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A B S T R A C T

We propose a formal statistical test to compare asset-pricing models in the presence of price impact. In
contrast to the case without trading costs, we show that in the presence of price-impact costs different models
may be best at spanning the investment opportunities of different investors depending on their absolute risk
aversion. Empirically, we find that the five-factor model of Hou et al. (2021), the six-factor model of Fama
and French (2018) with cash-based operating profitability, and a high-dimensional model are best at spanning
the investment opportunities of investors with high, medium, and low absolute risk aversion, respectively.

1. Introduction

Prominent asset-pricing models include factors constructed using
time-varying firm characteristics such as profitability and momentum.
The investment opportunity set implied by these models requires in-
vestors to execute sizable trades whenever the conditioning information
in firm characteristics changes. For the large institutional investors that
manage most of the capital in financial markets, the price impact of
these trades affects their optimal portfolio choices, and thus, it also
affects the overall achievable investment opportunity set. We propose
a formal statistical test to compare asset-pricing factor models in the
presence of price impact. In contrast to the cases without transaction
costs and with proportional costs, we show that in the presence of
price-impact costs different models may be best at spanning the invest-
ment opportunities of different investors depending on their absolute
risk aversion. Empirically, we find that the five-factor model of Hou
et al. (2021), the six-factor model of Fama and French (2018) with
cash-based operating profitability, and the high-dimensional model
of DeMiguel et al. (2020) are best at spanning the investment opportu-
nities of investors with high, medium, and low absolute risk aversion,
respectively.

A popular approach to compare asset-pricing models is the GRS test
of Gibbons et al. (1989), which evaluates the ability of the factors in a
model to span the investment opportunity set generated by certain test
assets. The GRS statistic is a quadratic form of the time-series intercept
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(alpha) obtained from the regression of the test-asset returns on the
factor returns. Gibbons et al. (1989) show that this quadratic form
measures the squared Sharpe ratio improvement that an investor can
achieve by having access to the test assets, in addition to the factors
in the model. Moreover, Barillas and Shanken (2017) show that, under
the tenet that a good model should span not only the test assets but also
the factors in other models, test assets are irrelevant and it suffices to
compare models in terms of the squared Sharpe ratio generated by their
factors.

Detzel et al. (2023), however, point out that one has to account for
trading costs when comparing factor models. In particular, they explain
that the framework underpinning these models, the arbitrage pricing
theory (APT) of Ross (1976), relies on the assumption that investment
opportunities that deliver abnormal returns attract arbitrage capital
until such opportunities vanish. However, arbitrageurs allocate capital
only to investment opportunities that are profitable after trading costs,
and thus, Detzel et al. (2023) propose comparing factor models in terms
of their squared Sharpe ratio of returns net of proportional transaction
costs, which measures the ability of the factor model to span the
achievable investment opportunity set.

Proportional transaction costs capture the trading costs of retail
investors, but price-impact costs are more relevant for the large insti-
tutional investors who manage most of the capital in financial markets.
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For instance, Gârleanu and Pedersen (2022) show that institutional
investors held around 50% of the US equity market in 2017, and Edelen
et al. (2007) show that price-impact costs represent 65% of the total
trading costs of mutual funds, whereas proportional (bid–ask spread)
costs represent only 17%.

Despite the importance of price impact for the large investors that
dominate financial markets, price impact would not affect the achiev-
able investment opportunity set if large investors did not have to trade
or they had to execute only small trades. However, prominent asset-
pricing models include factors constructed using firm characteristics
such as profitability and momentum that vary substantially over time.
These characteristics encapsulate conditioning information that in-
vestors can optimally exploit when choosing their portfolios (Cochrane,
2009, p. 134). As a result, the investment opportunity set implied
by these factor models requires investors to execute sizable trades
at regular intervals—whenever the conditioning information in firm
characteristics varies. For large investors, the price impact of these
sizable trades affects their optimal portfolio choices, and thus, price
impact affects the overall achievable investment opportunity set, which
includes the optimal portfolio of every investor. In this manuscript,
we propose a methodological framework to compare factor models in
terms of their ability to span the achievable investment opportunity set
in the presence of price impact.

Our contribution to the literature is fourfold. Our first contribution
is to propose comparing factor models in terms of the mean–variance
utility net of price-impact costs generated by their factors, and to show
that different models may be better at spanning the investment oppor-
tunities of investors with different absolute risk aversion. In particular,
we prove that the achievable efficient frontier in the presence of price
impact is strictly concave, and thus, the squared Sharpe ratio criterion
is no longer sufficient to compare factor models because each efficient
portfolio has a different Sharpe ratio of returns net of price-impact
costs. Moreover, the objective of investors is not to maximize Sharpe
ratio, but rather their utility of returns net of price-impact costs, which
is therefore the economically meaningful criterion to compare the
ability of different factor models to span the achievable investment op-
portunity set. We show that our proposed criterion is equivalent to the
squared Sharpe ratio in the cases without costs and with proportional
costs. In addition, we generalize the result of Gibbons et al. (1989) to
show that the increase in the mean–variance utility net of price-impact
costs of an investor when she has access to a set of test assets in addition
to the factors in a model is a quadratic form of the alpha (net of price
impact). Finally, we also generalize the result of Barillas and Shanken
(2017) to show that test assets are irrelevant for model comparison
also in the presence of price impact under the tenet that a good model
should span not only the test assets but also the factors in other models.

The intuition behind our first contribution is illustrated in Fig. 1,
which depicts the achievable efficient frontier (black solid line) as
well as the efficient frontiers spanned by the factors in models 𝐴 (red
dotted line) and 𝐵 (blue dashed line) in the presence of price impact.
Each portfolio in the achievable frontier maximizes the mean–variance
utility net of price-impact costs of investors with a particular absolute
risk aversion, which can be defined as the ratio of the investor’s rel-
ative risk aversion to her endowment (Gârleanu and Pedersen, 2013).
Intuitively, larger investors have lower absolute risk aversion, and thus,
they are willing to take on larger investment positions to maximize
their net mean return at the expense of higher return variance. The
figure depicts the indifference curves of an investor with low absolute
risk aversion (brown dash-dotted lines) and an investor with high
absolute risk aversion (green dash-dotted lines). Each investor’s optimal
portfolio is at the tangent between the investor’s indifference curve
and the efficient frontier. The figure shows that model 𝐵 spans better
the investment opportunities of the low-absolute-risk-aversion investor
and model 𝐴 those of the high-absolute-risk-aversion investor. This
is because the low-absolute-risk-aversion investor is willing to take
on larger investment positions that incur higher price-impact costs.

Because the price-impact costs from exploiting the factors in model 𝐵
are much lower than those from exploiting the factors in model 𝐴,
model 𝐵 is better at spanning the achievable investment opportunities
of the low-absolute-risk-aversion investor. On the other hand, model 𝐴
is better at spanning the investment opportunities of the high-absolute-
risk-aversion investor because she takes smaller investment positions
that incur lower price-impact costs, and the factors of model 𝐴 offer a
better risk–return tradeoff when price-impact costs are lower.

Our second contribution is to develop statistical tests to compare
factor models in terms of mean–variance utility net of price-impact
costs. For pairwise model comparisons, we derive two asymptotic dis-
tributions that allow us to compare two factor models for the cases
when they are nested or non-nested by generalizing the pairwise tests
of Kan and Robotti (2009) and Barillas et al. (2020) to the case with
price impact. We also develop a closed-form expression for the variance
of the asymptotic distribution and use it to show that it is easier
to reject the null hypothesis that the mean–variance utilities net of
price-impact costs of two models are equal not only when the mean–
variance portfolio returns of the two models are positively correlated
as shown by Barillas et al. (2020) for the case without trading costs,
but also when the mean–variance portfolio return of each model is
highly correlated with the rebalancing trades of the portfolio of the
other model, and when the rebalancing trades of the two portfolios are
highly correlated. For multiple model comparisons, we use the approach
of Barillas et al. (2020) to test the null hypothesis that a benchmark
model has a mean–variance utility net of price-impact costs at least as
high as that of any other model in a set of alternative models.

Our third contribution is to use our statistical tests to compare the
empirical performance of ten factor models in terms of the mean–
variance utility net of price-impact costs generated by their factors. We
consider nine low-dimensional factor models: the CAPM model of Sharpe
(1964) and Lintner (1965), the four-factor model of Hou et al. (2015),
HXZ4, the five-factor model of Hou et al. (2021), HMXZ5, the four-
factor model of Fama and French (1993) and Carhart (1997), FFC4,
the five-factor model of Fama and French (2015), FF5, the six-factor
model of Fama and French (2018), FF6, and the six-factor model
of Barillas and Shanken (2018), BS6. Note that Fama and French
(2018) and Ball et al. (2016) show that using cash-based operating
profitability instead of accrual-based operating profitability can im-
prove model performance, and thus, following Detzel et al. (2023) we
also consider versions of the five- and six-factor Fama–French models
constructed using cash-based operating profitability, FF5c and FF6c. In
addition, DeMiguel, Martin-Utrera, Nogales, and Uppal (2020) show
that trading costs provide an economic rationale to consider high-
dimensional factor models. In particular, they show that combining
factors helps to reduce transaction costs because the trades required
to rebalance different factor portfolios often cancel out, a phenomenon
they term trading diversification. Moreover, they show that the benefits
from trading diversification increase with the number of factors com-
bined. For this reason, we consider a tenth factor model containing the
20 factors that DeMiguel et al. (2020) find statistically significant in
the presence of price-impact costs, DMNU20.

We highlight two empirical findings. First, in the presence of price
impact, model performance depends not only on the portfolio turnover
required to trade the factors in the model, as pointed out by Detzel et al.
(2023) for the case with proportional costs, but also on the liquidity of
the stocks traded. In particular, we find that, compared to their Fama–
French counterparts, the investment and profitability factors of Hou
et al. (2015, 2021) not only involve higher portfolio turnover, but also
require trading stocks with lower market capitalization, which are more
illiquid and subject to higher price-impact costs. As a result, while in
the absence of trading costs the five-factor model of Hou et al. (2021)
outperforms the six-factor model of Fama and French (2018) with cash-
based operating profitability, in the presence of price-impact costs the
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Fig. 1. Achievable efficient frontier and frontiers spanned by two factor models.
This figure illustrates the achievable efficient frontier in the presence of price impact (black solid line) as well as the efficient frontiers spanned by the factors in models 𝐴 (red
dotted line) and 𝐵 (blue dashed line). The figure also depicts the indifference curves of an investor with low absolute risk aversion (brown dash-dotted lines) and an investor with
high absolute risk aversion (green dash-dotted lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

six-factor model of Fama and French (2018) with cash-based operating
profitability tends to perform better.1

Second, the relative performance of factor models in the presence
of price impact depends on the absolute risk aversion of the investor.
For instance, the high-dimensional model of DeMiguel et al. (2020)
significantly outperforms the low-dimensional models only when span-
ning the investment opportunities of large (low-absolute-risk-aversion)
investors. This is because high-dimensional models provide larger
trading-diversification benefits, and thus, they outperform
low-dimensional models at spanning the investment opportunities of
large investors for whom price-impact costs are relatively more impor-
tant. Overall, accounting for price impact results in a nuanced compar-
ison of the factor models we consider—the five-factor model of Hou
et al. (2021), the six-factor model of Fama and French (2018) with
cash-based operating profitability, and the high-dimensional model
of DeMiguel et al. (2020) are best at spanning the investment opportu-
nities of investors with high, medium, and low absolute risk aversion,
respectively.2

We show that, under the tenet of Barillas and Shanken (2017) that
a good model should span not only the test assets but also the factors
in other models, test assets are irrelevant and it suffices to compare
models in terms of mean–variance utility net of price-impact costs.
However, absent the requirement that a good model should span also
the factors in other models, relative model performance in terms of
test-asset spanning may differ from that in terms of mean–variance
utility. Therefore, it is of interest to compare models also in terms

1 Following Detzel, Novy-Marx, and Velikov (2023), we ignore short-selling
costs in our analysis. Although the findings of Nagel (2005) and Muravyev,
Pearson, and Pollet (2022) suggest that short-selling costs may affect factor
model performance, we ignore short-selling costs in our analysis in order to
isolate the effect of price-impact costs, which are the focus of our manuscript.
This also facilitates the comparison of our results for the case with price-
impact costs with those of Detzel et al. (2023) for the case with proportional
transaction costs.

2 As a robustness check, we use the bootstrap test of Fama and French
(2018) and Detzel et al. (2023) to show that the out-of-sample performance
of the different models is consistent with the empirical findings from our
statistical tests. In addition, Section IA.7 of the Internet Appendix shows that
our empirical findings are robust to considering factors constructed using the
banding transaction-cost mitigation strategy used by Detzel et al. (2023).

of their ability to span certain test assets. Our fourth contribution is
to use our statistical test to compare the different models in terms
of their ability to span the 212 anomalies of Chen and Zimmermann
(2022) in the presence of price impact. We find that the relative
performance of factor models in terms of anomaly spanning is similar,
but not identical, to that in terms of the mean–variance utility. For
instance, in the absence of costs the five-factor model of Hou et al.
(2021) outperforms other models in terms of both anomaly spanning
and mean–variance utility. Similarly, in the presence of price-impact
costs with medium absolute risk aversion, the six-factor model of Fama
and French (2018) with cash-based operating profitability outperforms
other models in terms of both anomaly spanning and mean–variance
utility. However, the six-factor model of Fama and French (2018) with
cash-based operating profitability outperforms other models in terms
of anomaly spanning also for the case with high absolute risk aversion,
for which the five-factor model of Hou et al. (2021) is better in terms
of mean–variance utility.3

Our manuscript is closely related to Detzel et al. (2023), who com-
pare asset-pricing models in the presence of proportional transaction
costs using the maximum squared Sharpe ratio criterion of Barillas and
Shanken (2017). We formally prove that the squared Sharpe ratio cri-
terion remains valid in the presence of proportional transaction costs,
and thus, we provide theoretical support for the empirical analysis
of Detzel et al. (2023). We also demonstrate that the squared Sharpe
ratio criterion is no longer sufficient to characterize the investment
opportunity set in the presence of price-impact costs and, instead, we
propose comparing factor models in terms of the mean–variance utility
of returns net of price-impact costs. The different comparison method-
ology and our focus on price-impact costs instead of proportional
transaction costs are key distinctive elements of our work.

Our work is also related to Jensen et al. (2022), who generalize
the dynamic portfolio framework of Gârleanu and Pedersen (2013) to
integrate machine-learning return forecasts obtained from a large set of

3 Barillas and Shanken (2017) also show that the relative performance of
factor models in terms of test-asset spanning and squared Sharpe ratio may be
different in the absence of trading costs once one drops the requirement that
the better model should also span the factors in the other model—see the last
paragraph on page 1317 and section 1.2 of Barillas and Shanken (2017).
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firm characteristics. Like us, Jensen et al. (2022) account for the price-
impact costs that are relevant to ‘‘market participants with a substantial
fraction of aggregate assets under management, such as large pension
funds or other professional asset managers’’. A key distinctive feature
of our work is that our focus is not to use machine learning to exploit
a large number of characteristics, but rather to propose a rigorous
methodology to compare existing asset-pricing models in terms of their
ability to span the investment opportunity set in the presence of price
impact.

There is a large literature that proposes statistical tests to compare
asset-pricing models in the absence of transaction costs (Avramov and
Chao, 2006; Kan and Robotti, 2009; Kan et al., 2013; Barillas and
Shanken, 2018; Goyal et al., 2018; Fama and French, 2018; Ferson
et al., 2019; Chib et al., 2020; Kan et al., 2019). In contrast to these
papers, we propose a statistical methodology that accounts for the
effect of price-impact costs when comparing asset-pricing models.

Finally, our work is related to the literature on the profitability of
factor strategies (Korajczyk and Sadka, 2004; Novy-Marx and Velikov,
2016; Frazzini et al., 2018; Chen and Velikov, 2023; Barroso and
Detzel, 2021). Most of these papers study the profitability of individual-
factor strategies. However, DeMiguel et al. (2020) show that the trades
in the underlying stocks required to rebalance different factors often
cancel out, and thus the trading cost of exploiting the factors in a
model is lower when the factors are combined.4 In this manuscript,
instead of studying the profitability of the individual factor strategies,
we explicitly account for the effect of trading diversification when we
compare low- and high-dimensional factor models in the presence of
price-impact costs.

The rest of the manuscript is organized as follows. Section 2 pro-
poses mean–variance utility net of price-impact costs as a criterion
to compare factor models. Sections 3 and 4 discuss the statistical
tests used to perform pairwise and multiple model comparisons in
the presence of price impact. Sections 5 and 6 compare the empirical
performance of ten factor models in terms of mean–variance utility
net of price-impact costs and in terms of anomaly spanning. Section 7
concludes. Appendix A contains the proofs of all theoretical results
with the exception of Proposition 4, which is proven and discussed in
Appendix B. The Internet Appendix contains several robustness checks
and additional information.

2. A criterion to compare models with trading costs

In this section, we propose a novel criterion to compare factor
models in the presence of price-impact costs. Section 2.1 gives the
notation and assumptions. Section 2.2 reviews the squared Sharpe ratio
criterion proposed by Barillas and Shanken (2017) to compare factor
models in the absence of trading costs, and in Section 2.3 we prove
that this criterion is also valid in the presence of proportional transaction
costs. In Section 2.4, however, we show that the squared Sharpe ratio
criterion is no longer sufficient to characterize the achievable invest-
ment opportunity set in the presence of price-impact costs, and thus,
in Section 2.5 we propose comparing factor models in terms of their
mean–variance utility net of trading costs. Section 2.6 shows that there
is a close relation between the mean–variance utility net of price-impact
cost criterion and the alpha net of price impact. Finally, Section 2.7
shows that the relative performance of factor models in the presence of
price impact depends in general on the investor’s absolute risk aversion.

4 Other papers also provide empirical evidence that combining factors can
reduce trading costs (Barroso and Santa-Clara, 2015; Frazzini et al., 2015;
Novy-Marx and Velikov, 2016).

2.1. Notation and assumptions

We first describe the notation we use in our analysis. We consider
a market with 𝑁 stocks whose return vector at time 𝑡 is 𝑟𝑡 ∈ R𝑁 and a
risk-free asset with return 𝑟𝑓,𝑡 ∈ R. Let 𝑋𝑡 ∈ R𝑁×𝐾 be the matrix whose
columns contain the weights of the 𝐾 factor portfolios at time 𝑡. Then,
the vector of returns of the 𝐾 factors at time 𝑡 + 1 is

𝐹𝑡+1 = 𝑋⊤
𝑡 (𝑟𝑡+1 − 𝑟𝑓,𝑡+1𝑒) ∈ R𝐾 , (1)

where 𝑒 is the 𝑁-dimensional vector of ones. Every factor we consider is
a return in excess of the risk-free rate. In particular, every factor (other
than the market) is the return of a long-short portfolio of stocks with
one dollar invested in the long leg and one dollar in the short leg, and
thus, its returns equal its excess returns. The market factor is also the
return of a long-short portfolio because it is the market return in excess
of the risk-free rate, and thus, its investment in the long leg is equal to
that in the short leg once we account for its negative investment in the
risk-free asset.

Let 𝜇 = 𝐸[𝐹𝑡] and 𝛴 = var(𝐹𝑡) be the mean and covariance matrix
of factor returns. Then, the mean–variance factor portfolio, 𝜃∗ ∈ R𝐾 , is
the maximizer to the following problem:

max
𝜃

𝜃⊤𝜇 − 𝑓 (𝜃) −
𝛾
2
𝜃⊤𝛴𝜃, (2)

where the 𝑘th component of 𝜃 is the dollar-amount allocated to the 𝑘th
factor, 𝜃⊤𝜇 is the expected portfolio return, 𝑓 (𝜃) is the trading cost
associated with the portfolio 𝜃, 𝜃⊤𝛴𝜃 is the portfolio return variance,
and 𝛾 is the absolute risk-aversion parameter. Note that because the
factors are returns in excess of the risk-free rate, we do not need
to impose a budget constraint on the mean–variance factor portfolio
weights. Thus, like the portfolio proposed by Gârleanu and Pedersen
(2013), our mean–variance factor portfolio depends on the investor’s
endowment only through her absolute risk aversion, which is the ratio
of the investor’s relative risk-aversion parameter to her endowment.

A couple of comments are in order. First, Sections 2.3 and 2.4
consider specific examples of proportional transaction costs and price-
impact costs. Second, consistent with the asset-pricing literature on
factor model comparison (Gibbons et al., 1989; Kan and Robotti, 2008;
Barillas and Shanken, 2017, 2018; Barillas et al., 2020; Detzel et al.,
2023), we consider an unconditional mean–variance portfolio of the fac-
tors in a model. This is not a limitation because prominent asset-pricing
models include factors constructed using time-varying characteristics
such as profitability and momentum that encapsulate conditioning
information. Moreover, one can also use conditioning variables to
generate managed versions of popular asset-pricing factors and in-
clude them as additional factors in the unconditional mean–variance
portfolio.5

We now state the assumptions required in our theoretical analysis.
First, we require that the factor returns are not perfectly colinear.

Assumption 2.1. The covariance matrix of the factor returns 𝛴 is
positive definite.

Second, we make the following assumption for the functional form
of trading costs.

Assumption 2.2. The trading-cost function 𝑓 (𝜃) is continuous in 𝜃,
𝑓 (0) = 0, and 𝑓 (𝜃) > 0 for all 𝜃 ≠ 0.

Assumption 2.2 is satisfied by most popular trading-cost models,
such as proportional and quadratic trading-cost models. In particular,
prominent asset-pricing models include factors constructed using time-
varying firm characteristics, and thus, investing in these factors requires

5 For instance, Moreira and Muir (2017) consider volatility-managed factors
and DeMiguel et al. (2024) incorporate the volatility-managed factors together
with the unmanaged factors in an unconditional mean–variance portfolio.
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the investor to rebalance her portfolio regularly, incurring strictly
positive trading costs. Finally, the following assumption rules out the
trivial case in which it is not optimal to invest in any of the factors.

Assumption 2.3. The set 𝑆 = {𝜃|𝜃⊤𝜇 − 𝑓 (𝜃) > 0} is non-empty.

2.2. The case without trading costs

In the absence of trading costs, the mean–variance portfolio 𝜃∗ of
the factors is the solution to Problem (2) for the case with 𝑓 (𝜃) = 0. One
can recover all portfolios on the efficient frontier by solving the prob-
lem for different values of 𝛾. The following proposition reviews a well-
known property of the efficient frontier; see, for instance, Campbell
(2017, Section 2.2.6).

Proposition 1. Let Assumption 2.1 hold and consider an investor with ab-
solute risk aversion 𝛾 > 0. Then, the unique maximizer to the mean–variance
problem (2) in the absence of transaction costs is

𝜃∗ = 𝛴−1𝜇∕𝛾, (3)

with mean–variance utility MVU𝛾 = 𝜇⊤𝛴−1𝜇∕(2𝛾), and squared Sharpe
ratio SR2 = 2𝛾MVU𝛾 . Thus, the efficient frontier is a straight line in the
mean–standard-deviation diagram because every mean–variance portfolio
delivers the same maximum Sharpe ratio, SR =

√

𝜇⊤𝛴−1𝜇.

Proposition 1 shows that, in the absence of trading costs, the Sharpe
ratio of any mean–variance portfolio of the factors in the model is
a sufficient statistic to characterize the investment opportunity set
spanned by the model. Thus, the model that best spans the investment
opportunity set is the one whose factors attain the highest squared
Sharpe ratio as noted by Barillas and Shanken (2017).

2.3. The case with proportional trading costs

We first provide a general definition of proportional-trading-cost
function.

Definition 1 (Proportional-Trading-Cost Function). A proportional-
trading-cost function 𝑓 (𝜃) is one that satisfies Assumption 2.2 and is
homogeneous of degree one, that is,

𝑓 (𝑐𝜃) = 𝑐𝑓 (𝜃) for all 𝜃 and 𝑐 ≥ 0. (4)

We now give a popular example of proportional-trading-cost func-
tion used (among others) by DeMiguel et al. (2020) and Detzel et al.
(2023). We start by defining the rebalancing-trade matrix of the 𝐾
factors at time 𝑡 as

�̃�𝑡 = 𝑋𝑡 − diag(𝑒 + 𝑟𝑡)𝑋𝑡−1, (5)

where 𝑒 is the 𝑁-dimensional vector of ones and diag(𝑣) is a diagonal
matrix whose diagonal contains the elements in vector 𝑣. Note that the
element in the 𝑛th row and 𝑘th column of �̃�𝑡 is the rebalancing trade
on stock 𝑛 required at time 𝑡 to hold the 𝑘th factor portfolio. To see
this, note that the 𝑘th factor portfolio weight on stock 𝑛 changes from
𝑥𝑛,𝑘,𝑡−1(1 + 𝑟𝑛,𝑡) before rebalancing at time 𝑡 to 𝑥𝑛,𝑘,𝑡 after rebalancing,
where 𝑥𝑛,𝑘,𝑡 is the 𝑘th factor portfolio weight on the 𝑛th stock at time
𝑡, that is, the element in the 𝑛th row and 𝑘th column of 𝑋𝑡. Then, the
rebalancing trade required at time 𝑡 to hold the factor portfolio 𝜃 can be
written as 𝛥𝑤 = �̃�𝑡𝜃, and thus, the proportional-trading-cost function
can be defined as

𝑓 (𝜃) = 𝐸
[

‖𝐾𝑡�̃�𝑡𝜃‖1
]

, (6)

where ‖𝑣‖1 =
∑𝑁

𝑖=1 |𝑣𝑖| is the 𝐿1-norm of vector 𝑣 ∈ R𝑁 and 𝐾𝑡 ∈ R𝑁×𝑁

is a diagonal matrix whose 𝑛th element, 𝜅𝑛,𝑡 > 0, is the transaction-cost
parameter of stock 𝑛 at time 𝑡.6

Solving Problem (2) with a proportional-trading-cost function for
different values of the risk-aversion parameter 𝛾, one can recover the
efficient frontier in the presence of proportional trading costs. In the
following proposition, we prove that this efficient frontier is a straight
line in the mean–standard-deviation diagram.7

Proposition 2. Let 𝑓 (𝜃) be a proportional-trading-cost function. Then, the
efficient frontier in the presence of proportional trading costs is a straight
line in the mean–standard-deviation diagram, and all portfolios on the
efficient frontier deliver the same maximum Sharpe ratio of returns net of
proportional trading costs, 𝑆𝑅𝑃𝑇𝐶 < 𝑆𝑅 =

√

𝜇⊤𝛴−1𝜇, where 𝑆𝑅 is the
maximum Sharpe ratio in the absence of trading costs.

Proposition 2 shows that, similar to the case without trading costs,
the investment opportunity set spanned by the factors in the presence
of proportional trading costs is fully characterized by the Sharpe ratio
of returns net of costs. Thus, Proposition 2 demonstrates that the
maximum squared Sharpe ratio criterion remains valid to compare
factor models in the presence of proportional costs, and thus, it provides
theoretical support for the empirical analysis in Detzel et al. (2023).
However, proportional costs ignore the price impact of large trades,
which affects the portfolio choices of large investors and thus the
overall achievable investment opportunity set. In the next section,
we show that the squared Sharpe ratio criterion is no longer suffi-
cient to characterize the investment opportunity set in the presence of
price-impact costs.

2.4. The case with price-impact costs

We now consider the case with price-impact costs. First, we provide
a general definition of price-impact-cost function.

Definition 2 (Price-Impact-Cost Function). A price-impact-cost function
𝑓 (𝜃) satisfies Assumption 2.2 and the following inequality:

𝑓 (𝑐𝜃) > 𝑐𝑓 (𝜃) for all 𝜃 ≠ 0 and 𝑐 > 1. (8)

We now specify the price-impact-cost function that we use in our
analysis. A common assumption in the literature is that the impact on
prices from large trades is linear in the amount traded (Korajczyk and
Sadka, 2004; Novy-Marx and Velikov, 2016). Under this assumption,
the price impact of rebalancing the factor portfolio at time 𝑡 is:

PI𝑡 = 𝐷𝑡𝛥𝑤𝑡 = 𝐷𝑡�̃�𝑡𝜃, (9)

where 𝜃 ∈ R𝐾 is the factor portfolio in dollars, �̃�𝑡 is the rebalancing-
trade matrix defined in (5), 𝛥𝑤𝑡 = �̃�𝑡𝜃 is the rebalancing trade required

6 Detzel et al. (2023) consider the proportional-trading-cost function (6) as
a robustness check in section 6.2 of their manuscript. In their main analysis,
Detzel et al. (2023) use the following proportional-trading-cost function:

𝑓 (𝜃) = 𝐸

[ 𝑁
∑

𝑛=1
𝜅𝑛,𝑡

𝐾
∑

𝑘=1
|�̃�𝑛,𝑘,𝑡𝜃𝑘|

]

, (7)

where �̃�𝑛,𝑘,𝑡 is the rebalancing trade of factor 𝑘 on stock 𝑛 at time 𝑡, which is
the element in the 𝑛th row and 𝑘th column of the rebalancing-trade matrix
�̃�𝑡. An advantage of the proportional-trading-cost function (6) compared to
(7) is that it aggregates the rebalancing trades across the 𝐾 factors and
thus accounts for the trading-diversification benefits from combining multiple
factors. DeMiguel et al. (2020) find that the trades in the underlying stocks
required to rebalance different factors often net out, and therefore exploiting
multiple factors simultaneously reduces trading costs.

7 The mean–standard-deviation diagram for the case with proportional
trading costs depicts in the horizontal axis the standard deviation of port-
folio returns, and in the vertical axis the mean of portfolio returns net of
proportional trading costs.
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to rebalance the factor portfolio 𝜃 at time 𝑡, and 𝐷𝑡 ∈ R𝑁×𝑁 is a
diagonal matrix whose 𝑛th element, 𝑑𝑛,𝑡 > 0, is the price-impact-cost
parameter (i.e., Kyle’s lambda) of stock 𝑛 at time 𝑡. Then, the price-
impact cost, in dollars, required to rebalance the factor portfolio 𝜃 at
time 𝑡 is half of the scalar product of the price impact PI𝑡 = 𝐷𝑡�̃�𝑡𝜃 and
the rebalancing trade 𝛥𝑤𝑡 = �̃�𝑡𝜃:

𝑓𝑡(𝜃) =
1
2
𝜃⊤�̃�⊤

𝑡 𝐷𝑡�̃�𝑡𝜃. (10)

To simplify notation, let

𝛬𝑡 = �̃�⊤
𝑡 𝐷𝑡�̃�𝑡 ∈ R𝐾×𝐾 (11)

be the price-impact matrix at time 𝑡, and 𝛬 = 𝐸[𝛬𝑡] the expected
price-impact matrix, which is assumed to be positive definite. Then,
the quadratic price-impact-cost function is

𝑓 (𝜃) = 𝐸
[

𝜃⊤𝛬𝑡𝜃
2

]

= 𝜃⊤𝛬𝜃
2

, (12)

which gives the expected price-impact costs from trading the factor
portfolio 𝜃. It is straightforward to show that this function satisfies
Definition 2 and accounts for trading diversification across factors.

The mean–variance problem (2) for the case with quadratic price-
impact costs can then be rewritten as

max
𝜃

𝜃⊤𝜇 − 1
2
𝜃⊤𝛬𝜃 −

𝛾
2
𝜃⊤𝛴𝜃,

where 𝜃 is the factor portfolio in dollars, 𝜃⊤𝜇 is the expected factor
portfolio return, 𝜃⊤𝛴𝜃 is the portfolio variance, and 𝜃⊤𝛬𝜃∕2 is the
quadratic price-impact cost. Thus, the mean–variance portfolio is

𝜃∗ = 1
𝛾
(𝛴 + 𝛬∕𝛾)−1𝜇, (13)

and the investor’s mean–variance utility net of price-impact costs is

MVU𝛾 =
𝜇⊤(𝛴 + 𝛬∕𝛾)−1𝜇

2𝛾
, (14)

which is not proportional to the squared Sharpe ratio in the absence of
costs. More precisely, price-impact costs affect the investor’s portfolio
choice and utility nonlinearly, by replacing the matrix 𝛴 in (3) with
the matrix (𝛴 + 𝛬∕𝛾), which depends on 𝛾.

Solving Problem (2) with a price-impact-cost function for different
values of 𝛾, one can recover the efficient frontier in the presence of
price-impact costs. The following proposition shows that the efficient
frontier in the presence of price-impact costs is strictly concave in the
mean–standard-deviation diagram.

Proposition 3. Let 𝑓 (𝜃) be a price-impact-cost function. Then, the efficient
frontier in the presence of price-impact costs is strictly concave. In addition,
the Sharpe ratio of returns net of price-impact costs of any portfolio on the
efficient frontier, 𝑆𝑅𝛾

𝑃 𝐼𝐶 , is lower than the maximum Sharpe ratio in the
absence of trading costs, that is, 𝑆𝑅𝛾

𝑃 𝐼𝐶 < 𝑆𝑅 =
√

𝜇⊤𝛴−1𝜇.

The intuition behind Proposition 3 is that, while the mean and
standard deviation of the portfolio returns grow proportionally with the
dollar amount invested, the price-impact costs grow faster than linearly,
and thus, the efficient frontier in the presence of price-impact costs is
strictly concave. Consequently, the squared Sharpe ratio is no longer a
sufficient criterion to compare factor models in the presence of price-
impact costs because the achievable investment opportunity set of a
factor model is not fully characterized by a single slope in the mean–
standard-deviation diagram as in the absence of trading costs or the
presence of proportional trading costs.

Fig. 2 illustrates the efficient frontiers attained by the factors of a
model for the cases without trading costs, with proportional trading
costs, and with price-impact costs. The frontiers for the cases with
proportional costs and with price-impact costs are below that for the
case without costs. Moreover, while the efficient frontier is a straight
line in the cases without costs and with proportional trading costs,

in the presence of price-impact costs, the efficient frontier is strictly
concave, and thus the investment opportunity set in this case cannot
be summarized by a single Sharpe ratio because every mean–variance
portfolio has a different Sharpe ratio.

2.5. Mean–variance utility as a comparison criterion

In the previous section we showed that, in the presence of price-
impact costs, the efficient frontier is strictly concave and thus a single
Sharpe ratio no longer characterizes the achievable investment oppor-
tunity set as in the cases without costs or with proportional transaction
costs. Thus, we cannot compare asset-pricing models in the presence of
price-impact costs using the squared Sharpe ratio criterion because this
metric is no longer a sufficient statistic to describe the extent to which
the factors of a model span the achievable investment opportunity set.
Instead, in this section we propose comparing factor models in terms
of mean–variance utility net of price-impact costs.

Barillas and Shanken (2017) posit that when comparing two factor
models, the better model should be able to span not only the investment
opportunity set offered by the tests assets, but also that offered by the
factors in the other model. In particular, let us consider two models
with factors 𝐹𝐴 and 𝐹𝐵 and a set of test assets 𝛱 . In the absence of
price-impact costs, Barillas and Shanken (2017) show that model 𝐴 is
better than model 𝐵 if

𝑆𝑅2([𝛱,𝐹𝐴, 𝐹𝐵]) − 𝑆𝑅2(𝐹𝐴) < 𝑆𝑅2([𝛱,𝐹𝐴, 𝐹𝐵]) − 𝑆𝑅2(𝐹𝐵), (15)

where 𝑆𝑅2(𝑥) is the squared Sharpe ratio delivered by the assets in
vector 𝑥. In particular, they explain that the two sides of Inequality (15)
measure the misspecification of models 𝐴 and 𝐵, and thus, model 𝐴 is
considered better (less misspecified) than model 𝐵 because an investor
with access to the factors in model 𝐴 obtains a lower Sharpe ratio
improvement by having access to the test assets and the factors in the
other model than an investor with access to the factors in model 𝐵. This
inequality is equivalent to

𝑆𝑅2(𝐹𝐴) > 𝑆𝑅2(𝐹𝐵), (16)

and thus Barillas and Shanken (2017) show that the test assets 𝛱 are
irrelevant for model comparison, and it is sufficient to compare models
in terms of squared Sharpe ratio, which measures the ability of factor
models to span the investment opportunity set.

In the absence of trading costs or in the presence of proportional
transaction costs, the efficient frontier is a straight line in the mean–
standard-deviation diagram, as shown in Propositions 1 and 2. Thus,
the portfolios in the efficient frontier that maximize the investor’s
mean–variance utility are equivalent to those that maximize the Sharpe
ratio. In contrast, in the presence of price-impact costs the efficient
frontier is strictly concave and hence the portfolios that maximize
mean–variance utility are not equivalent to those that maximize Sharpe
ratio. Thus, model comparison via the squared Sharpe ratio criterion
as in (15) is no longer consistent with the optimal choices of investors
that determine the asset-pricing equilibrium. To address this issue, we
propose measuring model misspecification in terms of mean–variance
utility net of price-impact costs. Thus, applying the logic of Barillas and
Shanken (2017), model 𝐴 is better than model 𝐵 if

MVU𝛾 ([𝛱,𝐹𝐴, 𝐹𝐵])−MVU𝛾 (𝐹𝐴) < MVU𝛾 ([𝛱,𝐹𝐴, 𝐹𝐵])−MVU𝛾 (𝐹𝐵), (17)

where MVU𝛾 (𝑥) is the maximum mean–variance utility net of price-
impact costs of an investor with absolute risk aversion 𝛾 who has access
to the assets in 𝑥.8 Therefore, we have that model 𝐴 is better than
model 𝐵 if

MVU𝛾 (𝐹𝐴) > MVU𝛾 (𝐹𝐵), (18)

8 Note that the same argument can be made for investor utility functions
other than the mean–variance utility that we consider for our empirical work.
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Fig. 2. Efficient frontiers for different trading-cost functions.
This figure illustrates the efficient frontiers of a factor model in the presence of different trading-cost functions. The black solid, red dotted, and blue dashed lines depict the
efficient frontiers in the absence of trading costs, the presence of proportional costs, and the presence of price-impact costs, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

which shows that test assets are irrelevant also when comparing factor
models in terms of mean–variance utility net of price-impact costs.
Consequently, the best model is the one whose factors generate the
highest mean–variance utility net of price-impact costs, and thus, is best
at spanning the achievable investment opportunity set.

2.6. Relation between mean–variance utility and alpha

In the absence of trading costs, the squared Sharpe ratio criterion
proposed by Barillas and Shanken (2017) to compare factor models is
closely related to the traditional alpha criterion. In particular, Gibbons
et al. (1989) show that a quadratic form of the alpha measures the
increase in the squared Sharpe ratio that an investor can achieve by
having access to the test assets, in addition to the factors in the model.
In this section, we show that the mean–variance utility net of price-
impact cost criterion that we propose is also closely related to the alpha
net of price impact. To do this, in the following proposition, which we
prove and discuss in Appendix B, we generalize the result by Gibbons
et al. (1989) to the case with quadratic price-impact costs.

Proposition 4. Consider an investor with absolute risk aversion 𝛾 who
faces the quadratic price-impact costs defined in (12). Then, the increase in
the mean–variance utility net of price-impact costs of the investor when she
has access to a set of test assets 𝑅 in addition to the factors 𝐹 in a model
is:

MVU𝛾 ([𝐹 ,𝑅]) − MVU𝛾 (𝐹 ) =
(

𝛼net)⊤ 𝐻−1
𝛾 𝛼net, (19)

where 𝐻𝛾 is a positive-definite matrix that depends on the investor’s absolute
risk aversion, and 𝛼net is the net alpha of the test assets with respect to the
factors in the model:

𝛼net = 𝛼
⏟⏟⏟

gross
alpha

−
(

𝛬𝑅,𝐹 − 𝛽⊤𝛬𝐹 ,𝐹
)

𝜃∗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

price-impact
adjustment

, (20)

where 𝛼 and 𝛽 are the intercept and slope obtained from an OLS regression
of the test asset returns on the factors in the model, 𝜃∗ is the investor’s mean–
variance portfolio of the factors in the model, 𝛬𝐹 ,𝐹 = 𝐸[(�̃�𝐹

𝑡 )
⊤𝐷𝑡�̃�𝐹

𝑡 ] is
the expected price-impact matrix for the factors in the model, and 𝛬𝑅,𝐹 =
𝐸[(�̃�𝑅

𝑡 )
⊤𝐷𝑡�̃�𝐹

𝑡 ] is the expected price-impact matrix for the test assets when
the investor is also holding the factors in the model.

A couple of comments are in order. First, Appendix B.2 shows that
for the case with no trading costs, Proposition 4 implies the result in
equation (23) of Gibbons et al. (1989), which shows that in the absence
of trading costs the increase in the squared Sharpe ratio of the investor
when she has access to the test assets in addition to the factors in the
model is a quadratic form of the gross alpha.

Second, Appendix B.3 shows that the net alpha (𝛼net) defined in (20)
is the incremental return net of price-impact costs that an investor with
absolute risk-aversion 𝛾 can achieve by making a marginal investment
in the test assets when she is already holding the mean–variance
portfolio of the factors in the model. In other words, the net alpha is
a generalization of the traditional alpha to the case with price-impact
costs.

2.7. Model performance and absolute risk aversion

Note that the net alpha 𝛼net depends on the investor’s absolute risk
aversion via her mean–variance portfolio 𝜃∗ = (𝛴𝐹 ,𝐹 + 𝛬𝐹 ,𝐹 ∕𝛾)−1𝜇𝐹 ∕𝛾,
where 𝜇𝐹 and 𝛴𝐹 are the mean and covariance matrix of the factors
in the model. Thus, in general the net alpha is different for each
investor. Moreover, the matrix 𝐻𝛾 also depends on 𝛾. Consequently,
Eqs. (19) and (20) in Proposition 4 show that the relative performance
of two factor models in the presence of price impact may depend in
general on the investor’s absolute risk aversion, which determines the
importance of portfolio risk relative to the average portfolio return net
of price-impact costs.

This is illustrated in Fig. 1 in the introduction, which depicts the
investment opportunity set spanned by two different factor models 𝐴
and 𝐵, where the factors in model 𝐴 generate a higher Sharpe ratio
in the absence of trading costs, but also generate higher price-impact
costs as the amount traded increases, compared to the factors in model
𝐵. Then, model 𝐵 is better at spanning the investment opportunities
of large investors with low absolute risk aversion, while model 𝐴 is
better at spanning the investment opportunities of investors with high
absolute risk aversion. This is because investors with low absolute risk
aversion are willing to take on larger investment positions to increase
their mean return at the expense of higher return variance. However, by
increasing their positions, they also increase the amount they trade, and
thus, face higher price-impact costs. Consequently, model 𝐵 is better
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at spanning their investment opportunities because its factors generate
lower price-impact costs.

3. Pairwise model comparison

We now develop a formal statistical methodology to compare two
factor models in the presence of price-impact costs. In Section 3.1, we
derive two asymptotic distributions for the difference in mean–variance
utility net of price-impact costs of two factor models. Section 3.2 de-
scribes how these two asymptotic distributions can be used to compare
two factors models for the cases where they are nested, non-nested
without overlapping factors, and non-nested with overlapping factors.
Finally, in Section 3.3, we develop a closed-form expression for the
variance of the asymptotic distribution and use it to study how the
statistical properties of factor models affect the power of our proposed
pairwise model comparison test.

3.1. Two asymptotic distributions

We assume price-impact costs are quadratic as in (12). Also, for
simplicity we make Assumption 3.1, but it can be relaxed by adjusting
the variance of the asymptotic distribution.

Assumption 3.1. The factor returns 𝐹𝑡, the matrix 𝛴𝑡 = (𝐹𝑡−𝜇)(𝐹𝑡−𝜇)⊤,
and the price-impact matrix 𝛬𝑡 in Eq. (11) are serially uncorrelated.

We now derive two asymptotic distributions in Propositions 5 and
6 for the difference between the sample mean–variance utilities net of
price-impact costs of two factor models.

Proposition 5. Let Assumptions 2.1–2.3 and 3.1 hold. Then, the asymp-
totic distribution of the sample estimator for the mean–variance utility net
of price-impact costs in (14) is
√

𝑇 (M̂VU𝛾 − MVU𝛾 ) 𝐴∼ 𝑁(0,
𝐸[ℎ2𝑡 ]
4𝛾2

), (21)

provided that 𝐸[ℎ2𝑡 ] > 0, where

ℎ𝑡 = 2𝜇⊤(𝛴 + 𝛬∕𝛾)−1(𝐹𝑡 − 𝜇) − 𝜇⊤(𝛴 + 𝛬∕𝛾)−1(𝛴𝑡 + 𝛬𝑡∕𝛾)(𝛴 + 𝛬∕𝛾)−1𝜇

+ 𝜇⊤(𝛴 + 𝛬∕𝛾)−1𝜇. (22)

In addition, the asymptotic distribution of the difference between the sample
mean–variance utilities net of price-impact costs of two factor models 𝐴 and
𝐵 is
√

𝑇 ([M̂VU𝛾
𝐴− M̂VU𝛾

𝐵]− [MVU𝛾
𝐴−MVU𝛾

𝐵])
𝐴∼ 𝑁(0,

𝐸
[

(ℎ𝑡,𝐴 − ℎ𝑡,𝐵)2
]

4𝛾2
), (23)

provided that 𝐸
[

(ℎ𝑡,𝐴−ℎ𝑡,𝐵)2
]

> 0, where ℎ𝑡,𝐴 and ℎ𝑡,𝐵 are given by Eq. (22)
applied to models 𝐴 and 𝐵.

A couple of comments are in order. First, Proposition 5 generalizes
the analysis of Barillas et al. (2020), who provide an asymptotic dis-
tribution for the difference in squared Sharpe ratios of two models in
the absence of costs. Second, Proposition 5 shows that the distribution
in (23) can be used to compare two factor models provided that the
variance of the asymptotic distribution is strictly greater than zero.
However, the variance is zero under the null hypothesis, MVU𝛾

𝐴 =
MVU𝛾

𝐵 , in two cases: (i) when model 𝐴 nests model 𝐵 and the additional
factors of model 𝐴 are redundant and (ii) when models 𝐴 and 𝐵 overlap
(share common factors) and the non-overlapping factors of both models
are redundant.9 For these two cases, one cannot use Proposition 5 to

9 To see that the asymptotic variance in Proposition 5 is zero under the
null hypothesis for these two cases, note that the mean–variance portfolios for
factor models 𝐴 and 𝐵 are identical in these two cases. Thus, when applying
Eq. (22) to models 𝐴 and 𝐵, we have that 𝐸[(ℎ𝑡,𝐴 − ℎ𝑡,𝐵)2] = 0. Barillas et al.
(2020) also deal with these two cases when comparing models in the absence
of transaction costs.

test whether two models generate the same mean–variance utility net
of price-impact costs. However, Proposition 6 provides an alternative
asymptotic distribution that can be used in these two cases. Section 3.2
discusses how Propositions 5 and 6 can be used to compare nested or
non-nested factor models.

Proposition 6. Let Assumptions 2.1–2.3 and 3.1 hold. Consider two
nested models A and B containing factors 𝐹𝐴 = [𝐹1, 𝐹2] and 𝐹𝐵 = 𝐹1,
where 𝐹1 and 𝐹2 contain 𝐾1 and 𝐾2 mutually exclusive factors. Partition
the matrix 𝛴𝐴 + 𝛬𝐴∕𝛾 as

𝛴𝐴 + 𝛬𝐴∕𝛾 =
[

𝛴11 + 𝛬11∕𝛾 𝛴12 + 𝛬12∕𝛾
𝛴21 + 𝛬21∕𝛾 𝛴22 + 𝛬22∕𝛾

]

,

where 𝛴22+𝛬22∕𝛾 ∈ R𝐾2×𝐾2 . Then, under the null hypothesis that MVU𝛾
𝐴 =

MVU𝛾
𝐵 , the asymptotic distribution of the difference between the sample

mean–variance utilities net of price-impact costs of the two models 𝐴 and 𝐵
is given by

𝑇 (M̂VU𝛾
𝐴 − M̂VU𝛾

𝐵)
𝐴∼

𝐾2
∑

𝑖=1
𝜉𝑖𝑥𝑖, (24)

where 𝑥𝑖 for 𝑖 = 1,… , 𝐾2 are independent chi-square random variables with
one degree of freedom, and 𝜉𝑖 for 𝑖 = 1,… , 𝐾2 are the eigenvalues of matrix

𝐸[𝑙𝑡𝑙⊤𝑡 ]22𝑊
2𝛾

, (25)

where

𝑊 = (𝛴22 + 𝛬22∕𝛾) − (𝛴21 + 𝛬21∕𝛾)(𝛴11 + 𝛬11∕𝛾)−1(𝛴12 + 𝛬12∕𝛾) and (26)
𝑙𝑡 = (𝛴𝐴 + 𝛬𝐴∕𝛾)−1𝐹𝐴,𝑡 − (𝛴𝐴 + 𝛬𝐴∕𝛾)−1(𝛴𝐴,𝑡 + 𝛬𝐴,𝑡∕𝛾)(𝛴𝐴 + 𝛬𝐴∕𝛾)−1𝜇𝐴.

(27)

This proposition is related to proposition 2 of Kan and Robotti
(2009), which compares nested factor models in terms of their Hansen–
Jagannathan distance in the absence of trading costs. We extend their
result to compare nested factor models in terms of mean–variance
utility net of price-impact costs.10

3.2. Comparing models with any nesting structure

We now show how to compare two factor models with any nesting
structure using Propositions 5 and 6. We consider three cases: (i) non-
nested factor models without overlapping factors, (ii) nested factor
models, and (iii) non-nested factor models with overlapping factors.

When models 𝐴 and 𝐵 are non-nested and have no overlapping
factors, the variance of the asymptotic distribution in (23) is strictly
greater than zero. Therefore, one can directly apply Proposition 5 and
reject the null hypothesis MVU𝛾

𝐴 = MVU𝛾
𝐵 when

√

𝑇 (M̂VU𝛾
𝐴 − M̂VU𝛾

𝐵)
is greater (less) than, for instance, the 97.5th (2.5th) percentile of the
distribution on the right-hand side of (23).

However, as explained in the previous section, one cannot use
Proposition 5 to compare nested factor models because under the null
hypothesis where the extra factors of the larger model are redun-
dant, the variance of the distribution in (23) is zero. Instead, we use
Proposition 6 and reject the null hypothesis MVU𝛾

𝐴 = MVU𝛾
𝐵 when

𝑇 (M̂VU𝛾
𝐴 − M̂VU𝛾

𝐵) is greater than, for instance, the 95th percentile of

10 Note that to compare nested models in the absence of trading costs, one
can either use Proposition 6 with 𝛬 = 0, or run time-series regressions of
the additional factors of the larger model on the common factors of the two
models, and apply the GRS test to assess whether the non-common factors
contribute to expanding the investment opportunity set of the common factors.
Section IA.1 of the Internet Appendix compares these two approaches in the
absence of trading costs and shows that the two methods deliver similar
results.
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the distribution on the right-hand side of (24), in which case the larger
model 𝐴 performs significantly better than the smaller model 𝐵.

Comparing two non-nested models with overlapping factors is more
complicated because, as Barillas et al. (2020) point out, the null hy-
pothesis may hold in two ways: (i) the two models have the same
mean–variance utility net of price-impact costs as the common factors
of the two models, and (ii) the two models have identical mean–
variance utility net of price-impact costs that is higher than that of their
common factors. In the first case, the extra factors of both models are
redundant and Proposition 5 cannot be applied because the variance
of the distribution in (23) is zero. Thus, we test whether the null
hypothesis holds using Proposition 6 where we define a nesting model
containing all factors of models 𝐴 and 𝐵, and a nested model containing
only the common factors of models 𝐴 and 𝐵. If this test does not reject
the null, the two models are statistically indistinguishable in the first
way. However, if this test rejects its null, then the null hypothesis does
not hold in the first way, but it may still hold in the second way, which
can be tested using Proposition 5 because in this case the asymptotic
variance in (23) is greater than zero.

Finally, to empirically characterize the asymptotic distribution in
Proposition 5, one can replace ℎ𝑡 in (22) with its sample counterpart,
ℎ̂𝑡, which guarantees that ∑𝑇

𝑡=1(ℎ̂𝑡,𝐴 − ℎ̂𝑡,𝐵)2∕𝑇 is a consistent estimator
of 𝐸[(ℎ𝑡,𝐴−ℎ𝑡,𝐵)2]. Similarly, to empirically characterize the asymptotic
distribution in Proposition 6, one can replace 𝐸[𝑙𝑡𝑙⊤𝑡 ]22 and 𝑊 in (25)
with their sample counterparts to obtain consistent estimators of the
eigenvalues 𝜉𝑖 in (24).

3.3. The asymptotic variance

In this section, we derive closed-form expressions for the asymptotic
variance in Proposition 5, and use them to study how the statistical
properties of factor models affect the power of our proposed pair-
wise model comparison test. Our main finding is that it is easier
to reject the null hypothesis that the mean–variance utilities net of
price-impact costs of two models are equal not only when the mean–
variance portfolio returns of the two models are positively correlated
as shown by Barillas et al. (2020) for the case without trading costs,
but also when the mean–variance portfolio return of each model is
highly correlated with the rebalancing trades of the portfolio of the
other model, and when the rebalancing trades of the two portfolios are
highly correlated.

Let the matrix of scaled rebalancing trades at time 𝑡 be

𝑌𝑡 =
𝐷1∕2

𝑡 �̃�𝑡
√

𝛾
∈ R𝑁×𝐾 ,

where 𝐷𝑡, defined in (9), is the diagonal matrix whose 𝑛th element, 𝑑𝑛,𝑡,
is the price-impact parameter of stock 𝑛 at time 𝑡. Note that

𝐸[𝑌 ⊤
𝑡 𝑌𝑡] = 𝐸

[ �̃�⊤
𝑡 𝐷𝑡�̃�𝑡

𝛾

]

= 𝛬
𝛾
.

Let �̃�𝑛,𝑡 ∈ R𝐾 be the 𝑛th row of matrix 𝑌𝑡, which contains the scaled
rebalancing trades on the 𝑛th stock required by the 𝐾 factors at time 𝑡.

For simplicity, we assume that the factor returns 𝐹𝑡 and �̃�𝑛,𝑡 are
normally distributed, but similar results can be derived for the case
where they are elliptically distributed.

Assumption 3.2. The factor returns 𝐹𝑡 follow a multivariate normal
distribution with mean 𝜇 and covariance matrix 𝛴. In addition, each
vector �̃�𝑛,𝑡 for 𝑛 = 1,… , 𝑁 follows a multivariate normal distribution
with zero mean and covariance matrix 𝛬𝑛∕𝛾.

The following proposition gives the closed-form expressions for the
asymptotic variance of the sample mean–variance utility net of price-
impact costs of a factor model and that of the difference between the
sample mean–variance utilities of two models. For notational simplic-
ity, we define 𝑢𝑡 = 𝜇⊤(𝛴 + 𝛬∕𝛾)−1𝐹𝑡 ∈ R, which is proportional to

the mean–variance factor portfolio return at time 𝑡, and 𝑣𝑛,𝑡 = 𝜇⊤(𝛴 +
𝛬∕𝛾)−1�̃�𝑛,𝑡 ∈ R, which is proportional to the total scaled rebalancing
trade on stock 𝑛 at time 𝑡 of the mean–variance factor portfolio.

Proposition 7. Let Assumptions 2.1–2.3, 3.1, and 3.2 hold. Then,

𝐸[ℎ2
𝑡 ] = 4var(𝑢𝑡) + 2

[

var(𝑢𝑡)
]2 + 4

𝑁
∑

𝑛=1

[

cov(𝑢𝑡, 𝑣𝑛,𝑡)
]2 + 2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

[

cov(𝑣𝑖,𝑡, 𝑣𝑗,𝑡)
]2 .

(28)

Moreover, given two factor models 𝐴 and 𝐵, we have

𝐸[(ℎ𝑡,𝐴 − ℎ𝑡,𝐵)2] = 𝐸[ℎ2𝑡,𝐴] + 𝐸[ℎ2𝑡,𝐵] − 2𝐸[ℎ𝑡,𝐴ℎ𝑡,𝐵], (29)

where 𝐸[ℎ2𝑡,𝐴] and 𝐸[ℎ2𝑡,𝐵] are given by applying (28) to models 𝐴 and 𝐵,
and

𝐸[ℎ𝑡,𝐴ℎ𝑡,𝐵] = 4cov(𝑢𝐴𝑡 , 𝑢
𝐵
𝑡 ) + 2

[

cov(𝑢𝐴𝑡 , 𝑢
𝐵
𝑡 )
]2 + 2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

[

cov(𝑣𝐴𝑖,𝑡, 𝑣
𝐵
𝑗,𝑡)

]2

+ 2
𝑁
∑

𝑛=1

(

[

cov(𝑢𝐴𝑡 , 𝑣
𝐵
𝑛,𝑡)

]2 +
[

cov(𝑢𝐵𝑡 , 𝑣
𝐴
𝑛,𝑡)

]2
)

. (30)

Eq. (28) shows that the asymptotic variance of the sample mean–
variance utility net of price-impact costs increases not only with the
variance of the mean–variance portfolio returns, var(𝑢𝑡), as shown
by Barillas et al. (2020) for the case without trading costs, but also
with the squared covariance between the mean–variance portfolio re-
turns and the rebalancing trades for each stock in the mean–variance
portfolio, [cov(𝑢𝑡, 𝑣𝑛,𝑡)]2, and with the squared covariance between the
rebalancing trades for different firms in the mean–variance portfolio,
[cov(𝑣𝑖,𝑡, 𝑣𝑗,𝑡)]2.

Eqs. (29) and (30) show that, similar to the case without costs,
the asymptotic variance of the difference between the sample mean–
variance utilities net of price-impact costs of two models increases with
the variance of the mean–variance portfolio return for each of the
two models, and decreases with the covariance of the mean–variance
portfolio returns for the two models, provided that cov(𝑢𝐴𝑡 , 𝑢𝐵𝑡 ) > −1. In
addition, the asymptotic variance of the difference decreases with the
squared covariance between the mean–variance portfolio return of one
model and the rebalancing trades for each stock in the mean–variance
portfolio of the other model, [cov(𝑢𝐴𝑡 , 𝑣𝐵𝑛,𝑡)]2 and [cov(𝑢𝐵𝑡 , 𝑣

𝐴
𝑛,𝑡)]

2, and with
the squared covariance between the rebalancing trades of the stocks in
the mean–variance portfolios of the two models, [cov(𝑣𝐴𝑖,𝑡, 𝑣

𝐵
𝑗,𝑡)]

2.
Consequently, it is easier to reject the null hypothesis that the

mean–variance utilities net of price-impact costs of two models are
equal when the mean–variance portfolio returns of the two models are
highly positively correlated, the mean–variance portfolio return of each
model is highly correlated with the rebalancing trades of the portfolio
of the other model, and the rebalancing trades of the two portfolios are
highly correlated.11

4. Multiple model comparison

In the previous section, we proposed a statistical test to compare
the performance of two factor models in the presence of price-impact
costs, generalizing the pairwise tests of Kan and Robotti (2009) and Bar-
illas et al. (2020). Empirically, one may also want to test whether a
benchmark model delivers a mean–variance utility net of price-impact
costs at least as high as that of any of the multiple models in an
alternative set. In this section, we describe how to use the multiple
model comparison test of Barillas et al. (2020) to compare multiple
models in the presence of price-impact costs. The exposition closely
follows that of Barillas et al. (2020) and we refer the interested reader
to Kan et al. (2013) for the derivation of the test. Sections 4.1 and 4.2
deal with the cases of nested and non-nested models, respectively.

11 To estimate the asymptotic variances, one can plug the sample estimators
�̂�, �̂�, and �̂�𝑛 into the closed-form expressions in Proposition 7.
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4.1. Nested models

Suppose we have a benchmark model and a set of alternative
models that nest the benchmark model. To conduct multiple model
comparison, we first form a ‘‘large’’ model that includes all factors of
the alternative models. In this case, it is straightforward to show that
the benchmark model delivers a mean–variance utility net of price-
impact costs at least as high as that of any of the alternative models
if and only if it delivers the same mean–variance utility net of price-
impact costs as the large model. Because the large model nests the
benchmark model, we can use Proposition 6 in Section 3.1 to test the
null hypothesis that the benchmark model and the large model deliver
the same mean–variance utility net of price-impact costs. If the test
rejects the null hypothesis, then we conclude that the benchmark model
is dominated by one or more of the alternative models. Otherwise, we
fail to reject the hypothesis that the benchmark model performs as well
as any of the alternative models.

4.2. Non-nested models

To compare multiple non-nested models, we use the multiple non-
nested model comparison test of Kan et al. (2013), which is based on
the multivariate inequality test of Wolak (1987, 1989). Suppose there
is a benchmark model 0 and 𝑝 alternative models indexed from 𝑖 = 1 to
𝑝. Let MVU𝛾

𝑖 be the mean–variance utility net of price-impact costs of
model 𝑖 and let 𝛿𝑖 = MVU𝛾

0 − MVU𝛾
𝑖 from 𝑖 = 1 to 𝑝. We would like to

test the null hypothesis that the benchmark model 0 delivers a mean–
variance utility net of price-impact costs at least as high as that of the
𝑝 alternative models:

𝐻0 ∶ 𝛿 ≥ 𝟎𝑝, (31)

where 𝛿 = (𝛿1,… , 𝛿𝑝). Thus, the alternative hypothesis is that there
is at least another model with a higher mean–variance utility net of
price-impact costs than the benchmark model 0.

Let 𝛿 be the sample counterpart of 𝛿 and assume 𝛿 is asymptoti-
cally normally distributed with mean 𝛿 and covariance matrix 𝛴𝛿 .12

Moreover, let 𝛿 be the minimizer to the following quadratic program:

min
𝛿

(

𝛿 − 𝛿
)⊤ 𝛴−1

𝛿

(

𝛿 − 𝛿
)

, (32)

s.t. 𝛿 ≥ 𝟎𝑝, (33)

where 𝛴𝛿 is a consistent estimator of 𝛴𝛿 .13 Then, the likelihood-ratio
test statistic of the null hypothesis in (31) is

𝐿𝑅 = 𝑇
(

𝛿 − 𝛿
)⊤ 𝛴−1

𝛿

(

𝛿 − 𝛿
)

. (34)

A large value of 𝐿𝑅 suggests that the null hypothesis does not
hold. Wolak (1989) characterizes the asymptotic distribution of 𝐿𝑅
under the null hypothesis and the Internet Appendix of Kan et al.
(2013) proposes numerical methods to calculate the 𝑝-value of 𝐿𝑅.

Following Kan et al. (2013) and Barillas et al. (2020), when com-
paring a benchmark model with a set of alternative models, we first
remove any alternative models 𝑖 that are nested by the benchmark
model because 𝛿𝑖 ≥ 0 holds by construction for these models. We also
remove any alternative models that nest the benchmark model because
the asymptotic normality assumption for 𝛿 does not hold under the null
hypothesis 𝛿𝑖 = 0, and instead for these models we conduct a separate

12 Using arguments similar to those in the online appendix of Kan et al.
(2013), it is straightforward to show that a sufficient condition for the
asymptotic normality of 𝛿 is that the mean–variance portfolios of the 𝑝 + 1
models are all different.

13 It is straightforward to show, by generalizing Proposition 5 to the case
with multiple models, that a consistent estimator of 𝛴𝛿 is the sample counter-
part of 𝐸[𝛿ℎ,𝑡𝛿⊤ℎ,𝑡]∕(4𝛾

2), where 𝛿⊤ℎ,𝑡 =
(

ℎ𝑡,0 − ℎ𝑡,1, ℎ𝑡,0 − ℎ𝑡,2,… , ℎ𝑡,0 − ℎ𝑡,𝑝
)

and ℎ𝑡,𝑖
is given by Eq. (22) applied to model 𝑖.

multiple nested model comparison test as described in Section 4.1.
Finally, if any of the remaining alternative models is nested by another
remaining alternative model, we remove the ‘‘nested’’ model because its
mean–variance utility net of price-impact costs cannot be higher than
that of the ‘‘nesting’’ model. We then perform the multiple non-nested
model comparison test on the remaining models using the likelihood-
ratio statistic in (34). We reject the null that the benchmark model
generates a mean–variance utility net of price-impact costs at least as
high as any of the alternative models if the 𝑝-value from either the
nested or non-nested model comparison test is significant.

5. Empirical results: mean–variance utility

In this section, we use the statistical tests of Sections 3 and 4 to
compare the empirical performance of ten factor models in terms of
mean–variance utility net of price-impact costs. Section 5.1 lists the ten
factor models we consider and describes the data we use to construct
their factors. Section 5.2 describes how we estimate the price-impact
costs incurred by different stocks. Section 5.3 reports factor summary
statistics. Section 5.4 reports the pairwise model comparison results
based on the statistical test developed in Section 3. Section 5.5 reports
the multiple model comparison results based on the statistical test
of Barillas et al. (2020) described in Section 4. Finally, as a robustness
check, Section 5.6 compares the out-of-sample performance of the
different models using the bootstrap approach of Fama and French
(2018).

5.1. Factor models and data

Table 1 lists the ten factor models we consider, ordered by increas-
ing number of factors. We consider nine low-dimensional factor models:
the CAPM model of Sharpe (1964) and Lintner (1965), the four-factor
model of Hou et al. (2015), HXZ4, the four-factor model of Fama and
French (1993) and Carhart (1997), FFC4, the five-factor model of Hou
et al. (2021), HMXZ5, the five-factor model of Fama and French (2015),
FF5, the six-factor model of Fama and French (2018), FF6, and the six-
factor model of Barillas and Shanken (2018), BS6. In addition, Fama
and French (2018) and Ball et al. (2016) show that using cash-based
operating profitability instead of accrual-based operating profitability
can improve model performance, and thus, following Detzel et al.
(2023) we consider versions of the five- and six-factor Fama–French
models constructed using cash operating profitability, FF5c and FF6c.
Finally, to evaluate the trading-diversification benefits from combining
a large number of factors, we consider a high-dimensional factor model
containing the 20 factors that DeMiguel et al. (2020, section IA.2) find
statistically significant in the presence of price-impact costs, DMNU20.

To construct the factors associated with the aforementioned ten
factor models, we download data for the 31 tradable factors listed in
Table 2. Our sample spans the period from January 1980 to December
2020. We replicate the construction of twelve factors included in promi-
nent low-dimensional asset-pricing models using the same procedure as
in the papers that originally proposed them. In particular, we construct
the market (MKT), size (SMB), value (HML), profitability (RMW), and
investment (CMA) factors of Fama and French (2015) as well as a
monthly value (HMLm) factor rebalanced monthly instead of annually
and a profitability (RMWc) factor based on cash-based operating prof-
itability instead of accrual-based operating profitability, the momentum
(UMD) factor of Carhart (1997), the profitability (ROE), investment
(IA), and size (ME) factors of Hou et al. (2015), and the expected
growth (EG) factor of Hou et al. (2021).14 Finally, we construct the

14 Section IA.7 of the Internet Appendix shows that our empirical findings
are robust to considering factors constructed using the banding transaction-cost
mitigation strategy used by Detzel et al. (2023). We are grateful to Detzel et al.
(2023) for allowing us to use their replication code.
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Table 1
List of factor models considered.
This table lists the factor models we consider, ordered by increasing number of factors. The first column gives the acronym
of the model, the second column the number of factors in the model (𝐾), the third and fourth columns the authors who
proposed the model, and the date and journal of publication, respectively. The last column lists the acronyms of the factors
in the model.

Acronym 𝐾 Authors Date, journal Factor acronyms

CAPM 1 Sharpe and Lintner 1964, JF and
1965, JF

MKT

HXZ4 4 Hou, Xue & Zhang 2015, RFS MKT, ROE, IA, ME
FFC4 4 Fama & French and

Carhart
1993, JFE
and 1997, JF

MKT, SMB, HML, UMD

HMXZ5 5 Hou, Mo, Xue & Zhang 2021, RF MKT, ROE, IA, ME, EG
FF5 5 Fama & French 2015, JFE MKT, SMB, HML, RMW, CMA
FF5c 5 Fama & French 2015, JFE MKT, SMB, HML, RMWc, CMA
FF6 6 Fama & French 2018, JFE MKT, SMB, HML, RMW, CMA, UMD
FF6c 6 Fama & French 2018, JFE MKT, SMB, HML, RMWc, CMA, UMD
BS6 6 Barillas & Shanken 2018, JF MKT, SMB, HMLm, ROE, IA, UMD
DMNU20 20 DeMiguel,

Martin-Utrera, Nogales
& Uppal

2020, RFS MKT, agr, cashpr, chatoia, chcsho,
convind, egr, ep, gma, idiovol,
indmom, ps, rd_mve, retvol, roaq,
sgr, std_turn, sue, turn, zerotrade

19 factors (other than the market) in the high-dimensional DMNU20
model as the returns on value-weighted long-short portfolios obtained
from single sorts on 19 firm characteristics. In particular, we start with
a database that contains every firm traded on the NYSE, AMEX, and
NASDAQ exchanges. We then drop firms with negative book-to-market
or with market capitalization below the 20th cross-sectional percentile
as in Brandt et al. (2009) and DeMiguel et al. (2020). We then rank
stocks at the beginning of every month based on a particular firm
characteristic and build a long value-weighted portfolio of stocks whose
characteristic is above the 70th percentile and a short value-weighted
portfolio of stocks below the 30th percentile.15

5.2. Estimating price-impact cost parameters

We explain in this section how we estimate the price-impact param-
eter (Kyle’s lambda) of the 𝑛th stock in month 𝑡, the quantity 𝑑𝑛,𝑡 defined
below Eq. (9), which is required for the computation of the price-
impact costs incurred by the factors. Following Novy-Marx and Velikov
(2016), we use the Trade and Quote (TAQ) data from December 2003
to December 2020 to estimate 𝑑𝑛,𝑡 by regressing daily stock returns on
daily order flows:

𝑟𝑛,𝜏 = 𝛼𝑛 + 𝑑𝑛,𝑡OrderFlow𝑛,𝜏 + 𝜀𝑛,𝜏 , (35)

where 𝑟𝑛,𝜏 is the return of stock 𝑛 on day 𝜏 and OrderFlow𝑛,𝜏 is the order
flow of stock 𝑛 on day 𝜏.16 For the earlier part of our sample from Jan-
uary 1980 to December 2003, we estimate 𝑑𝑛,𝑡 following DeMiguel et al.
(2020, appendix IA.2) who rely on the empirical results of Novy-Marx
and Velikov (2016) based on Trade and Quote (TAQ) data.17

15 Section IA.4 of the Internet Appendix shows that our findings are robust
to considering an alternative DMNU20 model whose factors (other than the
market) are constructed using double sorts (instead of single sorts) and without
dropping firms with market capitalization below the 20th cross-sectional
percentile.

16 Order flow is defined as the dollar value of the difference between the
buyer- and seller-initiated trades. The daily order flow data is obtained from
the Millisecond Trade and Quote (TAQ) dataset, and the trades are signed
using the algorithm of Lee and Ready (1991). The price-impact parameters
are estimated monthly using daily observations from the previous year.

17 Specifically, Novy-Marx and Velikov (2016) show that the R-squared of
a cross-sectional regression of log price-impact parameters on log market
capitalization is 70% and the slope is statistically indistinguishable from minus
one. This suggests that a good approximation to the cross-sectional variation
of price-impact parameters is to assume they are inversely proportional to
market capitalization. Therefore, for months between December 1993 and
December 2003, we use figure 4 in Novy-Marx and Velikov (2016) to recover

As in Korajczyk and Sadka (2004) and Novy-Marx and Velikov
(2016), we express all quantities, including the optimal factor port-
folio 𝜃, in terms of market capitalization at the end of our sample
(December 2020). To make price-impact costs comparable over the
entire estimation window from 1980 to 2020, we scale the price-impact
parameter, 𝑑𝑛,𝑡, by multiplying it with the ratio of the aggregate market
capitalization in month 𝑡 to that in December 2020.18

5.3. Factor summary statistics

Table 3 reports summary statistics for the 31 factors listed in Ta-
ble 2. The first column gives the acronym of the factor. The second
and third columns give the average monthly gross factor return and
its 𝑡-statistic. The fourth, fifth, and sixth columns give the average
monthly net-of-price-impact-costs factor return, its 𝑡-statistic, and the
factor’s monthly price-impact cost (PIC), when one invests one billion
dollars in each leg of the factor. The seventh and eighth columns give
the factor’s monthly turnover (TO) and the factor’s capacity, defined
as the total investment that can be allocated to each leg of the factor
before price-impact costs erode its gross return entirely. The ninth
column reports the average of the monthly trade-weighted market
capitalization, and the last column reports the average of the trade-
weighted market capitalization at the end of June. Average returns and
turnovers are reported in percentage. Price-impact costs are reported in
basis points. Investment positions, capacity, and trade-weighted market
capitalization are reported in terms of market capitalization at the end
of our sample, which spans January 1980 to December 2020.

Consistent with the findings of Detzel et al. (2023), we find that,
among the factors constructed from double and triple sorts, factors
that are rebalanced monthly (HMLm, UMD, ROE, IA, ME, EG) have
monthly turnovers ranging between 20.20% to 52.38% that are much
higher than those of factors that are rebalanced annually (SMB, HML,
RMW, RMWc, CMA), which range between 7.54% and 14.44%. As a

estimates of the cross-sectional average price elasticity of stock supply, defined
as the product of the estimated price impact per dollar traded and market
capitalization, and estimate the price-impact parameter of stock 𝑛 in month 𝑡
as the ratio of the average price elasticity of supply in month 𝑡 to the market
capitalization of stock 𝑛 in month 𝑡. In addition, we estimate the price-impact
parameter of stock 𝑛 in month 𝑡 from January 1980 to December 1993 as the
ratio of 6.5 to the market capitalization of stock 𝑛 in month 𝑡, where 6.5 is
the time-series average of the average cross-sectional price elasticity.

18 Section IA.8 of the Internet Appendix shows the relative performance of
the ten factor models is robust to estimating the price-impact parameters using
the results of Frazzini et al. (2018).
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List of factors considered.
This table lists the 31 factors we consider. Panel A lists twelve factors that replicate those in the prominent low-dimensional asset-pricing models listed in Table 1. Except for the
market factor, each of these factors is constructed as value-weighted portfolios obtained from double or triple sorts on firm characteristics. Panel B lists 19 factors constructed
using value-weighted long-short portfolios from single sorts on characteristics that, together with the market factor, compose the 20-factor model of DeMiguel et al. (2020). The
first column gives the factor index, the second column gives the factor’s definition, the third column gives the acronym and the fourth and fifth columns give the authors who
analyzed them and the publication date and journal.

# Definition Acronym Author(s) Date and
journal

Panel A: Market factor and factors constructed from double and triple sorts
1 Market: value-weighted portfolio of all tradable stocks in US equity markets. MKT Sharpe 1964, JF
2 Small-minus-big: value-neutral portfolio that is long stocks with small market capitalization and

is short stocks with large market capitalization.
SMB Fama & French 1993, JFE

3 High-minus-low: size-neutral portfolio that is long stocks with high book-to-market ratios and
is short stocks with low book-to-market ratios.

HML Fama & French 1993, JFE

4 High-minus-low (monthly): size-neutral portfolio that is long stocks with high book-to-market
ratios and is short stocks with low book-to-market ratios, rebalanced monthly instead of
annually.

HMLm Fama & French 1993, JFE

5 Robust-minus-weak: size-neutral portfolio that is long stocks with high accruals-based operating
profitability and is short stocks with low accruals-based operating profitability.

RMW Fama & French 2015, JFE

6 Robust-minus-weak (cash based): size-neutral portfolio that is long stocks with high cash-based
operating profitability and is short stocks with low cash-based operating profitability.

RMWc Fama & French 2015, JFE

7 Conservative-minus-aggressive: size-neutral portfolio that is long stocks with high investment
and is short stocks with low investment.

CMA Fama & French 2015, JFE

8 Momentum: portfolio that is long stocks with the largest return over the past 12 months,
skipping the last month, and is short stocks with the lowest return over the past 12 months,
skipping the last month.

UMD Carhart 1997, JF

9 Return on equity: portfolio that is long stocks with high profitability and is short stocks with
low profitability.

ROE Hou, Xue & Zhang 2015, RFS

10 Investment: portfolio that is long stocks with high investment and is short stocks with low
investment.

IA Hou, Xue & Zhang 2015, RFS

11 Size: portfolio that is long stocks with low market capitalization and is short stocks with large
market capitalization.

ME Hou, Xue & Zhang 2015, RFS

12 Expected growth: portfolio that is long stocks with high expected investment growth and is
short stocks with low expected investment growth.

EG Hou, Mo, Xue & Zhang 2021, RF

Panel B: Factors constructed from single sorts
13 Asset growth: Annual percent change in total assets agr Cooper, Gulen & Schill 2008, JF
14 Cash productivity: Fiscal year-end market capitalization plus long term debt minus total assets

divided by cash and equivalents
cashpr Chandrashekar & Rao 2009, WP

15 Industry adjusted change in asset turnover: 2-digit SIC fiscal-year mean adjusted change in
sales divided by average total assets

chatoia Soliman 2008, TAR

16 Change in shares outstanding: Annual percent change in shares outstanding chcsho Pontiff & Woodgate 2008, JF
17 Convertible debt indicator: An indicator equal to 1 if company has convertible debt obligations convind Valta 2016, JFQA
18 Change in common shareholder equity: Annual percent change in equity book value egr Richardson, Sloan, Soliman

& Tuna
2005, JAE

19 Earnings to price: Annual income before extraordinary items divided by end of fiscal year
market cap

ep Basu 1977, JF

20 Gross profitability: Revenues minus cost of goods sold divided by lagged total assets gma Novy-Marx 2013, JFE
21 Idiosyncratic return volatility: Standard deviation of residuals of weekly returns on weekly

equal weighted market returns for 3 years prior to month-end
idiovol Ali, Hwang & Trombley 2003, JFE

22 Industry momentum: Equal weighted average industry 12-month returns indmom Moskowitz & Grinblatt 1999, JF
23 Financial-statements score: Sum of 9 indicator variables to form fundamental health score ps Piotroski 2000, JAR
24 R&D to market cap: R&D expense divided by end-of-fiscal-year market cap rd_mve Guo, Lev & Shi 2006, JBFA
25 Return volatility: Standard deviation of daily returns from month 𝑡 − 1 retvol Ang, Hodrick, Xing &

Zhang
2006, JF

26 Return on assets: Income before extraordinary items divided by one quarter lagged total assets roaq Balakrishnan, Bartov &
Faurel

2010, JAE

27 Annual sales growth: Annual percent change in sales sgr Lakonishok, Shleifer &
Vishny

1994, JF

28 Volatility of share turnover: Monthly standard deviation of daily share turnover std_turn Chordia, Subrahmanyan &
Anshuman

2001, JFE

29 Unexpected quarterly earnings: Unexpected quarterly earnings divided by fiscal-quarter-end
market cap. Unexpected earnings is I/B/E/S actual earnings minus median forecasted earnings
if available, else it is the seasonally differenced quarterly earnings before extraordinary items
from Compustat quarterly file

sue Rendelman, Jones &
Latane

1982, JFE

30 Share turnover: Average monthly trading volume for most recent 3 months scaled by number
of shares outstanding in current month

turn Datar, Naik & Radcliffe 1998, JFM

31 Zero trading days: Turnover weighted number of zero trading days for most recent month zerotrade Liu 2006, JFE

result, the annually rebalanced factors have, on average, lower price-
impact costs and higher capacity than the monthly rebalanced factors.
In particular, the average monthly price-impact cost and capacity of the
five annually rebalanced factors are 1.66 basis points and 15.66 billion
dollars, respectively, while those of the six monthly rebalanced factors
are 5.65 basis points and 6.96 billion dollars, respectively. However, we
also find that the relative performance of factors in terms of turnover
is different from that in terms of price-impact cost. For instance, while
UMD is the factor with the highest turnover, ROE is the factor with the

highest price-impact cost. Specifically, for the case where one invests
one billion dollars in each leg of the factors, the monthly price-impact
cost of UMD is around eight basis points, but that of ROE is almost
eleven basis points.

To understand the difference in the relative performance of factors
in terms of turnover and price-impact cost, the last two columns
of Table 3 report the average trade-weighted market capitalization
(in billions of dollars) of the different factors listed in Table 2. In
particular, for each factor we compute the monthly trade-weighted
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Table 3
Factor summary statistics.
This table reports several summary statistics of the factors listed in Table 2. The first column gives the acronym of the factor. The second and third columns give the average
monthly gross factor return and its 𝑡-statistic. The fourth, fifth, and sixth columns give the average monthly net-of-price-impact-costs factor return, its 𝑡-statistic, and the factor’s
monthly price-impact cost (PIC), when one invests one billion dollars in each leg of the factor. The seventh and eighth columns give the factor’s monthly turnover (TO) and
the factor’s capacity, defined as the total investment that can be allocated to each leg of the factor before price-impact costs erode its gross return entirely. The ninth column
reports the average of the monthly trade-weighted market capitalization, and the last column reports the average of the trade-weighted market capitalization at the end of June.
Average returns and turnovers are reported in percentage. Price-impact costs are reported in basis points. Investment positions, capacity, and trade-weighted market capitalization
are reported in terms of market capitalization at the end of our sample, which spans January 1980 to December 2020.

Factor Gross returns (%) Net returns (%) Costs (bp), turnover (%), Trade-weighted
and capacity ($B) market cap ($B)

Average 𝑡-stat Average 𝑡-stat PIC TO Capacity Monthly June

Panel A: Market and factors constructed from double and triple sorts
MKT 0.70 3.46 0.70 3.46 0.01 2.15 – 160.97 146.74
SMB 0.10 0.73 0.09 0.69 0.53 7.54 18.74 69.70 43.86
HML 0.14 1.04 0.13 0.93 1.51 9.94 9.36 71.83 46.49
HMLm 0.18 1.05 0.13 0.79 4.32 21.20 4.07 56.83 46.84
RMW 0.37 3.60 0.36 3.45 1.50 10.11 24.84 64.63 54.43
RMWc 0.38 4.39 0.36 4.14 2.08 12.10 18.10 75.02 65.92
CMA 0.19 2.37 0.17 2.03 2.66 14.44 7.24 79.87 82.70
UMD 0.58 2.89 0.49 2.49 8.04 52.38 7.15 86.85 83.59
ROE 0.53 4.48 0.42 3.55 10.88 37.92 4.90 59.60 52.57
IA 0.27 3.19 0.22 2.56 5.31 26.10 5.18 70.66 64.91
ME 0.15 1.12 0.13 0.98 1.84 20.20 8.05 69.92 56.38
EG 0.44 4.55 0.40 4.19 3.53 21.49 12.38 57.16 52.18
Panel B: Factors constructed from single sorts
agr 0.12 0.97 0.11 0.88 1.11 15.03 10.52 142.94 164.99
cashpr 0.03 0.24 0.03 0.21 0.35 8.14 9.72 164.96 168.72
chatoia 0.15 1.79 0.14 1.64 1.30 16.33 11.83 166.35 178.34
chcsho 0.25 2.37 0.24 2.27 1.05 14.06 23.68 164.33 186.20
convind 0.09 0.95 0.08 0.91 0.38 6.27 23.11 148.39 137.27
egr 0.16 1.40 0.14 1.30 1.07 14.94 14.50 145.78 167.80
ep 0.21 1.24 0.20 1.16 1.40 14.83 14.98 123.87 145.20
gma 0.20 1.44 0.19 1.43 0.20 6.67 99.17 169.59 135.04
idiovol 0.01 0.03 −0.01 −0.05 2.21 11.40 0.40 77.05 78.75
indmom 0.17 1.07 0.14 0.91 2.52 41.45 6.71 179.78 173.57
ps 0.09 0.96 0.07 0.77 1.80 16.85 5.15 152.00 179.35
rd_mve 0.55 2.83 0.52 2.71 2.32 11.66 23.50 162.90 187.75
retvol 0.26 0.99 0.09 0.32 17.35 83.83 1.49 105.13 89.57
roaq 0.18 1.17 0.15 0.98 2.85 24.74 6.26 111.30 100.76
sgr 0.13 0.99 0.12 0.91 1.12 15.28 11.85 157.74 179.76
std_turn 0.16 0.83 0.09 0.46 7.17 77.89 2.28 120.65 102.09
sue 0.20 1.86 0.12 1.16 7.46 45.62 2.65 112.75 88.56
turn 0.07 0.36 0.05 0.24 2.41 29.27 2.97 171.17 160.43
zerotrade 0.22 1.14 0.13 0.68 9.03 62.61 2.48 176.73 167.21

market capitalization of the stocks traded by the factor and report the
time-series average. Table 3 shows that, as expected, the factor that
trades in the largest, and thus, most liquid stocks is the market (MKT).
Specifically, the average firm traded by the MKT factor has a market
capitalization of 160.97 billion dollars. In contrast, the average market
capitalization of the stocks traded by the return on equity (ROE) and
the investment (IA) factors of Hou et al. (2015) is only 59.60 and 70.66
billion dollars, respectively, and that of the expected growth (EG) factor
of Hou et al. (2021) is the smallest at 57.16 billion dollars. The low
market capitalization of the average stock traded by the ROE factor
explains why the price-impact cost of ROE is much higher than that of
UMD, even though UMD has a substantially higher turnover. Finally,
Panel B shows that the trade-weighted market capitalization of the
factors constructed from single sorts is substantially larger than that
of the factors obtained from double and triple sorts. This is because
the factors obtained from single sorts assign a much lower weight to
small stocks compared to factors obtained from double or triple sorts,
which use market capitalization as one of the sorting variables. As a
result, although the monthly turnover of the factors from single sorts
is comparable to that of the factors from double and triple sorts, their
price-impact costs are generally lower.

In summary, the results in this section show that the price-impact
costs incurred by the different factors depend not only on the turnover
required to rebalance them, which was highlighted by Detzel et al.
(2023) as an important driver in the context of proportional transaction
costs, but also on the size and liquidity of the stocks traded.

5.4. Pairwise model comparison

We now compare the ten models listed in Table 1 in terms of
mean–variance utility net of price-impact costs using the pairwise
model comparison test developed in Section 3. Like Gârleanu and
Pedersen (2013), we consider a base case with an absolute risk-aversion
parameter of 𝛾 = 10−9, which corresponds to an investor with a
relative risk-aversion parameter of five and an endowment of five
billion dollars. In addition, we consider cases where the investor has
the same relative risk-aversion parameter, but her endowment is ten
times larger or smaller than in the base case; that is, when 𝛾 = 10−10 or
𝛾 = 10−8. For a constant relative risk-aversion level, a lower absolute
risk-aversion parameter implies a larger investor, and thus price-impact
costs play a more important role in the investor’s mean–variance utility.

Note that the CAPM model is nested in all other models, HXZ4 is
nested in HMXZ5, FFC4 and FF5 are nested in FF6, and FFC4 and FF5c
are nested in FF6c. Thus, we use Proposition 6 to compare these nested
models. Also, all models have one common market factor. Therefore,
following our discussion in Section 3.2, we compare non-nested models
with overlapping factors in two stages. First, we use Proposition 6 to
test whether a model with all factors in the two models yields the
same utility net of price-impact costs as a model with only the common
factors. If the test does not reject the null, then the two models are
statistically indistinguishable.19 If the test rejects the null, we then

19 For every non-nested pairwise model comparison, we report the 𝑝-value
for the second-stage test provided that the first-stage test is significant at
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Table 4
Pairwise model comparison without price-impact costs.
This table reports the 𝑝-values for all pairwise model comparisons in the absence of trading costs, that is, when the expected price-impact matrix
𝛬 = 0. Panel A reports the scaled sample mean–variance utility of each of the ten factor models in the absence of trading costs. Panel B reports
the 𝑝-value for the difference in mean–variance utility between each row and column model. The 𝑝-value is computed using Proposition 5 when
the row and column models overlap and Proposition 6 when the row model is nested in the column model.

Panel A: Mean–variance utilities without trading costs

2𝛾MVU𝛾 CAPM HXZ4 FFC4 HMXZ5 FF5 FF5c FF6 FF6c BS6 DMNU20

0.0217 0.1316 0.0586 0.2129 0.1129 0.1508 0.1277 0.1603 0.1535 0.1247

Panel B: 𝑝-values

CAPM HXZ4 FFC4 HMXZ5 FF5 FF5c FF6 FF6c BS6 DMNU20

CAPM 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
HXZ4 0.003 0.000 0.245 0.278 0.433 0.167 0.082 0.434
FFC4 0.000 0.039 0.005 0.000 0.000 0.000 0.044
HMXZ5 0.004 0.055 0.006 0.071 0.061 0.028
FF5 0.022 0.027 0.023 0.105 0.381
FF5c 0.160 0.067 0.470 0.270
FF6 0.035 0.163 0.470
FF6c 0.415 0.203
BS6 0.260

implement the second-stage test that uses Proposition 5 to compare the
two models.20

To understand how price-impact costs affect the relative perfor-
mance of the ten factor models, we first compare their performance
in the absence of price-impact costs. Panel A in Table 4 reports the
scaled sample mean–variance utility of each model in the absence of
price-impact costs and Panel B reports the 𝑝-values for all pairwise
comparisons. To facilitate the comparison of utilities across different
values of the absolute risk-aversion parameter, we report all mean–
variance utilities scaled by multiplying them by 2𝛾. Also, to simplify
notation, herein we use the symbol MVU𝛾 instead of M̂VU

𝛾
to refer

to the sample mean–variance utility. Our main observation is that in
the absence of price-impact costs, HMXZ5 is the best model. To see
this, note first that the mean–variance utility delivered by the HMXZ5
model is the highest among all ten models we consider. Moreover, the
differences between the utility generated by the factors in the HMXZ5
model and those derived from other more parsimonious models with
fewer factors (CAPM, HXZ4, and FFC4) are statistically significant at
the 1% level. Finally, the mean–variance utility of the HMXZ5 model

the 5% confidence level. Out of all non-nested pairwise comparisons in the
manuscript, we find that there is a single comparison (HXZ4 versus BS6 for
𝛾 = 10−10 in Table IA.19) for which the first-stage test fails to reject the null
hypothesis at the 5% level. For this comparison, we report the 𝑝-value for
the first-stage test 0.061, which is less significant than that for the second-
stage test 0.028. Out of all non-nested pairwise comparisons in the Internet
Appendix, we find that there is a single comparison (HXZ4 versus BS6 for
𝛾 = 10−10 in Table IA.19) for which the first-stage test fails to reject the null
hypothesis at the 5% level. For this comparison, we report the 𝑝-value for the
first-stage test 0.056, which is less significant than that for the second-stage
test 0.036.

20 In detail, the 𝑝-values are computed as follows. Assume without loss of
generality that the sample mean–variance utilities net of price-impact costs for
models 𝐴 and 𝐵 satisfy MVU𝛾

𝐴 > MVU𝛾
𝐵 (to simplify the exposition we drop

the hat symbol for sample mean–variance utilities in this footnote). Then, we
compute the 𝑝-value as the integral over the values greater than MVU𝛾

𝐴−MVU𝛾
𝐵

of the probability density function in (23) if the two models are non-nested and
of the probability density function in (24) if they are nested. Like Barillas et al.
(2020), we use the bias-adjusted values of MVU𝛾

𝐴 and MVU𝛾
𝐵 when comparing

non-nested factor models using Proposition 5. This is because the asymptotic
distribution in (23) fails to capture the finite-sample bias in estimates of mean–
variance utility. Section IA.2 of the Internet Appendix details the procedure
we use to adjust the bias. However, when using Proposition 6 to compare
nested factor models, we use the raw values of MVU𝛾

𝐴 and MVU𝛾
𝐵 because the

asymptotic distribution in (24) adequately captures the finite-sample bias of
the sample mean–variance utility. This is also demonstrated by the bootstrap
experiments in Section IA.3 of the Internet Appendix.

is also significantly higher than those of the FF5, FF6, and DMNU20
models at the 5% confidence level, and those of the FF5c, FF6c, and
BS6 models at the 10% confidence level. Overall, we conclude that the
HMXZ5 model best spans the investment opportunity set in the absence
of costs.

Table 5 reports the performance of the ten models in the presence
of price impact for our base case with absolute risk aversion 𝛾 =
10−9. Our main finding is that price-impact costs change the relative
performance of the different models: While HMXZ5 was the best model
in the absence of trading costs, its mean–variance utility is lower than
those of the FF5, FF5c, FF6, FF6c, BS6, and DMNU20 models in the
presence of price-impact costs. Moreover, the difference between the
mean–variance utilities net of price-impact costs of the DMNU20 and
HMXZ5 models is significant at the 10% confidence level, and the 𝑝-
value for the difference between the utilities of the FF6c and HMXZ5
models is just above 10%, at 12.3%.

The explanation for the poor performance of the HMXZ5 model
in the presence of price impact is not only that its investment and
profitability factors require higher turnover than those of the Fama–
French models, but also that they require trading stocks with smaller
market capitalization, and thus, less liquid. For instance, the seventh
column of Table 3 shows that the monthly turnovers of the ROE and
IA factors included in HMXZ5 are 37.92 and 26.10%, while those
of the RMWc and CMA factors included in FF5c and FF6c are only
12.10 and 14.44%. Also, the ninth column of Table 3 shows that
the trade-weighted market capitalizations of the stocks of the ROE
and IA factors are 59.60 and 70.66 billion dollars, while those of the
RMWc and CMA factors are 75.02 and 79.87 billion dollars. Thus,
the investment and profitability factors of the HMXZ5 model require
trading smaller (less liquid) stocks compared to the RMWc and CMA
factors in FF5c and FF6c. Similarly, the expected growth factor (EG) in
HMXZ5 has a monthly turnover of 21.49% and a trade-weighted market
capitalization of only 57.16 billion dollars, which is the second lowest
of all 31 factors listed in Table 2. Thus, investing in the factors in the
HMXZ5 model incurs high price-impact costs.

Table 5 also shows that the cash-profitability six-factor Fama–
French model (FF6c) is the best low-dimensional model in the presence
of price-impact costs because it significantly outperforms the CAPM,
HXZ4, FFC4, and FF5c models at the 1% confidence level, the BS6
model at the 5% level, and the FF5 model at the 10% level.21 Also,

21 This result is counterintuitive because the FF6c model is obtained by
adding the momentum factor to FF5c and trading the momentum factor incurs
high price-impact costs as illustrated in the sixth column of Table 3. The
explanation for this is twofold. First, as shown in the second column of Table 3,
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Table 5
Pairwise model comparison with price-impact costs.
This table reports the 𝑝-values for all pairwise model comparisons in the presence of price-impact costs for the base case with absolute
risk-aversion parameter 𝛾 = 10−9. Panel A reports the scaled sample mean–variance utility net of price-impact costs of each of the ten factor
models. Panel B reports the 𝑝-value for the difference in mean–variance utility net of price-impact costs between each row and column model.
The 𝑝-value is computed using Proposition 5 when the row and column models overlap and Proposition 6 when the row model is nested in
the column model.

Panel A: Mean–variance utilities net of price-impact costs

2𝛾MVU𝛾 CAPM HXZ4 FFC4 HMXZ5 FF5 FF5c FF6 FF6c BS6 DMNU20

0.0216 0.0402 0.0407 0.0571 0.0596 0.0627 0.0730 0.0756 0.0594 0.0868

Panel B: 𝑝-values

CAPM HXZ4 FFC4 HMXZ5 FF5 FF5c FF6 FF6c BS6 DMNU20

CAPM 0.001 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
HXZ4 0.479 0.000 0.057 0.025 0.010 0.004 0.008 0.015
FFC4 0.117 0.089 0.045 0.000 0.000 0.000 0.021
HMXZ5 0.440 0.351 0.180 0.123 0.429 0.081
FF5 0.332 0.002 0.078 0.496 0.106
FF5c 0.175 0.002 0.392 0.139
FF6 0.357 0.095 0.257
FF6c 0.050 0.302
BS6 0.104

Table 6
Pairwise model comparison with price-impact costs for 𝛾 = 10−10.
This table reports the 𝑝-values for all pairwise model comparisons in the presence of price-impact costs for the case with low absolute risk
aversion 𝛾 = 10−10. Panel A reports the scaled sample mean–variance utility net of price-impact costs of each of the ten factor models. Panel
B reports the 𝑝-value for the difference in mean–variance utility net of price-impact costs between each row and column model. The 𝑝-value
is computed using Proposition 5 when the row and column models overlap and Proposition 6 when the row model is nested in the column
model.

Panel A: Mean–variance utilities net of price-impact costs

2𝛾MVU𝛾 CAPM HXZ4 FFC4 HMXZ5 FF5 FF5c FF6 FF6c BS6 DMNU20

0.0215 0.0237 0.0246 0.0261 0.0297 0.0281 0.0323 0.0307 0.0263 0.0488

Panel B: 𝑝-values

CAPM HXZ4 FFC4 HMXZ5 FF5 FF5c FF6 FF6c BS6 DMNU20

CAPM 0.021 0.048 0.001 0.004 0.007 0.001 0.002 0.014 0.000
HXZ4 0.327 0.000 0.069 0.073 0.019 0.015 0.061 0.007
FFC4 0.296 0.066 0.070 0.000 0.000 0.073 0.008
HMXZ5 0.221 0.290 0.095 0.109 0.475 0.012
FF5 0.185 0.000 0.331 0.179 0.020
FF5c 0.036 0.000 0.252 0.016
FF6 0.181 0.042 0.032
FF6c 0.036 0.025
BS6 0.011

although the high-dimensional DMNU20 model achieves higher mean–
variance utility than the FF6c model, the difference between the
utilities of the FF6c and DMNU20 models is not significant (𝑝-value of
30.2%), and thus FF6c is preferable because of its parsimony. Overall,
the pairwise comparisons show that while the HMXZ5 model was the
best at spanning the investment opportunity set in the absence of
costs, the FF6c model is best at spanning the achievable investment
opportunity set in the presence of price-impact costs.

The finding that DMNU20 does not significantly outperform FF6c
for the base case with 𝛾 = 10−9 is surprising because DeMiguel et al.
(2020) find that in the presence of trading costs, high-dimensional
models are likely to perform well because the benefits from trading
diversification increase with the number of factors. To shed light on this
result, we consider a case with a lower absolute risk aversion 𝛾 = 10−10,
which corresponds to an investor with the same relative risk aversion

the momentum factor achieves the second-highest average gross return among
the 31 factors we consider. Second, even though momentum is expensive when
traded in isolation, it is much cheaper to trade in combination with the other
five factors in the FF6c model because of trading diversification (DeMiguel
et al., 2020). Indeed, Section IA.6 of the Internet Appendix reports summary
statistics of the optimal portfolio weights for the different factor models,
and shows that trading diversification greatly reduces the price-impact cost
incurred by FF6c.

as in our base case, but with an endowment ten times higher than
that in the base case. For this level of absolute risk aversion, price-
impact costs should play a more important role and we expect that
the high-dimensional DMNU20 model should dominate other factor
models because of the benefits from trading diversification. Table 6
confirms this intuition: the high-dimensional model DMNU20 signifi-
cantly outperforms every low-dimensional model at the 5% confidence
level.22 Among the low-dimensional models, FF6 achieves the highest
mean–variance utility net of price-impact costs, with the 𝑝-value for the
difference being significant at the 10% level for every low-dimensional
model except FF6c.

Finally, Table 7 reports the results for the case with a higher
absolute risk-aversion parameter, 𝛾 = 10−8, which corresponds to an
investor with the same relative risk aversion as in the base case, but

22 An alternative explanation for the favorable performance of the DMNU20
model for the case with low absolute risk aversion is that DMNU20 includes
factors constructed using single sorts after dropping stocks with market capital-
ization below the 20th cross-sectional percentile, which, as shown in Table 3,
trade stocks with higher market capitalization than the Fama–French factors
obtained using double sorts on the entire cross section of stocks. However,
Section IA.4 of the Internet Appendix shows that the results in Table 6 are
robust to considering a DMNU20 model whose factors are constructed using
double sorts and including all stocks.
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Table 7
Pairwise model comparison with price-impact costs for 𝛾 = 10−8.
This table reports the 𝑝-values for all pairwise model comparisons in the presence of price-impact costs for the case with high absolute risk
aversion 𝛾 = 10−8. Panel A reports the scaled sample mean–variance utility net of price-impact costs of each of the ten factor models. Panel
B reports the 𝑝-value for the difference in mean–variance utility net of price-impact costs between each row and column model. The 𝑝-value
is computed using Proposition 5 when the row and column models overlap and Proposition 6 when the row model is nested in the column
model.

Panel A: Mean–variance utilities net of price-impact costs

CAPM HXZ4 FFC4 HMXZ5 FF5 FF5c FF6 FF6c BS6 DMNU20

2𝛾MVU𝛾 0.0217 0.0958 0.0556 0.1517 0.0980 0.1255 0.1145 0.1382 0.1249 0.1086

Panel B: 𝑝-values

CAPM HXZ4 FFC4 HMXZ5 FF5 FF5c FF6 FF6c BS6 DMNU20

CAPM 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
HXZ4 0.015 0.000 0.456 0.108 0.154 0.035 0.027 0.336
FFC4 0.001 0.053 0.008 0.000 0.000 0.000 0.047
HMXZ5 0.027 0.180 0.082 0.313 0.187 0.087
FF5 0.034 0.015 0.027 0.145 0.364
FF5c 0.295 0.031 0.492 0.308
FF6 0.052 0.297 0.425
FF6c 0.290 0.192
BS6 0.319

with an endowment ten times lower than that in the base case. For
this case, price-impact costs are less important, and thus, we expect
the relative performance of the different models to be similar to that in
the absence of costs. Table 7 confirms this intuition: the HMXZ5 model
delivers the highest mean–variance utility net of price-impact costs
among all ten models. Moreover, the differences between the utility
generated by the factors in the HMXZ5 model and those derived from
other more parsimonious models with fewer factors (CAPM, HXZ4, and
FFC4) are statistically significant at the 1% level. Finally, the mean–
variance utility of the HMXZ5 model is also significantly higher than
that of the FF5 model at the 5% level and the FF6 and DMNU20 models
at the 10% level. Overall, HMXZ5 is the best model just as in the case
without trading costs.

In summary, the pairwise model comparisons show that accounting
for price-impact costs results in a more nuanced comparison of the
various factor models we consider—HMXZ5, FF6c, and DMNU20 are
the best models at spanning the achievable investment opportuni-
ties of investors with high, medium, and low absolute risk aversion,
respectively.

5.5. Multiple model comparison

In the previous section, we discussed the results from all pair-
wise comparisons of the ten models. In this section, we discuss the
results from the multiple model comparisons obtained using the test
of Barillas et al. (2020) described in Section 4. As mentioned above,
the CAPM, HXZ4, FFC4, FF5, and FF5c models are nested by at least
another model. Therefore, as discussed in Section 4, for these models
we perform both nested and non-nested multiple model comparison
tests, and reject the null that the benchmark model generates a mean–
variance utility net of price-impact costs at least as high as that of any
other model if the 𝑝-value from either the nested or non-nested test is
significant.

Table 8 reports the 𝑝-values for the multiple model comparisons
for the base case with price-impact costs and absolute risk aversion
𝛾 = 10−9. The first and second columns report the acronym of the
benchmark model and its scaled sample mean–variance utility net
of price-impact costs (2𝛾MVU𝛾 ). The third, fourth, and fifth columns
report the number of alternative models considered in the multiple non-
nested model comparison (𝑛), the value of the likelihood-ratio statistic
(𝐿𝑅), and the 𝑝-value for the multiple non-nested model comparison.
The sixth and seventh columns report the number of alternative models
considered in the multiple nested model comparison (𝑚) and the 𝑝-value
for the multiple nested model comparison.

Table 8 confirms the finding from the pairwise model compar-
isons that the cash-profitability six-factor Fama–French model (FF6c)

Table 8
Multiple model comparison with price-impact costs.
This table reports the 𝑝-values for the multiple model comparisons in the presence of
price-impact costs for the base case with absolute risk-aversion parameter 𝛾 = 10−9.
The first and second columns report the acronym of the benchmark model and its
scaled sample mean–variance utility net of price-impact costs (2𝛾MVU𝛾 ). The third,
fourth, and fifth columns report the number of alternative models considered in the
multiple non-nested model comparison (𝑛), the value of the likelihood-ratio statistic
(𝐿𝑅), and the 𝑝-value for the multiple non-nested model comparison. The sixth and
seventh columns report the number of alternative models considered in the multiple
nested model comparison (𝑚) and the 𝑝-value for the multiple nested model comparison.

Benchmark
model

2𝛾MVU𝛾 𝑛 𝐿𝑅 𝑝-value
(non-nested)

𝑚 𝑝-value
(nested)

CAPM 0.0216 9 0.000
HXZ4 0.0402 4 9.83 0.005 1 0.000
FFC4 0.0407 5 15.95 0.000 2 0.000
HMXZ5 0.0571 4 2.46 0.156
FF5 0.0596 4 2.80 0.161 1 0.002
FF5c 0.0627 4 1.54 0.317 1 0.002
FF6 0.0730 4 0.52 0.553
FF6c 0.0756 4 0.27 0.668
BS6 0.0594 4 3.49 0.134
DMNU20 0.0868 4 0.00 0.668

performs relatively well for our base case with absolute risk-aversion
𝛾 = 10−9. For instance, FF6c has the lowest likelihood-ratio statistic
(0.27) among the low-dimensional models, and the multiple model
comparison test cannot reject the null that FF6c achieves a mean–
variance utility net of price-impact costs at least as high as that of
any other model. To see this, note that the FF6c model is not nested
by any other model and the 𝑝-value for the multiple non-nested model
comparison is 0.668.

Table 8 also shows that the CAPM, HXZ4, FFC4, FF5, and FF5c mod-
els are rejected by the multiple nested model comparison. However, the
multiple model comparison cannot reject the HMXZ5, FF6, BS6, and
DMNU20 models, all of which have 𝑝-values for the multiple non-nested
model comparison that are not significant at the 10% level. This result
is consistent with the pairwise model comparison results in Table 5,
which show that FF6c does not significantly outperform HMXZ5, FF6,
and DMNU20 at the 10% confidence level. Nonetheless, overall FF6c
is the best model for our base case with 𝛾 = 10−9 because of its high
sample mean–variance utility net of price-impact costs, its high 𝑝-value
for the multiple model comparison test, and its parsimony compared to
the high-dimensional DMNU20 model.

Tables IA.2 and IA.3 in the Internet Appendix report the multiple
model comparison results for the cases with lower and higher absolute
risk aversion. The findings are consistent with those from the pairwise
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comparisons. For instance, Table IA.2 shows that the high-dimensional
DMNU20 model performs relatively well for the case with low absolute
risk aversion 𝛾 = 10−10. In particular, the multiple non-nested model
comparison test cannot reject DMNU20, with a large 𝑝-value of 0.588.
Also, although the multiple model comparison test cannot reject the
FF6 and FF6c models, the 𝑝-values for these two models are only
slightly above 10%. The good performance of DMNU20 for the case
with low absolute risk aversion is again consistent with the finding
by DeMiguel et al. (2020) that the benefits from trading diversification
increase with the number of factors in a model.23 Finally, Table IA.3
shows that for the case with high absolute risk aversion 𝛾 = 10−8,
HMXZ5 performs relatively well. In particular, the multiple non-nested
model comparison test cannot reject the HMXZ5 model, with a large
𝑝-value of 0.772. Moreover, although the multiple model comparison
test cannot reject the FF6, FF6c, BS6, and DMNU20 models, HMXZ5 is
the model with the smallest number of factors out of all models that
are not rejected, and thus, is preferable because of its parsimony.

5.6. Out-of-sample model comparison

In the previous sections, we compared factor models using our
proposed statistical tests, which address the following question: Is the
mean–variance utility in the presence of price-impact costs of a model
significantly higher than that of other models? As a robustness check,
we now address a different question that is relevant for investment
management: Are the utility gains of a superior factor model achievable
out of sample? To do this, we use the out-of-sample bootstrap test used
by Fama and French (2018) and Detzel et al. (2023).

This bootstrap test guarantees that disjoint sets of observations
are used for the in-sample and out-of-sample calculations. For each
bootstrap sample, we carry out a four-step procedure. First, for every
pair of consecutive months, we randomly assign one month to the
set of in-sample (IS) observations and the other to the set of out-of-
sample (OOS) observations. Second, within the IS set, we bootstrap
with replacement a set with the same number of observations as the
original sample, and allocate the corresponding partner months to the
OOS set. Third, we use the factor returns and the factor-rebalancing
trades of the months in the bootstrap IS set to calculate the optimal
portfolio weights of each model using Eq. (13).24 Fourth, we apply the
optimal portfolio weights from the third step to the bootstrap OOS set
to obtain the OOS mean–variance utility net of price-impact costs for
each factor model. We repeat these four steps 100,000 times, and thus,
obtain 100,000 observations of the OOS mean–variance utility net of
price-impact costs for each model. Finally, we compare models in terms
of their average mean–variance utility, the frequency with which one
model outperforms another model, and the frequency with which each
model outperforms every other model across the bootstrap samples.
This procedure not only guarantees that the IS and OOS sets for each
bootstrap sample are disjoint, but also prevents the IS and OOS sets
from having substantially different time-series properties because they
are obtained from pairs of consecutive months.

Table 9 reports the out-of-sample performance of the ten models
in the presence of price-impact costs for the base case with absolute
risk aversion 𝛾 = 10−9. Panel A reports the out-of-sample average
scaled mean–variance utility net of price-impact costs of each factor
model, Panel B reports the out-of-sample frequency with which the

23 Table IA.6 in Section IA.4 of the Internet Appendix shows that the results
in Table IA.2 are robust to considering a DMNU20 model whose factors
are obtained from double sorts and without dropping stocks with market
capitalization below the 20th cross-sectional percentile.

24 We estimate the vector of factor mean returns, 𝜇, and the price-impact
cost matrix, 𝛬, using their sample counterparts. For the covariance matrix of
factor returns, 𝛴, we use the shrinkage estimator of Ledoit and Wolf (2004)
to alleviate the impact of estimation error on the out-of-sample performance
of the different models.

row model outperforms the column model, and Panel C reports the
out-of-sample frequency with which each model outperforms every
other model across the bootstrap samples. As expected, the average
out-of-sample mean–variance utilities in Panel A of Table 9 are much
lower than the in-sample utilities in Panel A of Table 5 because of
estimation error. However, the out-of-sample relative performance of
the various models is generally consistent with their in-sample relative
performance.25

Note that the out-of-sample frequencies in Panel B of Table 9 are
larger than the 𝑝-values based on our pairwise model comparison test
in Panel B of Table 5. This is not surprising because even if a model
has a significantly higher mean–variance utility than another, it may
deliver a lower out-of-sample mean–variance utility in a particular
bootstrap sample because of estimation error. Nonetheless, the out-of-
sample bootstrap pairwise comparison results in Panel B of Table 9
are generally consistent with those from the statistical test in Panel B
of Table 5. In particular, we observe that, out of sample, HMXZ5
outperforms FF6 and FF6c only on 40.2% and 35.6% of the bootstrap
samples, respectively. This is consistent with the finding in Panel B of
Table 5 that the FF6 and FF6c models deliver higher mean–variance
utility net of price-impact costs than the HMXZ5 model. In addition,
FF6c outperforms the CAPM, HXZ4, FFC4, FF5c, and BS6 models on
around 85%, 83%, 94%, 78%, and 78% of the bootstrap samples,
respectively, which is consistent with the finding in Panel B of Table 5
that the FF6c model significantly outperforms these models. Finally,
FF6c outperforms DMNU20 on 72.2% of the bootstrap samples. This
result is compatible with our finding in Panel B of Table 5 that FF6c
and DMNU20 are statistically indistinguishable. The explanation for
the poor out-of-sample performance of DMNU20 compared to FF6c is
that estimation error affects the performance of the high-dimensional
DMNU20 model more heavily than that of the low-dimensional FF6c
model.

The out-of-sample bootstrap multiple model comparison results in
Panel C of Table 9 are also consistent with those from the statistical
test in Table 8. In particular, FF6c is the best model, outperform-
ing every other model on 27.1% of the bootstrap samples, followed
by the DMNU20, HMXZ5, and FF6 models, which outperform every
other model on 18.5%, 18.2%, and 17.5% of the bootstrap samples,
respectively.

In summary, the out-of-sample bootstrap test confirms the main
finding from our statistical tests in Sections 5.4 and 5.5 that, in the base
case with absolute risk-aversion parameter 𝛾 = 10−9, the FF6c model
emerges as the best model. Moreover, the out-of-sample test shows that
the gains from using the FF6c factor model can actually be realized
out of sample. Section IA.5 of the Internet Appendix shows that the
findings from the out-of-sample bootstrap test are also consistent with
the findings from our statistical test for the cases with lower and higher
absolute risk-aversion parameters. For instance, Panel C of Table IA.7
shows that for the case with low absolute risk aversion, the high-
dimensional DMNU20 model outperforms every other model on 56.1%
of the bootstrap samples. Also, Panel C of Table IA.8 shows that for the
case with high absolute risk aversion, the HMXZ5 model outperforms
every other model on 58.7% of the bootstrap samples.

25 The only exception is the DMNU20 model, whose out-of-sample relative
performance is worse than its in-sample relative performance. In particular,
while the average out-of-sample mean–variance utility net of price-impact
costs of DMNU20 is the second lowest among all models, it delivers the highest
in-sample mean–variance utility net of price-impact costs. The explanation for
this is that estimation error impacts the out-of-sample performance of the high-
dimensional DMNU20 model more heavily than that of the low-dimensional
models.
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Table 9
Bootstrap out-of-sample utility net of price-impact costs.
This table reports the out-of-sample performance of the ten models in the presence of price-impact costs for the base case with absolute
risk-aversion parameter 𝛾 = 10−9, using the bootstrap test of Fama and French (2018) with 100,000 bootstrap samples. Panel A reports the
out-of-sample average scaled mean–variance utility net of price-impact costs of each factor model, Panel B reports the out-of-sample frequency
with which the row model outperforms the column model, and Panel C reports the out-of-sample frequency with which each model outperforms
every other model across the bootstrap samples.

Panel A: Average mean–variance utility net of price-impact costs

CAPM HXZ4 FFC4 HMXZ5 FF5 FF5c FF6 FF6c BS6 DMNU20

2𝛾MVU𝛾 0.0122 0.0238 0.0173 0.0395 0.0338 0.0371 0.0435 0.0461 0.0357 0.0165

Panel B: Frequency row model outperforms column model

CAPM HXZ4 FFC4 HMXZ5 FF5 FF5c FF6 FF6c BS6 DMNU20

CAPM 0.173 0.336 0.079 0.200 0.170 0.166 0.147 0.159 0.421
HXZ4 0.593 0.101 0.271 0.225 0.197 0.171 0.202 0.513
FFC4 0.166 0.231 0.181 0.084 0.059 0.039 0.469
HMXZ5 0.554 0.495 0.402 0.356 0.558 0.652
FF5 0.375 0.209 0.225 0.466 0.614
FF5c 0.306 0.217 0.527 0.640
FF6 0.397 0.726 0.704
FF6c 0.776 0.722
BS6 0.627

Panel C: Frequency column model performs best

CAPM HXZ4 FFC4 HMXZ5 FF5 FF5c FF6 FF6c BS6 DMNU20

0.022 0.002 0.002 0.182 0.042 0.071 0.175 0.271 0.047 0.185

6. Empirical results: anomaly spanning

In Section 5, we compared models in terms of the mean–variance
utility net of price-impact costs generated by the factors in each model.
As discussed in Section 2.5, this criterion is sufficient to compare two
models under the tenet of Barillas and Shanken (2017) that the better
model should not only span the investment opportunity set of the test
assets, but also that of the factors in the other model. Nevertheless, it is
also of interest to compare factor models solely in terms of their ability
to span certain test assets. Absent the requirement that a factor model
has to span the factors in the other model, relative model performance
in terms of test-asset spanning may differ from that in terms of mean–
variance utility. To see this, note that model A is better than model B
at spanning the test-asset returns, 𝛱 , if

MVU𝛾 ([𝛱,𝐹𝐴]) − MVU𝛾 (𝐹𝐴) < MVU𝛾 ([𝛱,𝐹𝐵]) − MVU𝛾 (𝐹𝐵),

where 𝐹𝐴 and 𝐹𝐵 are the returns of the factors in models A and B.
Because in general

MVU𝛾 ([𝛱,𝐹𝐴]) ≠ MVU𝛾 ([𝛱,𝐹𝐵]),

we have that the ranking of models in terms of their ability to span the
test assets may differ from that in terms of mean–variance utility.26

In this section, we use the statistical test developed in Proposition 6
of Section 3 to compare factors models solely in terms of their ability
to span the 212 anomalies in the dataset by Chen and Zimmermann
(2022) using an experiment similar to that used by Detzel et al. (2023)
for the case with proportional transaction costs.27 Figs. 3 and 4 report

26 Barillas and Shanken (2017) also show that the relative performance of
factor models in terms of test-asset spanning and squared Sharpe ratio may be
different in the absence of trading costs once one drops the requirement that
the better model should also span the factors in the other model—see the last
paragraph on page 1317 and section 1.2 of their paper. For instance, Barillas
and Shanken (2017) show that although a two-factor model with the market
and SMB factors has a higher squared Sharpe ratio than the CAPM model, it
delivers a higher pricing error for the loser decile portfolio based on past-year
returns than the CAPM model. These two results are reconciled by the fact
that the CAPM model does not explain the returns of the SMB factor.

27 We use the replication code of Detzel et al. (2023) to download data
for the 212 anomalies of Chen and Zimmermann (2022) for the period from
January 1980 to December 2020. For some anomalies data is not available
for the entire sample from January 1980 to December 2020, and thus, we

the results for the case without costs and for the base case with price-
impact costs and absolute risk aversion 𝛾 = 10−9. For each of the
ten factor models in Table 1 with factor returns 𝐹𝑖 and each anomaly
with returns 𝛱𝑗 , we calculate the mean–variance utility (net of price-
impact costs) of the factor model MVU𝛾 (𝐹𝑖) and that of the factor model
augmented with the anomaly MVU𝛾 ([𝐹𝑖,𝛱𝑗 ]). We then calculate the
relative utility improvement, MVU𝛾 ([𝐹𝑖,𝛱𝑗 ])∕MVU𝛾 (𝐹𝑖) − 1, and the
𝑝-value of the utility improvement using Proposition 6. Panel A in
each figure illustrates the percentiles of the distribution for the relative
utility improvement across the anomalies for each model, and Panel B
the percentiles of the distribution for the 𝑝-value of utility improvement
across the anomalies for each model. To facilitate interpretation, both
panels depict the results for only five of the best-performing models:
HXZ4, HMXZ5, FF6, FF6c, and DMNU20.

Fig. 3 shows that, in the absence of costs, the HMXZ5 model
performs relatively well at spanning the anomalies. To see this, note
that Panel A of Fig. 3 shows that for any level of relative utility
improvement 𝛥 on the vertical axis, the proportion of anomalies that
generate a utility improvement smaller than 𝛥 is larger for the HMXZ5
model than for any other model. Panel B of Fig. 3 shows that for any
significance level 𝛼 on the vertical axis, the proportion of anomalies
that generate an 𝛼-significant improvement to mean–variance utility is
smaller for the HMXZ5 model than for the FF6 and DMNU20 models.
Also, comparing the HMXZ5 model to the HXZ4 and FF6c models, the
three models are similar in terms of the proportion of anomalies that
generate an 𝛼-significant improvement to their mean–variance utility.
Overall, Fig. 3 demonstrates that the HMXZ5 model performs relatively
well at anomaly spanning in the absence of trading costs, consistent
with the results from comparing models in terms of mean–variance
utility discussed in Table 4 of Section 3.

Fig. 4 shows that for our base case with price-impact costs and
absolute risk aversion 𝛾 = 10−9, the FF6c model performs relatively
well at spanning the anomalies. To see this, note that Panel B of
Fig. 4 shows that for any significance level 𝛼 on the vertical axis, the
proportion of anomalies that generate an 𝛼-significant improvement to
mean–variance utility is smaller for FF6c than for any other model.
Also, Panel A of Fig. 4 shows that for any level of relative utility
improvement 𝛥 on the vertical axis, the proportion of anomalies that

perform the statistical test on the sample of months for which we have data
for the anomaly.
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Fig. 3. Significance of relative utility improvement without costs.
This figure compares factor models in terms of their ability to span the 212 anomalies in the dataset by Chen and Zimmermann (2022) for the case without costs. For each of
the ten factor models in Table 1 with factor returns 𝐹𝑖 and each anomaly with returns 𝛱𝑗 , we calculate the sample mean–variance utility in the absence of costs of the factor
model MVU𝛾 (𝐹𝑖) and that of the factor model augmented with the anomaly MVU𝛾 ([𝐹𝑖 ,𝛱𝑗 ]). We then calculate the relative utility improvement, MVU𝛾 ([𝐹𝑖 ,𝛱𝑗 ])∕MVU𝛾 (𝐹𝑖) − 1, and
the 𝑝-value of the utility improvement using Proposition 6. Panel A illustrates the percentiles of the distribution for the relative utility improvement across the anomalies for each
model, and Panel B the percentiles of the distribution for the 𝑝-value of utility improvement across the anomalies for each model. To facilitate interpretation, both panels depict
the results for only five of the best-performing models (HXZ4, HMXZ5, FF6, FF6c, and DMNU20) and the 𝑦-axes for Panels A and B are truncated at 0.4 and 0.1, respectively.

Fig. 4. Significance of relative utility improvement with price-impact costs (𝛾 = 10−9).
This figure compares factor models in terms of their ability to span the 212 anomalies in the dataset by Chen and Zimmermann (2022) for the base case with price-impact costs
and absolute risk aversion 𝛾 = 10−9. For each of the ten factor models in Table 1 with factor returns 𝐹𝑖 and each anomaly with returns 𝛱𝑗 , we calculate the sample mean–variance
utility net of price-impact costs of the factor model MVU𝛾 (𝐹𝑖) and that of the factor model augmented with the anomaly MVU𝛾 ([𝐹𝑖 ,𝛱𝑗 ]). We then calculate the relative utility
improvement, MVU𝛾 ([𝐹𝑖 ,𝛱𝑗 ])∕MVU𝛾 (𝐹𝑖) − 1, and the 𝑝-value of the utility improvement using Proposition 6. Panel A illustrates the percentiles of the distribution for the relative
utility improvement across the anomalies for each model, and Panel B the percentiles of the distribution for the 𝑝-value of utility improvement across the anomalies for each
model. To facilitate interpretation, both panels depict the results for only five of the best-performing models (HXZ4, HMXZ5, FF6, FF6c, and DMNU20) and the 𝑦-axes for Panels A
and B are truncated at 0.4 and 0.1, respectively.

generate a utility improvement smaller than 𝛥 is larger for the FF6c
model than for the HXZ4 and HMXZ5 models. Comparing DMNU20 to
FF6c and FF6, the three models are similar in terms of the proportion of
anomalies that generate a utility improvement smaller than 𝛥. Overall,
Fig. 4 demonstrates that the FF6c model performs relatively well at
anomaly spanning for our base case with price-impact costs and 𝛾 =
10−9, consistent with the results from comparing models in terms of
mean–variance utility discussed in Table 5 of Section 3.

Figs. 3 and 4 show that for the cases without costs and with price-
impact costs and base case absolute risk aversion 𝛾 = 10−9, the relative
performance of the ten factors models in terms of anomaly spanning is
similar to that in terms of mean–variance utility. However, as pointed
out at the beginning of this section, this does not necessarily have to be
the case because when comparing factor models in terms of anomaly
spanning, we drop the requirement that the better factor model should
span not only the anomalies, but also the factors in the other model.
Indeed, Figures IA.4 and IA.5 in the Internet Appendix show that the

relative performance of the ten models in terms of anomaly spanning
is, in general, different from that in terms of mean–variance utility
for the cases with low and high absolute risk aversion. For example,
Figure IA.4 shows that for the case with low absolute risk aversion
𝛾 = 10−10, while DMNU20 outperforms FF6 and FF6c in terms of the
proportion of anomalies that generate a utility improvement smaller
than 𝛥, FF6 and FF6c outperform DMNU20 in terms of the proportion
of anomalies that generate an 𝛼-significant improvement. This result is
not entirely consistent with that in Table 6 that DMNU20 is the best
model in terms of mean–variance utility for the case with low absolute
risk aversion 𝛾 = 10−10. Also, Figure IA.5 shows that the FF6c model
outperforms the HMXZ5 model for the case with high absolute risk
aversion 𝛾 = 10−8 in terms of anomaly spanning, a result that contrasts
with that from Table 7 that HMXZ5 is the best model in terms of mean–
variance utility for the case with 𝛾 = 10−8. Overall, the results in this
section show that the relative model performance in terms of anomaly
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spanning is similar, but not identical to that in terms of mean–variance
utility.28

7. Conclusion

We show that the squared Sharpe ratio criterion is no longer suffi-
cient to compare asset-pricing factor models in the presence of price
impact because the efficient frontier spanned by a factor model is
strictly concave. Instead, we propose comparing factor models in terms
of the mean–variance utility net of price-impact costs generated by
their factors, and develop a formal statistical test to compare two factor
models for the cases when they are nested or non-nested. Importantly,
we observe that the relative performance of factor models depends on
the absolute risk-aversion parameter, and thus comparing factor models
in the presence of price impact is a more nuanced exercise than in the
absence of trading costs.

Empirically, we find that while in the absence of trading costs
the five-factor model of Hou et al. (2021) outperforms other models,
in the presence of price-impact costs the six-factor model of Fama
and French (2018) with cash-based operating profitability performs
better. We also find that the high-dimensional model of DeMiguel
et al. (2020) significantly outperforms the low-dimensional models only
for the case with low absolute risk aversion, where price impact is
important enough for the trading diversification benefits of combining
a large number of factors to dominate other effects such as estimation
error. Thus, an implication of our work is that different benchmark
factor models should be used to evaluate the performance of investment
strategies designed for different investors, depending on their absolute
risk aversion.
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28 Section IA.9 of the Internet Appendix shows that the relative model
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costs) is also similar, but not identical, to that in terms of mean–variance utility
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Appendix A. Proofs of all results

This appendix contains the proofs of all novel propositions in the
manuscript, except for Proposition 4, which is proven and discussed
in Appendix B. For expositional purposes, Proposition 1 states a well-
known result that is proven, for instance, in Campbell (2017, Sec-
tion 2.2.6).

A.1. Proof of Proposition 2

Note that the proportional-trading-cost function given in Defini-
tion 1 is not convex in general and this complicates the proof, which
consists of two parts. Part (i) shows that there exists a nonzero maxi-
mizer to the mean–variance problem. Part (ii) shows that the efficient
frontier is a straight line.

Part (i): existence of a nonzero maximizer to mean–variance problem
We first show that for any absolute risk-aversion parameter 𝛾, the

objective function of Problem (2) has a nonzero maximizer and its
maximum is strictly positive.

Denote the mean–variance utility in Problem (2) as

𝑔𝛾 (𝜃) = 𝜃⊤𝜇 − 𝑓 (𝜃) −
𝛾
2
𝜃⊤𝛴𝜃.

By Assumption 2.3, we have that the set 𝑆 = {𝜃|𝜃⊤𝜇 − 𝑓 (𝜃) ≥ 0} is
nonempty. Moreover, by Assumption 2.2, 𝑓 (𝜃) is continuous in 𝑆, and
hence, 𝑆 is compact. Furthermore, 𝑔𝛾 (𝜃) is also continuous in 𝑆, and
thus, by the extreme-value theorem we have that there exists 𝜃∗ ∈ 𝑆
such that 𝑔𝛾 (𝜃∗) ≥ 𝑔𝛾 (𝜃) for all 𝜃 ∈ 𝑆. Also, by Assumption 2.3, we
know that there are values of 𝜃 in 𝑆 such that 𝑔𝛾 (𝜃) > 0. Therefore, the
maximum value, 𝑔𝛾 (𝜃∗), must be strictly positive. Consequently, 𝜃∗ ≠ 0
because 𝑔𝛾 (0) = 0.

Part (ii): the efficient frontier is a straight line
We first show by contradiction that if 𝜃1 is a maximizer for the case

with absolute risk aversion 𝛾, then for any 𝑐 > 0 we have that 𝑐𝜃1 is a
maximizer for the case with absolute risk aversion 𝛾∕𝑐. Suppose 𝑐𝜃1 is
not a maximizer for the case with absolute risk aversion 𝛾∕𝑐, then there
exists 𝜃2 such that

𝜃⊤2 𝜇 − 𝑓 (𝜃2) −
𝛾
2𝑐

𝜃⊤2 𝛴𝜃2 > 𝑐𝜃⊤1 𝜇 − 𝑓 (𝑐𝜃1) −
𝛾
2𝑐

𝑐𝜃⊤1 𝛴𝑐𝜃1, (A.1)

which is equivalent to

𝜃⊤2
𝑐
𝜇 − 𝑓

(

𝜃2
𝑐

)

−
𝛾
2
𝜃⊤2
𝑐
𝛴
𝜃2
𝑐

> 𝜃⊤1 𝜇 − 𝑓 (𝜃1) −
𝛾
2
𝜃⊤1 𝛴𝜃1, (A.2)

which contradicts 𝜃1 being a maximizer for the case with absolute risk
aversion 𝛾. Note that this argument also shows that if 𝜃1 is a maximizer
for the case with absolute risk aversion 𝛾, then 𝑐𝜃1 with 𝑐 > 0 is not a
maximizer for the case with absolute risk aversion 𝛾.

Next, we show by contradiction that given two maximizers 𝜃1 and
𝜃2 for the case with absolute risk aversion 𝛾, we must have

𝜃⊤1 𝛴𝜃1 = 𝜃⊤2 𝛴𝜃2, (A.3)

and thus 𝜃⊤1 𝜇−𝑓 (𝜃1) = 𝜃⊤2 𝜇−𝑓 (𝜃2). To see this, suppose without loss of
generality that 𝜃⊤2 𝛴𝜃2 > 𝜃⊤1 𝛴𝜃1. Because both 𝜃1 and 𝜃2 are maximizers,
by Part (i), we have 𝜃⊤2 𝜇 − 𝑓 (𝜃2) > 𝜃⊤1 𝜇 − 𝑓 (𝜃1) > 0. Thus, there exists
𝑐 > 1, such that

𝑐𝜃⊤1 𝜇 − 𝑐𝑓 (𝜃1) = 𝜃⊤2 𝜇 − 𝑓 (𝜃2). (A.4)

Moreover, because we have shown that for 𝑐 > 0, we have that 𝑐𝜃1 is
not a maximizer for the case with absolute risk aversion 𝛾, we must
have that

(𝑐𝜃⊤1 )𝛴(𝑐𝜃1) > 𝜃⊤2 𝛴𝜃2. (A.5)

Thus,

𝑐𝜃⊤1 𝜇 − 𝑐𝑓 (𝜃1) −
𝛾
2𝑐

(𝑐𝜃⊤1 )𝛴(𝑐𝜃1) < 𝜃⊤2 𝜇 − 𝑓 (𝜃2) −
𝛾
2𝑐

𝜃⊤2 𝛴𝜃2, (A.6)
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which contradicts 𝑐𝜃1 being optimal for the case with absolute risk
aversion is 𝛾∕𝑐. Therefore, 𝜃⊤1 𝛴𝜃1 = 𝜃⊤2 𝛴𝜃2 and 𝜃⊤2 𝜇 − 𝑓 (𝜃2) = 𝜃⊤1 𝜇 −
𝑓 (𝜃1), and thus, any two maximizers 𝜃1 and 𝜃2 for the case with absolute
risk aversion 𝛾 must have the same Sharpe ratio.

We now show that the efficient frontier is a straight line by showing
every efficient portfolio has the same Sharpe ratio, 𝑆𝑅𝑃𝑇𝐶 . The Sharpe
ratio of 𝑐𝜃∗, a maximizer for the case with absolute risk aversion 𝛾∕𝑐,
is
𝑐𝜃∗⊤𝜇 − 𝑓 (𝑐𝜃∗)

𝑐
√

𝜃∗⊤𝛴𝜃∗
=

𝜃∗⊤𝜇 − 𝑓 (𝜃∗)
√

𝜃∗⊤𝛴𝜃∗
, (A.7)

which is also the Sharpe ratio of 𝜃∗. Therefore, every efficient portfolio
has the same Sharpe ratio of returns net of proportional trading costs,
and thus the efficient frontier is a straight line starting at the origin
of the standard deviation-mean diagram. Moreover, by Assumption 2.2
we have that 𝑓 (𝜃) > 0 for any 𝜃 ≠ 0, and thus,

𝑆𝑅𝑃𝑇𝐶 =
𝜃∗⊤𝜇 − 𝑓 (𝜃∗)
√

𝜃∗⊤𝛴𝜃∗
<

𝜃∗⊤𝜇
√

𝜃∗⊤𝛴𝜃∗
≤ 𝑆𝑅.

A.2. Proof of Proposition 3

The proof consists of two parts. Part (i) provides an alternative
condition to define a price-impact-cost function. Part (ii) shows that
the efficient frontier is strictly concave.

Part (i): an alternative condition to define a price-impact-cost function
Definition 2 states that a price-impact-cost function must satisfy

condition (8). We now show that this condition is equivalent to

𝑓 (𝑐′𝜃) < 𝑐′𝑓 (𝜃) for 𝜃 ≠ 0 and 0 < 𝑐′ < 1. (A.8)

We first prove that (8) implies (A.8). Let 𝜃′ = 𝑐𝜃 with 𝑐 > 1. Then
(8) becomes
1
𝑐
𝑓 (𝜃′) > 𝑓

( 1
𝑐
𝜃′
)

. (A.9)

If we define 𝑐′ = 1∕𝑐 ∈ (0, 1), then the previous inequality becomes

𝑐′𝑓 (𝜃′) > 𝑓 (𝑐′𝜃′), (A.10)

which is (A.8). Using a similar argument, it is straightforward to show
that (A.8) implies (8).

Part (ii): the efficient frontier is concave
Part (i) of the proof of Proposition 2 shows that for any 𝛾, there

exists a nonzero maximizer to Problem (2). Let 𝜃∗ and 𝜃∗𝑐 be the
maximizers to Problem (2) for the cases with absolute risk aversion 𝛾
and 𝑐𝛾, respectively, where 0 < 𝑐 < 1. We first show that the variance
of portfolio 𝜃∗𝑐 is greater than or equal to that of portfolio 𝜃∗. We
then show that the Sharpe ratio of 𝜃∗𝑐 is strictly lower than that of 𝜃∗
when the variance of 𝜃∗𝑐 is strictly greater than that of 𝜃∗, and thus the
efficient frontier is strictly concave.

Step 1: the variance of 𝜃∗𝑐 is greater than or equal to that of 𝜃∗.
We show by contradiction that (𝜃∗𝑐 )

⊤𝛴𝜃∗𝑐 ≥ 𝜃∗⊤𝛴𝜃∗. Suppose
(𝜃∗𝑐 )

⊤𝛴𝜃∗𝑐 < 𝜃∗⊤𝛴𝜃∗. The optimality of 𝜃∗ and 𝜃∗𝑐 for the cases with
absolute risk aversion 𝛾 and 𝑐𝛾, respectively, implies that

𝜃∗⊤𝜇 − 𝑓 (𝜃∗) −
𝑐𝛾
2
𝜃∗⊤𝛴𝜃∗ ≤ (𝜃∗𝑐 )

⊤𝜇 − 𝑓 (𝜃∗𝑐 ) −
𝑐𝛾
2
(𝜃∗𝑐 )

⊤𝛴𝜃∗𝑐 , (A.11)

(𝜃∗𝑐 )
⊤𝜇 − 𝑓 (𝜃∗𝑐 ) −

𝛾
2
(𝜃∗𝑐 )

⊤𝛴𝜃∗𝑐 ≤ 𝜃∗⊤𝜇 − 𝑓 (𝜃∗) −
𝛾
2
𝜃∗⊤𝛴𝜃∗. (A.12)

Combining these two inequalities yields
𝛾
2
(𝜃∗⊤𝛴𝜃∗ − (𝜃∗𝑐 )

⊤𝛴𝜃∗𝑐 ) ≤ 𝜃∗⊤𝜇 − 𝑓 (𝜃∗) − (𝜃∗𝑐 )
⊤𝜇 + 𝑓 (𝜃∗𝑐 )

≤ 𝑐𝛾
2
(𝜃∗⊤𝛴𝜃∗ − (𝜃∗𝑐 )

⊤𝛴𝜃∗𝑐 ). (A.13)

Because we have assumed that (𝜃∗𝑐 )
⊤𝛴𝜃∗𝑐 < 𝜃∗⊤𝛴𝜃∗ and 0 < 𝑐 < 1, the

leftmost term is strictly greater than the rightmost term in (A.13), and
thus we have a contradiction. Therefore, we must have that (𝜃∗𝑐 )⊤𝛴𝜃∗𝑐 ≥
𝜃∗⊤𝛴𝜃∗.

Step 2: the Sharpe ratio of the portfolio 𝜃∗𝑐 is not greater than that of 𝜃∗.

We show that
(𝜃∗𝑐 )

⊤𝜇 − 𝑓 (𝜃∗𝑐 )
√

(𝜃∗𝑐 )⊤𝛴𝜃∗𝑐
≤ 𝜃∗⊤𝜇 − 𝑓 (𝜃∗)

√

𝜃∗⊤𝛴𝜃∗
, (A.14)

and the equality holds only when (𝜃∗𝑐 )
⊤𝛴𝜃∗𝑐 = 𝜃∗⊤𝛴𝜃∗.

When (𝜃∗𝑐 )
⊤𝛴𝜃∗𝑐 = 𝜃∗⊤𝛴𝜃∗, (A.13) implies that 𝜃∗⊤𝜇 − 𝑓 (𝜃∗) =

(𝜃∗𝑐 )
⊤𝜇 − 𝑓 (𝜃∗𝑐 ), and thus (A.14) holds with equality.
When (𝜃∗𝑐 )

⊤𝛴𝜃∗𝑐 > 𝜃∗⊤𝛴𝜃∗, let (𝜃∗𝑐 )⊤𝛴𝜃∗𝑐 = 𝑐2𝜃∗⊤𝛴𝜃∗ where 𝑐 > 1. To
prove (A.14) with strict inequality, we prove by contradiction that

(𝜃∗𝑐 )
⊤𝜇 − 𝑓 (𝜃∗𝑐 ) < 𝑐(𝜃∗⊤𝜇 − 𝑓 (𝜃∗)). (A.15)

Suppose (A.15) does not hold and thus 𝜃∗⊤𝜇−𝑓 (𝜃∗) ≤ ((𝜃∗𝑐 )
⊤𝜇−𝑓 (𝜃∗𝑐 ))∕𝑐,

then

𝜃∗⊤𝜇 − 𝑓 (𝜃∗) −
𝛾
2
𝜃∗⊤𝛴𝜃∗ ≤ 1

𝑐
(𝜃∗𝑐 )

⊤𝜇 − 1
𝑐
𝑓 (𝜃∗𝑐 ) −

𝛾
2
(𝜃∗𝑐 )

⊤

𝑐
𝛴
𝜃∗𝑐
𝑐

< 1
𝑐
(𝜃∗𝑐 )

⊤𝜇 − 𝑓 ( 1
𝑐
𝜃∗𝑐 ) −

𝛾
2
(𝜃∗𝑐 )

⊤

𝑐
𝛴
𝜃∗𝑐
𝑐
, (A.16)

where the second inequality comes from Part (i). This contradicts 𝜃∗

being a maximizer for the case with absolute risk aversion is 𝛾. Thus,
when (𝜃∗𝑐 )

⊤𝛴𝜃∗𝑐 > 𝜃∗⊤𝛴𝜃∗, (A.15) holds. Dividing both sides of (A.15)
by

√

(𝜃∗𝑐 )⊤𝛴𝜃∗𝑐 = 𝑐
√

𝜃∗⊤𝛴𝜃∗, (A.14) holds with strict inequality. Thus,
the efficient frontier is strictly concave. Moreover, since 𝑓 (𝜃) > 0 for
any 𝜃 ≠ 0, both sides of (A.14) are less than the Sharpe ratio in the
absence of trading costs, 𝑆𝑅.

A.3. Proof of Proposition 5

The proof consists of two parts. Part (i) derives the asymptotic
distribution of the sample mean–variance utility net of price-impact
costs of a factor model. Part (ii) derives the asymptotic distribution of
the difference between the sample mean–variance utilities net of price-
impact costs of two factor models. For ease of notation, we drop the
superscript 𝛾 from MVU𝛾 throughout this proof.

Part (i): asymptotic distribution of sample mean–variance utility of one
model

The proof of Part (i) contains two steps. We first show that the
sample mean–variance utility of a model is asymptotically normally
distributed and then derive the variance of the asymptotic normal
distribution.

Step 1:
√

𝑇 (M̂VU−MVU) is asymptotically normally distributed. We extend
the notation in the proof of Proposition 2 of Barillas et al. (2020) to the
case with price-impact costs. In particular, let

𝜑 = [𝜇, vec(𝛴), vec(𝛬∕𝛾)] ∈ R𝐾+2𝐾2
, (A.17)

�̂� = [�̂�, vec(�̂�), vec(�̂�∕𝛾)] ∈ R𝐾+2𝐾2
, (A.18)

𝑟𝑡(𝜑) = [𝐹𝑡 − 𝜇, vec(𝛴𝑡 − 𝛴), vec((𝛬𝑡 − 𝛬)∕𝛾)] ∈ R𝐾+2𝐾2
. (A.19)

Under standard regularity conditions,29 the central limit theorem im-
plies that,
√

𝑇 (�̂� − 𝜑) 𝐴∼ 𝑁(0, 𝑆0), where 𝑆0 =
∞
∑

𝑗=−∞
𝐸[𝑟𝑡(𝜑)𝑟⊤𝑡+𝑗 (𝜑)].

Using the delta method, we have that
√

𝑇 (M̂VU − MVU) 𝐴∼ 𝑁(0, 𝜕MVU
𝜕𝜑⊤ 𝑆0

𝜕MVU
𝜕𝜑

). (A.20)

Step 2: variance of asymptotic normal distribution, ℎ𝑡(𝜑).

29 For example, we could assume that the returns and the rebalancing
trades are stationary and ergodic, and the corresponding Gordin’s condition
is satisfied, as in Proposition 6.10 of Hayashi (2000).
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Let

ℎ𝑡(𝜑) = 2𝛾 𝜕MVU
𝜕𝜑⊤ 𝑟𝑡(𝜑), (A.21)

then (A.20) can be rewritten as

√

𝑇 (M̂VU − MVU) 𝐴∼ 𝑁(0,𝑊 ), where 𝑊 =
∞
∑

𝑗=−∞
𝐸
[ℎ𝑡(𝜑)ℎ𝑡+𝑗 (𝜑)

4𝛾2

]

.

(A.22)

Assumption 3.1 implies that ℎ𝑡(𝜑) is serially uncorrelated, and thus, we
have that

𝑊 = 𝐸
[ℎ2𝑡 (𝜑)

4𝛾2

]

. (A.23)

Also, note that
𝜕MVU
𝜕𝜇

= 1
𝛾
(𝛴 + 𝛬∕𝛾)−1𝜇 = 𝜃∗,

𝜕MVU
𝜕𝛴

= 𝛾 𝜕MVU
𝜕𝛬

= − 1
2𝛾

(𝛴 + 𝛬∕𝛾)−1𝜇𝜇⊤(𝛴 + 𝛬∕𝛾)−1 = −
𝛾
2
𝜃∗𝜃∗⊤,

and thus,
𝜕MVU
𝜕vec(𝛴)

= 𝛾 𝜕MVU
𝜕vec(𝛬) = −

𝛾
2
𝜃∗ ⊗ 𝜃∗,

where ⊗ denotes the Kronecker product. Plugging these partial deriva-
tives in the definition of ℎ𝑡(𝜑) in (A.21), we have that

ℎ𝑡(𝜑) = 2𝛾
[

𝜕MVU
𝜕𝜇⊤ (𝐹𝑡 − 𝜇) + 𝜕MVU

𝜕vec(𝛴)⊤
vec(𝛴𝑡 − 𝛴) + 𝜕MVU

𝜕vec(𝛬)⊤
vec(𝛬𝑡 − 𝛬)

]

= 2𝛾𝜃∗⊤(𝐹𝑡 − 𝜇) − 𝛾2𝜃∗⊤𝛴𝑡𝜃
∗ − 𝛾𝜃∗⊤𝛬𝑡𝜃

∗ + 𝛾2𝜃∗⊤𝛴𝜃∗ + 𝛾𝜃∗⊤𝛬𝜃∗

= 𝜇⊤(𝛴 + 𝛬∕𝛾)−1(2𝐹𝑡 − 𝜇) − 𝜇⊤(𝛴 + 𝛬∕𝛾)−1(𝛴𝑡 + 𝛬𝑡∕𝛾)(𝛴 + 𝛬∕𝛾)−1𝜇,

(A.24)

which completes the first part of the proof.

Part (ii): asymptotic distribution of difference between utilities of two models
Following the same steps as in Part (i), we have that

√

𝑇
(

[M̂VU𝐴 − M̂VU𝐵] − [MVU𝐴 − MVU𝐵]
)

𝐴∼ 𝑁
(

0,
𝜕(MVU𝐴 − MVU𝐵)

𝜕𝜑⊤ 𝑆0
𝜕(MVU𝐴 − MVU𝐵)

𝜕𝜑

)

.

By Assumption 3.1, we have that

√

𝑇
(

[M̂VU𝐴 − M̂VU𝐵] − [MVU𝐴 − MVU𝐵]
) 𝐴∼ 𝑁

(

0, 𝐸
[ (ℎ𝑡,𝐴 − ℎ𝑡,𝐵)2

4𝛾2

])

,

(A.25)

where ℎ𝑡,𝐴 and ℎ𝑡,𝐵 are obtained by applying Eq. (A.21) to models 𝐴
and 𝐵, respectively. This completes the proof.

Remark. When model 𝐴 nests model 𝐵 and the extra factors of model
𝐴 are redundant, or when models 𝐴 and 𝐵 share common factors and
the extra factors of both models are redundant, the two models have
the same optimal factor portfolio. In either case, the null hypothesis
MVU𝐴 = MVU𝐵 holds and Eq. (A.24) suggests that ℎ𝑡,𝐴 = ℎ𝑡,𝐵 for
all 𝑡, and thus the variance in (A.25), 𝐸[(ℎ𝑡,𝐴 − ℎ𝑡,𝐵)2∕(4𝛾2)] = 0.
Consequently, the distribution in (A.25) is not applicable to perform
a statistical test in these cases. Instead, in these cases we use the
asymptotic distribution in Proposition 6.

A.4. Proof of Proposition 6

Let the mean–variance portfolio in the presence of price-impact
costs for model 𝐴 be 𝜃∗𝐴 = [𝜃∗1 , 𝜃

∗
2 ]. Note that the null hypothesis that

models 𝐴 and 𝐵 have the same mean–variance utility holds if and only
if 𝜃∗2 = 0. Using this condition, we prove this proposition in three
parts. Part (i) derives the asymptotic distribution of the sample factor

portfolio �̂�∗𝐴. Part (ii) provides an expression for the difference between
the mean–variance utilities net of price-impact costs of models 𝐴 and
𝐵 as a function of 𝜃∗2 . Part (iii) uses the asymptotic distribution of
�̂�∗2 to derive the asymptotic distribution of the difference between the
sample mean–variance utilities net of price-impact costs of models 𝐴
and 𝐵. Similar to the proof of Proposition 5, we drop the superscript 𝛾
from MVU𝛾 throughout this proof.

Part (i): asymptotic distribution for �̂�∗𝐴.
Following similar steps as those in Part (i) of the proof of Proposi-

tion 5, the asymptotic distribution of �̂�∗𝐴 is

√

𝑇 (�̂�∗𝐴 − 𝜃∗𝐴)
𝐴∼ 𝑁(0,

𝐸[𝑙𝑡𝑙⊤𝑡 ]
𝛾2

), (A.26)

where

𝑙𝑡 = (𝛴𝐴 +𝛬𝐴∕𝛾)−1𝐹𝐴,𝑡 −(𝛴𝐴 +𝛬𝐴∕𝛾)−1(𝛴𝐴,𝑡 +𝛬𝐴,𝑡∕𝛾)(𝛴𝐴 +𝛬𝐴∕𝛾)−1𝜇𝐴 ∈ R𝐾1+𝐾2 .

(A.27)

Part (ii): expression for MVU𝐴 − MVU𝐵 as a function of 𝜃∗2 .
The difference MVU𝐴 − MVU𝐵 can be written as

= 1
2𝛾

[

𝜇⊤
1 , 𝜇

⊤
2
]

[

𝛴11 + 𝛬11∕𝛾 𝛴12 + 𝛬12∕𝛾
𝛴21 + 𝛬21∕𝛾 𝛴22 + 𝛬22∕𝛾

]−1 [𝜇1
𝜇2

]

(A.28)

− 1
2𝛾

[

𝜇⊤
1 , 𝜇

⊤
2
]

[

(𝛴11 + 𝛬11∕𝛾)−1 0
0 0

] [

𝜇1
𝜇2

]

=
𝛾
2
𝜃∗⊤𝐴

[

𝛴11 + 𝛬11∕𝛾 𝛴12 + 𝛬12∕𝛾
𝛴21 + 𝛬21∕𝛾 𝛴22 + 𝛬22∕𝛾

]

𝜃∗𝐴

−
𝛾
2
𝜃∗⊤𝐴

[

𝛴11 + 𝛬11∕𝛾 𝛴12 + 𝛬12∕𝛾
𝛴21 + 𝛬21∕𝛾 𝛴22 + 𝛬22∕𝛾

]

×
[

(𝛴11 + 𝛬11∕𝛾)−1 0
0 0

] [

𝛴11 + 𝛬11∕𝛾 𝛴12 + 𝛬12∕𝛾
𝛴21 + 𝛬21∕𝛾 𝛴22 + 𝛬22∕𝛾

]

𝜃∗𝐴

=
𝛾
2
𝜃∗⊤𝐴

[

𝛴11 + 𝛬11∕𝛾 𝛴12 + 𝛬12∕𝛾
𝛴21 + 𝛬21∕𝛾 𝛴22 + 𝛬22∕𝛾

]

𝜃∗𝐴

−
𝛾
2
𝜃∗⊤𝐴

[

𝛴11 + 𝛬11∕𝛾 𝛴12 + 𝛬12∕𝛾
𝛴21 + 𝛬21∕𝛾 (𝛴21 + 𝛬21∕𝛾)(𝛴11 + 𝛬11∕𝛾)−1(𝛴12 + 𝛬12∕𝛾)

]

𝜃∗𝐴

=
𝛾
2
𝜃∗⊤2

[

(𝛴22 + 𝛬22∕𝛾) − (𝛴21 + 𝛬21∕𝛾)(𝛴11 + 𝛬11∕𝛾)−1(𝛴12 + 𝛬12∕𝛾)
]

𝜃∗2

=
𝛾
2
𝜃∗⊤2 𝑊 𝜃∗2 , (A.29)

where 𝑊 = (𝛴22 + 𝛬22∕𝛾) − (𝛴21 + 𝛬21∕𝛾)(𝛴11 + 𝛬11∕𝛾)−1(𝛴12 + 𝛬12∕𝛾).
Replacing the population parameters in Eq. (A.29) with their sample
counterparts we have that

M̂VU𝐴 − M̂VU𝐵 =
𝛾
2
�̂�∗⊤2 �̂� �̂�∗2 , where �̂�

𝑎.𝑠.
→ 𝑊 . (A.30)

Part (iii): asymptotic distribution for 𝑇 (M̂VU𝐴 − M̂VU𝐵).
We now use (A.26) and (A.30) to derive the asymptotic distribution

for 𝑇 (M̂VU𝐴 − M̂VU𝐵). Let

𝑧 = lim
𝑇→∞

√

𝑇
(𝐸[𝑙𝑡𝑙⊤𝑡 ]22

𝛾2

)− 1
2
�̂�∗2 .

Under the null hypothesis that 𝜃∗2 = 0, from the asymptotic distribution
in (A.26) we have that 𝑧 ∼ 𝑁(0, 𝐼𝐾2

), where 𝐼𝐾2
is a 𝐾2-dimensional

identity matrix. Thus, from Eq. (A.30) we have that

𝑇 (M̂VU𝐴 − M̂VU𝐵) =
𝛾
2
𝑇 �̂�∗⊤2 �̂� �̂�∗2

𝐴∼ 1
2𝛾

𝑧⊤(𝐸[𝑙𝑡𝑙⊤𝑡 ]22)
1
2 𝑊 (𝐸[𝑙𝑡𝑙⊤𝑡 ]22)

1
2 𝑧. (A.31)

Let 𝑄𝛯𝑄⊤ be the eigenvalue decomposition of (𝐸[𝑙𝑡𝑙⊤𝑡 ]22)
1
2

𝑊 (𝐸[𝑙𝑡𝑙⊤𝑡 ]22)
1
2 ∕2𝛾, where 𝑄 is the orthogonal matrix whose columns

contain the eigenvectors and 𝛯 is a diagonal matrix whose diagonal
elements contain the eigenvalues 𝜉𝑖 for 𝑖 = 1,… , 𝐾2. Note the eigenval-
ues in the diagonal of 𝛯 are also the eigenvalues of 𝐸[𝑙𝑡𝑙⊤𝑡 ]22𝑊 ∕2𝛾. Let
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�̄� = 𝑄⊤𝑧 ∼ 𝑁(0, 𝐼𝐾2
), then (A.31) can be rewritten as

𝑇 (M̂VU𝐴 − M̂VU𝐵)
𝐴∼ �̄�⊤𝛯�̄� =

𝐾2
∑

𝑖=1
𝜉𝑖𝑥𝑖,

where 𝑥𝑖 for 𝑖 = 1,… , 𝐾2 are independent chi-square random variables
with one degree of freedom.

A.5. Proof of Proposition 7

The proof consists of two parts. Part (i) derives a closed-form
expression for the asymptotic variance of the sample mean–variance
utility of a factor model. Part (ii) derives a closed-form expression
for the asymptotic variance of the difference between the sample
mean–variance utilities of two factor models.

Part (i): closed-form asymptotic variance of the mean–variance utility of a
model

We first provide a closed-form expression for the asymptotic vari-
ance of the sample mean–variance utility of a model, 𝐸[ℎ2𝑡 ]∕(4𝛾

2), and
then simplify this expression.

Step 1: express 𝐸[ℎ2𝑡 ] as a function of 𝑢𝑡, 𝑣𝑛,𝑡, and �̄� = 𝐸[𝑢𝑡].
Plugging �̄�, 𝑢𝑡, and 𝑣𝑛,𝑡 into (22), we have that

ℎ𝑡 = 2(𝑢𝑡 − �̄�) −

[

(𝑢𝑡 − �̄�)2 +
𝑁
∑

𝑛=1
𝑣2𝑛,𝑡

]

+ �̄�.

Therefore,

𝐸[ℎ2𝑡 ] =𝐸
[

4(𝑢𝑡 − �̄�)2 − 4(𝑢𝑡 − �̄�)3 − 4(𝑢𝑡 − �̄�)
𝑁
∑

𝑛=1
𝑣2𝑛,𝑡 + 4(𝑢𝑡 − �̄�)�̄�

+ (𝑢𝑡 − �̄�)4 + 2(𝑢𝑡 − �̄�)2
𝑁
∑

𝑛=1
𝑣2𝑛,𝑡 − 2(𝑢𝑡 − �̄�)2�̄�

+

( 𝑁
∑

𝑛=1
𝑣2𝑛,𝑡

)2

− 2�̄�
𝑁
∑

𝑛=1
𝑣2𝑛,𝑡 + �̄�2

]

. (A.32)

Lemma 2 of Maruyama and Seo (2003) shows that if (𝑋𝑖, 𝑋𝑗 , 𝑋𝑘, 𝑋𝑙) are
jointly normally distributed with zero mean, then

𝐸[𝑋𝑖𝑋𝑗𝑋𝑘] = 0, (A.33)

𝐸[𝑋𝑖𝑋𝑗𝑋𝑘𝑋𝑙] = (𝜎𝑖𝑗𝜎𝑘𝑙 + 𝜎𝑖𝑘𝜎𝑗𝑙 + 𝜎𝑖𝑙𝜎𝑗𝑘), (A.34)

where 𝜎𝑎𝑏 is the covariance between 𝑋𝑎 and 𝑋𝑏. Because (𝑢𝑡 − �̄�) and
𝑣𝑛,𝑡 for 𝑛 = 1,… , 𝑁 are jointly normally distributed, using Eq. (A.33),
we can drop the third-order moments from Eq. (A.32) to obtain

𝐸[ℎ2𝑡 ] =𝐸
[

4(𝑢𝑡 − �̄�)2 + (𝑢𝑡 − �̄�)4 + 2(𝑢𝑡 − �̄�)2
𝑁
∑

𝑛=1
𝑣2𝑛,𝑡 − 2(𝑢𝑡 − �̄�)2�̄�

+

( 𝑁
∑

𝑛=1
𝑣2𝑛,𝑡

)2

− 2�̄�
𝑁
∑

𝑛=1
𝑣2𝑛,𝑡 + �̄�2

]

. (A.35)

Step 2: simplify (A.35). Using Eq. (A.34), we can rewrite the terms on
the right-hand side of Eq. (A.35) as

𝐸
[

(𝑢𝑡 − �̄�)2
]

= var(𝑢𝑡) = 𝜇⊤(𝛴 + 𝛬∕𝛾)−1𝛴(𝛴 + 𝛬∕𝛾)−1𝜇,

𝐸
[

(𝑢𝑡 − �̄�)4
]

= 3
[

var(𝑢𝑡)
]2 ,

𝐸

[ 𝑁
∑

𝑛=1
𝑣2𝑛,𝑡

]

=
𝑁
∑

𝑛=1
var(𝑣𝑛,𝑡) = 𝜇⊤(𝛴 + 𝛬∕𝛾)−1(𝛬∕𝛾)(𝛴 + 𝛬∕𝛾)−1𝜇,

𝐸

[

(𝑢𝑡 − �̄�)2
𝑁
∑

𝑛=1
𝑣2𝑛,𝑡

]

= 𝐸
[

(𝑢𝑡 − �̄�)2
]

𝑁
∑

𝑛=1
𝐸
[

𝑣2𝑛,𝑡
]

+ 2
𝑁
∑

𝑛=1

(

𝐸
[

(𝑢𝑡 − �̄�)𝑣𝑛,𝑡
])2

= var(𝑢𝑡)
𝑁
∑

𝑛=1
var(𝑣𝑛,𝑡) + 2

𝑁
∑

𝑛=1

[

cov(𝑢𝑡, 𝑣𝑛,𝑡)
]2 ,

𝐸

[

(

𝑁
∑

𝑛=1
𝑣2𝑛,𝑡

)2
]

=
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

(

var(𝑣𝑖,𝑡)var(𝑣𝑗,𝑡) + 2
[

cov(𝑣𝑖,𝑡, 𝑣𝑗,𝑡)
]2
)

,

�̄� = 𝜇⊤(𝛴 + 𝛬∕𝛾)−1𝜇 = var(𝑢𝑡) +
𝑁
∑

𝑛=1
var(𝑣𝑛,𝑡).

Plugging these equations into (A.35), we have that

𝐸[ℎ2
𝑡 ] = 4var(𝑢𝑡) + 3

[

var(𝑢𝑡)
]2 + 2

(

var(𝑢𝑡)
𝑁
∑

𝑛=1
var(𝑣𝑛,𝑡) + 2

𝑁
∑

𝑛=1

[

cov(𝑢𝑡, 𝑣𝑛,𝑡)
]2
)

− 2var(𝑢𝑡)

(

var(𝑢𝑡) +
𝑁
∑

𝑛=1
var(𝑣𝑛,𝑡)

)

+
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

(

var(𝑣𝑖,𝑡)var(𝑣𝑗,𝑡) + 2
[

cov(𝑣𝑖,𝑡, 𝑣𝑗,𝑡)
]2
)

− 2
𝑁
∑

𝑛=1
var(𝑣𝑛,𝑡)

(

var(𝑢𝑡) +
𝑁
∑

𝑛=1
var(𝑣𝑛,𝑡)

)

+

(

var(𝑢𝑡) +
𝑁
∑

𝑛=1
var(𝑣𝑛,𝑡)

)2

= 4var(𝑢𝑡) + 2
[

var(𝑢𝑡)
]2 −

( 𝑁
∑

𝑛=1
var(𝑣𝑛,𝑡)

)2

+ 4
𝑁
∑

𝑛=1

[

cov(𝑢𝑡, 𝑣𝑛,𝑡)
]2

+
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

(

var(𝑣𝑖,𝑡)var(𝑣𝑗,𝑡) + 2
[

cov(𝑣𝑖,𝑡, 𝑣𝑗,𝑡)
]2
)

= 4var(𝑢𝑡) + 2
[

var(𝑢𝑡)
]2 + 4

𝑁
∑

𝑛=1

[

cov(𝑢𝑡, 𝑣𝑛,𝑡)
]2 + 2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

[

cov(𝑣𝑖,𝑡, 𝑣𝑗,𝑡)
]2 .

Part (ii): asymptotic variance for difference between utilities of two models
The asymptotic variance of the difference between the sample

mean–variance utilities of two models is
𝐸[(ℎ𝑡,𝐴 − ℎ𝑡,𝐵)2]

4𝛾2
= 1

4𝛾2
(

𝐸[ℎ2𝑡,𝐴] + 𝐸[ℎ2𝑡,𝐵] − 2𝐸[ℎ𝑡,𝐴ℎ𝑡,𝐵]
)

. (A.36)

The closed-form expressions of 𝐸[ℎ2𝑡,𝐴] and 𝐸[ℎ2𝑡,𝐵] are given in Part (i),
and thus we focus on finding the closed-form expression of 𝐸[ℎ𝑡,𝐴ℎ𝑡,𝐵].
Similar to Part (i), we first express 𝐸[ℎ𝑡,𝐴ℎ𝑡,𝐵] as a function of �̄�, 𝑢𝑡, and
𝑣𝑛,𝑡, and then simplify this expression.

Step 1: express 𝐸[ℎ𝑡,𝐴ℎ𝑡,𝐵] as a function of �̄�, 𝑢𝑡, and 𝑣𝑛,𝑡.
Because

(

𝑢𝐴𝑡 − �̄�𝐴
)

,
(

𝑢𝐵𝑡 − �̄�𝐵
)

, 𝑣𝐴𝑛,𝑡, and 𝑣𝐵𝑛,𝑡 for 𝑛 = 1,… , 𝑁 are jointly
normally distributed. Using Eq. (A.33), we have that

𝐸[ℎ𝑡,𝐴ℎ𝑡,𝐵] = 𝐸
[

4
(

𝑢𝐴𝑡 − �̄�𝐴
) (

𝑢𝐵𝑡 − �̄�𝐵
)

+
(

𝑢𝐴𝑡 − �̄�𝐴
)2 (𝑢𝐵𝑡 − �̄�𝐵

)2

+
(

𝑢𝐴𝑡 − �̄�𝐴
)2

𝑁
∑

𝑛=1
(𝑣𝐵𝑛,𝑡)

2 +
(

𝑢𝐵𝑡 − �̄�𝐵
)2

𝑁
∑

𝑛=1

(

𝑣𝐴𝑛,𝑡
)2

−
(

𝑢𝐴𝑡 − �̄�𝐴
)2 �̄�𝐵 −

(

𝑢𝐵𝑡 − �̄�𝐵
)2 �̄�𝐴 +

( 𝑁
∑

𝑛=1
(𝑣𝐴𝑛,𝑡)

2

)( 𝑁
∑

𝑛=1

(

𝑣𝐵𝑛,𝑡
)2

)

− �̄�𝐴
𝑁
∑

𝑛=1

(

𝑣𝐵𝑛,𝑡
)2

− �̄�𝐵
𝑁
∑

𝑛=1

(

𝑣𝐴𝑛,𝑡
)2

+ �̄�𝐴�̄�𝐵
]

. (A.37)

Step 2: simplify (A.37). Using Eq. (A.34), we can rewrite the terms on
the right-hand side of Eq. (A.37) as

𝐸
[(

𝑢𝐴𝑡 − �̄�𝐴
) (

𝑢𝐵𝑡 − �̄�𝐵
)]

= cov
(

𝑢𝐴𝑡 , 𝑢
𝐵
𝑡

)

,

𝐸
[

(

𝑢𝐴𝑡 − �̄�𝐴
)2 (𝑢𝐵𝑡 − �̄�𝐵

)2
]

= var
(

𝑢𝐴𝑡
)

var
(

𝑢𝐵𝑡
)

+ 2
[

cov
(

𝑢𝐴𝑡 , 𝑢
𝐵
𝑡

)]2 ,

𝐸

[ 𝑁
∑

𝑛=1

(

𝑣𝐴𝑛,𝑡
)2

]

=
𝑁
∑

𝑛=1
var

(

𝑣𝐴𝑛,𝑡
)

,

𝐸

[ 𝑁
∑

𝑛=1

(

𝑣𝐵𝑛,𝑡
)2

]

=
𝑁
∑

𝑛=1
var

(

𝑣𝐵𝑛,𝑡
)

,

𝐸
[

(𝑢𝐴𝑡 − �̄�𝐴)2
𝑁
∑

𝑛=1
(𝑣𝐵𝑛,𝑡)

2
]

= var(𝑢𝐴𝑡 )
𝑁
∑

𝑛=1
var(𝑣𝐵𝑛,𝑡) + 2

𝑁
∑

𝑛=1

[

cov(𝑢𝐴𝑡 , 𝑣
𝐵
𝑛,𝑡)

]2,

𝐸
[

(𝑢𝐵𝑡 − �̄�𝐵)2
𝑁
∑

𝑛=1
(𝑣𝐴𝑛,𝑡)

2
]

= var(𝑢𝐵𝑡 )
𝑁
∑

𝑛=1
var(𝑣𝐴𝑛,𝑡) + 2

𝑁
∑

𝑛=1

[

cov(𝑢𝐵𝑡 , 𝑣
𝐴
𝑛,𝑡)

]2,

𝐸
[( 𝑁

∑

𝑛=1
(𝑣𝐴𝑛,𝑡)

2
)( 𝑁

∑

𝑛=1
(𝑣𝐵𝑛,𝑡)

2
)]

=
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

(

var(𝑣𝐴𝑖,𝑡)var(𝑣
𝐵
𝑗,𝑡) + 2

[

cov(𝑣𝐴𝑖,𝑡, 𝑣
𝐵
𝑗,𝑡)

]2
)

,

�̄�𝐴 = var(𝑢𝐴𝑡 ) +
𝑁
∑

𝑛=1
var(𝑣𝐴𝑛,𝑡),
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�̄�𝐵 = var(𝑢𝐵𝑡 ) +
𝑁
∑

𝑛=1
var(𝑣𝐵𝑛,𝑡).

Plugging these equations into Eq. (A.37), we have that

𝐸[ℎ𝑡,𝐴ℎ𝑡,𝐵] = 4cov(𝑢𝐴𝑡 , 𝑢
𝐵
𝑡 ) + var(𝑢𝐴𝑡 )var(𝑢

𝐵
𝑡 ) + 2

[

cov(𝑢𝐴𝑡 , 𝑢
𝐵
𝑡 )
]2

+ var(𝑢𝐴𝑡 )
𝑁
∑

𝑛=1
var(𝑣𝐵𝑛,𝑡) + 2

𝑁
∑

𝑛=1

[

cov(𝑢𝐴𝑡 , 𝑣
𝐵
𝑛,𝑡)

]2

+ var(𝑢𝐵𝑡 )
𝑁
∑

𝑛=1
var(𝑣𝐴𝑛,𝑡) + 2

𝑁
∑

𝑛=1

[

cov(𝑢𝐵𝑡 , 𝑣
𝐴
𝑛,𝑡)

]2

− var(𝑢𝐴𝑡 )
(

var(𝑢𝐵𝑡 ) +
𝑁
∑

𝑛=1
var(𝑣𝐵𝑛,𝑡)

)

− var(𝑢𝐵𝑡 )
(

var(𝑢𝐴𝑡 ) +
𝑁
∑

𝑛=1
var(𝑣𝐴𝑛,𝑡)

)

+
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

(

var(𝑣𝐴𝑖,𝑡)var(𝑣
𝐵
𝑗,𝑡) + 2

[

cov(𝑣𝐴𝑖,𝑡, 𝑣
𝐵
𝑗,𝑡)

]2
)

−
( 𝑁
∑

𝑛=1
var(𝑣𝐵𝑛,𝑡)

)(

var(𝑢𝐴𝑡 ) +
𝑁
∑

𝑛=1
var(𝑣𝐴𝑛,𝑡)

)

−
( 𝑁
∑

𝑛=1
var(𝑣𝐴𝑛,𝑡)

)(

var(𝑢𝐵𝑡 ) +
𝑁
∑

𝑛=1
var(𝑣𝐵𝑛,𝑡)

)

+
(

var(𝑢𝐴𝑡 ) +
𝑁
∑

𝑛=1
var(𝑣𝐴𝑛,𝑡)

)(

var(𝑢𝐵𝑡 ) +
𝑁
∑

𝑛=1
var(𝑣𝐵𝑛,𝑡)

)

= 4cov(𝑢𝐴𝑡 , 𝑢
𝐵
𝑡 ) + 2

[

cov(𝑢𝐴𝑡 , 𝑢
𝐵
𝑡 )
]2

−
( 𝑁
∑

𝑛=1
var(𝑣𝐴𝑛,𝑡)

)( 𝑁
∑

𝑛=1
var(𝑣𝐵𝑛,𝑡)

)

+ 2
𝑁
∑

𝑛=1

(

[

cov(𝑢𝐴𝑡 , 𝑣
𝐵
𝑛,𝑡)

]2 +
[

cov(𝑢𝐵𝑡 , 𝑣
𝐴
𝑛,𝑡)

]2
)

+
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

(

var(𝑣𝐴𝑖,𝑡)var(𝑣
𝐵
𝑗,𝑡) + 2

[

cov(𝑣𝐴𝑖,𝑡, 𝑣
𝐵
𝑗,𝑡)

]2
)

= 4cov(𝑢𝐴𝑡 , 𝑢
𝐵
𝑡 ) + 2

[

cov(𝑢𝐴𝑡 , 𝑢
𝐵
𝑡 )
]2 + 2

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

[

cov(𝑣𝐴𝑖,𝑡, 𝑣
𝐵
𝑗,𝑡)

]2

+ 2
𝑁
∑

𝑛=1

(

[

cov(𝑢𝐴𝑡 , 𝑣
𝐵
𝑛,𝑡)

]2 +
[

cov(𝑢𝐵𝑡 , 𝑣
𝐴
𝑛,𝑡)

]2
)

,

which completes the proof.

Appendix B. Proof and discussion of Proposition 4

This appendix provides a proof and interpretation for Proposition 4.
Appendix B.1 gives the proof, Appendix B.2 discusses the relation
between Proposition 4 and the GRS test of Gibbons et al. (1989), and
Appendix B.3 provides interpretation for the net alpha introduced in
Proposition 4.

B.1. Proof of Proposition 4

Let the vector 𝑆𝑡 = (𝐹⊤
𝑡 , 𝑅⊤

𝑡 )
⊤ stack the returns of the factors and

test assets. Thus, the average of 𝑆𝑡 is 𝜇𝑆 = (𝜇⊤
𝐹 , 𝜇

⊤
𝑅)

⊤ and its covariance
matrix is

𝛴𝑆,𝑆 =
[

𝛴𝐹 ,𝐹 𝛴𝐹 ,𝑅
𝛴𝑅,𝐹 𝛴𝑅,𝑅

]

.

Similarly, the expected price-impact matrix for 𝑆𝑡 is

𝛬𝑆,𝑆 =
[

𝛬𝐹 ,𝐹 𝛬𝐹 ,𝑅
𝛬𝑅,𝐹 𝛬𝑅,𝑅

]

,

where 𝛬𝐹 ,𝐹 = 𝐸[(�̃�𝐹
𝑡 )

⊤𝐷𝑡�̃�𝐹
𝑡 ] is the expected price-impact matrix for

the factors, 𝛬𝑅,𝑅 = 𝐸[(�̃�𝑅
𝑡 )

⊤𝐷𝑡�̃�𝑅
𝑡 ] is the expected price-impact matrix

for the test assets, and 𝛬𝑅,𝐹 = 𝛬⊤
𝐹 ,𝑅 = 𝐸[(�̃�𝑅

𝑡 )
⊤𝐷𝑡�̃�𝐹

𝑡 ] is the expected
price-impact matrix for the test assets when the investor is also holding
the factors.

Consider an investor with absolute risk aversion 𝛾 who faces the
quadratic price-impact costs defined in (12). Then, Eq. (12) implies
that an investor holding a portfolio 𝜃𝑆 = [𝜃𝐹 , 𝜃𝑅] of the factors and
test assets incurs the following expected price-impact cost:

𝑓 (𝜃𝑆 ) =
1
2
𝜃⊤𝐹𝛬𝐹 ,𝐹 𝜃𝐹 + 1

2
𝜃⊤𝑅𝛬𝑅,𝑅𝜃𝑅 + 𝜃⊤𝑅𝛬𝑅,𝐹 𝜃

⊤
𝐹 . (B.1)

The first term in the right-hand side of (B.1) is the price-impact cost
associated with rebalancing the portfolio of the factors in isolation, 𝜃𝐹 ,
the second term is the price-impact cost associated with rebalancing
the portfolio of the test assets in isolation, 𝜃𝑅, and the third term is the
price-impact cost associated with the interaction between the trades
required to rebalance the portfolios of the test assets and the factors.

Eq. (14) implies that the mean–variance utility net of price-impact
costs of the investor when she has access to both the test assets and
factors is

MVU𝛾 ([𝐹 ,𝑅]) =
𝜇⊤
𝑆
(

𝛴𝑆,𝑆 + 𝛬𝑆,𝑆∕𝛾
)−1 𝜇𝑆

2𝛾
, (B.2)

and that when she only has access to the factors is

MVU𝛾 (𝐹 ) =
𝜇⊤
𝐹
(

𝛴𝐹 ,𝐹 + 𝛬𝐹 ,𝐹 ∕𝛾
)−1 𝜇𝐹

2𝛾
. (B.3)

To prove the proposition, we first note that for an invertible matrix

𝑈 =
[

𝐴 𝐵
𝐵⊤ 𝐷

]

,

where 𝐴 is an invertible square matrix, we have

𝑈−1

=

[

𝐴−1 + 𝐴−1𝐵
(

𝐷 − 𝐵⊤𝐴−1𝐵
)−1 𝐵⊤𝐴−1 −𝐴−1𝐵

(

𝐷 − 𝐵⊤𝐴−1𝐵
)−1

−
(

𝐷 − 𝐵⊤𝐴−1𝐵
)−1 𝐵⊤𝐴−1 (

𝐷 − 𝐵⊤𝐴−1𝐵
)−1

]

.

Let 𝑈 be 𝛴𝑆,𝑆 + 𝛬𝑆,𝑆∕𝛾, and thus 𝐴, 𝐵, and 𝐷 correspond to 𝛴𝐹 ,𝐹 +
𝛬𝐹 ,𝐹 ∕𝛾, 𝛴𝐹 ,𝑅 + 𝛬𝐹 ,𝑅∕𝛾, and 𝛴𝑅,𝑅 + 𝛬𝑅,𝑅∕𝛾, respectively. In this case,
we have

𝜇⊤
𝑆𝑈

−1𝜇𝑆 = 𝜇⊤
𝐹𝐴

−1𝜇𝐹 + 𝜇⊤
𝐹𝐴

−1𝐵
(

𝐷 − 𝐵⊤𝐴−1𝐵
)−1 𝐵⊤𝐴−1𝜇𝐹

− 𝜇⊤
𝐹𝐴

−1𝐵
(

𝐷 − 𝐵⊤𝐴−1𝐵
)−1 𝜇𝑅 − 𝜇⊤

𝑅

(

𝐷 − 𝐵⊤𝐴−1𝐵
)−1 𝐵⊤𝐴−1𝜇𝐹

+ 𝜇⊤
𝑅

(

𝐷 − 𝐵⊤𝐴−1𝐵
)−1 𝜇𝑅

=
(

𝜇⊤
𝑅 − 𝜇⊤

𝐹𝐴
−1𝐵

) (

𝐷 − 𝐵⊤𝐴−1𝐵
)−1 (𝜇𝑅 − 𝐵⊤𝐴−1𝜇𝐹

)

+ 𝜇⊤
𝐹𝐴

−1𝜇𝐹 .

Thus,

𝜇⊤
𝑆𝑈

−1𝜇𝑆 − 𝜇⊤
𝐹𝐴

−1𝜇𝐹 =
(

𝜇⊤
𝑅 − 𝜇⊤

𝐹𝐴
−1𝐵

) (

𝐷 − 𝐵⊤𝐴−1𝐵
)−1 (𝜇𝑅 − 𝐵⊤𝐴−1𝜇𝐹

)

.

(B.4)

Note that

𝐵 = 𝛴𝐹 ,𝑅 + 𝛬𝐹 ,𝑅∕𝛾 =
(

𝛴𝐹 ,𝐹 + 𝛬𝐹 ,𝐹 ∕𝛾
)

𝛽⊤ +
(

𝛬𝐹 ,𝑅∕𝛾 − 𝛬𝐹 ,𝐹 𝛽
⊤∕𝛾

)

,

where 𝛽 is the slope obtained from an OLS regression of the test asset
returns on the factor returns. Thus, we have

𝜇𝑅 − 𝐵⊤𝐴−1𝜇𝐹 = 𝜇𝑅 −
[

𝛽
(

𝛴𝐹 ,𝐹 + 𝛬𝐹 ,𝐹 ∕𝛾
)

+
(

𝛬𝑅,𝐹 ∕𝛾 − 𝛽𝛬𝐹 ,𝐹 ∕𝛾
)]

×
(

𝛴𝐹 ,𝐹 + 𝛬𝐹 ,𝐹 ∕𝛾
)−1 𝜇𝐹

= 𝜇𝑅 − 𝛽𝜇𝐹

−
(

𝛾𝛬𝑅,𝐹 ∕𝛾 − 𝛾𝛽𝛬𝐹 ,𝐹 ∕𝛾
) 1
𝛾
(

𝛴𝐹 ,𝐹 + 𝛬𝐹 ,𝐹 ∕𝛾
)−1 𝜇𝐹

= 𝛼 −
(

𝛬𝑅,𝐹 − 𝛽𝛬𝐹 ,𝐹
)

𝜃∗𝐹 ≡ 𝛼net, (B.5)

where 𝛼 is the intercept obtained from regressing the test asset returns
on the factor returns and the last equality follows from Eq. (13). Thus,
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Eqs. (B.4) and (B.5) imply that

MVU𝛾 ([𝐹 ,𝑅]) − MVU𝛾 (𝐹 ) =
(

𝛼net)⊤ 𝐻−1
𝛾 𝛼net, (B.6)

where

𝐻𝛾 = 2𝛾
(

𝛴𝑅,𝑅 + 𝛬𝑅,𝑅∕𝛾
)

− 2𝛾
(

𝛴𝑅,𝐹 + 𝛬𝑅,𝐹 ∕𝛾
) (

𝛴𝐹 ,𝐹 + 𝛬𝐹 ,𝐹 ∕𝛾
)−1 (𝛴𝐹 ,𝑅 + 𝛬𝐹 ,𝑅∕𝛾

)

, (B.7)

which is positive definite because 𝐻𝛾 is the Schur complement of
2𝛾(𝛴𝑆,𝑆 + 𝛬𝑆,𝑆∕𝛾), which is positive definite by assumption.

B.2. Relation to the GRS test

We now show that for the case without trading costs, Proposition 4
implies the result in equation (23) of Gibbons et al. (1989) that the
increase in the squared Sharpe ratio of the investor when she has
access to the test assets in addition to the factors in the model is
a quadratic form of the gross alpha. To see this, note that for the
case without trading costs (𝛬𝑆,𝑆 = 0), we have that 𝛼net = 𝛼,
MVU𝛾 ([𝐹 ,𝑅]) = 𝑆𝑅2([𝐹 ,𝑅])∕(2𝛾), MVU𝛾 (𝐹 ) = 𝑆𝑅2(𝐹 )∕(2𝛾), and 𝐻𝛾 =
2𝛾𝛴𝑅,𝑅 − 2𝛾𝛴𝑅,𝐹𝛴−1

𝐹 ,𝐹𝛴𝐹 ,𝑅. Thus, Eq. (B.6) becomes

𝑆𝑅2 ([𝐹 ,𝑅]) − 𝑆𝑅2 (𝐹 ) = 𝛼⊤
(

𝛴𝑅,𝑅 − 𝛴𝑅,𝐹𝛴
−1
𝐹 ,𝐹𝛴𝐹 ,𝑅

)−1
𝛼. (B.8)

B.3. Interpretation of the adjusted alpha

Consider an investor with absolute risk aversion 𝛾. Then, the net
alpha (𝛼net) defined in Eq. (20) of Proposition 4 is the incremental
return net of price-impact costs that the investor can achieve by making
a marginal investment in the test assets when she is already holding the
mean–variance portfolio of the factors in the model.

To see this, consider first the case without trading costs. Assume the
investor holds the mean–variance portfolio of the factors in the model
𝜃∗ = 𝛴−1

𝐹 ,𝐹𝜇𝐹 ∕𝛾 and 𝑀 dollars of the 𝑖th test asset with return 𝑅𝑖,𝑡. Then,
the average return of the investor’s portfolio is (𝜃∗)⊤𝜇𝐹 +𝑀𝜇𝑅𝑖

, where
𝜇𝑅𝑖

is the average return of the 𝑖th asset. Moreover, the beta of the
investor’s portfolio with respect to the factors in the model is 𝜃∗+𝑀𝛽𝑖,
where 𝛽𝑖 is the beta of the 𝑖th asset with respect to the factors. Thus,
the average return of the investor’s portfolio explained by the factors
in the model is (𝜃∗ +𝑀𝛽𝑖)⊤𝜇𝐹 , and the average return of the investor’s
portfolio that is not explained by the factors in the model, per dollar
invested in the 𝑖th test asset is:
1
𝑀

[

(𝜃∗)⊤𝜇𝐹 +𝑀𝜇𝑅𝑖
−
(

𝜃∗ +𝑀𝛽𝑖
)⊤ 𝜇𝐹

]

= 𝛼𝑖,

which is the alpha of the 𝑖th asset with respect to the factors in the
model. Importantly, in the absence of trading costs the alpha of asset 𝑖
does not depend on the mean–variance portfolio of the factors 𝜃∗.

In the presence of price-impact costs, however, the net alpha of the
𝑖th test asset depends on the investor’s mean–variance factor portfolio
𝜃∗, and thus, on the investor’s absolute risk aversion 𝛾. To see this, note
that the price-impact cost associated with holding the portfolio of the
investor is

1
2
[

(𝜃∗)⊤ 𝑀
]

𝛬𝑆,𝑆

[

𝜃∗

𝑀

]

= 1
2
(𝜃∗)⊤𝛬𝐹 ,𝐹 𝜃

∗ +𝑀(𝜃∗)⊤𝛬𝐹 ,𝑅𝑖
+ 𝑀2

2
𝛬𝑅𝑖 ,𝑅𝑖

.

Moreover, the beta of the investor’s portfolio with respect to the factors
is 𝜃∗ + 𝑀𝛽𝑖, and thus, the price-impact cost of the projection of the
investor’s portfolio on the factors is
1
2
(

𝜃∗ +𝑀𝛽𝑖
)⊤ 𝛬𝐹 ,𝐹

(

𝜃∗ +𝑀𝛽𝑖
)

= 1
2
(𝜃∗)⊤𝛬𝐹 ,𝐹 𝜃

∗ +𝑀(𝜃∗)⊤𝛬𝐹 ,𝐹 𝛽𝑖

+ 𝑀2

2
𝛽⊤𝑖 𝛬𝐹 ,𝐹 𝛽𝑖.

Then, the average return net of price-impact costs of the investor’s
portfolio that is not explained by the factors in the model per dollar

invested in the 𝑖th test asset is:
1
𝑀

(

(𝜃∗)⊤𝜇𝐹 +𝑀𝜇𝑅𝑖
−
(

1
2
(𝜃∗)⊤𝛬𝐹 ,𝐹 𝜃

∗ +𝑀(𝜃∗)⊤𝛬𝐹 ,𝑅𝑖
+ 𝑀2

2
𝛬𝑅𝑖 ,𝑅𝑖

))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Average net return of the investor’s portfolio

− 1
𝑀

(

(

𝜃∗ +𝑀𝛽𝑖
)⊤ 𝜇𝐹 −

(

1
2
(𝜃∗)⊤𝛬𝐹 ,𝐹 𝜃

∗ +𝑀(𝜃∗)⊤𝛬𝐹 ,𝐹 𝛽𝑖 +
𝑀2

2
𝛽⊤𝑖 𝛬𝐹 ,𝐹 𝛽𝑖

))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Average net return of the projection of the investor’s portfolio on the factors

= 𝛼𝑖 −
(

(𝜃∗)⊤𝛬𝐹 ,𝑅𝑖
− (𝜃∗)⊤𝛬𝐹 ,𝐹 𝛽𝑖

)

− 𝑀
2

(

𝛬𝑅𝑖 ,𝑅𝑖
− 𝛽⊤𝑖 𝛬𝐹 ,𝐹 𝛽𝑖

)

. (B.9)

Furthermore, for the case where 𝑀 is arbitrarily small we get

lim
𝑀→0

𝛼𝑖 −
(

(𝜃∗)⊤𝛬𝐹 ,𝑅𝑖
− (𝜃∗)⊤𝛬𝐹 ,𝐹 𝛽𝑖

)

− 𝑀
2

(

𝛬𝑅𝑖 ,𝑅𝑖
− 𝛽⊤𝑖 𝛬𝐹 ,𝐹 𝛽𝑖

)

= 𝛼𝑛𝑒𝑡.

That is, 𝛼net measures the incremental return net of price-impact costs
that the investor can achieve by making a marginal investment in the
test assets when she is already holding the mean–variance portfolio of
the factors in the model.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jfineco.2024.103949.
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