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Abstract
Research Summary: The literature on startup acceler-

ators uncovers multiple factors associated with accelera-

tors’ advantages. Yet, we have a limited understanding

of the relative magnitude of these factors. We ask: Are

accelerators akin to breweries, where quality is mainly

a function of the institution of origin (i.e., brewery for

beer, accelerator for startups); or are they similar to

wineries, where quality varies across cohorts (i.e., for a

given winery, some vintages are of higher quality)? We

explore this question using data from 1,350 tech-

startups graduating from dozens of accelerators in a

global technology hub. A Bayesian hierarchical variance

decomposition approach is introduced to account for

the highly-skewed zero-inflated distribution in startups’
performance. We find that a notable fraction of startup

performance is due to vintage; within-accelerator, cross-

cohort variation.
Managerial Summary: Startup accelerators (i.e.,

short-term programs designed to help startups grow)

are highly popular, with dozens of accelerators operat-

ing around the globe. Our focus is on accelerator pro-

grams aimed at catapulting technology ventures
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towards high growth. We ask: Are accelerators akin to

breweries, where quality is mainly a function of the

institution of origin (i.e., brewery for beer, accelerator

for startups); or are they similar to wineries, where

quality also varies across cohorts (i.e., for a given win-

ery, some vintages are of higher quality)? A Bayesian

hierarchical variance decomposition approach isused

to study data from a global technology hub, detailing

the performance of hundreds of startups that graduated

across multiple accelerators. We find that a significant

portion of startup success is linked to cohort-specific

factors within accelerators, highlighting the role of

timing and dynamics of each accelerator cohort.

KEYWORD S

accelerators, Bayesian hierarchical model, entrepreneurship,
scale-ups, variance decomposition

1 | INTRODUCTION

Since the launch of Y Combinator's first cohort of eight startups in 2005, startup accelerators
have become a well-known feature of the entrepreneurial-finance landscape. We define acceler-
ators as entities that run fixed-term, cohort-based, business-support programs for nascent
startups. They provide mentorship, educational, and networking input, often in return for an
equity stake in the startup. About one-third of all startups in the United States that raised at
least one round of VC funding in 2015 had been through an accelerator program, according to
data provider Pitchbook (Mikey, 2016). The phenomenon is not limited to the United States:
London witnessed its first major accelerator cohort in 2008 and now boasts dozens of accelera-
tors (Dushnitsky & Sarkar, 2022; Miller & Bound, 2011). Accelerators are also popular in other
countries, such as Chile (Gonz�alez-Uribe & Leatherbee, 2018) and India (Sharma et al., 2014).
One of the largest pools of startups and accelerators outside the United States is in Israel, also
known as Startup Nation (Senor & Singer, 2011).

As a result, startup accelerators have been a subject of interest from entrepreneurs, inves-
tors, policy makers and scholars. Our literature review (below) reveals keen insights from
dozens of studies on the topic. One stream of work documents several accelerators and com-
pares the performance of graduating startups (Assenova, 2020; Gonz�alez-Uribe &
Leatherbee, 2018; Thompson, 2005; Yu, 2020). Another stream takes a complementary
approach, using qualitative and observational data to flesh out the dynamics within a handful
of accelerators (Clarysse et al., 2015; Cohen, Bingham, & Hallen, 2019). Thus, we have a
breadth of knowledge about multiple factors through which accelerators affect startups' perfor-
mance (Table 1). The insights guide policy makers and investors who design and launch accel-
erators across the world. As the number of studies and distinct factors increases, the challenge
is knowing which are the critical factors to heed.
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The purpose of our study is to address this challenge. We offer a way to structure existing
findings and guide future work. Our contribution to the accelerator literature is in
(i) organizing the theoretically distinct factors into a cohesive framework and (ii) empirically
documenting their relative impact. Building on prior work, we observe that there is a plethora
of mechanisms through which a startup benefits from an accelerator experience. We organize
these factors into a cohesive framework, distinguishing broadly between top-down mechanisms
(i.e., mechanisms that are decided and designed by the accelerators and their managers) and
bottom-up mechanisms (i.e., those emerging due to cohort dynamics).

TABLE 1 Theoretical mechanisms explaining variation in the performance of accelerator graduates: An

overview of plausible mechanisms.

Source of
variation Accelerator Manager Cohort
Mechanism Top-down Top-down Bottom-up

Learning • Stronger
curricula

• More
comprehensive
curricula

• Bespoke
curricula

• Applied hands-
on training

• Stronger curricula
• More

comprehensive
curricula

• Bespoke curricula
• Proactive follow-up

of startup progress

• Learning as a function of physical,
temporal and structural proximity with
other startups

• Increased pace of learning and sharing
across participants

• Feedback through constant benchmarking
to peer

• Tournament effect
• Spillover effects

Mentorship • More mentors
• More

experienced
mentors

• Better mentor-
founder
matching

• Mentors'
training and
guidance

• More mentors
• More experienced

mentors
• Better mentor-

founder matching
• Mentors' training

and guidance

• Startup-peer mentorship
• Sharing knowledge of resources, talent and

best practices

Networking • More events
• Better events

• More events
• Better events

• Access to the existing network of all cohort
participants

• Thriving community during accelerator
program

• Life-long sense of community and
networking, post-accelerator program

Certification • Graduating a
successful
“unicorn”

• Graduating
multiple
unicorns

• Number of past
cohorts

• PR activities

• Within the
manager's
professional
network

• PR activities

• Being associated with other successful
startups in a given cohort
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We proceed to ask the following research question: To what degree are accelerators akin to
breweries, where outcomes vary mainly as a function of origin (i.e., brewery for beer; accelera-
tor for startups), and to what degree are they similar to wineries, where outcomes differ greatly
across vintages (i.e., for a given winery, certain vintages may be of higher quality, and for a
given accelerator, certain cohorts may exhibit superior performance)? By tackling this question,
we can understand what is driving the performance of accelerator graduates. The goal is to
uncover the relative impact of top-down mechanisms that are at the discretion of an accelerator
and its managers (e.g., curricular choices) and bottom-up mechanisms where a cohort trans-
forms into a vibrant community (e.g., sharing of information or vicarious learning from others).
We recognize that there are excellent studies that examine these mechanisms. Our paper joins
this conversation; rather than introducing new mechanisms, we examine the relative impact of
each factor.

We undertake a variance-decomposition analysis to that end. The analysis is underpinned
by an empirical and a methodological contribution. Empirically, we constructed a dataset of the
universe of Israel-based accelerators and the startups that attended them. The dataset has three
advantages. First, Israel is home to one of the most vibrant entrepreneurial ecosystems globally
(Avnimelech & Teubal, 2006; Engel & del-Palacio, 2011; StartupBlink, 2021). Israeli startups are
a major source of global innovation, from navigation (Mobileye, Waze) through e-commerce
(ICQ, Wix) to semiconductors (Primesense, Anobit). Second, and relatedly, the setting comple-
ments accelerator studies, which are based on detailed data from the United States (Hallen
et al., 2020; Yu, 2020) and Latin America (Gonz�alez-Uribe & Leatherbee, 2018). Third, the data
are both comprehensive and fine-grained: we cover 1350 startups and have detailed data on the
cohorts they were a member of as well as the identity of the accelerator managers who
led them.

The choice of a variance-decomposition methodology is guided by seminal works in the field
of strategy (McGahan & Porter, 1997; McGahan & Victer, 2010). This approach has been
employed to move research forward by uncovering the relative importance of effect classes. Put
simply, variance-decomposition studies serve as a “call to action” whereby the findings high-
light the main sources of variation and thus direct scholarly attention and future work. The
application of variance decomposition necessitated careful consideration (Vanneste, 2017).
Accordingly, we introduce a Bayesian hierarchical model to model the dependent variable that
is uniquely fitting for our setting (Gelman et al., 2013). We first detail the key departures from
commonly studied settings; for example, extant strategy studies conduct variance decomposi-
tion for large publicly-listed firms where data are abundant and outcomes follow a normal dis-
tribution. In contrast, our setting concerns a smaller numbers of budding startups (which can
result in sparse data), and outcomes follow a zero-inflated right-skewed distribution. The study
proceeds to carefully explain the setup, estimation and presentation of the Bayesian hierarchical
model and its results.

The analysis yields insights into the factors underlying accelerators' contributions and their
relative impact. For example, extant work finds that the success of accelerator graduates is asso-
ciated with cross-accelerator variation in observable factors. Our variance decomposition
reveals that a substantial fraction of startups' performance is due to within-accelerator factors;
namely, due to cohort vintage. Notably, the cohort effect (i.e., capturing performance differen-
tial among startups that are due to cohort dynamics) is of a larger magnitude than the accelera-
tor effect (i.e., which captures startup performance differences across accelerators). This
observation indicates the importance of understanding bottom-up cohort dynamics in addition
to the well-studied topic of top-down mechanisms. This insight might be familiar to scholars
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from their own teaching experience: while every cohort of an accelerator (or a stream of a
course) may be privy to the same top-down training and resources (syllabus and instructor), it
is the case that one or two cohorts (individual classes) become a cohesive and thriving commu-
nity, while the others do not.

The study makes several contributions. First, it derives theoretical implications to inform
the accelerator literature. One implication of the fact that outcomes vary substantially within
accelerators is that accelerators are, to some degree, like wineries: cohort vintage matters. A sec-
ond implication is that the outcomes are not solely driven by top-down design choices. Rather,
they may be due to bottom-up dynamics (e.g., the vintage effect arises at least partially because
some cohorts transform into vibrant communities). These theoretical implications underscore
the opportunity for further work on cohort dynamics (Assenova, 2020; Cohen, Bingham, &
Hallen, 2019; Hallen et al., 2020). Third, we introduce a methodological approach—Bayesian
hierarchical modeling—that is useful for studying variance decomposition of entrepreneurial
outcomes, or other settings characterized by highly-skewed outcomes or sparseness across the
hierarchical structure. Finally, the analysis is based on a dataset of the universe of accelerators
for technology-based growth-orientated startups in Israel. It thus complements our knowledge
of accelerators for growth-orientated startups that draws predominantly on the United States.
The data are also unique in that it offers fine-grained information not only on the accelerators
but also the managers who run them.

2 | DEFINITION

The accelerator literature is voluminous, and there is a similarly large number of definitions of
“accelerator.” Earlier work defined accelerators in comparison or in contrast to the wider busi-
ness incubation literature. Along these lines, we see definitions of accelerators as “a new incu-
bation model” (Clarysse et al., 2015), or “an emerging incubation-like model” (Yang
et al., 2018). Notable points of differentiation from the traditional incubation model were the
shorter duration within a program cohort—usually 3–6 months—and the fact that accelerators
provide critical resources to the participating startups. More recent work proceeded to define
accelerators not in contrast to an existing model, but rather based on their innate attributes
(Cohen & Hochberg, 2014). We also witness work that focuses on differences across accelerators
in terms of their backers (e.g., corporate vs. university accelerators), or industry focus (e.g.,
social accelerator, ecosystem builder) (Cohen, Bingham, & Hallen, 2019; Mansoori et al., 2019;
Prexl et al., 2019).

We define accelerators as entities that run fixed-term, cohort-based, business-support pro-
grams for nascent startups. They provide mentorship and educational and networking input;
often in return for an equity stake in the startup. A typical feature of accelerators is that they
admit a cohort of startups per intake; for example, about a dozen startups per cohort (Hallen
et al., 2020; Yu, 2020). The participants usually receive office space (Clarysse et al., 2015;
Clarysse & Yusubova, 2014; Drori & Wright, 2018; Gonz�alez-Uribe & Leatherbee, 2018; Thomp-
son, 2005), help with product development (Avnimelech & Rechter, 2023; Cohen, Bingham, &
Hallen, 2019; Crişan et al., 2021), financial and legal support (Clarysse et al., 2015; Crişan
et al., 2021; Glinik, 2019; Thompson, 2005; Uhm et al., 2018; Yang et al., 2018); HR/recruitment
support (Banc & Messeghem, 2020; Lall et al., 2013), help with technical issues (Radojevich-
Kelley & Hoffman, 2012), and networking opportunities (Avnimelech & Rechter, 2023; Cohen,
Bingham, & Hallen, 2019; Gonz�alez-Uribe & Leatherbee, 2018; Kohler, 2016; Wright
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et al., 2017). Many accelerators focus on the personal development of the founders, equipping
them with entrepreneurial skills, knowledge, self-efficacy, and legitimacy (Avnimelech &
Rechter, 2023; Bischoff et al., 2020). Another feature of the accelerator experience is fundraising
support. Accelerators host a “Demo Day” which is a public pitching event. It marks the culmi-
nation of the accelerator experience as a cohort of graduating startups pitch to investors
(Clingingsmith & Shane, 2018; Cohen & Hochberg, 2014; Dushnitsky & Sarkar, 2022).

An important observation is that accelerators deliver these benefits with limited staff. The
accelerator literature often makes note of the mentors who work with the startups or the ven-
ture partners who are usually involved with the screening process. Yet, these roles are usually
undertaken by individuals for whom the accelerator is not their main professional responsibil-
ity, nor is it their main source of employment or income. In fact, the average accelerator has
less than a dozen full-time employees (Cohen, Fehder, et al., 2019; Rechter &
Avnimelech, 2024). Key personnel consist of the accelerator manager, along with additional
employees who work in specific support roles (such as providing marketing and PR for the
accelerator or engaging in various technology and business support to the startups). Notably,
accelerator managers vary not only in their personal characteristics but also in the role they
undertake. In most accelerators, managers play an important role in choosing which startups to
admit into the accelerator. Rechter and Avnimelech (2024) further observe that managers
undertake somewhat different roles. Some operate as project managers (e.g., coordinating the
entire process); others play the role of a mentor for specific startups, or a super-mentor (i.e., the
professional authority for all the mentors), or that of a process mentor.

3 | THE UNDERLYING MECHANISMS

Accelerators afford a window on entrepreneurial resource mobilization in their earliest phases
(Clough et al., 2019). That said, the underlying individual and organizational mechanisms are
often difficult to observe, especially over time and across multiple accelerators. Fortunately,
there is a growing body of qualitative and quantitative work that sheds light on the dynamics
within a focal cohort. These studies expose mechanisms that could be at play in other accelera-
tors and cohorts.

3.1 | Between-accelerator differences: The role of top-down
mechanisms

We first review key accelerator studies documenting the mechanisms decided and designed by
the accelerators. We refer to these as “top-down” mechanisms because they are driven by the
accelerators and/or their managers. Broadly speaking, the accelerator experience offers startup
founders with three distinct opportunities (Drori & Wright, 2018).

First, it offers learning opportunities. The accelerator equips founders with the technical
and business skills necessary to develop a successful startup. During their time in the accelera-
tor, cohort members go through a pre-designed curriculum that covers strategic, technical,
financial, and legal aspects of a business. They are also exposed to commercial and sales prac-
tices. These learnings are useful in searching and validating product-market fit, winning and
scaling sales, and securing intellectual property. In this respect, rich qualitative data from US-
based accelerators reveal that learning is a major mechanism impacting the success of

6 AVNIMELECH ET AL.
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graduating startups (Hallen et al., 2020). Specifically, accelerators help startups to identify the
areas that are most critical to their future success and effectively engage in further information
search (Cohen, Bingham, & Hallen, 2019). Quantitative work offers consistent evidence.
Gonz�alez-Uribe and Leatherbee (2018) compare the provision of capital to the provision of
schooling plus capital within the Startup Chile accelerator. They find that the latter is associ-
ated with performance 5 years after graduation. Startups' success is attributed to the skills and
know-how acquired during their time at the accelerator (Gonz�alez-Uribe & Reyes, 2021). Learn-
ing how to make progress through experimentation, also known as “lean startup,” is one such
skill (Avnimelech & Rechter, 2023; Camuffo et al., 2020; Leatherbee & Katila, 2020; Mansoori
et al., 2019; Shankar & Clausen, 2020).

Second, the accelerator experience is designed to offer multiple opportunities to engage and
network with external stakeholders. The most salient example is the accelerator mentors. Each
startup is assigned a mentor or a group of mentors who work closely with the founders on
startup-specific issues. The mentors not only expose founders to best practices, but also work
with them in applying tools and frameworks specific to the startup. Moreover, mentoring is par-
ticularly valuable for entrepreneurs with limited pre-entry experience (Assenova, 2020). An
additional benefit of being assigned a mentor is the opportunity to draw on the mentor's social
networks. The accelerator experience exposes entrepreneurs to other stakeholders as well. For
example, accelerators often cultivate a network of strategic partners at major corporations that
enable participating startups to explore sales leads and develop business partnerships
(Avnimelech & Rechter, 2023; Drori & Wright, 2018). Another example pertains to networking
with investors during the pitching Demo Day (Dushnitsky & Sarkar, 2022). Finally, for long-
standing accelerators, there is also networking with founders who graduated from past cohorts.

Third, accelerator affiliation bestows certification. Admission into a prestigious accelerator
serves as an important signal in and of itself (Avnimelech & Rechter, 2023). Recall that early-stage
startups usually have limited social proofs (e.g., sales traction, patent awards) (Stuart et al., 1999).
At that early stage of development, admission into an accelerator serves as one of the few visible
cues of quality. It can help the startup differentiate itself and attract prospective investors, cus-
tomers, and employees. At the extreme, a startup may benefit from attending an accelerator—even
if it gained no learning or social capital—simply through the certification effect.

The top-down decisions shaping the learning, networking, and certification opportunities
are in the hands of the accelerator manager. We know that variation in inter-firm performance
is in part due to changes in firm leadership (Fitza, 2014; Hambrick & Quigley, 2014; Quigley &
Graffin, 2017). Similarly, the performance of accelerator graduates may be affected by changes
to the individuals who manage the accelerator. Different managers bring different curriculum
foci, and are likely to engage and mobilize different networks. Managers also decide which
startups to admit into the accelerator programs; they might have different preferences and/or
different abilities to spot startups that can benefit most from participation. Stated from a theo-
retical perspective, under different managers one might observe that different graduating
startups are endowed with different types or magnitudes of skills and social capital. It follows
that variations in startups' performance are, in part, due to the characteristics of the managers
and the design choices they undertake. In this respect, the manager effect is similar to the afore-
mentioned studies of accelerator effects, which attribute graduates' performance to top-down
design choices. To return to our brewery metaphor, the accelerator manager can be seen as akin
to the brew master, who might make adjustments to the beer recipe based on their specific
knowledge or past experience.

The discussion highlights the role of accelerator and manager-led mechanisms. Past work
documented the learning, networking and certification benefits. The scale of benefits varies by
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accelerator and manager. Stated in terms of variance decomposition, the degree to which the
performance of startups graduating from accelerators differs depends on which accelerator they
were a member of and who managed the accelerator at the time.

3.2 | Between-cohort differences: The role of bottom-up mechanisms

In addition to such top-down mechanisms, the impact of accelerators may also vary due to bot-
tom-up mechanisms. It can be argued that startups' performance is shaped, to a certain degree,
by bottom-up processes and the dynamics of a given cohort. This observation may resonate with
scholars' personal teaching experience: we often observe that two streams of a course can
exhibit very different dynamics. Returning to the winery analogy, the quality of a given bottle
of wine is shaped not only by the vinery it originated from, but also by its vintage. Even a repu-
table winery may yield a less successful vintage for reasons that are beyond the control of its
managers. Similarly, some of the benefits of being part of an accelerator could be specific to the
focal cohort in which a startup partakes. If bottom-up processes are impactful, we
would observe that cross-cohort variation—even within a focal accelerator and under the same
manager—explains a notable fraction of variation in startup outcomes.

To the extent that bottom-up processes are impactful, a cohort becomes more than a collec-
tion of individuals; it forms a community. It carries critical implications to the direction of schol-
arly attention. If the cross-cohort variation is of meaningful magnitude in comparison to that
observed across accelerators, it calls for scholarly investigation of bottom-up processes. This
observation is informed by the social-psychology literature. The literature suggests that bottom-
up processes involve the intense proximity and interactions, and activities that unfold throughout
the program. Hence, we shift to discussing a set of within-accelerator, cohort-specific mecha-
nisms. These include the intensity of collaboration and competition among the participants, and
the vicarious learning that unfolds. Such a cohort effect calls attention to a different set of theoret-
ical mechanisms; for example, learning by observing others' contemporaneous successes and fail-
ures (versus learning from one's own past success and failure), and peer-to-peer sharing (versus
top-down instructor or mentor teaching), which can result in a thriving community of practice.

The social-psychology literature offers some guidance regarding the distinct theoretical
mechanisms associated with such bottom-up cohort effects. Specifically, social-identification
theory argues that proximity (physical, temporal, and structural) leads to information sharing
and learning (Huang et al., 2013). These insights apply to accelerator cohort members who
spend an intense period under conditions of high physical, temporal, and structural proximity.
Each accelerator cohort comprises of several founders who often work within the same physical
business premises: the accelerator space. This typically takes the form of an open-plan office,
similar to a co-working space, where the entrepreneurs work shoulder-to-shoulder, occupying
contiguous workstations. Recent evidence of learning benefits from physical proximity in simi-
lar entrepreneurial spaces (Roche et al., 2022) suggests that founders could experience
enhanced learning from the direct physical interactions throughout the duration of the acceler-
ator program.

The cohort experience is also characterized by temporal proximity. Each accelerator cohort
has a clear start and end date and follows a pre-defined schedule to which entrepreneurs
adhere. Simply put, the participants are usually in the same place at the same time. Finally,
entrepreneurs often exhibit high structural proximity. That is, their startups are usually at a
similar point in the life cycle and, therefore, face similar business challenges. Moreover, the
accelerators often follow a structured curriculum in which all cohort members are given similar

8 AVNIMELECH ET AL.
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tasks at about the same time. Taken together, these features suggest that cohort peers face simi-
lar challenges at about the same point in time and therefore can, and will, draw on each other
for information, advice, and referrals.

Recent accelerator studies document bottom-up cohort effects. A study of US-based accelera-
tors finds that frequent and intense interactions with cohort peers is a key contribution to the
accelerator experience (Hallen et al., 2020). Evidence from a Chinese setting reveals that
monthly meetings with peer firms are associated with increased performance as firms engage
in information sharing and mutual learning (Cai & Szeidl, 2018). Similarly, a randomized trial in
the United States finds that constant interaction around common social interests facilitates infor-
mation flows (Krishnan et al., 2021). Another randomized trial finds that cohort members them-
selves are an invaluable source of advice regarding people management (Chatterji et al., 2019).

Not every cohort becomes a thriving community, as proximity can also have disadvantages.
At times, collaboration may be overtaken by competition. This is especially the case among
entrepreneurs who are spatially, structurally, and temporally proximate. Extant work docu-
ments evidence of adverse competitive dynamics among cohort members. The negative effects
arise due to two distinct mechanisms: (i) spillover concerns and (ii) benchmarking and envy.
Proximity can give rise to advantageous learning but can equally be the source of valid spillover
concerns. The concerns pertain to the leakage of technical, commercial or strategic information.
Leakage may be due to deliberate action as one cohort member expropriates from another, but
could also take place unintentionally among the co-located startups. It is not surprising to
observe adverse competitive dynamics among those targeting related product markets (Cai &
Szeidl, 2018). Benchmarking is another mechanism that can impede collaboration. There is evi-
dence of intense within-cohort competitiveness when the interactions are of a tournament
nature (Krishnan et al., 2021). This is consistent with the concept of social comparison that
underlies envy and which has a well-known effect on organizational dynamics and outcomes
(Nickerson & Zenger, 2008). The spatial, structural and temporal proximity in which cohort
members operate makes comparisons to other members highly salient. This effect may arise
irrespective of whether the accelerator adopts formal benchmarking practices. It can give rise to
envy and exacerbate bottom-up competitive dynamics.

The discussion suggests that some cohorts turn into a thriving community. Indeed, a cohort
features the characteristics of many communities of practice where members share interests
and interact with boundaries of space and time (Wenger, 1998). Qualitative data find that entre-
preneurs benefit from the energy, friendship and support co-working entails (Howell, 2022).
That said, the community-of-practice also exhibits variation in the sense that not every cohort
blossoms into a community. Even when members share similar structures, bottom-up dynamics
can lead to substantial variation in the flow of knowledge among group members and, thus, the
value they derive (Probst & Borzillo, 2008; Thompson, 2005; Wenger et al., 2002).

To conclude, we highlight pathways through which the accelerator experience impacts
startups' performance. These include accelerator-led and manager-led top-down mechanisms as
well as bottom-up cohort dynamics. Table 1 summarizes the mechanisms underlying these
effects. Some of them have already been the subject of scholarly work (including work docu-
menting several bottom-up dynamics; Cohen, Bingham, & Hallen, 2019), while others could be
explored by future work.

What is to be gained by differentiating between accelerator, manager and cohort effects on
startup performance? Identifying the source of performance differences is important because the
differences can inform different predictions. Consider, for example, the effect of cohort indus-
trial homogeneity (where all participating startups target the same industry). From an accelera-
tor perspective (rightmost column in Table 1), there are a number of top-down mechanisms

AVNIMELECH ET AL. 9
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that should result in better startup performance. By focusing on a particular industry, the accel-
erator can develop more robust and targeted curricula, and thereby facilitate better learning. In
contrast, a cohort perspective (leftmost column in Table 1) may result in less conclusive predic-
tions. The structural proximity associated with same-industry participants may be designed,
top-down, to encourage learning. At the same time, we recognize that the sharing of experi-
ences and advice among peers constitutes a bottom-up dynamic that may be curtailed where
participants view each other as direct competitors. In other words, an industry-focused accelera-
tor may be designed to increase the potential for top-down learning benefits, but that potential
may fail to materialize due to adverse bottom-up dynamics within the cohort.

While there is work that examines each of these cohort mechanisms, our study asks a differ-
ent question. It looks at the pathways in a holistic manner. As a variance-decomposition study,
our focus is not on identifying the underlying mechanisms behind each effect, but on examin-
ing the relative size of each effect. To paraphrase Withers and Fitza (2017), such an analysis
answers a fundamental question: If we want to understand how startups benefit from accelera-
tors, how much does studying the accelerator itself, its manager, or the cohort, help toward this
goal? We believe that addressing this question carries critical implications to the direction of
scholarly attention. If the cross-cohort variation is of similar magnitude to that observed across
accelerators, it calls for scholarly investigation to equally recognize (and study) bottom-up pro-
cesses as it does top-down accelerator structures and management.

4 | DATA

Our study uses a hand-collected dataset of the universe of Israel-based accelerators and the
startups that attended them. The setting complements detailed studies of US-based accelerators
(Hallen et al., 2020; Yu, 2020). Israel is home to one of the most vibrant entrepreneurial ecosys-
tems, and many entrepreneurs and investors there have close links with their counterparts in
the United States and Europe (Avnimelech & Teubal, 2006; Engel & del-Palacio, 2011;
StartupBlink, 2021).

The data-collection effort proceeded as follows. First, we were mindful that many organiza-
tions present themselves as “accelerators.” Per prior work, we focused on those entities that
met the following criteria: (i) they operate a cohort-based program; (ii) the program is fast-
paced (i.e., 9 months' duration or shorter); and (iii) the program includes an educational com-
ponent and mentorship. We excluded a few short-lived accelerators that had seven startups or
fewer. Second, we identified every startup that graduated from an accelerator during the period
2010–2019. It is a period that has seen substantial startup and accelerator activity. It is also a
meaningful period in the sense that it sits between two major events; the Great Financial Crisis
and the Covid pandemic. To construct the data, we triangulated three different sources, includ-
ing a leading startup directory (IVC Research Center Israel; Conti, 2018), the websites of the
accelerators, and LinkedIn profiles of entrepreneurs and accelerators' managers. We further
used this information to confirm the identity and cohort of each startup and the identity of the
accelerator manager of each cohort.

These steps yielded a dataset of all accelerator graduates in Israel during the 2010s. It
includes the following variables: startup name, name of the accelerator it graduated from,
cohort start and end dates, name of the accelerator manager at the time, and startup industry.1

1The IVC defines the following industries: Cleantech, Communications, Fintech, Life Science, Semiconductors, Social/
Impact Ventures, Internet, Software, Other Technologies.
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We further collected information about the startups' features (e.g., date of incorporation, the
total amount of capital raised prior to entering the accelerator) and track record (e.g., startup's
current status, the amount raised after joining the accelerator). Data were collected through
October 2020.2

Our study aims to unpack the accelerator, manager and cohort. Accordingly, we exclude
cases where the effects are indiscernible. To avoid confounding the cohort effect with individual
startups, we removed “cohorts of one” (i.e., an accelerator cohort that only had one member).
We similarly excluded accelerators with less than two managers and all managers with less
than two cohorts, because in these cases the manager effect cannot be separated from the accel-
erator effect, and the cohort effect cannot be separated from the manager effect.

These efforts resulted in detailed data for 1350 startups graduating from 158 cohorts across
24 accelerators that were managed by 69 different managers. We believe that the database
constitutes one of the notable contributions of our study because it complements other large-
sample analyses that are often based on the GALI data. The two databases complement each
other as they cover a similar period (GALI covers 2013–2019), with our sample focusing on
technology-based growth-oriented startups, and GALI including many startups and accelerators
geared toward socially-orientated employment-enabling goals.3 Table 2 summarizes the key
dimensions of the sample for each of the dependent variables (DVs) (see below).

5 | METHODS

We conduct a variance-decomposition analysis to assess the magnitude of different effect classes
(i.e., accelerator, manager, cohort, year, and industry) on startup success. Variance-decomposi-
tion analysis holds a notable place in the strategy field (Vanneste, 2017), with several studies
credited for launching important streams of literature (e.g., McGahan & Porter, 1997; Misangyi
et al., 2006; Quigley & Graffin, 2017; Schmalensee, 1985). Notably, past work utilized several
different methodologies to conduct a variance-decomposition analysis, with the two dominant

TABLE 2 Dimensions of sample.

Startups 12 months after entry Startups 3 years after entry

Sample
Total
obs.

Avg. per
accel.

Avg. per
manager

Avg. per
cohort

Total
obs.

Avg. per
accel.

Avg. per
manager

Avg. per
cohort

No. of
accelerators

24 17

No. of
managers

69 2.88 43 2.53

No. of
cohorts

158 6.58 2.29 89 5.24 2.07

No. of
startups

1350 56.25 19.57 8.54 515 30.29 11.98 5.79

2To ensure data availability we excluded startups that entered an accelerator after March 2019.
3The GALI website explains “Why Accelerators? Since 2005, hundreds of accelerators have been launched … Investors,
development agencies, and governments are excited by their potential to drive growth, spur innovation, solve social
problems, and increase employment opportunities in emerging markets” (www.galidata.org/about/).
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methods being ANOVA (e.g., Fitza et al., 2009; McGahan & Porter, 1997; McGahan &
Victer, 2010; Schmalensee, 1985) and linear multi-level modeling with maximum likelihood
estimation (MLM) (see Vanneste, 2017 for a review). Each methodology brings its own
strengths and shortcomings. It follows that a scholar should explicitly consider the nature of the
underlying data and select an appropriate methodology. This is important due to the unique
features of our analysis: we study fledgling entrepreneurial ventures, whereas extant work has
predominantly focused on established corporations. Thus, we start with a detailed discussion of
the nature of our data.

5.1 | Nature of the data

Extant variance-decomposition studies in the strategy literature focus on established corpora-
tions. As a result, most studies deal with companies for which abundant financial and account-
ing data are accessible through public databases such as Compustat. Given the established
nature of the companies and the availability of the data, extant work usually studies firms' prof-
itability using measures such as return on assets (ROA). Moreover, these studies benefit from
large sample sizes as regulatory filing requirements imply that Compustat covers thousands of
companies over a period of decades and across numerous industries.

We study startup accelerators that are an important source of innovations and value in the
modern economy. As we undertake this path, we are careful to explain how our setting differs
from that of the typical variance-decomposition study, and the methodology we have adopted
to address this. We start by explaining the key points of difference: (i) the challenge of using a
proxy of early-stage performance; (ii) the zero-inflated right-skewed distribution of our chosen
performance proxy: fundraising; (iii) the size of the sample; and (iv) its implication for potential
data sparseness. We thus discuss a methodology that meets the features of our setting; a Bayes-
ian hierarchical model (Gelman et al., 2013; Mullahy, 1986; Wibbens, 2019).

First, we underscore a key difference between measuring the performance of a fledgling
startup and that of an established company. Extant work utilizes detailed financial and account-
ing data to construct performance measures such as ROA. While this measure may be available
and relevant to established companies, it is not applicable to early-stage startups. These startups
engage in costly development efforts and are, therefore, predominantly unprofitable. Accord-
ingly, we turn to the accelerator and entrepreneurship literature in pursuit of appropriate per-
formance measures. Extant work uses fundraising amount as a key indicator of initial
entrepreneurial success in general (Guler, 2007; Hallen, 2008; Lerner, 1994), and successful
accelerator participation, in particular (Dushnitsky & Sarkar, 2022; Hallen et al., 2020;
Yu, 2020). Following these studies, we utilize fundraising success as a proxy of startup perfor-
mance. Specifically, we define two dependent variables. The first dependent variable captures
the fundraising amount (in millions of US dollars) during the 12 months following entry into
an accelerator. This variable proxies for the impact of the accelerator on startups' immediate
goal: raising early-stage capital to fund development and growth. We observe fundraising dur-
ing that first year for 1350 unique startups. The second dependent variable explores startups'
fundraising over a longer period, that is, the total amount raised in the 3 years after entering an
accelerator. Because the latter focuses on startups that entered at least 3 years prior to our sam-
ple end date, the sample has fewer observations: 515 startups.

Second, we examine a related issue concerning the distribution of the dependent variable.
In the case of established companies, the performance measures usually exhibit a normal

12 AVNIMELECH ET AL.
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distribution (Vanneste, 2017). In contrast, the nature of the entrepreneurial setting is such that
only a few startups fully succeed in their development efforts; some startups secure no funding
after entering an accelerator, others raise modest or moderate investment, and a few secure sig-
nificant investment amounts (Crawford et al., 2015; Scherer et al., 2000). As a result, the
funding amount does not follow a normal distribution. Rather, it exhibits a highly skewed dis-
tribution with a right skew, as captured in Figure 1. This carries implications for our choice of
methodology because most estimation approaches, such as the prevalent multi-level modeling
approach (Misangyi et al., 2006), are based on certain assumptions about the distribution of the
dependent variable. This guided our decision to use a more flexible Bayesian hierarchical
model, as we explain below.

Third, past variance-decomposition studies in the strategy literature usually utilized Com-
pustat data and, as a result, have a very large number of observations. We observe hundreds of
unique startups in one of the most globally vibrant entrepreneurial hubs. Yet, our sample size
might be seen as modest relative to previous variance-decomposition studies, but that is not
necessarily the case. A recent meta-analysis of firm and industry variance-decomposition stud-
ies identifies 41 studies in the strategy field, of which about 25% employ fewer than 1000 obser-
vations (Vanneste, 2017). This insight indicates that our sample size, while smaller than the
typical strategy study, is not uncommon. That said, the size of our sample can raise the issue of
data sparseness, which we discuss in the next point.

Fourth, variance-decomposition analyses study the magnitude of effects classes that are
often hierarchically nested. For example, strategy scholars studied the “business-unit effect,”
which is nested within the overall “corporate effect.” In other words, there is a hierarchical
structure where the corporate effect represents higher-level cells, and the business-unit effect is
the lower-level cells. This structure is a common feature of variance-decomposition data, yet it
can give rise to sparseness under some conditions. To see that, let us turn to discuss our setting.
We study five effects classes—year, industry, accelerator, manager, and cohort. As with other
studies, these effects represent a nested structure. Each startup is a member of industry and of a
cohort, while cohorts are nested in accelerator managers (i.e., the manager of that cohort), and

FIGURE 1 Distribution of the dependent variables. aFor illustration purposes, large values are capped at the

99 percentile. bThe scale on the x axis is $0.5 million. The high peek to the left represents all observations with a

DV of 0 to 0.5. The percentage for observations with a DV of precisely 0 is 73% and 39% for the 12-month and

3-year DVs, respectively.
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accelerator managers are nested in accelerators (i.e., the accelerator they are affiliated with).
The accelerators and cohorts represent the highest-level and lowest-level cells, respectively.

In hierarchical models, the term “group size” refers to how many lower-level cells are con-
tained in a higher-level cell. The issue of data sparseness arises when the group size becomes
small. Prior work found that sparseness can result in inflated effect sizes (Stavropoulos
et al., 2015; Vanneste, 2017).4 Our sample size implies that we may face this issue. To that end,
Table 2 summarizes the dimensions of our sample. It shows, for example, that in the 3-year
fundraising variable, there is an average of 5.8 startups per cohort, 2.1 cohorts per manager,
and 2.5 managers per accelerator. These values fall close to or below the “sparseness threshold”
of five observations that Stavropoulos et al. (2015) determined for ANOVA-based variance-
decomposition analyses.

Taken together, the four points above guided our methodological choices for executing the
variance-decomposition analysis. The last two points suggest potential data sparseness. Detailed
simulation analyses by Vanneste (2017) reveal that effect inflation due to data sparseness is a
concern when using traditional variance decomposition methodologies, especially in the con-
text of ANOVA analysis and, to a lesser extent, also in the context of multi-level modeling
(MLM). We note that MLM and Vanneste's (2017) simulations, rely on normally distributed
dependent variables, whereas our dependent variable follow another distribution (see points
1 and 2 above).

We, therefore, apply a different analytical methodology, a Bayesian hierarchical approach
that meets the specific features of our setting. As we show below, the advantage of this
approach is its high flexibility in defining the structure of the model in such a way that it fits
our data characteristics (Gelman et al., 2013; Paez et al., 2008; Zhang & Liu, 2019). The next
section explains the features of our main model and elaborates on how this methodology copes
with the specific features of our sample.

5.2 | The Bayesian model

Our model is motivated by the characteristics of the data. First, as described above, our setting
has a hierarchical structure with potential sparseness (e.g., with small lower-level group sizes).
To see how we address this hierarchical structure with potential sparseness, it may help to
understand the underlying challenge associated with estimating variability across sparse lower-
level groups such as those represented by accelerator cohorts. Traditionally, a scholar can either
(i) fit the data to an independent model for each of the groups (no pooling) or (ii) fit one model
to the whole dataset across different groups (full pooling). In the context of sparse data, the first
option, no pooling, of fitting independent models can suffer from having too few data points,
which inhibits efficient estimates for every group and ignores information across groups
(Gelman & Pardoe, 2006). The shortcoming of fitting a joint model, full pooling, is that it leads
to a single parameter estimate for all groups, thus ignoring variability across groups.

The hierarchical structure of our Bayesian model effectively combines both approaches by
using partial pooling, learning a prior distribution that collects the information that is valid
across the groups and allows the parameters of each group to vary conditioned on this prior

4Stavropoulos et al. (2015) note: “In general, simulation studies that have examined the effect of sample and group size
on variance estimates using mixed hierarchical and cross-classified models have shown that variance-decomposition
analysis functions poorly […] when group sizes are very small.”
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(Beaumont & Rannala, 2004). If, for example, only one observation is available for a group, the
prior heavily constrains the estimate; that is, estimates for groups with small group sizes effec-
tively use the data across all groups (Gelman & Pardoe, 2006; Korteweg & Sorensen, 2017). In
contrast, the more observations are available in a group, the less is it the case that the estima-
tion draws on the prior which is learned across all groups (Gelman & Pardoe, 2006).

Furthermore, the flexibility of the Bayesian model allows us to vary how prior distributions
apply within each hierarchical level. For example, to learn the parameters for the joint distribu-
tion that the individual manager coefficients are drawn from, our model constrains the effect of
managers on startups' funding by sharing the data of all the managers who managed a given
accelerator, but we allow for the manager effect to vary across accelerators. In other words, the
manager effect is not universal but can be different within different accelerators. The same is
true for the cohort effect; it can differ for different managers.

The second important feature of our setting is the distribution of the dependent variables.
Whereas the previous point concerns the structure of the data and the number of observations
across the different effects classes (i.e., how many startups per cohort, how many cohorts per
manager, how many managers per accelerator), the current point concerns the distribution of
startup performance (i.e., fundraising post entry to an accelerator). The dependent variables fol-
low a right-skewed distribution with many zeros (zero-inflated). To address this, our model uses
a Tweedie distribution to model the dependent variables. Tweedie distributions are a family of
probability distributions that is well suited to model data with many zeros and a long right tail
(Dunn & Smyth, 2001; El-Shaarawi et al., 2011; Gilchrist & Drinkwater, 2000; Jorgensen, 1987;
Jorgensen, 1997; Kokonendji et al., 2021; Tweedie, 1984; Ye et al., 2021).

Model specification: We estimate a model of a startup's fundraising success after it enters an
accelerator. The general structure of our model follows previous variance decomposition works
in similar hierarchical settings. We use a hierarchical model where startups are nested in indus-
tries and cohorts, cohorts are nested in managers which are themselves nested in accelerators.
We use random intercepts for the hierarchical elements (industry, accelerator, manager, and
cohort) and fixed-year effects (Misangyi et al., 2006; Quigley & Graffin, 2017; Withers &
Fitza, 2017). We also include the funding a startup received before entering an accelerator (i.e.,
the variable previous finding) to control for inherent startup abilities that may affect our depen-
dent variable (Conti et al., 2022; Guzman & Stern, 2016).

Our model is represented by Equations (1) and (2), where each startup is indexed by s, each
accelerator is indexed by a, each accelerator has a set of managers indexed by m, and each man-
ager manages a set of cohorts indexed by c.5 In the model, the funds a startup raised after enter-
ing an accelerator are also affected by the industry of the startup (indexed i) and the year
(indexed y) and by our aforementioned control variable (previous funding).

The model is estimated using a Bayesian hierarchical approach, with the dependent variable
following a Tweedie distribution. Formally, ys, the funding raised by startup s, after it joined
accelerator a under manager m and cohort c is described by Equation (1).

ys �Tw μs,φ,pð Þ: ð1Þ

This Tweedie distribution accounts for the zero-inflated and right-skewed distribution of the
dependent variable (El-Shaarawi et al., 2011; Gilchrist & Drinkwater, 2000; Jorgensen, 1987;
Jorgensen, 1997; Kokonendji et al., 2021; Tweedie, 1984). The parameters of the Tweedie distri-
bution are the mean μs, the dispersion φ and the power parameter p, where each of the

5The bracket “(s)” in an index implies that the index is a function of the particular startup.
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parameters takes non-negative values. The parameters φ andp together define the zero inflation
and degree of right-skewedness of the distribution; these parameters are estimated by the
model. Per prior work, we constrain p to be in a range between 1 and 2 which represents zero
inflated distributions (El-Shaarawi et al., 2011; Kokonendji et al., 2021; Tweedie, 1984). The
term μs represents the mean potential fundraising success of a startup after it entered an accel-
erator. It is defined by our regression estimation:

μs=β0+βy sð Þ � yeary sð Þ+γa sð Þ+δa sð Þ,m sð Þ+φa sð Þ,m sð Þ,c sð Þ+θi sð Þ +βs �previous fundings+εs: ð2Þ

Here, the intercept β0 represents the grand mean for the DV. The terms
γa sð Þ,δa sð Þ,m sð Þ,φa sð Þ,m sð Þ,c sð Þ and θi sð Þ represent random intercepts for accelerator, manager cohort
and industry6 (hierarchically nested as described above). βy sð Þ represents a fixed effect for the
year startup s joined the accelerator (yeary sð Þ). βs is the coefficient for previous fundings.
The error term εs captures startup-specific idiosyncratic performance differences.

The value of γa sð Þ is the same for all startups graduating from a focal accelerator a. It thus
captures the differences between startups that graduated from different accelerators. Depending
on the contribution of its specific accelerator, a startup might perform better or worse.7 For-
mally stated, our Bayesian model assumes that each accelerator receives an independent draw
of γa sð Þ, which is drawn from a prior distribution γa sð Þ �N 0,σ2γ

� �
, and remains constant

throughout an accelerator's life. The priors represent our beliefs about the “ability” of each
accelerator to contribute to a startups' funding success. In line with Gelman et al. (2013, p. 113),
we use a normal distribution for the priors as we have no knowledge about how accelerator
abilities are distributed. Hence, our starting (prior) assumption is that the distribution of accel-
erators' contributions vary around a mean, and that contributions that are further away from
the mean are less likely. This approach is consistent with Gelman et al. (2013); in the absence
of knowledge about a given parameter, one can proceed by (i) assuming that the parameter fol-
lows a normal prior distribution and (ii) follow-up with post-estimation fitness checks to assess
the validity of the assumption. To demonstrate the validity of this assumption, we can fore-
shadow that our post-estimation tests suggest the model offers a good fit.

The Bayesian model estimates a posterior of γa sð Þ with a variance (σ2γ ). Startups from acceler-
ators with higher γa sð Þ raised greater amounts, and startups with lower γa sð Þ raised lower
amounts after joining an accelerator. Thus, the variance of the posterior (σ2γ ) reflects the degree
to which startup fundraising success differs across accelerators. If the value of σ2γ is low, there
would be little variation in γa sð Þ which implies that accelerators are similar in terms of how they
contribute to the fundraising success of their graduates. In contrast, when σ2γ the value of σ2γ is
high, there is substantial variation across accelerator graduates, which would suggest a notable
“Accelerator Effect.” That is, the fundraising success of startups after entering an accelerator is
greatly affected by which specific accelerator they joined.

The variance σ2γ (as well as the other posterior variances mentioned below) is the focus of
our variance decomposition study. It represents the accelerator effect; namely, the degree to

6For random intercepts, we followed the convention to not write down separate variables and coefficients for
simplification. Strictly speaking the effect for accelerator is βa sð Þ � γa sð Þ, manager is βa sð Þ,m sð Þ �δa sð Þ,m sð Þ, cohort is
βa sð Þ,m sð Þ,c sð Þ �φa sð Þ,m sð Þ,c sð Þ, and industry is βi sð Þ �θi sð Þ.
7The accelerator effect represents how much accelerators vary around the average contribution associated with having
been at an accelerator. Our focus is not with the average accelerator contribution (which is incorporated into the
regression intercept) but rather the variation across accelerators, σ2γ .
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which it “matters” which accelerator a startup was a member of. In other words, the term cap-
tures the extent to which affiliation with a different accelerator is associated with variation in
startups' performance (i.e., post-accelerator fundraising success). The reported accelerator effect
is a percentage calculated by dividing this variance by the model's total variance.

Similarly, δa sð Þ,m sð Þ captures the manager effect. The regression coefficient is estimated based
on a prior representing the impact of an individual manager above or below the average man-
ager effect. The prior is drawn from a normal distribution δa sð Þ,m sð Þ �N 0,σ2δ,a

� �
. We allow the

variance of the distribution to vary across different accelerators, which is captured by the sub-
script a for σ2δ,a. That is, managers within one accelerator might vary more (or less) than man-
agers within another accelerator. The reported manager effect is calculated based on the average
variance of the posterior distribution across all accelerators (σ2δ,a).

Finally, we consider the cohort effect. The term φa sð Þ,m sð Þ,c sð Þ captures the cohort effect with
priors drawn from a normal distribution φa sð Þ,m sð Þ,c sð Þ �N 0,σ2φ,m

� �
. Similar to the manager

effect, we allow the variance of that distribution to vary across managers, which is captured by
the sub-script m for σ2φ,m.

8 As above, the reported cohort effect is based on the average variance
of the posterior σ2φ,m

� �
. It reflects the degree to which startup fundraising differs across cohorts.

Following that logic, the term θi sð Þ captures the industry effect with priors drawn from a normal
distribution θi sð Þ �N 0,σ2i

� �
.9 More details about our model can be found in Appendix A.

The Bayesian hierarchical model is set up with weakly informative or noninformative
hyper-priors (see Appendix A), so that the results are driven by the data rather than the priors
(Gelman et al., 2013; Wibbens, 2019).10

Model estimation and post-estimation validation: We estimate our Bayesian model using a
Hamiltonian Monte Carlo Sampler with 2000 iterations for warm-up followed by 2000 iterations
and two Markov chains to simulate the posteriors (Gelman et al., 2013; Wibbens, 2019).

We also report a set of post-estimation validation tests. As described in Gelman (2013, p. 129)
the definition of a Bayesian model is provisional until the model is validated in terms of its con-
vergence and posterior distribution after it has been estimated. Accordingly, we extensively vali-
dated the model. We report the convergence of the Markov chains, effective sample size neff , bR,
warm-up and main posterior sampling (Gelman et al., 2013; Wibbens, 2019). Following Vehtari
et al. (2017, 2015), we analyze the posterior distribution in terms of its mean, extreme value sta-
tistics (i.e., whether it represents large values and the zero-inflation well), and also present a
dense overlay of posterior- and actual distribution and assess the distribution of the error term.

Finally, we conducted two tests to check the model's predictive performance in line
with Gelman et al. (2013, chap 6) and Vehtari et al. (2015). The first test is the Pareto K-diagnos-
tic leave-one-out cross-validation (LOO-CV) based on Pareto smoothed importance
sampling (PSIS). And the second test is a posterior predictive checks (PPC) leave-one-out (LOO)
cross-validation (CV) probability integral transformation (PIT) Plot combined with an outlier
removed model based on Mangiola et al. (2021). Overall, all these post-estimation validations
suggest that our Model addresses the special characteristics of the data well (see Appendix B for
details).

8Because managers are nested within a specific accelerator, the subscript does not explicitly note the accelerator.
9The variance explained by the fixed year effect and by the control variable is calculated as per prior work (Misangyi
et al., 2006; Matusik & Fitza, 2012; Quigley & Graffin, 2017; Withers & Fitza, 2017). Specifically, we calculate the
difference in the explained variance for the model with and without the associated variables.
10In hierarchical models just as in non-hierarchical models, it is often practical to start with simple, relatively
noninformative, prior distributions (Gelman et al., 2013, p. 108). This “reflects our ignorance about the unknown
hyperparameters.” The word “noninformative” indicates “our attitude toward this part of the model and is not intended
to imply that this particular distribution has any special properties” (Gelman et al., 2013, p. 110).
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6 | RESULTS

Table 3 presents the main results. The table reports the mean percentages of the total variance
in startup fundraising after entering an accelerator which is explained by each effect.

We begin by estimating a base model that contains the accelerator effect, as well as the year
effect, the industry effect, and the pre-accelerator funding control. This facilitates comparison
with past work and thus serves as a benchmark illustrating the importance of addressing the
“brewery vs. winery” question. Panel A reports the results for the first dependent variable; the
fundraising amount within 12 months of entering the accelerator. In this model, the mean
accelerator effect is 8.9%, and the 95% posterior interval (PI), which is the Bayesian equivalent
to the confidence interval, has a range of 7.3%–10.1%. The year effect is 0.0% (95% PI: 0.0%–
0.6%), the industry effect is 2.1% (95% PI: 1.0%–2.9%), and the pre-accelerator funding control
variable explains 0.1% (95% PI: 0.0%–0.4%) of the variance in post-accelerator fundraising.11

Panel B repeats the analysis for the 3-year fundraising amount. The accelerator effect stands
at 8.9%, and the 95% posterior interval is 7.4%–9.3%. The year effect is 0.0% (95% PI: 0.0%–0.2%),
the industry effect is 1.5% (95% PI: 0.8%–2.6%). The pre-accelerator funding control explains
0.0% (95% PI: 0.0%–0.2%) of the variance in post-accelerator fundraising.12

The results are comparable to past variance-decomposition studies of startup performance.
For example, Fitza et al. (2009) studied the startup valuation using a sample of US-based

TABLE 3 Mean percentage of variance explained.

Panel A: The dependent variable is capital raised 12 months after accelerator entry

Base model (accelerator
effect only)

Full model (accelerator, manager and
cohort effect)

Accelerator 8.92 (7.32–10.14) 3.60 (2.43–4.71)

Manager 7.70 (7.46–7.92)

Cohort 7.51 (7.37–7.68)

Industry 2.10 (1.01–2.86) 3.18 (1.06–4.55)

Year 0.00 (0.00–0.63) 0.00 (0.00–0.60)

Pre accelerator
funding

0.09 (0.00–0.44) 0.07 (0.00–0.29)

Panel B: The dependent variable is capital raised 3 years after accelerator entry

Base model (accelerator
effect only)

Full model (accelerator, manager and
cohort effect)

Accelerator 8.93 (7.39–9.28) 2.60 (1.05–3.32)

Manager 4.91 (4.54–5.41)

Cohort 5.64 (5.24–5.99)

Industry 1.52 (0.81–2.57) 1.56 (0.43–2.31)

Year 0.00 (0.00–0.19) 0.00 (0.00–0.11)

Pre accelerator
funding

0.00 (0.00–0.23) 0.00 (0.00–0.25)

Note: 95% posterior intervals in parentheses.

11The estimate for the control variables' coefficient, βs, is 0.1.
12The estimate for the control variables' coefficient, βs, is 0.4.
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startups. While not studying accelerator graduates per se, the study found an industry effect of
0.9%. Chan et al. (2020) explored the amount of funding raised within 1 year of entering an
accelerator using a sample across the United States, Mexico, Kenya, and India (based on the
Global Accelerator Learning Initiative (GALI) data). They report an industry effect of 0.0% and
an accelerator effect of 11.1%.

Next, we proceed to estimate a full model where we add the manager and the cohort effects
to the analysis. Panel A of Table 3 reports the Bayesian hierarchical estimates for fundraising
amount within 12 months of entering an accelerator. We observe a reduction in the magnitude
of the mean accelerator effect from 8.9% in the base model to 3.6% (95% PI: 2.4%–4.7%) in the
full model. The manager effect stands at 7.7% (95% PI: 7.5%–7.9%). The cohort effect is of nota-
ble magnitude: 7.5% (95% PI: 7.4%–7.7%). The year effect remains at 0.0% (95% PI: 0.0%–0.6%).
The industry effect is 3.2% (95% PI: 1.1%–4.6%), and pre-accelerator funding continues to
explain 0.1% of the variance (95% PI: 0.0%–0.3%).

The results for fundraising amounts within 3 years of entering the accelerator are similar.
As reported in Panel B, we find a reduction in the accelerator effect from 8.9% in the base model
to 2.6% (95% PI: 1.1%–3.3%) in the full model. The manager effect stands at 4.9% (95% PI: 4.5%–
5.4%), and the cohort effect is 5.6% (95% PI: 5.2%–6.0%). The industry effect is 1.6% (95% PI:
0.4%–2.3%), the year effect is 0.0% (95% PI: 0.0%–0.1%), and the control variable (pre-accelerator
funding) remains at 0.0% of the variance (95% PI: 0.0%–0.3%).13

Finally, we conduct a set of additional analyses to check the robustness of the findings across
different samples and methodologies (Appendix C). For example, we explored whether our
results are driven by cohorts that have only one or a handful of startups that raised substantial
funds. To that end, we follow Mangiola et al.'s (2021) approach to ascertain a Bayesian model's
predictive abilities. Appendix C details this and other robustness tests and corresponding results.

Overall, our findings illustrate the magnitude of the cohort effect in comparison to the man-
ager and accelerator effects. They suggest that the bottom-up mechanisms underlying the
cohort effect are of similar (equally meaningful) in magnitude to the top-down manager effect
and larger than the top-down accelerator effect. The next section interprets these results.

7 | DISCUSSION AND CONCLUSION

To paraphrase the title of this study, accelerators should not be viewed as solely akin to brewer-
ies; we document a significant vintage effect. In our primary analysis, we find that the cohort
effect explains up to 7.5% of the variance in startup performance, while the accelerator effect
explains between 2.6% and 3.6% once cohort and manager effects are included. We also find
that the manager effect is associated with a notable magnitude of up to 7.7%. The posterior
intervals for the effects are relatively small, suggesting that our sample size and model setup
allow for accurate estimation of effect sizes.14,15

13The estimate for the controls' coefficient, βs, is 0.0 for the 12-month model and 0.3% for the 3-year model.
14Neither the manager nor the cohort effect is within the 95% posterior intervals of the accelerator effect (and the
accelerator effect is not within the 95% PI of manager and cohort effects), indicating that the accelerator effect is
significantly different from the other two effects.
15In addition to the manager, accelerator, and cohort effect, our model also estimates the effect of industry, year, and
the variance explained by the control variable of pre-accelerator funding. These last three effects are relatively small,
suggesting they play a lesser role in explaining startup funding success.
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The findings carry a few implications and contributions. First, we point to a new vehicle
through which top-down mechanisms play out; specifically, the role of accelerator managers.
We observe a reduction in the magnitude of the accelerator effect between the base model and
the full model. Current discourse among scholars and practitioners tends to focus on the accel-
erator. The added value associated with each accelerator is often associated with the (top-down)
design decisions it undertakes. Our findings call for a nuanced discourse. They suggest that
managers play an important role in driving variation in the impact of top-down decisions.

Second, we find that cohorts account for a notable fraction of the variance in startup perfor-
mance. We recognize that business and scholarly discussions often celebrate the accelerators and
attribute startups' success to the training and networking that accelerators offer. Our study indi-
cates that one should also acknowledge significant bottom-up cohort dynamics and their role in
the success of accelerators' participants. In the spirit of variance-decomposition studies, we direct
scholars to potential fertile areas for further investigation. We underscore the need to expand on
recent cohort dynamics studies, such as Assenova and Amit (2024), Cohen, Bingham, and Hallen
(2019), Dushnitsky and Sarkar (2018), and Hallen et al. (2020). Doing so will advance our under-
standing of when, why and how some cohorts turn into thriving communities. Along these lines,
Table 1 offers guidance on a plethora of plausible mechanisms. A corollary observation for practi-
tioners is to monitor cohort dynamics because it accounts for a notable fraction of performance.

These theoretical contributions are possible through a parallel effort in data and methodol-
ogy. The data extend prior work by looking beyond startups' accelerator-affiliation, to further cap-
ture the effect of managers and cohorts on startups' performance. Methodologically, we present
an approach to variance-decomposition analysis that is new to the strategy field to the best of our
knowledge. It joins ANOVA and maximum likelihood estimation (MLM) approaches that
informed past studies of established firms performance (e.g., McGahan & Porter, 1997; Misangyi
et al., 2006; Quigley & Graffin, 2017; Vanneste, 2017). We estimate a Bayesian hierarchical model
(Gelman et al., 2013) using a Tweedie distribution to model our highly right-skewed zero-inflated
dependent variable. The study details the setup, estimation, and presentation of results which
can be helpful for other scholars studying non-normally distributed performance outcomes or
those interested in settings characterized by sparseness in hierarchical structures.

A few notable caveats are warranted. As with all variance-decomposition analyses, our
study only captures effect sizes and not their underlying causes (McGahan & Porter, 1997;
McGahan & Victer, 2010). We view this less as a limitation and more as a feature of variance-
decomposition work. It serves as a “call to action.” Namely, this type of work advances
research by highlighting the relative importance of effect classes, and it does so by bundling
together a multitude of factors that might interact in causally complex ways (Vanneste, 2017;
Vedula & Fitza, 2019). Another feature of variance-decomposition work relates to the
approach to thinking about selection. This is often tackled through careful interpretation; that
is, variance-decomposition studies focus on estimating whether or not the performance of cer-
tain firm populations differs, conditional on initial selection decisions (Karniouchina
et al., 2013; Vedula & Fitza, 2019).16 In the context of our accelerator study, the selection is
fully attributed to top-down mechanisms because it is the accelerator and their managers that
screen and attract prospective startups. In other words, the cohort-effect estimates can be

16To see this, consider the fact that past variance-decomposition works estimate industry- and business-unit effects
based on the assumption that corporations choose which industries to compete in and which business units to develop
or acquire. The interpretation of an estimate of the corporate effect, therefore, is that it captures the fraction of
profitability variation attributed to a corporation's ability to select as well as operate the business unit.
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interpreted as directly capturing the bottom-up mechanisms associated with the dynamics
among the tightly-knit cohort members.

DATA AVAILABILITY STATEMENT
Restrictions apply to the availability of these data, which were used under license for this study.

ORCID
Gil Avnimelech https://orcid.org/0000-0002-7102-809X
Markus Fitza https://orcid.org/0000-0002-9422-7032

REFERENCES
Assenova, V. A. (2020). Early-stage venture incubation and mentoring promote learning, scaling, and profitabil-

ity among disadvantaged entrepreneurs. Organization Science, 31(6), 1560–1578.
Assenova, V. A., & Amit, R. (2024). Poised for growth: Exploring the relationship between accelerator program

design and startup performance. Strategic Management Journal, 45(6), 1029–1060.
Avnimelech, G., & Rechter, E. (2023). How and why accelerators enhance female entrepreneurship. Research

Policy, 52(2), 104669.
Avnimelech, G., & Teubal, M. (2006). Creating venture capital industries that co-evolve with high tech: Insights

from an extended industry life cycle perspective of the Israeli experience. Research Policy, 35(10), 1477–1498.
Banc, C., & Messeghem, K. (2020). Discovering the entrepreneurial micro-ecosystem: The case of a corporate

accelerator. Thunderbird International Business Review, 62(5), 593–605.
Beaumont, M. A., & Rannala, B. (2004). The Bayesian revolution in genetics. Nature Reviews Genetics, 5(4),

251–261.
Box, G. E. P., & Draper, N. R. (1987). Empirical model-building and response surface. Wiley.
Bueckner, P. (2024). Prior Definitions for brms Models. https://paul-buerkner.github.io/brms/reference/set_

prior.html
Bischoff, K. M., Gielnik, M. M., & Frese, M. (2020). When capital does not matter: How entrepreneurship train-

ing buffers the negative effect of capital constraints on business creation. Strategic Entrepreneurship Journal,
14(3), 369–395.

Cai, J., & Szeidl, A. (2018). Interfirm relationships and business performance. The Quarterly Journal of Econom-
ics, 133(3), 1229–1282.

Camuffo, A., Cordova, A., Gambardella, A., & Spina, C. (2020). A scientific approach to entrepreneurial decision
making: Evidence from a randomized control trial. Management Science, 66(2), 564–586.

Chan, C. S. R., Patel, P. C., & Phan, P. H. (2020). Do differences among accelerators explain differences in the
performance of member ventures? Evidence from 117 accelerators in 22 countries. Strategic Entrepreneurship
Journal, 14(2), 224–239.

Chatterji, A., Delecourt, S., Hasan, S., & Koning, R. (2019). When does advice impact start-up performance? Stra-
tegic Management Journal, 40(3), 331–356.

Clarysse, B., & Yusubova, A. (2014). Success factors of business accelerators. In Technology business incubation
mechanisms and sustainable regional development, proceedings. Toulouse Business School.

Clarysse, B., Wright, M., & Van Hove, J. (2015). A look inside accelerators. Nesta.
Clingingsmith, D., & Shane, S. (2018). Training aspiring entrepreneurs to pitch experienced investors: Evidence

from a field experiment in the United States. Management Science, 64(11), 5164–5179.
Clough, D. R., Fang, T. P., Vissa, B., & Wu, A. (2019). Turning lead into gold: How do entrepreneurs mobilize

resources to exploit opportunities? Academy of Management Annals, 13(1), 240–271.
Cohen, S. L., & Hochberg, Y. V. (2014). Accelerating start-ups: The seed accelerator phenomenon. SSRN Journal,

1–16. https://doi.org/10.2139/ssrn.2418000
Cohen, S. L., Bingham, C. B., & Hallen, B. L. (2019). The role of accelerator designs in mitigating bounded ratio-

nality in new ventures. Administrative Science Quarterly, 64(4), 810–854.
Cohen, S. L., Fehder, D. C., Hochberg, Y. V., & Murray, F. (2019). The design of start-up accelerators. Research

Policy, 48(7), 1781–1797.

AVNIMELECH ET AL. 21

 10970266, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

j.3665 by L
ondon B

usiness School, W
iley O

nline L
ibrary on [08/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-7102-809X
https://orcid.org/0000-0002-7102-809X
https://orcid.org/0000-0002-9422-7032
https://orcid.org/0000-0002-9422-7032
https://paul-buerkner.github.io/brms/reference/set_prior.html
https://paul-buerkner.github.io/brms/reference/set_prior.html
https://doi.org/10.2139/ssrn.2418000


Conti, A. (2018). Entrepreneurial finance and the effects of restrictions on government R&D subsidies. Organiza-
tion Science, 29(1), 134–153.

Conti, R., Kacperczyk, O., & Valentini, G. (2022). Institutional protection of minority employees and entrepre-
neurship: Evidence from the LGBT employment non-discrimination acts. Strategic Management Journal, 43
(4), 758–791.

Crawford, G. C., Aguinis, H., Lichtenstein, B., Davidsson, P., & McKelvey, B. (2015). Power law distributions in
entrepreneurship: Implications for theory and research. Journal of Business Venturing, 30(5), 696–713.
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APPENDIX A: BAYESIAN MODEL SPECIFICATION: PRIORS AND STARTING
VALUES

As described in Equation (1) in the main text, we use a Tweedie distribution for the dependent
variable:

ys �Tw μs,φ,pð Þ: ðA:1Þ

The parameters of the Tweedie distribution are the mean μs dispersion φ and power param-
eter p (in the STAN code it appears as mtheta (McElreath, 2020), see Appendix D), where each
of the parameters has to take non-negative values (El-Shaarawi et al., 2011; Gilchrist & Drink-
water, 2000; Kokonendji et al., 2021; Ye et al., 2021). φ� gamma k=0:01,θ=0:01ð Þ: The gamma
distribution here ensures positive values in a realistic range for φ (Gelman et al., 2013). p is con-
strained to be in the interval 1 < p < 2, as this ensures a zero inflated distribution (El-Shaarawi
et al., 2011; Ye et al., 2021) (adding this constraint increases sampling efficiency). The variance
of the Tweedie distribution is defined as (Swallow et al., 2016):

Var ysð Þ=φ�μps :

The estimation of μs is based on Equation (2) in the paper. Following Gelman (2006), for the
variances of the random effects (σγ , σδ,a, σφ,m, and σi), we use half-t distributed hyper-priors,
with: Student half −T ν,μT ,σTð Þ on the range [0, inf), where ν stands for the degrees of freedom,
μT for the mean, and σT for the standard deviation of the t-distribution. The half-t distributed
hyper-priors have been chosen as some of the levels only have a few observations, and an
unconstrained (flat) hyper-prior would thus not result in sufficient shrinkage for these levels
(Gelman, 2006, p. 528 ff). Per prior work (Bueckner, 2024; Vehtari, 2019), we set ν at 3 because
having degrees of freedom greater than 2 ensures a finite variance and mean while for values
larger than 3 the tails become extremely heavy and difficult to bound. The mean, μT , is set at
zero and σT is set at 2.5 (Bueckner, 2024; Vehtari, 2019). We tested sensitivities to varying the
degrees of freedom of ν to 2 and of σT to 1, which does not affect our results. Per Gelman et al.
(2013), the intercept, β0, year fixed effect, βy sð Þ, and previous funding, βs, have a flat prior on
(inf, inf ).

The results are based on posterior inference of 2 Markov chains sampled with the No U Turn
(NUTS) Hamiltonian Monte Carlo sampler (Hoffman & Gelman, 2014). For each chain 4000
draws are performed, of which the first 2000 are taken as warm-up. No thinning is performed as
the samples can be kept in memory. This results in a total of (2 times 2000) 4000 posterior draws
for the model. We also run a setup with 4 Markov chains (2000 iterations for warm-up, and 2000
iterations for sampling) for the main model and it did not change the results.

The variance explained, and the confidence intervals (called posterior intervals in the con-
text of our Bayesian model) of the random intercepts can be directly taken from the Bayesian
posteriors. The variance explained by the fixed year effect and by the control variable is
calculated by once taking the model with and once without the associated variables and calcu-
lating the difference in the explained variance (Misangyi et al., 2006; Quigley & Graffin, 2017;
Withers & Fitza, 2017)17.

17The posterior intervals for these two effects are calculated via bootstrapping with 100 iterations.
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The variance explained by a component (i.e., our effect of interest, such as the accelerator
effect) is defined as:

σ2component

total variance
:

For σ2component we use the mean across all posterior draws. The total variance is the sum of the
individual variances plus the error term. Recall that an advantage of the Bayesian analysis is
the ability to accommodate varying variances for the manager and the cohort (e.g., allowing the
variance of the manager to differ across accelerators, and similarly allowing the variance of
the cohort to differ across managers). Therefore, the σ2component for the manager-effect is based
on the mean of the set of variance values estimated across the different accelerators, and the
σ2component for the cohort effect is based on the mean variance values estimated across the differ-
ent managers.

APPENDIX B: CONVERSION AND VALIDATION OF THE BAYESIAN MODEL

We undertake several steps to assess whether the model fits with the data. To that end, we fol-
low the suggestions of Gelman et al. (2004, p. 281), Wibbens (2019), Vehtari et al. (2017), and
Vehtari et al. (2015) regarding which post-estimation tests to conduct.

Effective sample size

In Bayesian statistics, the effective sample size is a measure of the amount of information con-
tained in a sample. It represents the size of an equivalent independent and identically distrib-
uted (IID) sample that would provide the same amount of information as the actual sample
(Wasserman, 2004). For each parameter of interest, neff should be at least 10 times the number
of Markov chains (see Gelman et al., 2013, p. 287; Wibbens, 2019). In our case, the effective
sample size is between 842 and 1839, which is more than the required 20. We report our effec-
tive sample sizes in Table B1.

TABLE B1 Key convergence statistics for the models.

DV: Funding raised within 12-months DV: Funding raised within 3-years

R^Sector 1.001 1.001

R^Accelerator 1.002 1.004

R^Manager 1.001 1.002

R^Cohort 1.001 1.004

Sectoreff 1839 1759

Acceleratoreff 981 842

Managereff 1287 1285

Cohorteff 1215 1288
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Convergence of the Markov chains

In the field of Bayesian statistics, assessing the convergence of the Markov chains is essential
for an accurate analysis. R ,̂ or the potential scale reduction factor, serves as a diagnostic tool
for this purpose. This quantitative measure, developed by Gelman and Rubin (1992), compares
the within-chain and between-chain variability of multiple chains in Markov chain Monte
Carlo (MCMC) simulations, each initialized with different starting values. It is important to
ensure that the R^statistic is sufficiently low to have confidence in the accuracy of the posterior
distribution obtained from the MCMC simulation (Gelman et al., 2013, p. 287). The R^statistic
needs to be below 1.10 for all variables to ensure that the Markov chains have mixed well and
that the MCMC algorithm is not exploring an incorrect or incomplete posterior distribution
(Gelman et al., 2013). In all our models R^ for the variables sector, accelerator, manager, and
cohort ranges between 1.001 and 1.004 and is below the 1.10 threshold, suggesting that the Mar-
kov chains converged and mixed well (see Table B1).

The trajectory of the Markov chains

The models' convergence can also be evaluated visually by examining the trajectory of the Mar-
kov chains. During the warm-up phase, the chains' values may be non-stationary and change
over time, but they should stabilize and become stationary after this phase (Gelman
et al., 2013). Additionally, the mixing of the Markov chains can be assessed visually, as they
should oscillate around similar values, ensuring that each sampled trajectory does not yield dif-
ferent outcomes (see Gelman et al., 2013, p. 283, fig. 11.3). Figure B1 shows two Markov chains
(blue and black), each sampled 2000 times after warm-up. The two Markov chains are station-
ary and oscillate in the same parameter range, which means that the chains are mixing as
required (Gelman et al., 2013, p. 283), confirming the R^statistics provided above. Note that the
chains are truncated at zero, as positive values are enforced by the Tweedie distribution.

FIGURE B1 Two Markov chains (black and blue) for the 12-month and 3-year DV after the warm-up

period. Black line: Markov Chain 1; Blue line: Markov Chain 2.
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The sampling after the warm-up for the Markov chains can also be represented as a density
plot, which is shown in Figure B2. The two Markov chains are plotted in blue and black and
closely lie on top of each other. This confirms that the Markov chains are mixing, as indicated
in the previous figures. Taken together, the Markov chains, R ,̂ and effective sample size indi-
cate that the model has converged well.

Distribution of the error term

Next, we assess the distribution of the error term (Gelman et al., 2013). One effective way to
evaluate the fit of the error term distribution is through the use of Bayesian residuals (Dunn &
Smyth, 1996). A distribution of the residuals that is symmetric and centered at zero is an indica-
tion of a good model fit because it suggests that the model's assumptions are consistent with the
observed data and that the error term distribution is properly specified (Box & Draper, 1987).
Figure B3 plots the error distribution terms of the 12-month and 3-year DV models (pooled
across all posterior simulations) (Gelman et al., 2013). For the 12-month DV model n = 4000
draws * 1350 observation (5.4 million). For the 3-year DV model n = 4000 draws * 515 observa-
tion (2.06 million). The error is zero centered and symmetrically distributed indicating that the
model represents the dependent variable well.

Distribution generated by the posteriors

Additionally, we can compare the statistics of the distributions of the DV generated by the pos-
teriors of the two fit models to the distribution of the DV of the original data (Gelman
et al., 2013). Figure B4 shows the means of the 12-month DV, and the 3-year DV of the original

FIGURE B2 Density of Markov chain for 12-months and 3-years after the warm-up period. Green line:

Markov Chain 1; Blue line: Markov Chain 2.
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data as solid black horizontal lines in comparison to the means of 4000 simulations of each of
the models (gray shaded bars). The distribution of the means of the posterior draws of the
models has peaks around the means of the DV of the data and is symmetrically distributed,
indicating that the Bayesian models estimate the means of the DVs well.

FIGURE B3 Distribution of the error term.

FIGURE B4 Mean of the posterior compared to mean of data. Solid black line: Mean of the DV in the data.

Gray shaded bars: Distribution of the means of 4000 simulations of each model.
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Extreme value statistics

Another way to validate the model is to check extreme value statistics, the maximum and mini-
mum values of draws of the posterior compared to the maximum and minimum values of the
dependent variable (Gelman et al., 2013).

The minimum value is zero for the dependent variable. Thus Figure B5 compares the num-
ber of zeros for the DVs with the number of zeros in the 4000 posterior model draws.

The number of zeros for the 12-month DV is 1020 (solid black line). The number of zeros
for the 3-year DV is 249 (solid black line). The posterior draws (gray shaded bars) cluster tightly
around these respective values, indicating that the models represent the zero inflation well.

Figure B6 shows the maximum values of 4000 model draws of the posterior distributions
compared to the maximum values of the 12-month DV, which is 60, and the maximum value of
the 3-year DV, which is 109. In each case the model represents the extreme values well. The
slight skew of the extreme value distribution to the right can be expected, as the distribution
generated by the Tweedie model is right-skewed (El-Shaarawi et al., 2011, Gilchrist & Drinkwa-
ter, 2000, Kokonendji et al., 2021, Ye et al., 2021).

Density overlay plot

The fit of the posterior of the models with the dependent variables (i.e., fundraising 12-months
and 3-years after joining an accelerator) is confirmed by a density overlay plot presented in
Figure B7 (Gelman et al., 2013, chap 6; Gabry et al., 2019). The dark red line represents the

FIGURE B5 Number of zeros generated by model draws versus original data. Solid black line: Number of

zeros for the DV in the data. Gray shaded bars: Distribution of how many zeros there are in the posterior draws

of 4000 simulations of each model.
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FIGURE B6 Maximum value of the different model draws versus original data. Solid black line: Maximum

value observed in data. Gray shaded bars: Distribution of maximum values in the posterior draws of 4000

simulations of each model.

FIGURE B7 Density overlay of DVs compared to posterior draws. Dark red line: Density of the dependent

variable. Red shaded area: Density of the distribution of 200 posterior draws from the model.
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dependent variable. The light-shaded areas represent the distribution of 200 posterior draws
from the model.18 The posterior draws of the model closely approximate the DV.

Empirical cumulative distribution function

To further validate model fit, we follow Vehtari et al. (2015) and report the empirical cumula-
tive distribution function (ECDF). Figure B8 shows the ECDF of the dependent variables and
200 draws of the posterior of the model.19 It shows the cumulative distribution function of the
posterior draws (red shaded area) in comparison to the DVs (solid red line), thus illustrating
whether there are any systematic deviations between the two. As indicated by our density over-
lay plot, the distributions generated by the models fit well with the distribution of the DVs.

Figure B9 is an extension of the comparison between DVs and distributions generated by
the models. It shows an empirical cumulative distribution function–probability integral trans-
formation (ECDF-PIT) (Gelman et al., 2013, chap 6; Gabry et al., 2019). The probability integral
transformation transforms the probabilistic forecast of the model into a uniform distribution. If
the model is perfectly calibrated the plot should show a 45-degree line. The additional light gray
areas indicate whether the model significantly deviates from a 45% line within a 95% confidence
interval. Both, the model for the 12-month DV and the model for the 3-year DV do not cross
the confidence intervals, therefore showing they do not significantly deviate from a straight line
and consequently fit the data well.

FIGURE B8 Empirical cumulative distribution function (ECDF) overlay of DVs compared to posterior

draws. Dark red line: Cumulative density of the dependent variable. Red shaded area: Cumulative density of

200 posterior draws from the model.

18It is custom to take less than the full set of posterior draws here, for visualization reasons.
19It is custom to take less than the full set of posterior draws here, for visualization reasons.
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Holdout sampling

Beyond the fit-based validation methods for Bayesian models presented above, additional ana-
lyses can be conducted that involve holdout sampling and give some indication of the predictive
validity of the model.

The Pareto K-diagnostic leave-one-out cross-validation (LOO-CV) based on Pareto smoothed
importance sampling (PSIS), is a Bayesian version of leave-one-out cross-validation (Vehtari
et al, 2015). It estimates whether particular data points—if left out of the estimation—would
have been predicted well by the model. It consequently identifies data points that the model
does not predict well. Thus, while many of the tests described so far assess to which extent the
model is an overall good fit for the data, this test assesses the degree to which the model pre-
dicts the value of individual data points well.

Tables B2 and B3 below show the distribution of values for Pareto K-diagnostics. Most data
points have values that are smaller than 0.5, indicating that the leave-one-out cross-validation
model predicts these data points well (Vehtari et al, 2015). For the 12-month DV, out of the
1350 data points, there are 1322 (97.9%) data points that the model predicts well (Pareto K value
(−inf, 0.5]), 19 data points (1.4%) that the model predicts okay (Pareto K value (0.5, 0.7]),
9 (0.7%) that it does not predict well (Pareto K value (0.7, 1]), and there are no observations that
are not predict well (Pareto K value (1, Inf)) (Vehtari et al, 2015). For the 3-year DV, out of the
515 data points, the model predicts 489 (95.0%) of the values well (Pareto K value (−inf, 0.5])
and the remaining 26 (5.0%) okay (Pareto K value (0.5, 0.7]).

PPC-LOO-CV-PIT plots

The posterior predictive checks (PPC) leave-one-out (LOO) cross-validation (CV) probability
integral transformation (PIT) shows how well the model predicts by comparing the distribution

FIGURE B9 Empirical cumulative distribution function–for probability integral transform (ECDF-PIT)

plots. Solid black line: Probability integral transformation. Black dotted area: 95% confidence interval.
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of LOO-PIT-CV values to the expected uniform distribution if the model is well-calibrated
(Gelman et al., 2013, chap 6; Gabry et al., 2019). A 45-degree line indicates that the model per-
fectly predicts all data points, while moving from the 45-degree line indicates some deviation
from this perfect prediction. On this predictive check, the 12-month model shows a slight devia-
tion, while the 3-year model has an almost perfect predictive performance with minimal
deviation (Figure B10).

TABLE B2 Pareto K-diagnostic DV = funding raised within 12-months.

Pareto K value Count Percentage

(−inf, 0.5] 1322 97.9%

(0.5, 0.7] 19 1.4%

(0.7, 1] 9 0.7%

(1, Inf) 0 0.0%

TABLE B3 Pareto K-diagnostic DV = funding raised within 3-years.

Count Percentage

(−inf, 0.5] 489 95.0%

(0.5, 0.7] 26 5.0%

(0.7, 1] 0 0.0%

(1, Inf) 0 0.0%

FIGURE B10 Posterior predictive checks (PPC) leave-one-out (LOO) cross-validation (CV) probability

integral transformation (PIT) (PPC-LOO-CV-PIT).
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This slight deviation could be driven by outliers. To test this, we run an outlier robust model
as developed by Mangiola et al. (2021) (also see the section on additional analyses in the paper).

For the 12-month DV, this approach defines 32 observations as outliers; we then run the
model without these outliers to see if doing so affects our effect sizes. The PPC-LOO-CV-PIT for
this outlier robust model are presented in Figure B11. The effect sizes can be found in Table C2
below. Figure B11 shows an almost perfect fit. The effect sizes of this model only deviate slightly
from our main results and are within the posterior intervals of our main results.

FIGURE B11 Outlier robust PPC-LOO-CV-PIT.
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APPENDIX C: ROBUSTNESS TESTS AND ANALYSIS

We conduct additional analyses to check the robustness of the findings across different samples
and methodologies. Table C1 provides an overview of the different analyses and the underlying
rationale, and Table C2 presents the results of these analyses.

First, as explained above, the Bayesian analysis should be robust to small group sizes; never-
theless, we also conducted an analysis in which our group sizes (number of cells in each low-
level group) were larger than in the main analysis—thus avoiding data spareness concerns. To
that end we estimate our Bayesian models without the manager effect. Not including the man-
ager in the hierarchical structure leads to larger group sizes: An average of 5.2 and 6.6 cohorts
per accelerator for the 12-months and 3-year dependent variables, respectively. Table C2 reports
the results. We observe an accelerator effect of 1.5% and a cohort effect of 8.6% for fundraising
during the 12 months following the startups' accelerator entry. Similarly, we observe a 1.7%

TABLE C1 Overview of reported analyses.

Analysis Reason for analysis Notes

Bayesian hierarchical
model with a Tweedie
distribution

The method handles zero-inflated dependent
variables as well as sparse small “group sizes.”

This is the main
methodology.
All additional analyses
are estimated using it.

Run model without
estimating a manger effect

Doing so alleviated data sparseness because it results
in larger group sizes (cohorts per accelerator).

No substantial change
to results.a

Delete cohorts where no
startup secured funding

Test if the cohort effect is driven by a few startups
that secured funding.

No substantial change
to results.a

Delete cohorts where ≤1
startups secured funding

Delete cohorts where ≤2
startups secured funding

Delete cohorts where ≤3
startups secured funding

Bayesian outlier analyses
based on Mangiola et al.
(2021)

Test robustness to outliers, defined as data points,
not well predicted by the model.

No substantial
changes to the
results.a

Test if the cohort effect is driven by one (or more)
“star” startups that fundraised a substantial amount
of investment.

No substantial
changes to the
results.a

Winsorized at mean +3
standard deviations

Winsorized at mean +4
standard deviations

Winsorized above “jump”
in DV

Include number of cohorts
as a control

Test if cohort effect is due to accelerator learning to
improve from one cohort to another.

No substantial change
to results.a

Include controls for startup
features

Test if effects are driven by differences (between
cohorts/accelerators) in startup features (age,
number of founders).

No substantial change
to results.a

aWe observe small changes to a few effect sizes, yet the results show the same pattern of relative magnitudes as our primary
results.
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TABLE C2 Comparison of main results to results of additional robustness analyses.

Panel A: The dependent variable is capital raised 12 months after startups' accelerator entry

Results main
analysis No manager effect

Delete cohorts
where no one
fundraised

Delete cohorts
where ≤1 startup
fundraised

Accelerator 3.60 1.45 1.94 3.96

Manager 7.70 – 8.39 6.73

Cohort 7.51 8.63 8.12 8.66

Industry 3.18 3.23 2.14 1.32

Year 0.00 0.00 0.00 0.01

Pre.
funding

0.07 0.08 0.04 0.08

n 1350 1350 1134 939

Delete cohorts
where ≤2 startup
fundraised

Delete cohorts
where ≤3 startup
fundraised

Delete outliers as
defined by Mangiola
et al. (2021)

Winsorized at
mean +3 StD

Accelerator 4.44 2.33 2.66 3.56

Manager 7.59 7.72 7.62 7.10

Cohort 8.86 9.16 8.49 7.64

Industry 1.72 2.72 2.27 3.67

Year 0.01 0.00 0.00 0.00

Pre.
funding

0.00 0.05 0.06 0.08

n 736 582 1318 1350

Winsorized at
mean +4 StD

Winsorized above
“natural jump”
(23 M)

Winsorize at: 20 M Winsorize at: 18 M

Accelerator 2.68 4.08 3.37 2.80

Manager 8.73 8.01 7.77 7.43

Cohort 8.01 7.77 7.72 7.82

Industry 4.43 4.18 4.38 3.51

Year 0.00 0.00 0.00 0.00

Pre.
funding

0.07 0.07 0.08 0.07

n 1350 1350 1350 1350

Winsorize at: 16 M Winsorize at: 14 M Number of cohorts
as a control

With startup
controls

Accelerator 3.36 3.79 3.62 4.35

Manager 8.07 8.09 7.85 8.47

Cohort 7.05 7.46 7.53 8.15

Industry 4.30 3.78 0.68 2.50

Year 0.00 0.00 0.01 0.00
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TABLE C2 (Continued)

Panel A: The dependent variable is capital raised 12 months after startups' accelerator entry

Results main
analysis No manager effect

Delete cohorts
where no one
fundraised

Delete cohorts
where ≤1 startup
fundraised

Pre.
funding

0.06 0.06 0.07 0.08

n 1350 1350 1350 1350

Panel B: The dependent variable is capital raised 3 years after accelerator entry

Results main
analysis No manager effect

Delete cohorts
where no startup
fundraised

Delete cohorts
where ≤1 startup
fundraised

Accelerator 2.60 1.72 2.49 2.23

Manager 4.91 – 5.18 4.99

Cohort 5.64 8.01 5.13 5.84

Industry 1.56 0.74 1.28 1.46

Year 0.00 0.00 0.00 0.00

Pre.
funding

0.00 0.01 0.01 0.00

n 515 515 488 427

Delete cohorts
where ≤2 startup
fundraised

Delete cohorts
where ≤3 startup
fundraised

Delete outliers as
defined by Mangiola
et al. (2021)

Winsorize at
mean +3 StD

Accelerator 2.70 3.05 2.35 2.29

Manager 5.28 5.21 4.95 4.88

Cohort 5.58 5.81 5.17 4.94

Industry 1.12 1.32 0.86 1.47

Year 0.00 0.00 0.00 0.00

Pre.
funding

0.00 0.00 0.00 0.00

n 378 339 491 515

Winsorize at
mean +4 StD

Winsorize above
“natural jump”
(26 M)

Winsorize at: 20 M Winsorize at:
18 M

Accelerator 2.14 2.46 2.34 2.79

Manager 5.51 4.93 5.08 5.62

Cohort 5.13 5.51 5.14 5.43

Industry 2.22 1.18 1.42 1.72

Year 0.00 0.00 0.00 0.00

Pre.
funding

0.00 0.00 0.00 0.00

n 515 515 515 515
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accelerator effect and an 8.0% cohort effect for the 3-year fundraising dependent variable.
These findings document a sizable cohort effect and suggest that the cohort effect reported in
the primary analysis is unlikely to be an artifact of data sparseness.

Next, we examined whether our results—especially the cohort effect introduced in this
study—are driven by cohorts that have only one or a handful of startups that raised funds.20

That is, we ask if the cohort effect is driven by entire cohorts or if it simply captures one or a
few startups within a cohort that successfully fundraised. To address this concern, we con-
ducted several analyses where we removed all cohorts in which no startups, 1 or fewer, 2 or
fewer, and 3 or fewer, received an investment. Doing so results in similar effect sizes as our
main analysis (see Table C2). We believe these analyses show that the effects are not merely
driven by a handful of “star” startups and thus underscore our call to better understand bot-
tom-up cohort dynamics.

We also test for the potential impact of outlier values of the two DVs in multiple ways. First,
we follow Mangiola et al. (2021), who define outliers not based on some value threshold but
based on a Bayesian model's predictive abilities. In their approach “new data are generated
from the fitted model, providing the theoretical range of values for each data point. All observed
read counts that are outside the 95% posterior credible interval are quarantined as possible out-
liers” (Mangiola et al., 2021, p. 3). For the 12-month DV, this approach defines 32 observations,
and for the 3-year DV, 24 observations as outliers. We then run the model without these outliers
to see if doing so affects our effect sizes. For both DVs effect sizes of this model are within the
posterior intervals of our main results.

We also conducted a sensitivity analysis where we winsorize our dependent variables at
3 and 4 standard deviations above the mean and we visually inspected the data for any “natural
jumps” in the DV above which there are only a handful of outliers and winsorized the data
above the jump.21 For example, we observe such a jump at $23 million for the 12-month

TABLE C2 (Continued)

Panel B: The dependent variable is capital raised 3 years after accelerator entry

Results main
analysis No manager effect

Delete cohorts
where no startup
fundraised

Delete cohorts
where ≤1 startup
fundraised

Winsorize at:
16 M

Winsorize at:
14 M

Number of cohorts
as a control

With startup
controls

Accelerator 1.89 2.61 1.87 1.77

Manager 5.33 5.16 5.13 6.21

Cohort 5.52 4.94 5.43 5.80

Industry 1.39 1.27 0.49 1.36

Year 0.00 0.00 0.00 0.00

Pre.
funding

0.00 0.00 0.00 0.00

n 515 515 515 515

20We thank an anonymous reviewer for this suggestion.
21We thank the anonymous reviewers for this suggestion.
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fundraising amount ($26 million for the 3-year fundraising amount). To examine if our main
results are driven by a few startups that gain large funding amounts even further, we then
reduced the winsorizing points (in both samples) to $20, $18, $16, and $14 million. Doing so
reduces the magnitude of the cohort effect marginally, which is to be expected in the absence of
large values for the DV. But across all models (in both samples), the magnitude of the cohort
effect remains larger than the accelerator effect. These additional analyses confirm that the
notable cohort and manager effects are not driven by outliers.

The battery of analyses reported above addresses questions about the method as well as the
features of the data. Below, we report two additional analyses that are more conceptual in
nature. First, accelerators may learn how to improve their top-down activities from cohort to
cohort. As a result, the cohort effect we attributed to bottom-up mechanisms may simply reflect
a within-accelerator improvement over time. We test for this explanation by including the num-
ber of previous cohorts before a focal one as a control in our model; doing so does not result in
a substantial change to the cohort effect. The analysis suggests that the cohort effect is not
merely an artifact of accelerators' improvement via executing top-down mechanisms.

Second, we recognize that some of the variance in startup performance is due to innate
startup traits. It could be informative to estimate the degree to which differences in the startups
themselves explain differences in funding outcomes. Unfortunately, it is not possible to include
a startup effect in our variance-decomposition analysis. This is because the data is at the
startup level (i.e., it includes a single observation for each startup), while estimating a variance-
decomposition effect requires the effect to be associated with more than one observation (other-
wise the model would be over-specified). In the absence of the ability to include a startup effect,
we run the analysis using observable features of the startups: Age at time of entry into the
accelerator and number of founders. Doing so does not lead to a substantial change in the mag-
nitudes of the accelerator, manager and cohort effects.
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APPENDIX D: CODE FOR THE BAYESIAN HIERARCHICAL ANALYSIS (STAN & R)

CMDSTANR model

functions {
int num_non_zero_fun(vector y) {

int A = 0;
int N = num_elements(y);
for (n in 1 : N) {

if (y[n] != 0) {
A += 1;

}
}
return A;

}

array[] int non_zero_index_fun(vector y, int A) {
int N = num_elements(y);
array[A] int non_zero_index;
int counter = 0;
for (n in 1 : N) {

if (y[n] != 0) {
counter += 1;
non_zero_index[counter] = n;

}
}
return non_zero_index;

}

array[] int zero_index_fun(vector y, int Z) {
int N = num_elements(y);
array[Z] int zero_index;
int counter = 0;
for (n in 1 : N) {

if (y[n] == 0) {
counter += 1;
zero_index[counter] = n;

}
}
return zero_index;

}

void check_tweedie(real mu, real phi, real mtheta) {
if (mu < 0) {
reject("mu must be >= 0; found mu =", mu);

}
if (phi < 0) {
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reject("phi must be >= 0; found phi =", phi);
}
if (mtheta < 1 || mtheta > 2) {
reject("mtheta must be in [1, 2]; found mtheta =", mtheta);

}
}

void check_tweedie(vector mu, real phi, real mtheta) {
int N = num_elements(mu);
if (phi < 0) {
reject("phi must be >= 0; found phi =", phi);

}
if (mtheta < 1 || mtheta > 2) {
reject("mtheta must be in [1, 2]; found mtheta =", mtheta);

}
for (n in 1 : N) {

if (mu[n] < 0) {
reject("mu must be >= 0; found mu =", mu[n], "on element", n);

}
}

}

real tweedie_lpdf(vector y, vector mu, real phi, real mtheta, int M) {
check_tweedie(mu, phi, mtheta);
int N = num_elements(y);
int N_non_zero = num_non_zero_fun(y);
int N_zero = N - N_non_zero;
array[N_zero] int zero_index = zero_index_fun(y, N_zero);
array[N_non_zero] int non_zero_index = non_zero_index_fun(y, N_non_zero);
int A = num_elements(non_zero_index);
int NmA = N - A;
vector[N] lambda = 1 / phi * mu ^ (2 - mtheta) / (2 - mtheta);
real alpha = (2 - mtheta) / (mtheta - 1);
vector[N] beta = 1 / phi * mu ^ (1 - mtheta) / (mtheta - 1);
real lp = -sum(lambda[zero_index]);
for (n in 1 : A) {
vector[M] ps;
for (m in 1 : M) {

ps[m] = poisson_lpmf(m | lambda[n])
+ gamma_lpdf(y[non_zero_index[n]] | m * alpha, beta[n]);

}
lp += log_sum_exp(ps);

}
return lp;

}

real tweedie_rng(real mu, real phi, real mtheta) {
check_tweedie(mu, phi, mtheta);
real lambda = 1 / phi * mu ^ (2 - mtheta) / (2 - mtheta);
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real alpha = (2 - mtheta) / (mtheta - 1);
real beta = 1 / phi * mu ^ (1 - mtheta) / (mtheta - 1);
int N = poisson_rng(lambda);
real tweedie_val;
if (mtheta == 1) {
return phi * poisson_rng(mu / phi);

}
if (mtheta == 2) {
return gamma_rng(1 / phi, beta);

}
if (N * alpha == 0) {
return 0.;

}
return gamma_rng(N * alpha, beta);

}
}

data {
int<lower=1> N; // total number of observations
vector[N] Y; // response variable
int<lower=1> K; // number of population-level effects
matrix[N, K] X; // population-level design matrix
// data for group-level effects of ID 1
int<lower=1> N_1; // number of grouping levels
int<lower=1> M_1; // number of coefficients per level
array[N] int<lower=1> J_1; // grouping indicator per observation
// group-level predictor values
vector[N] Z_1_1;
// data for group-level effects of ID 2
int<lower=1> N_2; // number of grouping levels
int<lower=1> M_2; // number of coefficients per level
array[N] int<lower=1> J_2; // grouping indicator per observation
// group-level predictor values
vector[N] Z_2_1;
// data for group-level effects of ID 3
int<lower=1> N_3; // number of grouping levels
int<lower=1> M_3; // number of coefficients per level
array[N] int<lower=1> J_3; // grouping indicator per observation
// group-level predictor values
vector[N] Z_3_1;
// data for group-level effects of ID 4
int<lower=1> N_4; // number of grouping levels
int<lower=1> M_4; // number of coefficients per level
array[N] int<lower=1> J_4; // grouping indicator per observation
// group-level predictor values
vector[N] Z_4_1;
int prior_only; 
int<lower=1> M;

}
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transformed data {

}

parameters {

vector[K] b; // population-level effects

real<lower=0> phi; 

real<lower=1, upper=2> mtheta;

vector<lower=0>[M_1] sd_1; // group-level standard deviations

array[M_1] vector[N_1] z_1; // standardized group-level effects

vector<lower=0>[N_1] sd_2; // group-level standard deviations - N_1 is the number of groupings of accelerators

array[M_2] vector[N_2] z_2; // standardized group-level effects

vector<lower=0>[N_2] sd_3; // group-level standard deviations - N_2 is the number of groupings of managers

array[M_3] vector[N_3] z_3; // standardized group-level effects

vector<lower=0>[M_4] sd_4; // group-level standard deviations

array[M_4] vector[N_4] z_4; // standardized group-level effects

}

transformed parameters {

vector[N_1] r_1_1; // actual group-level effects

vector[N_2] r_2_1; // actual group-level effects

vector[N_3] r_3_1; // actual group-level effects

vector[N_4] r_4_1; // actual group-level effects

real lprior = 0; 

r_1_1 = sd_1[1] * z_1[1];

r_2_1 = sd_2[1] * z_2[1];

r_3_1 = sd_3[1] * z_3[1];

r_4_1 = sd_4[1] * z_4[1];

lprior += gamma_lpdf(phi | 0.01, 0.01);

lprior += student_t_lpdf(sd_1 | 3, 0, 2.5)1

- 1 * student_t_lccdf(0 | 3, 0, 2.5);

lprior += student_t_lpdf(sd_2 | 3, 0, 2.5)

- 1 * student_t_lccdf(0 | 3, 0, 2.5);

lprior += student_t_lpdf(sd_3 | 3, 0, 2.5)

- 1 * student_t_lccdf(0 | 3, 0, 2.5);

lprior += student_t_lpdf(sd_4 | 3, 0, 2.5)

- 1 * student_t_lccdf(0 | 3, 0, 2.5);

}

model {

// likelihood including constants

if (!prior_only) {

// initialize linear predictor term
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vector[N] mu = rep_vector(0.0, N);

mu += Intercept + X * b; 

for (n in 1 : N) {

// add more terms to the linear predictor

mu[n] += r_1_1[J_1[n]] * Z_1_1[n] + r_2_1[J_2[n]] * Z_2_1[n]

+ r_3_1[J_3[n]] * Z_3_1[n] + r_4_1[J_4[n]] * Z_4_1[n];

}

target += tweedie_lpdf(Y | mu, phi, mtheta, M);

}

// priors including constants

target += lprior;

target += std_normal_lpdf(z_1[1]);

target += std_normal_lpdf(z_2[1]);

target += std_normal_lpdf(z_3[1]);

target += std_normal_lpdf(z_4[1]);

}

generated quantities {

// actual population-level intercept

real b_Intercept = Intercept;

vector[N] mu = rep_vector(0.0, N);

mu += Intercept + X * b; // Adding the intercept and fixed effects

for (n in 1 : N) {

// Adding group-level effects

mu[n] += r_1_1[J_1[n]] * Z_1_1[n] + r_2_1[J_2[n]] * Z_2_1[n]

+ r_3_1[J_3[n]] * Z_3_1[n] + r_4_1[J_4[n]] * Z_4_1[n];

}

// Generating simulated data based on the model

vector[N] r_tweedie;

for (n in 1:N) {

r_tweedie[n] = tweedie_rng(mu[n], phi, mtheta);

}

}

fit_stan <- model$sample(
data = stan_data,
chains = 2,   # Number of Markov chains
parallel_chains = 2,    # Number of chains to run in parallel
iter_warmup = 2000,     # Number of warmup iterations per chain
iter_sampling = 2000,  # Number of sampling iterations per chain

)
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