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This paper presents asymptotic properties of the Erlang-C formula in a spectrum of many-server limiting 
regimes. Specifically, we address an important gap in the literature regarding its limiting value in critically 
loaded regimes by studying extensions of the well-known square-root safety staffing rule used in the 
Quality-and-Efficiency-Driven (QED) regime.

© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
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1. Introduction

Multiserver systems are widely used to model situations in 
which customers may be served by one among multiple servers. 
Classical examples of such systems include call centers [8,25,9,6,1], 
healthcare delivery [12,26,3], and communication systems [2,16]. 
The most basic multiserver queueing model is the M/M/N queue 
(also known as the Erlang delay model), where customers arrive 
according to a Poisson process with rate λ and are served by one of 
N parallel servers for an exponentially distributed amount of time 
with mean 1/μ. A newly arriving customer that finds all servers 
busy joins a first-come-first-served queue and waits for their turn. 
Let ρ = λ/μ be the offered load.

A fundamental performance measure of any queueing model is 
the steady-state probability of delay, i.e., the steady-state probabil-
ity that an incoming customer does not find an available server im-
mediately upon entry and must therefore wait for service. For the 
M/M/N queue, this quantity is given by the well-known Erlang-C 
formula [7, p. 91]:

C (N,ρ) = ρN

N!

((
1 − ρ

N

) N−1∑
i=0

ρ i

i! + ρN

N!

)−1

. (1)
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The Erlang-C formula is heavily relied upon in a wide range of 
optimization problems in many-server queueing systems, such as 
optimal staffing problems; see, e.g., [9,5] and references within. 
However, finding closed-form solutions for such problems is in-
tractable due to the complexity of the Erlang-C formula. One ap-
proach to tackle this challenge is by developing approximations for 
finite systems [14,18,22]. However, more accurate approximations 
tend to be more analytically complicated, which can be a disad-
vantage of this method [22]. Alternatively, motivated by large-scale 
service systems, many-server limits (as N and ρ grow large while 
μ remains fixed) have been used to develop analytically simpler 
approximations [23].

For the M/M/N queue, the seminal paper [13] shows that, 
when N and ρ grow unboundedly according to the relationship 
N = ρ + β

√
ρ for some fixed β > 0, the steady-state probability 

of delay, namely, the Erlang-C formula (1), converges to a value 
that is strictly between 0 and 1. This relationship is known as the 
square-root safety staffing rule. It achieves high system utilization, 
since ρ/N grows closer to its critical value 1 (and therefore this 
staffing rule belongs to the class of critically loaded staffing rules), 
yet short customer waiting time on the order of 1/

√
N [13]. In 

other words, the square-root safety staffing rule achieves a balance 
between the dual goals of system efficiency and quality of service. 
Thus, large-scale systems under the square-root staffing rule are 
said to operate in the Quality-and-Efficiency-Driven (QED) many-
server heavy-traffic limiting regime. Henceforth, we use the terms 
“square-root safety staffing rule” and “QED regime” interchange-
ably.

https://doi.org/10.1016/j.orl.2024.107116
0167-6377/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by-nc -nd /4 .0/).
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The QED regime is, in fact, the only limiting regime in which 
the steady-state probability of delay in the M/M/N queue admits 
a non-degenerate limit (i.e., a limit that is neither 0 nor 1) [13]. 
Furthermore, it is asymptotically optimal to operate the M/M/N
queue in the QED regime for large and heavily loaded systems, 
when choosing the optimal staffing level that minimizes a linear 
combination of staffing and waiting costs or when choosing the 
smallest staffing level subject to an upper bound on the waiting 
cost [5].

However, there exist several other well-motivated objectives in 
the M/M/N queue and related variants for which the square-root 
safety staffing is not always asymptotically optimal [19,11,28,30], 
even among critically loaded staffing policies [20,17].

In this paper, we address an important gap in the literature re-
garding the limiting value of the Erlang-C formula under critically 
loaded staffing rules, by studying extensions of the well-known 
square-root safety staffing rule, N = ρ +β

√
ρ . Specifically, we con-

sider staffing rules of the form N = ρ + f (ρ), where f is a sub-
linear function that can be positive or negative. Compared to the 
square-root safety staffing rule, we make the following two inclu-
sions concerning its second-order term:

(i) It can be any sublinear term.
(ii) It can be negative, i.e., the system can be understaffed (re-

sulting in insufficient capacity to meet the offered load). This 
is motivated by systems in which customers are lost because 
they are turned away upon arrival due to fully occupied wait-
ing rooms and/or because they become impatient while in the 
system and leave before their service is completed (see [9] and 
the references therein).

In doing so, we identify more staffing rules (in addition to the 
square-root safety staffing rule) under which the Erlang-C formula 
admits a non-degenerate limit, making studying the limiting prop-
erties of key performance measures of these staffing rules more 
tractable; see Section 3. This could potentially improve optimal 
system design by aiding the exploration of an expanded set of 
candidate staffing rules using many-server heavy-traffic approxi-
mations.

Our result unifies all the many-server limiting regimes, includ-
ing the aforementioned QED regime, the Efficiency-Driven (ED) 
regime (where ρ/N becomes larger than 1 in the limit, indicating 
an overloaded system, and the Quality-Driven (QD) regime (where 
ρ/N becomes smaller than 1 in the limit, indicating an under-
loaded system).

Notation. We conclude this section by introducing some notations 
that will be used throughout the paper. We use the o, ω, and �
notations to denote the limiting behavior of functions. Formally, 
for any two real-valued functions f (x) and g(x) that take nonzero 
values for all sufficiently large x, we say that f (x) ∈ o (g(x)) (equiv-
alently, g(x) ∈ ω( f (x))) if limx→∞ f (x)

g(x) = 0, and f (x) ∈ � (g(x)) if 

limx→∞
∣∣∣ f (x)

g(x)

∣∣∣ ∈ (0, ∞). Moreover, the relation f (x) ∼ g(x) means 

limx→∞ f (x)
g(x) = 1. Let φ(x) = 1√

2π
e− 1

2 x2
and 	c(x) = ∫ ∞

x φ(t)dt de-

note the probability density function and the complementary cu-
mulative distribution function of the standard normal distribution, 
respectively. Finally, define ξ(x) := x 	c(x)

φ(x) for x ∈R.

2. Main result

Consider a sequence of systems indexed by the arrival rate λ, 
and let λ become large. Our convention, when we refer to any pro-
cess or quantity associated with the system having arrival rate λ, 
is to superscript the appropriate symbol by λ. For example, we de-
note by Nλ the number of servers in the system with arrival rate 

λ, and ρλ = λ/μ the corresponding offered load. We are interested 
in many-server limiting regimes obtained by letting the arrival rate 
λ and the number of servers Nλ grow unboundedly while the ser-
vice rate μ remains fixed; nevertheless, our result continues to 
hold when Nλ remains bounded as it grows with λ.

Theorem 1.

lim
λ→∞ C

(
Nλ,ρλ

)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞, 0 < ρλ − Nλ ∈ ω(
√

λ),(
1 − ξ(z)

)−1 ∈ (1,∞), 0 < ρλ − Nλ ∈ �(
√

λ),

1, |Nλ − ρλ| ∈ o(
√

λ),(
1 − ξ(z)

)−1 ∈ (0,1), 0 < Nλ − ρλ ∈ �(
√

λ),

0, 0 < Nλ − ρλ ∈ ω(
√

λ),

where z = limλ→∞ ρλ−Nλ√
Nλ

∈R when 
∣∣Nλ − ρλ

∣∣ ∈ �(
√

λ) ∪ o(
√

λ).

Section 4 is devoted to the proof of Theorem 1.

3. Implications of Theorem 1

In understaffed systems (i.e., when Nλ − ρλ is negative), the 
Erlang-C formula (1) loses its interpretation as the steady-state 
probability of delay in the M/M/N queue but remains a well-
defined mathematical expression that appears in the calculation 
of key performance measures (KPMs) in extensions of the M/M/N
queue (such as the M/M/N/k and M/M/N+M queues). A central 
implication of Theorem 1 for such systems is that it can be used 
to derive limiting approximations of these KPMs that help un-
derstand their dependence on the staffing rule. Commonly used 
KPMs include the steady-state probability of delay [5,19], proba-
bility of abandonment [10], server utilization [29], and expected 
wait time [27], among others. In this section, we demonstrate how 
Theorem 1 can be leveraged to obtain the limiting value of the 
steady-state probability of delay in an M/M/N+M queue (a setting 
in which square-root safety staffing is not always asymptotically 
optimal [19]) and briefly discuss the consequent insights regarding 
the appropriate choice of the staffing rule.

The M/M/N+M queue (also known as the Erlang-A model, first 
introduced in [21]) extends the M/M/N queue by allowing cus-
tomers waiting in queues to renege if they run out of patience 
before their service begins. The patience time of each customer is 
independent and identically distributed according to an exponen-
tial distribution with mean 1/θ . The steady-state probability of de-
lay depends on the Erlang-C formula, as shown next in Lemma 1.

Lemma 1. The steady-state probability of delay in the M/M/N+M queue 
is given by

P (N,ρ;μ,θ) =
(

1 + C(N,ρ)−1 − 1

μ(N − ρ) J (N,ρ;μ,θ)

)−1

, (2)

where

J (N,ρ;μ,θ) :=
∞∫

0

e
μρ
θ

(
1−e−θx

)−Nμxdx. (3)

Furthermore, the quantity μ(N − ρ) J (N, ρ; μ, θ) also admits the fol-
lowing integral representation:

μ(N − ρ) J (N,ρ;μ,θ) = 1 + μρ

θ

1∫
0

e
μρ
θ

v(1 − v)
Nμ
θ

−1 vdv. (4)

2
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Remark 1. Exact expressions for various performance measures in 
the M/M/N+M and M/M/N+G queues have also been derived 
in [10,27].

The proof of Lemma 1 can be found in Appendix B.
Theorem 1 can be leveraged to evaluate the limiting value of 

the steady-state probability of delay (2) under different staffing 
rules, as we show next in Proposition 1.

Proposition 1 (M/M/N+M steady-state delay probability).

lim
λ→∞ P (Nλ,ρλ;μ,θ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 < ρλ − Nλ ∈ ω(
√

λ),(
1 − ξ(z)

ξ(−ẑ)

)−1 ∈
⎛
⎝

(
1 +

√
θ

μ

)−1

,1

⎞
⎠ , 0 < ρλ − Nλ ∈ �(

√
λ),

(
1 +

√
θ

μ

)−1

,
∣∣Nλ − ρλ

∣∣ ∈ o(
√

λ),

(
1 − ξ(z)

ξ(−ẑ)

)−1 ∈
⎛
⎝0,

(
1 +

√
θ

μ

)−1
⎞
⎠ , 0 < Nλ − ρλ ∈ �(

√
λ),

0, 0 < Nλ − ρλ ∈ ω(
√

λ),

where z = limλ→∞ ρλ−Nλ√
Nλ

and ẑ = z
√

μ
θ

.

The proof of Proposition 1 is quite similar to that of Theorem 1, 
and is provided in Appendix B.

From Proposition 1, we see strict separation in the limiting 
steady-state probabilities of delay under different staffing rules in 
the critically loaded regime (where ρλ/Nλ approaches 1 in the 
limit). Moreover, we numerically observe from Fig. 1 that the lim-
iting steady-state probability of delay appears to be concave in 
|z| (for large enough |z|), meaning that changes in staffing exert 
the most significant impact on the probability of delay when the 
staffing rule is more balanced (i.e., |z| is small), in a similar spirit 
as the law of diminishing marginal returns. This observation helps 
us to better understand and anticipate the trade-off between delay 
costs and staffing costs, which has managerial implications for the 
choice of optimal staffing rules.

Fig. 1. limλ→∞ P (Nλ,ρλ;μ,θ) as a function of z when μ = 5 and θ = 10.

4. Proof of Theorem 1

The proof leverages the following two auxiliary lemmas, whose 
proofs are deferred to the end of this section.

Lemma 2. The following are two equivalent integral representations of 
the reciprocal of C(N, ρ):

(a) C(N,ρ)−1 = ρ

∞∫
0

e−ρv(1 + v)N−1 vdv. (5)

(b) C(N,ρ)−1 = 1 + (N − ρ)

0∫
−∞

e−ρ(e−u−1)−Nudu. (6)

Lemma 3. Let ϕ(v; x) := e
1
2 v2−x

(
e
− v√

x + v√
x
−1

)
for all v ∈ R and x ∈

R+ . Then,

ϕ(v; x) =
∞∑

i=0

ai(v) · x− i
2 ∀v ∈R ∀x ∈R+,

where a0(v) = 1 and ai(v) is a finite polynomial in v for all i ≥ 1.

We are now ready to prove Theorem 1.

• When
∣∣Nλ − ρλ

∣∣ ∈ �(
√

λ) ∪ o(
√

λ): Without loss of gener-

ality, let Nλ = ρλ − z
√

ρλ + o(
√

ρλ) for z ∈ R. Note that 
z = limλ→∞ ρλ−Nλ√

Nλ
.

From Lemma 2 (b),

C(Nλ,ρλ)−1 − 1 = (Nλ − ρλ)

0∫
−∞

e−ρλ(e−u−1)−Nλudu.

Let v = √
ρλ u. The above can be equivalently written as

C(Nλ,ρλ)−1 − 1

=
(

Nλ − ρλ√
ρλ

) 0∫
−∞

e
−

(
Nλ−ρλ√

ρλ

)
v

e
−ρλ

⎛
⎝e

− v√
ρλ + v√

ρλ
−1

⎞
⎠

dv

=
(

Nλ − ρλ√
ρλ

) 0∫
−∞

e
− 1

2 v2−
(

Nλ−ρλ√
ρλ

)
v

e

1
2 v2−ρλ

⎛
⎝e

− v√
ρλ + v√

ρλ
−1

⎞
⎠

dv

=
(

Nλ − ρλ√
ρλ

)
e

1
2

(
Nλ−ρλ√

ρλ

)2
0∫

−∞
e
− 1

2

(
v+ Nλ−ρλ√

ρλ

)2

ϕ(v;ρλ)dv.

Substituting for ϕ(v; ρλ) from Lemma 3 and taking the limit 
as λ → ∞, we obtain:

lim
λ→∞ C(Nλ,ρλ)−1 − 1

= −z φ(z)−1 lim
λ→∞

∞∑
i=0

(
ρλ

)− i
2

0∫
−∞

e
− 1

2

(
v+ Nλ−ρλ√

ρλ

)2

ai(v)dv.

Finally, noting that every integral within the sum is bounded 
(since ai(v) are all finite polynomials in v) and so, only the 
first term of the sum would survive in the limit, we obtain:

lim
λ→∞ C(Nλ,ρλ)−1 = 1 − z φ(z)−1 lim

λ→∞

0∫
−∞

e
− 1

2

(
v+ Nλ−ρλ√

ρλ

)2

dv

3
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= 1 − z φ(z)−1

0∫
−∞

e− 1
2 (v−z)2

dv

= 1 − z φ(z)−1

∞∫
z

e− 1
2 t2

dt

= 1 − z
	c(z)

φ(z)
= 1 − ξ(z),

implying that

lim
λ→∞ C(Nλ,ρλ) = (

1 − ξ(z)
)−1

. (7)

Furthermore, from Lemma 4 in Appendix A:
– If z > 0, which is the case when 0 < ρλ − Nλ ∈ �(

√
λ), then (

1 − ξ(z)
)−1 ∈ (1, ∞).

– If z = 0, which is the case when 
∣∣Nλ − ρλ

∣∣ ∈ o(
√

λ), then (
1 − ξ(z)

)−1 = 1.
– If z < 0, which is the case when 0 < Nλ −ρλ ∈ �(

√
λ), then (

1 − ξ(z)
)−1 ∈ (0, 1).

• When 0 < ρλ − Nλ ∈ ω(
√

λ): Let f (λ) = ρλ − Nλ . Let g(λ; z) =
ρλ − z

√
ρλ + o(

√
ρλ) for z > 0, so that 0 < ρλ − g(λ; z) ∈

�(
√

λ).
By definition of the ω and � notations, for any z > 0, there 
exists (z) such that f (λ) ≥ ρλ − g(λ; z) > 0 for all λ ≥ (z). 
Since C(N, ρ) is strictly decreasing in N [24, p. 8], it follows 
that, for all λ ≥ (z),

C
(
Nλ,ρλ

) = C
(
ρλ − f (λ),ρλ

) ≥ C
(

g(λ; z),ρλ
)
,

implying that

lim
λ→∞ C

(
Nλ,ρλ

) ≥ lim
λ→∞ C

(
g(λ; z),ρλ

) = (
1 − ξ(z)

)−1
,

from (7). Since z > 0 is chosen arbitrarily, we have

lim
λ→∞ C

(
Nλ,ρλ

) ≥ sup
z>0

(
1 − ξ(z)

)−1 = ∞,

from Lemma 4 (b) in Appendix A. Therefore,

lim
λ→∞ C

(
Nλ,ρλ

) = ∞.

• When 0 < Nλ −ρλ ∈ ω(
√

λ). Let f (λ) = Nλ −ρλ . Let g(λ; z) =
ρλ − z

√
ρλ + o(

√
ρλ) for z < 0, so that 0 < g(λ; z) − ρλ ∈

�(
√

λ).
By definition of the ω and � notations, for any z < 0, there 
exists (z) such that f (λ) ≥ g(λ; z) − ρλ > 0 for all λ ≥ (z). 
Since C(N, ρ) is strictly decreasing in N [24, p. 8], it follows 
that, for all λ ≥ (z),

C
(
Nλ,ρλ

) = C
(
ρλ + f (λ),ρλ

) ≤ C
(

g(λ; z),ρλ
)
,

implying that

lim
λ→∞ C

(
Nλ,ρλ

) ≤ lim
λ→∞ C

(
g(λ; z),ρλ

) = (
1 − ξ(z)

)−1
,

from (7). Since z < 0 is chosen arbitrarily, we have

lim
λ→∞ C

(
Nλ,ρλ

) ≤ inf
z<0

(
1 − ξ(z)

)−1 = 0,

from Lemma 4 (b). Moreover, it follows from Lemma 2(a) that 
C(N, ρ) ≥ 0 for all N and ρ . Therefore,

lim
λ→∞ C

(
Nλ,ρλ

) = 0. �

4.1. Proof of Lemma 2

We begin by introducing a closely related performance mea-
sure, which is the steady-state probability of blocking in the 
M/M/N/N queue (also known as the Erlang loss model), where 
a customer, upon arrival, is immediately lost if all the servers are 
busy. This quantity is given by the well-known Erlang-B formula [7, 
p. 80]:

B (N,ρ) = ρN

N!

(
N∑

i=0

ρ i

i!

)−1

,

whose reciprocal admits the following integral representation [15, 
Theorem 3]:

B(N,ρ)−1 = ρ

∞∫
0

e−ρv(1 + v)Ndv. (8)

Also, the Erlang-B and Erlang-C formula are related [7, p. 92]:

C (N,ρ) = N · B(N,ρ)

N − ρ (1 − B(N,ρ))
,

which implies that

C(N,ρ)−1 = 1 +
(

1 − ρ

N

)(
B(N,ρ)−1 − 1

)
. (9)

We are now ready to prove Lemma 2. First, the integral appear-
ing on the right-hand side of (5) can be evaluated as

ρ

∞∫
0

e−ρv(1 + v)N−1 vdv

= ρ

∞∫
0

e−ρv(1 + v)N−1(1 + v − 1)dv

= ρ

∞∫
0

e−ρv(1 + v)Ndv − ρ

∞∫
0

e−ρv(1 + v)N−1dv

= ρ

∞∫
0

e−ρv(1 + v)Ndv − ρ

N

∞∫
0

e−ρvd
(
(1 + v)N

)

= ρ

∞∫
0

e−ρv(1 + v)Ndv

− ρ

N

⎛
⎝e−ρv(1 + v)N

∣∣∣∞
0

+ ρ

∞∫
0

e−ρv(1 + v)Ndv

⎞
⎠

= B(N,ρ)−1 − ρ

N

(−1 + B(N,ρ)−1)
= 1 +

(
1 − ρ

N

)(
B(N,ρ)−1 − 1

) = C(N,ρ)−1,

from (9), thereby establishing (5).
Next, letting e−u = 1 + v , (8) can be equivalently written as

B(N,ρ)−1

= ρ

0∫
−∞

e−ρ(e−u−1)−Nu · e−udu

4



R. Gopalakrishnan and Y. Zhong Operations Research Letters 54 (2024) 107116

=
0∫

−∞
e−ρ(e−u−1)−Nu (

ρe−u − N
)

du + N

0∫
−∞

e−ρ(e−u−1)−Nudu

= 1 + N

0∫
−∞

e−ρ(e−u−1)−Nudu. (10)

Substituting for B(N, ρ)−1 using (10) in (9) yields (6). �

4.2. Proof of Lemma 3

We begin by noting that the Maclaurin series for the exponen-
tial function et converges to the value of the function everywhere 
on its domain. We use it twice in the proof of Lemma 3; once for 
each of the two exponential functions in ϕ(v; x). First, the expo-
nent of ϕ(v; x) can be evaluated as:

1

2
v2 − x

(
e
− v√

x + v√
x

− 1

)

= 1

2
v2 − x

( ∞∑
i=0

1

i!
(

− v√
x

)i

+ v√
x

− 1

)

= 1

2
v2 − x

∞∑
i=2

1

i!
(

− v√
x

)i

= −x
∞∑

i=3

1

i!
(

− v√
x

)i

= v3

√
x

∞∑
i=0

(−1)i

(i + 3)!
(

v√
x

)i

.

Using the Maclaurin series for et once again, ϕ(v; x) becomes:

ϕ(v; x)

= e
v3√

x

∑∞
i=0

(−1)i

(i+3)!
(

v√
x

)i

=
∞∑
j=0

1

j!

(
v3

√
x

∞∑
i=0

(−1)i

(i + 3)!
(

v√
x

)i
) j

= 1 + v3

3! x− 1
2 −

(
v4

4! − v6

2!(3!)2

)
x−1

+
(

v5

5! − v7

3!4! + v9

(3!)4

)
x− 3

2

−
(

v6

6! − 9v8

2!4!5! + v10

2!(3!)24! − v12

(3!)44!
)

x−2 + . . .

=
∞∑

i=0

ai(v) · x− i
2 ,

where a0(v) = 1 and ai(v) is a finite polynomial in v (with degree 
3i) for all i ≥ 1. �
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Appendix A. Properties of the standard normal distribution

In this section, we collect properties of the standard Nor-
mal distribution that are used in our proofs. Recall that φ(x) =

1√
2π

e− 1
2 x2

and 	c(x) = ∫ ∞
x φ(t)dt are the density function and the 

complementary cumulative distribution function of the standard 
normal distribution, respectively, and ξ(x) := x 	c(x)

φ(x) .

Lemma 4. The function ξ :R �→R satisfies the following:

(a) ξ(x) is a strictly increasing function of x;
(b) limx→−∞ ξ(x) = −∞, ξ(0) = 0, and limx→∞ ξ(x) = 1.

Proof of Lemma 4. We begin by noting that

φ′(x) = 1√
2π

e− x2
2 (−x) = −xφ(x). (A.1)

Moreover, note that

lim
x→∞ xnφ(x) = lim

x→∞
1√
2π

xne− x2
2 = 0, ∀n ∈N, (A.2)

since exponential decay dominates polynomial growth. This further 
implies that

lim
x→∞ xn	c(x) = lim

x→∞
	c(x)

x−n

(1)= lim
x→∞

−φ(x)

−nx−n−1

= lim
x→∞

xn+1φ(x)

n
(2)= 0, ∀n ∈N, (A.3)

where (1) follows from L’Hôpital’s rule, and (2) follows from (A.2).

Proof of (a): Taking the derivative of ξ(x) and using (A.1) to sub-
stitute for φ′(x), we get:

ξ ′(x) =φ(x)
(
	c(x) − xφ(x)

) − x	c(x)φ′(x)

φ(x)2

=φ(x)
(
	c(x) − xφ(x)

) + x2	c(x)φ(x)

φ(x)2

= (1 + x2)	c(x) − xφ(x)

φ(x)
.

Since φ(x) > 0 for all x, it suffices to show that the numerator 
of the above display is strictly positive for all x. Define η(x) :=
(1 + x2)	c(x) − xφ(x). Differentiating η(x) once and using (A.1) to 
substitute for φ′(x) yields:

η′(x) =2x	c(x) − (1 + x2)φ(x) − φ(x) − xφ′(x)

=2x	c(x) − (1 + x2)φ(x) − φ(x) + x2φ(x)

=2(x	c(x) − φ(x)).

Differentiating η′(x) once and using (A.1) to substitute for φ′(x)
yields:

η′′(x) =2
(
	c(x) − xφ(x) − φ′(x)

)
=2

(
	c(x) − xφ(x) + xφ(x)

) = 2	c(x) > 0,

implying that η′ is strictly increasing. Since limx→∞ η′(x) = 0
from (A.3), it follows that η′(x) < 0 for all x, implying that η
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is strictly decreasing. Finally, since limx→∞ η(x) = 0 from (A.2)
and (A.3), it follows that η(x) > 0 for all x. Hence, ξ ′(x) > 0 for 
all x, implying that ξ(x) is a strictly increasing function of x.

Proof of (b): It is straightforward to see that

lim
x→−∞ x

	c(x)

φ(x)
= −∞ and lim

x→0
x
	c(x)

φ(x)
= 0.

Finally, as x → ∞, note that

lim
x→∞ x

	c(x)

φ(x)
(3)= lim

x→∞
	c(x) − xφ(x)

φ′(x)
(4)= lim

x→∞
	c(x) − xφ(x)

−xφ(x)

= 1 − lim
x→∞

	c(x)

xφ(x)
(5)= 1 − lim

x→∞
−φ(x)

φ(x) + xφ′(x)

(6)= 1 − lim
x→∞

−φ(x)

φ(x) − x2φ(x)
= 1 − lim

x→∞
1

x2 − 1
= 1,

where (3) and (5) follow from L’Hôpital’s rule, and (4) and (6) fol-
low from (A.1). �

Appendix B. Proofs from Section 3

B.1. Proof of Lemma 1

The proof of (2) leverages the expressions for the steady-state 
probabilities of the M/M/N+M queue developed in [4]. From Equa-
tions (4.3) and (4.6) in [4], the steady-state probability of having i
customers in the system (either being served or waiting in queue), 
for i ∈ {0, 1, 2, . . . , N − 1}, is given by

pi(N,ρ;μ,θ) = ρ i

i!

(
N−1∑
i=0

ρ i

i! + ρN−1

(N − 1)!λ J (N,ρ;μ,θ)

)−1

= ρ i

i!

(
N−1∑
i=0

ρ i

i! + ρN

N! (Nμ) J (N,ρ;μ,θ)

)−1

.

Thus, the steady-state probability of delay is given by

P (N,ρ;μ,θ)

= 1 −
N−1∑
i=0

pi(N,ρ;μ,θ)

= 1 −
(

N−1∑
i=0

ρ i

i!

)(
N−1∑
i=0

ρ i

i! + ρN

N! (Nμ) J (N,ρ;μ,θ)

)−1

,

which implies that

P (N,ρ;μ,θ) =
⎛
⎜⎝1 +

(∑N−1
i=0

ρ i

i!
)/

ρN

N!
(Nμ) J (N,ρ;μ,θ)

⎞
⎟⎠

−1

=
⎛
⎜⎝1 +

(
1 − ρ

N

)(∑N−1
i=0

ρ i

i!
)/

ρN

N!
μ(N − ρ) J (N,ρ;μ,θ)

⎞
⎟⎠

−1

=
(

1 + C(N,ρ)−1 − 1

μ(N − ρ) J (N,ρ;μ,θ)

)−1

,

where the last step follows from (1).
Next, for the proof of (4), we first use (3) to write:

μ(N − ρ) J (N,ρ;μ,θ) = μ(N − ρ)

∞∫
0

e
μρ
θ

(
1−e−θx

)−Nμxdx.

Letting u = −θx, the above can be equivalently written as

μ(N−ρ) J (N,ρ;μ,θ)

= μ

θ
(N − ρ)

0∫
−∞

e
μρ
θ

(
1−eu

)+ Nμ
θ

udu

=
0∫

−∞
e

μρ
θ

(
1−eu

)+ Nμ
θ

u
(

Nμ

θ
− μρ

θ
eu + μρ

θ
(eu − 1)

)
du

=
0∫

−∞
e

μρ
θ

(
1−eu

)+ Nμ
θ

u
(

Nμ

θ
− μρ

θ
eu

)
du

+ μρ

θ

0∫
−∞

e
μρ
θ

(
1−eu

)+ Nμ
θ

u (
eu − 1

)
du

= 1 + μρ

θ

0∫
−∞

e
μρ
θ

(
1−eu

)+ Nμ
θ

u (
eu − 1

)
du.

Letting v = 1 − eu , the above can be equivalently written as

μ(N − ρ) J (N,ρ;μ,θ)

= 1 + μρ

θ

0∫
1

e
μρ
θ

v+ Nμ
θ

log(1−v)(−v)

(
dv

1 − v

)

= 1 + μρ

θ

1∫
0

e
μρ
θ

v(1 − v)
Nμ
θ

−1 vdv. �

B.2. Proof of Proposition 1

The proof leverages the following auxiliary lemma, whose proof 
is deferred to the next subsection, Appendix B.3.

Lemma 5. If Nλ = ρλ − z
√

ρλ + o(
√

ρλ) for z ∈ R, then

limλ→∞ μ(Nλ − ρλ) J (Nλ, ρλ; μ, θ) = ξ(−ẑ), where ẑ = z
√

μ
θ

.

• When |Nλ − ρλ| ∈ �(
√

λ) ∪ o(
√

λ): Without loss of gener-
ality, let Nλ = ρλ − z

√
ρλ + o(

√
ρλ) for z ∈ R. Note that 

z = limλ→∞ ρλ−Nλ√
Nλ

. From Lemma 1, Theorem 1, and Lemma 5,

lim
λ→∞ P (Nλ,ρλ;μ,θ)

= lim
λ→∞

(
1 + C(Nλ,ρλ)−1 − 1

μ(Nλ − ρλ) J (Nλ,ρλ;μ,θ)

)−1

=
(

1 − ξ(z)

ξ(−ẑ)

)−1

. (B.1)

Furthermore, from Lemma 4 in Appendix A, ξ(z)
ξ(−ẑ)

is strictly 

increasing in z from −∞ (when z → −∞) to −
√

θ
μ (at z = 0) 

to 0 (when z → ∞), implying the following:
– If z > 0, which is the case when 0 < ρλ − Nλ ∈ �(

√
λ), then (

1 − ξ(z)
ξ(−ẑ)

)−1 ∈
((

1 +
√

θ
μ

)−1
,1

)
.

– If z = 0, which is the case when |Nλ − ρλ| ∈ o(
√

λ), then (
1 − ξ(z)

ξ(−ẑ)

)−1 = 1.

6
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– If z < 0, which is the case when 0 < Nλ −ρλ ∈ �(
√

λ), then (
1 − ξ(z)

ξ(−ẑ)

)−1 ∈
(

0,
(

1 +
√

θ
μ

)−1
)

.

• When 0 < ρλ − Nλ ∈ ω(
√

λ): Let f (λ) = ρλ − Nλ . Let g(λ; z) =
ρλ − z

√
ρλ + o(

√
ρλ) for z > 0, so that 0 < ρλ − g(λ; z) ∈

�(
√

λ).
By definition of the ω and � notations, for any z > 0, there 
exists (z) such that f (λ) ≥ ρλ − g(λ; z) > 0, for all λ ≥ (z). 
Since P (N, ρ; μ, θ), given by Lemma 1, is strictly decreasing 
in N (recalling that C(N, ρ) is strictly decreasing in N [24, 
p. 8] and the quantity μ(N − ρ) J (N, ρ; μ, θ) is also strictly 
decreasing in N from (4)), it follows that, for all λ ≥ (z),

P
(
Nλ,ρλ;μ,θ

) = P
(
ρλ − f (λ),ρλ;μ,θ

)
≥ P

(
g(λ; z),ρλ;μ,θ

)
,

implying that

lim
λ→∞ P

(
Nλ,ρλ;μ,θ

) ≥ lim
λ→∞ P

(
g(λ; z),ρλ;μ,θ

)

=
(

1 − ξ(z)

ξ(−ẑ)

)−1

,

from (B.1). Since z > 0 is chosen arbitrarily, we have

lim
λ→∞ P

(
Nλ,ρλ;μ,θ

) ≥ sup
z>0

(
1 − ξ(z)

ξ(−ẑ)

)−1

= 1,

from the preceding discussion. Therefore,

lim
λ→∞ P (Nλ,ρλ;μ,θ) = 1.

• When 0 < Nλ −ρλ ∈ ω(
√

λ). Let f (λ) = Nλ −ρλ . Let g(λ; z) =
ρλ − z

√
ρλ + o(

√
ρλ) for z < 0, so that 0 < g(λ; z) − ρλ ∈

�(
√

λ).
By definition of the ω and � notations, for any z < 0, there 
exists (z) such that f (λ) ≥ g(λ; z) − ρλ > 0, for all λ ≥ (z). 
Since P (N, ρ; μ, θ), given by Lemma 1, is strictly decreasing 
in N (recalling that C(N, ρ) is strictly decreasing in N [24, 
p. 8] and the quantity μ(N − ρ) J (N, ρ; μ, θ) is also strictly 
decreasing in N from (4)), it follows that, for all λ ≥ (z),

P
(
Nλ,ρλ;μ,θ

) = P
(
ρλ + f (λ),ρλ;μ,θ

)
≤ P

(
g(λ; z),ρλ;μ,θ

)
,

implying that

lim
λ→∞ P

(
Nλ,ρλ;μ,θ

) ≤ lim
λ→∞ P

(
g(λ; z),ρλ;μ,θ

)

=
(

1 − ξ(z)

ξ(−ẑ)

)−1

,

from (B.1). Since z < 0 is chosen arbitrarily, we have

lim
λ→∞ P

(
Nλ,ρλ;μ,θ

) ≤ inf
z<0

(
1 − ξ(z)

ξ(−ẑ)

)−1

= 0,

from the preceding discussion. Therefore,

lim
λ→∞ P (Nλ,ρλ;μ,θ) = 0. �

B.3. Proof of Lemma 5

From (3),

μ(Nλ − ρλ) J (Nλ,ρλ;μ,θ)

= μ(Nλ − ρλ)

∞∫
0

e
μρλ

θ

(
1−e−θx

)−Nλμxdx.

Letting u = θx, the above can be equivalently written as

μ(Nλ − ρλ) J (Nλ,ρλ;μ,θ)

= μ

θ
(Nλ − ρλ)

∞∫
0

e
μρλ

θ

(
1−e−u

)− Nλμ
θ

udu.

Let N̂λ = μ
θ

Nλ and ρ̂λ = μ
θ
ρλ for all λ > 0, and ẑ = z

√
μ
θ

. Then, 

Nλ = ρλ − z
√

ρλ + o(
√

ρλ) is equivalent to N̂λ = ρ̂λ − ẑ
√

ρ̂λ +
o(

√
ρ̂λ) and the above can be equivalently written as

μ(Nλ − ρλ) J (Nλ,ρλ;μ,θ) = (N̂λ − ρ̂λ)

∞∫
0

e−ρ̂λ
(
e−u−1

)−N̂λudu.

Let v = √
ρ̂λ u. The above can be equivalently written as

μ(Nλ − ρλ) J (Nλ,ρλ;μ,θ)

=
(

N̂λ − ρ̂λ√
ρ̂λ

) ∞∫
0

e
−

(
N̂λ−ρ̂λ√

ρ̂λ

)
v

e
−ρ̂λ

⎛
⎝e

− v√
ρ̂λ + v√

ρ̂λ
−1

⎞
⎠

dv

=
(

N̂λ − ρ̂λ√
ρ̂λ

)
e

1
2

(
N̂λ−ρ̂λ√

ρ̂λ

)2 ∞∫
0

e
− 1

2

(
v+ N̂λ−ρ̂λ√

ρ̂λ

)2

ϕ(v; ρ̂λ)dv.

Substituting for ϕ(v; ρ̂λ) from Lemma 3 and taking the limit as 
λ → ∞, we obtain:

lim
λ→∞μ(Nλ − ρλ) J (Nλ,ρλ;μ,θ)

= −ẑ φ(−ẑ)−1 lim
λ→∞

∞∑
i=0

(
ρ̂λ

)− i
2

∞∫
0

e
− 1

2

(
v+ N̂λ−ρ̂λ√

ρ̂λ

)2

ai(v)dv,

recalling that ẑ = limλ→∞ ρ̂λ−N̂λ√
ρ̂λ

. Finally, noting that every integral 
within the sum is bounded (since ai(v) are all finite polynomials 
in v) and so, only the first term of the sum would survive in the 
limit, we obtain:

lim
λ→∞μ(Nλ − ρλ) J (Nλ,ρλ;μ,θ)

= −ẑ φ(−ẑ)−1 lim
λ→∞

∞∫
0

e
− 1

2

(
v+ N̂λ−ρ̂λ√

ρ̂λ

)2

dv

= −ẑ φ(−ẑ)−1

∞∫
0

e− 1
2 (v−ẑ)2

dv

= −ẑ φ(−ẑ)−1

∞∫
−ẑ

e− 1
2 t2

dt

= −ẑ
	c(−ẑ)

φ(−ẑ)
= ξ(−ẑ). �
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