms from 9.2% 
(Algorithm A.1) down to 6.3% for Algorithm 1—a 2.9 
percentage point or 32% improvement. The distribution 
of these gaps (see boxplots in Online Figure D.4) also 
shows that Algorithm 1 displays a lower variability in 
performance across instances, which is desirable. The 
additional computational time required (45seconds 
instead of 14) is noticeable, yet affordable for seven-day 
planning problems.
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Our tailored branch-and-bound algorithm, on the 
other hand, provides a much narrower improvement 
in terms of solution quality (+0:1%) and requires 
15minutes on average. Note that, at this scale, it termi
nates because of the limit on the maximum number of 
branches (50). For this reason, we do not view our tai
lored branch-and-bound algorithm as a practical alter
native to Algorithm 1 for finding high-quality solutions; 
Algorithm 1 achieves the same quality and is 20 times 
faster. However, it returns a significantly tighter lower 
bound (54.475 on average, �3%). This suggests that the 
primary benefit of branching is to certify optimality. In 
particular, we can use this refined upper bound to 
tighten (and, in our case, halve) the suboptimality gap 
of the solutions obtained by Algorithms A.1 and 1, 
which suggests that the solution returned by Algorithm 
1 could be much closer to optimality than indicated by 
the linear relaxation.

We investigate the validity of these observations as 
the length of the planning horizon, T, varies. Figure 6
reports the average computational time of each method 
for six instances and 14 different values of T. Among 
others, we observe that the relative difference in compu
tational time between Algorithm A.1 and Algorithm 1

decreases with T, illustrating that the additional search 
stage does come at an exponential (in T) cost. Second, 
our tailored branch-and-bound algorithm solves to 
optimality instances with up to three-day horizons 
(beyond that, it terminates because of the limit on the 
number of branches). Nonetheless, it constitutes a sig
nificant improvement over solving a mixed-integer 
optimization (MIO) formulation of Problem (4) (see 
Online Section D.1) with commercial solvers (in our 
implementation: Gurobi 9.5.2 with Julia 1.9.3/JuMP for 
the interfacing). For two-day instances, MIO requires 
around four hours to create all the matrices Qt 

(excluded from the time reported in Figure 6) and a cou
ple of minutes for solving it, whereas our B&B does not 
need such preprocessing (whose time increases expo
nentially with T) and terminates in less than a minute, a 
two-order-of-magnitude improvement.

Similarly, Online Figure D.6 reports the average 
solution quality and gap for each method as the plan
ning horizon increases. Among others, we observe that 
the solution returned by Algorithm 1 is actually opti
mal for instances with a planning horizon of less than 
three days (although the returned gap is strictly posi
tive) and that the returned gap overestimates the true 

Table 1. Average Performance of Algorithm A.1, Algorithm 1, and Our Tailored Branch and 
Bound on 250 Seven-Day Planning Instances

Metric Algorithm A.1 Algorithm 1 Tailored B&B

Best solution (LB) 51.378 52.763 52.830
Best bound (UB) 56.236 56.236 54.475
Gap (with respective UB), % 9.172 6.323 2.918
Gap (with B&B UB), % 5.758 3.016 2.918
Time, s 14.15 45.60 951.52

Note. We impose a limit on the maximum numbers of branches of 50 for tailored B&B.

Figure 6. (Color online) Average Computational Time (Log Scale) Returned by Algorithm A.1, Algorithm 1, and Our Tailored 
Branch-and-Bound Algorithm 

Notes. We also report the time required by an off-the-shelf commercial MIO solver, excluding precomputation time required for creating the 
matrix Qts (hashed bars). For B&B, the dotted bars indicate instances in which the maximum number of branches (150) triggered algorithm 
termination.
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suboptimality of the solution by at least a factor of two 
on the larger instances.

5. Numerical Experiment
In this section, we evaluate our method on one-year 
weather and plastic density data. After presenting our 
experimental setting in Section 5.1, we compare the 
performance of different implementations of our algo
rithm in Section 5.2. In Section 5.3, we delve deeper 
into the differences in plastic collection efficiency 
across seasons. Finally, we use our algorithm to investi
gate the nonlinear relationships between some system 
design decisions (such as total span or size of the reten
tion zone) on the overall efficiency in Section 5.4.

5.1. Experimental Setting and Implementation 
Choices

We work with one year of weather and plastic density 
data (year 2002 in our data set). The weather data pro
vides the height and direction of the waves and the 
wind. The plastic density data are provided as trajecto
ries of a particle-based dispersal model as described in 
Online Section C. Consistent with a span of 1.8 km, we 
consider a plastic collection rate α � 20%. The capacity 
of the retention zone is fixed to 25 metric tons. We 
assume that an extraction takes one day (eight time 
periods).

We divide the year into 13 nonoverlapping 28-day 
periods,2 which we later refer to as simulations. For 
each simulation, we assume the system starts in the 
center of the GPGP, whose coordinates are (31.92◦N, 
142.4◦W). We do not impose any restriction on the sys
tem’s location at the end of each simulation (no depot 
location).

As a benchmark, we use The Ocean Cleanup’s cur
rent heuristic, which we formally describe in Online 
Section E.1. In short, the benchmark picks the steering 
direction d leading to the highest distance-weighted 
reward over the next T time periods. The benchmark 
does not include any rule for extraction scheduling, so 
we start an extraction as soon as the system reaches 
capacity.

We evaluate the performance of four different imple
mentations of Algorithm 1 with different optimization 
and implementation horizons (results for Algorithm 
A.1 are presented in Online Section E.2): first, we solve 
our longest path problem (4) for T � 8 time periods 
only (one day), solving and implementing the resulting 
solution every day. We refer to this implementation as 
“Myopic.” To be more forward-looking, we consider 
using T � 56 time periods instead (one week): at the 
beginning of each week, we run Algorithm 1, obtain a 
solution, and implement it for the following seven days 
(“Week”). In these two variants, the planning horizon 
(used in the definition of the optimization problem) 

and the implementation period are the same. However, 
they do not have to be. For example, we can use a roll
ing horizon by solving each day a seven-day longest 
path problem (4) and implementing its solution for the 
first day (“Week-Rolling”). Alternatively, we can use a 
folding (or shrinking) horizon by finding the longest 
path until the end of the week (i.e., over seven days in 
the beginning, six days after the first day, etc.) and 
implementing its solution for the first day (“Week- 
Folding”).

We should acknowledge that we choose a seven-day 
planning horizon as an illustration because it is simple, 
tractable, and captures most of the long-term dynamics 
of our system. However, experiments with varying 
planning horizon lengths (see Online Section E.4) sug
gest that it could be reduced to five days without much 
performance loss. Generally, we recommend a plan
ning horizon long enough to include the next extrac
tion, especially in winter (see discussion in Section 5.3). 
A longer planning horizon, on the other hand, would 
be unrealistic in our view because weather forecasts 
are not reliable beyond four to five days. Unfortu
nately, our data does not allow us to quantify more 
precisely the impact of forecast accuracy on perfor
mance at this stage. Resolving—every day for the Myo
pic, Week-Rolling, and Week-Folding implementations 
and every week for Week—allows us to update our 
plastic density estimates based on the past-day trajec
tory and potentially based on new weather forecasts. 
Hence, it can help mitigate the path-dependency issues 
described in Section 4 and improve robustness to fore
casting errors in practice.

5.2. Overall Improvement in Plastic Collection 
Rate

Figure 7(a) represents the weekly quantity of plastic col
lected by each method, averaged over our 13 four-week 
simulations. First, Figure 7(a) illustrates the edge of 
optimization with all methods significantly improving 
over the benchmark—as identified formally by a paired 
t-test with ≤10�5 p-values in Online Table E.1. Among 
all methods, Week-Rolling collects the most plastic (65.7 
tons/week), which is around 1.68 times more than the 
benchmark (39.0 tons/week). Among all optimization- 
based approaches, Myopic and Week perform the worst 
and comparably. This suggests that the benefit of being 
forward-looking of the Week implementation is out
weighed by the path dependency issue (to which Week 
is more sensitive because it reoptimizes every week 
only). Accordingly, methods that reoptimize every day 
and consider a longer planning horizon, namely, Week- 
Folding and Week-Rolling, have a clear edge.

Figure 7(b) breaks down these yearly averages by 
season. We observe that the quantity of plastic col
lected (by any method) is higher in summer than in 
winter (53.3–87.0 range in summer versus 21.9–44.3 in 
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winter), and we observe that the relative benefit from 
our optimization methods (e.g., Week-Rolling) com
pared with the benchmark is higher during these win
ter months (×1.6 in summer versus ×2.0 in winter). 
Similarly, the gain from using a seven-day (Week-Roll
ing) instead of one-day (Myopic) planning horizon is 
negligible in summer (84.0 versus 82.7: +1.6%) but 
most acute in winter (44.3 versus 31.4: +41%). We 
investigate the mechanisms driving this pattern in the 
coming section.

5.3. Heterogeneity Across Seasons and Impact of 
Extraction Scheduling

Figure 7(b) raises the question of the impact of season 
on the plastic collection efficiency. We should empha
size from the start that the behavior we observe is not 
driven by differences in the overall plastic density dur
ing the year. Values of plastic density continuously 
increase over the year (roughly by 10% in our 2002 data 
and by around 2% nowadays) but do not exhibit this 
inverted U-shape (see Online Figure E.4(a)).

If plastic density (i.e., the objective of our optimiza
tion problem) cannot explain this behavior, it is natural 
to consider the impact of weather (which drives most of 
the operational constraints) on the heterogeneous per
formance across seasons. We observe in Figure 8 that 
wave height (right panel) follows the same pattern as 
the quantity of plastic collected (left panel) with lower 
waves experienced in the middle of the year (April–Au
gust) and higher waves during November–February. 
High waves affect the collection process in two ways. 
First, the system cannot operate when the wave height 
exceeds six meters. Hence, the average collectable plas
tic density is much lower in winter than in summer (see 
Online Figure E.4(b)). Furthermore, extractions require 
the waves to be below 2.5 meters for the first six hours 
and below 3.5 meters for 12 hours. Hence, weather and 
its impact on the feasibility of extractions most likely 
drive the behavior we observe.

To confirm this intuition, we quantify the time spent 
by the system when waiting to extract. At any point in 
time, the system can be in one of three phases: it can be 

Figure 7. (Color online) Weekly Quantity of Plastic Collected for the Benchmark and Each Optimization-Based Approach 

(a) (b)

Notes. For the right panel, Winter � January–March (three first simulations) + October–December (three last simulations); Summer �
April–September (seven simulations). (a) Results averaged over the 13 simulations. (b) Results averaged by seasons.

Figure 8. (Color online) Plastic Collected (Left Panel) and Average Wave Height in the GPGP (Right Panel) Across the Year 
2002 

(a) (b)

Notes. (a) Plastic collected. (b) Wave height.
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actively collecting plastic, it can be undergoing an 
extraction, or it can be idle (i.e., unable to collect plastic 
because it has reached capacity but unable to start an 
extraction either because of weather). For each four- 
week simulation, we compute the number of days the 
system spent in collecting, extracting (which is equiva
lent to the number of extractions performed), and stay
ing idle. For each simulation, the above three numbers 
should add up to 28 days. We averaged these numbers 
per season (winter/summer), for which we define win
ter as the first three and last three simulations and 
summer as the remaining seven ones. Figure 9 reports 
these metrics for the benchmark and Week-Rolling 
methods in both winter months (Figure 9(a)) and sum
mer months (Figure 9(b)).

First, we observe that, in both winter and summer, 
Week-Rolling spends less time collecting than the 
benchmark. Given that Week-Rolling collects more 
plastic (67% more on average), this indicates that our 
approach is more efficient: it collects more in less time. 
Comparing Figure 9, (a) and (b), we observe that idle 
time is significantly higher in winter, confirming the 
fact that weather conditions limit the ability to extract 
(hence, to collect further) during winter. Surprisingly, 
Week-Rolling does not materially reduce total idle 
time in winter (around 12 days out of 28 for both meth
ods). However, Week-Rolling performs twice as many 
extractions, around 6.8 times on average compared 
with 2.8 times for the benchmark (which aligns with 
the increase in quantity of plastic collected), so Week- 
Rolling experiences a much lower idle time per extrac
tion than the benchmark.

The above observations highlight the importance of 
jointly finding a collection route and a schedule for the 
extractions for overall efficiency and the importance of 
considering a sufficiently long planning horizon. On 
this matter, our seven-day optimization approach that 
can explicitly account for weather-related constraints 

experiences greater benefits in the winter when the 
ability to extract constitutes the main bottleneck.

5.4. Designing a New System: Is Bigger Better?
In Section 5.2, we show that, with optimization, we can 
improve the collection speed from 40 tons/week to 60+
tons/week, using the current system. In this section, we 
use our optimization model to help answer strategic 
dimensioning decision for the next-generation system. 
The Ocean Cleanup was first considering increasing 
the span of the system from 0.6–0.8 km (α ≈ 0:1) to 
1.6–1.8km (α ≈ 0:2) without increasing the size of the 
retention zone (25 tons). Indeed, the size of the retention 
zone is partially constrained in practice by the size of 
the ship used to store and sort the plastic collected.

Figure 10 represents the weekly quantity of plastic 
collected in winter (solid blue lines) and summer 
(dashed orange lines) for increasing values of α in the 
case of a 25-ton capacity (left panel, Figure 10(a)) and 
an infinite capacity (right panel, Figure 10(b)). Without 
capacity constraints from the retention zone, one 
expects the total quantity of plastic collected to depend 
linearly in the span of the system α as displayed in 
Figure 10(b). However, with a finite capacity (Figure 
10(a)), we observe (i) an overall lower quantity of plas
tic collected (which is because of the need to extract 
and the fact that we stop collection during extraction) 
and (ii) a strong concave dependency of the plastic col
lected on α. Indeed, by doubling the span size from α �
0:1 to α � 0:2, the weekly collection increases by 26% in 
summer (from 66.7 to 84.0 tons/week) and by 20% 
only in winter (from 36.7 to 44.3 tons/week). More
over, increasing the span beyond α � 0:25 (i.e., 2km 
span) provides barely any improvement.

Intuitively, this different behavior across seasons is 
because a larger span requires more frequent extrac
tions, which are very sensitive to weather conditions. 
The comparison of Figure 10, (a) and (b), highlights 

Figure 9. (Color online) Number of Days Spent on Collection, Extraction, and Idle per Four-Week Simulation for the Benchmark 
and Week-Rolling Methods 

(a) (b)

Notes. Results are aggregated over the winter (left panel) and summer (right panel) months. (a) Winter. (b) Summer.
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the impact of having a finite-capacity retention zone 
on the overall performance. In the future, the diffi
culty to extract could largely erode the benefit of hav
ing a larger system. This leads us to the next question: 
how to design a new system with better extraction?

There are several ways to improve the current extrac
tion process. One solution could be to reduce the unit 
extraction time, namely, the time spent per extraction. 
In practice, this could be achieved via more efficient 
extraction operations. For example, one could first 
empty the plastic from the retention zone on the deck 
(taking approximatively six hours), put the system 
back into the water, and sort the plastic while resuming 
the plastic collection. Another solution could be to 
increase the total capacity of the retention zone, which 
we do not discuss in this paper.

Figure 11 represents the weekly quantity of plastic col
lected in winter (solid blue lines) and summer (dashed 

orange lines) for increasing values of unit extraction time 
in the case of a 25-ton capacity. By reducing the time per 
extraction from one day (current practice) to 0.25 days 
(or six hours), the weekly collection increases by 101% in 
summer (84.0 to 168.6 tons/week) and by 61% in winter 
(44.3 to 71.4 tons/week). Observe, in comparison, that 
the potential improvement by further increasing the 
span size beyond α � 0:2 (Figure 10(a)) is less than 12%. 
Reducing the unit extraction time demonstrates a greater 
potential for impact in both winter and summer.

We emphasize that the above improvement solely 
comes from a shorter extraction time, not from a lower 
impact of weather constraints because we kept, in our 
implementation, the same weather constraints for extrac
tion (described in Online Section A.1) irrespective of the 
extraction time. In practice, a shorter extraction time 
might also translate into less stringent weather con
straints, which could, in turn, provide additional benefits.

6. Conclusion
Our oceans are being threatened by the millions of 
tons of plastic that have been emitted over the recent 
decades. To limit future harm to marine ecosystems and 
activities, we need to clean up oceans from plastic as 
quickly as possible. To this end, we develop a graph- 
based model and formulate the problem of routing a 
plastic-collecting system in the GPGP to maximize the 
quantity of plastic encountered as a longest path prob
lem. However, because of the plastic dynamics and the 
direct impact of collection on these dynamics, our result
ing longest path problem (4) is nonconvex and nonse
parable over edges. To deal with these computational 
difficulties, we propose to relax the reward dynamics 
and solve large-scale instances of this relaxation in linear 
time using a DP algorithm. Then, we obtain near- 
optimal solutions to our original problem, together with 
certificates of near optimality, by building an efficient 

Figure 10. (Color online) Weekly Quantity of Plastic Collected by Week-Rolling Under Different α 

(a) (b)

Notes. Results are aggregated over the winter (blue solid line) and summer (orange dashed line) months and with (left panel) or without (right 
panel) extraction. (a) System capacity 25 tons. (b) System infinite capacity (no extraction).

Figure 11. (Color online) Weekly Collections of Week-Rolling 
with Different Unit Extraction Times 

Note. Results are aggregated over the winter (blue solid line) and 
summer (orange dashed line) months.
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search algorithm based on geographical clustering and 
the terminal values of the DP algorithm (and not only 
on its optimal solution). We also develop a tailored 
branch-and-bound algorithm that solves instances with 
24 time steps (three days) to optimality in minutes and 
instances with 56 time steps (seven days) within 4%–5% 
in an hour.

On one-year weather and plastic density data, we 
observe that our optimization approaches increase the 
quantity of plastic collected by 68% compared with the 
status quo, thus accelerating the path to plastic-free 
oceans. We also leverage our optimization algorithms 
to explore the nonlinear relationships between system 
characteristics and system performance. For example, 
because of difficulties to extract (i.e., empty the capacity 
of the system) in winter, we find that increasing the 
span of the system beyond 1.8 km will have barely any 
impact on collection efficiency in winter.

For our current application, the main concern and 
area for future research is to account for uncertainty in 
weather predictions and plastic dynamics. In particu
lar, we are currently investigating whether collection of 
real-world data by drones or satellites could help quan
tify uncertainty and lead to robust versions of our lon
gest path problem. More broadly, we are excited to 
study whether the class of longest path problems we 
identify in (4) could find other applications as a model 
for operations with nature dynamics.

Appendix. Dynamic Programming Algorithm for 
the Longest Path Problem

In this section, we provide the pseudo-code of an efficient 
DP algorithm for solving longest path problems given that 
our graph G is a DAG. The algorithm is described in Algo
rithm A.1.

At each iteration, the algorithm finds the longest path end
ing in s ∈ St by connecting the longest path between S0 and s′
and the edge (s′, s) for some s′ ∈ St. The corresponding maxi
mization problem can be solved by exhaustively searching 
through St. Fortunately, in our graph G, because of the no- 
sharp-angle constraint, we have | {s′ ∈ St : s ∈ succ(s′)} | ≤ 3, so 
this maximization problem can be solved in O(1) operations.

Algorithm A.1 (Dynamic Programming Algorithm for Finding 
the Longest Path)

Data: Weighted graph G with weight {ws, s′ }(s, s′)∈E ; 
1 Initialize (values and optimal paths): V0(s) � 0, path[s]
� {s}, for all s ∈ S0;

2 for t � 1:T do
3 for s ∈ St do
4 Find an optimal previous state, 

s∗ ∈ arg maxs′∈St�1 :s∈succ(s′) {ws′ , s +Vt�1(s′)};
5 Update value function: Vt(s) � wt

s∗ , s +Vt�1(s∗);
6 Update optimal path: path[s] ← path(path[s∗], s);
7 end
8 end
9 Find an optimal terminal state s? ∈ arg maxs∈ST VT(s);

10 Return: value VT(s?), longest path path[s?].

Endnotes
1 The dynamics in (3) implicitly assume that we can decompose the 
time interval [t, t+ 1) into two distinct steps: a first step in which 
some of the plastic present at time t is removed and a second step in 
which the remaining plastics float according to the dynamics cap
tured by Qt. Of course, this is a simplification of reality in which 
these two steps occur concurrently. Yet we believe it is an appropri
ate model of reality, which captures the essence of path dependency.
2 Because each four-week simulation requires five weeks of data 
(because some of our optimization algorithms are forward-looking 
and take into account information of the next seven days), we 
would need 53 weeks to conduct 13 nonoverlapping 28-day simula
tions. Instead, we start the last experiment one week earlier (on day 
329 instead of 336).
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