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Abstract

Valuing Subscription-Based Businesses Using Publicly Disclosed Customer Data

The growth of subscription-based commerce has seen a change in the types of data firms report

to external shareholders. More than ever before, companies are discussing and disclosing data

on the number of customers acquired and lost, customer lifetime value, and more. This has

fueled an increasing interest in linking the value of a firm’s customers to the overall value of

the firm, with the term customer-based corporate valuation being using to describe such efforts.

While a number of researchers in the fields of marketing and accounting have explored this

idea, their underlying models of customer acquisition and retention do not adequately reflect

the empirical realities associated with these behaviors, and the associated valuation models do

not live up to the standards of finance professionals. We develop a framework for valuing

subscription-based firms that addresses both issues, and apply it to data from Dish Network and

Sirius XM Holdings.

Keywords: customer lifetime value; customer equity; shareholder value; valuation.



1 Introduction

The relevance and popularity of subscription-based businesses — businesses whose customers

pay a periodically recurring fee for access to a product or service — has grown considerably

in recent years. Previously dominated by newspapers, magazines, and telecommunications

companies, the subscription-based business model has made strong inroads into consumer soft-

ware (Microsoft 365), food preparation (Blue Apron), health and beauty products (Dollar Shave

Club), and a large array of subscription-based software-as-a-service (SaaS) enterprises in the

B2B space, as businesses look to increase the predictability of their revenue streams. Many

experts have written in depth about this topic (Baxter 2015; Janzer 2015; Warrillow 2015).

The increased popularity of subscription-based businesses has brought with it an increase

in the public disclosure of data on (but not limited to) customer churn, customer/subscriber

acquisition costs, average revenue per user, and customer lifetime value (CLV). The price of

a company’s stock reflects and incorporates investors’ beliefs regarding the future cash flows

the company will generate. For the subscription-based businesses, the primary source of future

cash flows is customers. Therefore, customer data is important to investors and is being used

by analysts as they make their recommendations. For example, a class-action lawsuit was taken

out again Netflix in response to changes in its reporting of such data (SCAC 2004). Analyst

reports from Thomas Weisel Partners, Vintage Research, First Albany Capital and Delafield

Hambrecht, made public as part of the litigation, all strongly emphasize customer data in general

(and the size of the total subscriber base over time in particular) when justifying their investment

recommendations.

The pioneering work of Gupta, Lehmann, and Stuart (2004) was the first to explicitly link

firm value to CLV for public companies. However, their treatment of the valuation problem

suffers from two major issues. First, their CLV calculations are performed assuming a constant

retention rate, which can result in an undervaluing of existing customers (Fader and Hardie

2010). Second, their valuation framework does not incorporate key financial/accounting issues

such as firm capital structure and non-operating assets. While other researchers, most notably
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Schulze, Skiera, and Wiesel (2012), have built upon this seminal work, the underlying models of

customer behavior and the associated valuation frameworks are not up to the standards expected

by marketers and financial professionals, respectively.

Our objective is to present a framework for valuing subscription-based business. The pa-

rameters of the underlying model of customer behavior can be estimated using only publicly

disclosed customer data, making it suitable for passive investors valuing a going concern. We

present models of the firm’s acquisition and retention processes that accommodate factors such

as customer heterogeneity, duration dependence, seasonality, and changes in population size.

We explicitly account for the fact that publicly reported data are typically aggregated (tempo-

rally and across customers) and suffer from missingness (i.e., the reported data are not available

for all periods).

The paper is organized as follows. In the next section, we discuss the principles of customer-

based corporate valuation, first reviewing the basic concepts of firm valuation and then explor-

ing the nature of the customer data typically released by subscription-based businesses. Fol-

lowing a review of the literature, we present our model of customer behavior for such settings,

presenting models for customer acquisition, retention, and spend. We then provide an empirical

analysis that explores how such a model can be fit to real public company data; the two firms

considered in our analysis are Dish Network and Sirius XM. After demonstrating the validity of

our model, we present our valuations of the firms, and explore other insights that can be derived

using our model. We conclude with a discussion of the results and future work.

2 The Logic of Customer-Based Corporate Valuation

Before reviewing the literature and then developing our framework for valuing subscription-

based business using publicly disclosed data, let us first review a standard approach to firm

valuation (identifying the key information requirements) and then identify the data that are

typically available inside the firm (in contrast to the data that firms with a subscription-based
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business model tend to report to the public).

2.1 Valuation 101

According to standard corporate valuation theory (Damodaran 2012; Greenwald et al. 2004;

Holthausen and Zmijewski 2014; Koller, Goedhart, and Wessels 2015), the value of a firm

equals the value of the operating assets (OA) plus the non-operating assets (NOA), minus the

net debt (ND) of the firm. Denoting the value of the firm at time T by SHVT (for shareholder

value),1 we have

SHVT = OAT + NOAT − NDT . (1)

The value of a firm’s operating assets (OA) is equal to the sum of all future free cash flows

(FCFs) the firm will generate,2 discounted at the weighted average cost of capital (WACC):

OAT =
∞∑
t=0

FCFT+t

(1 + WACC)t
. (2)

FCF is equal to the net operating profit after taxes (NOPAT) minus the difference between

capital expenditures (CAPEX) and depreciation and amortization (D&A), minus the change in

non-financial working capital (∆NFWC):

FCFt = NOPATt − (CAPEXt − D&At)−∆NFWCt. (3)

The most important ingredient of FCF is NOPAT, which is a measure of the underlying prof-

itability of the operating assets of the firm. NOPAT is equal to revenues (REV) times the con-

1In this work, we take the perspective of a passive investor valuing a going concern. This same basic valuation
framework can also be used by owners and managers who can influence the firm’s decision making to evaluate
alternative investment decisions (Damodaran 2012; Koller, Goedhart, and Wessels 2015). The idea of value-based
management (i.e., the notion that maximizing shareholder value should be the guiding principle when making
strategic decisions) was popularized by Rappaport (1986), and has influenced thinking in the marketing strategy
literature (e.g., Day and Fahey 1988; Doyle 2000; Srivastava, Shervani, and Fahey 1997, 1998). As such, most
of the SHV-related discussions in the marketing literature relate to strategic decision making, as opposed to firm
valuation.

2Strictly speaking, we are referring to expected free cash flows.
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tribution margin ratio (1 − VC) minus fixed operating costs (FC), after taxes (where TR is the

corporate tax rate for the firm):

NOPATt = (REVt × (1− VCt)− FCt)× (1− TRt) . (4)

The other elements of Equation 3 make adjustments for balance sheet-related cash flow effects,

and are generally of secondary importance to the value of the firm.

The framework summarized above is a discounted cash flow (DCF) model, which is the

de-facto industry standard way in which operating assets are valued within the financial com-

munity.3 At the heart of any such valuation exercise is the estimation of period-by-period FCF,

central to which are estimates of period-by-period revenue (Equations 3 and 4). The task of

generating accurate revenue projections has received surprisingly little attention in the finance

community (Damodaran 2005).

2.2 A Data Structure for Subscription-Based Businesses

Let us assume that the firm has a monthly internal reporting period. The key numbers of interest

are monthly revenues, which we denote by R(m) (where m = 1 corresponds to the firm’s first

month of commercial operations).

While some researchers would be tempted to approach the task of forecasting revenue by

using a time-series model, a few moments of reflection will suggest that it makes more sense

to first decompose these aggregate revenue numbers, separately model the constituent com-

ponents, and then combine the forecasts of these components to arrive at the desired revenue

forecasts.4 First, we should recognize that revenue comes from customers, so decomposing

3As Damodaran (2012, p. 925) notes, “[t]he problem in valuation is not that there are not enough models to
value an asset, it is that there are too many. Choosing the right model to use in valuation is as critical to arriving at a
reasonable value as understanding how to use the model.” Using the decision framework developed in Damodaran
(2012, Chapter 34), it is clear that the discounted cash flow approach used in this paper is the most appropriate for
the task at hand.

4There is an obvious parallel with the new product sales forecasting literature (e.g., Fourt and Woodlock 1960;
Eskin 1973; Fader, Hardie, and Huang 2004), where we first decompose total sales into its trial and repeat compo-
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revenue into its “number of customers” and “average revenue per customer” components would

be a good start. Second, as we think about the number of customers the firm has in a month, it

makes sense to decompose this quantity into the number of new customers acquired that month

and the number of customers acquired in previous months who still have a relationship with the

firm. Knowing the number of new customers acquired of each month is a critical input to any

valuation exercise, especially for firms with high subscriber acquisition costs. It is important

to note that such information will be overlooked if we simply apply a time-series model to the

revenue numbers.

As a starting point, let us think about what lies behind the “total number of customers”

number. It is helpful to think of a “number of customers” matrix, C(·, ·), which tracks customer

behavior by time of acquisition. With reference to Figure 1 (where the columns correspond to

(calender) time since the start of the firm’s commercial operations and the rows correspond to

acquisition cohorts), let C(m,m′) be the number of customers acquired by the firm in month m

who are still active in monthm′. It follows that the total number of customers the firm has at the

end of month m′ is given by the column total C(.,m′) =
∑m′

m=1C(m,m′). The number of cus-

tomers in any cohort must be non-increasing over time (i.e., C(m,m′) ≥ C(m,m′′) for m′ <

m′′).

[Figure 1 about here.]

The C(·, ·) matrix, along with R(·), lies that the heart of a number of customer metrics

reported both internally and externally.

• A sophisticated subscription-based firm will report the C(·, ·) matrix internally, either in

its raw form or as cohort-by-cohort survival percentages (C(m,m′)/C(m,m) × 100%)

(e.g., Martı́nez-Jerez et al. 2013).

nents, ii) develop separate models for trial and repeat sales, and ii) then combine the associated forecasts of these
components to arrive at a forecast of total sales.
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• The number of customers acquired each month by the firm is given by

A(m) = C(m,m) . (5)

• The number of customers “lost” each month by the firm is given by

L(m) =


0 m = 1

C(.,m− 1)− [C(.,m)− C(m,m)] m = 2, 3, 4, . . .

(6)

(It follows that an aggregate monthly churn rate can be computed as L(m)/C(.,m− 1).)

• For most firms with a subscription-based business model, the average revenue per sub-

scriber is relatively constant across customers during a given period of time.5 Let us

denote this quantity by ARPU(m) and compute it in the following manner:

ARPU(m) = R(m)

/
C(.,m− 1) + C(.,m)

2
. (7)

(The denominator is the average number of customers the firm has during month m.)

Publicly disclosed customer data are typically reported quarterly with the associated unit of

time being the quarter; as such, they represent a temporal aggregation of the true underlying

process. Commonly reported measures include the number of customers active at the end of

each quarter (ENDq), and the number of customers added and lost each quarter (ADDq and

LOSSq, respectively). Assuming the firm started operations at the beginning of a reporting

quarter (i.e., q = 1 comprises m = {1, 2, 3}; equivalently, the first month of each quarter is

5In contrast, average revenue per subscriber for firms with a non-subscription-based business model tends to
vary considerably across customers in any given period of time.
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either January, April, July or October),

ENDq = C(., 3q) (8)

ADDq = A(3q − 2) + A(3q − 1) + A(3q) (9)

LOSSq = L(3q − 2) + L(3q − 1) + L(3q) (10)

This mapping from the internal “number of customers” matrix to ADD and END is illustrated

in Figure 1.

Quarterly revenues (REVq) are given by

REVq = R(3q − 2) +R(3q − 1) +R(3q) . (11)

The challenge we face is how to make projections of R(m) and A(m) far into the future (as

required for calculating for the FCF numbers) using the publicly reported ADD, LOSS, END,

and REV numbers. We pursue this important task in our Model Development section below but

first we discuss how other researchers have utilized the valuation concepts and data structures

discussed here.

3 Literature Review

The idea of value-based management (i.e., the notion that maximizing shareholder value should

be the guiding principle when making strategic decisions) gained popularity in the 1980s, and

the associated writings — especially Rappaport (1986) — brought the basic principles of firm

valuation (as reviewed in Section 2.1) to a broader, non-finance audience.

In his review of the valuation literature, Damodaran (2005, p. 1) writes: “Given the cen-

trality of its role, you would think that the question of how best to value a business, private or

public, would have been well researched. [. . . ] [T]he research into valuation models and met-

rics in finance is surprisingly spotty, with some aspects of valuation, such as risk assessment,
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being deeply analyzed and others, such as how best to estimate cash flows . . . not receiving the

attention that they deserve.”

Kim, Mahajan, and Srivastava (1995) were the first marketing academics to recognize the

potential for using some of the models of customer behavior developed by marketing scientists

to generate the key inputs for estimating cash flows. They used the logistic internal-influence

model for the diffusion of an innovation (which is equivalent to Fisher and Pry’s (1971) model

of technology substitution) to characterize (and then project) the market penetration of mobile

phones (and therefore the associated revenues of a cellular communication company), resulting

in an estimate of the market value of a business explicitly based on a model of customer be-

havior.6 Pioneering as it was, the biggest shortcoming in their analysis was that they did not

consider the reality of customer churn (i.e., it is assumed that once the customer has adopted

the service, they remain as a customer forever).

Driven in part by the interest in moving from transaction-oriented/product-centric marketing

strategies to relationship-oriented/customer-centric marketing strategies (with their emphasis

on customer acquisition, retention, and development), the 1990s saw the notion of customer

lifetime value (CLV) — defined as “the present value of the future cash flows attributed to the

customer relationship” (Pfeifer, Haskins, and Conroy 2005, p. 17) — emerge from the confines

of specialized direct/database marketing firms and become what is now a fundamental concept

for most marketers. Blattberg and Deighton (1996) introduced the concept of “customer equity”

(CE), which is the sum of the lifetime values of the firm’s customers, both current and future.

Kumar and Shah (2015) provide a comprehensive guide to the literature on customer equity.

The pioneering work of Gupta, Lehmann, and Stuart (2004) (hereafter, GLS) was the first to

explicitly link CLV and firm value. Underpinning their work was the logistic internal-influence

model to characterize customer acquisitions and a simple model for the CLV of acquired cus-

tomers. After calibrating the models using publicly available data (along with expert judgment),

6It is important to note that they applied the model at the level of the industry, not the firm, in their empirical
analysis.
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they arrived at estimates of market value for five listed companies. However, their treatment of

the valuation problem suffers from two major issues. First, their CLV calculations are performed

assuming a constant retention rate. Second, their valuation framework does not incorporate key

financial/accounting issues such as firm capital structure and non-operating assets.

A number of researchers have built on GLS’s seminal work. Most notably, Schulze, Skiera,

and Wiesel (2012) (hereafter SSW) provide a thorough treatment of how CE relates to firm

value using financial valuation theory, addressing many of the financal/accounting issues asso-

ciated with the valuation aspect of GLS’s work. Several researchers have explored a number

of technical issues associated with any valuation exercise. Pfeifer (2011) shows how one must

be careful with the timing of cash flows when estimating retention rates and the value of the

firm’s existing customers (which he calls current-customer equity, CCE) using publicly dis-

closed company data. However, he stops short of providing his own estimate of CCE for any

firm, let alone an estimate of the value of the firm as a whole. Fader and Hardie (2010) show

how assuming a constant retention rate (i.e., ignoring the phenomenon of increasing retention

rates at the level of the cohort) results in downward-biased estimates of the future or residual

lifetime value (RLV) of the firm’s current customers. Other key papers include Kumar and Shah

(2009), Libai, Muller, and Peres (2009), and Wiesel, Skiera, and Villanueva (2008).

These ideas have been gaining attention and respect outside of marketing. Within the ac-

counting literature, for instance, Bonacchi, Kolev, and Lev (2015) provide a systematic analysis

across multiple companies linking CCE to shareholder value. Other accounting-related work in-

cludes Andon, Baxter, and Bradley (2001), Bonacchi, Ferrari, and Pellegrini (2008), Bonacchi

and Perego (2012), Boyce (2000), Gourio and Rudanko (2014), and Hand (2015).

We summarize the literature and our contributions to it in Table 1. Since we will use the

models proposed by GLS and SSW as benchmarks in our empirical analysis, let us briefly com-

ment on the structure of these models. Both rely on the logistic internal-influence model to

model customer acquisition and both assume a homogeneous retention rate in their CLV calcu-

lations. The impacts of seasonality and macroeconomic conditions have not been incorporated
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into their models, nor have the issues of (temporal) aggregation and missing data associated with

the information released by companies. These are issues that we will address in the valuation

framework we develop below.

[Table 1 about here.]

While many of the papers reviewed above discuss DCF methods for firm valuation (often

anchoring on Rappaport’s (1986) expression for SHV), they do not explicitly make use of such

a framework when generating an estimate of firm value. Rather, they take what Skiera and

Schule (2014) call a customer-based valuation approach. Skiera and Schulze (2014, p. 123)

first state that “[c]ustomer-based valuation first uses information about the customer base (for

example, number of customers, contribution margin per customer, retention rate) to determine

the value of the firm,” and then describe an approach based on the (residual) lifetime value

of existing customers and the lifetime value of as-yet-to-be-acquired customers, multiplying

these two quantities by the number of current and expected future customers (respectively) and

adjusting for various financial considerations. Their position is that DCF and “customer-based

valuation” methods are fundamentally different.

We believe that this is more polarizing than it needs to be. With reference back to Figure 1,

previous “customer-based valuation” methods are performing on a row-by-row basis what are

effectively NPV calculations across columns and then summing up across rows. “DCF meth-

ods” (as outlined in Section 2.1) are summing up the columns and then effectively performing

an NPV calculation across these column totals. Given the same customer matrix C(·, ·), and

assuming all the various accounting issues are handled correctly, both approaches should yield

the same estimate of firm value.

While marketers may naturally be comfortable with discussions of firm valuation that are

explicitly based on CLV and CE calculations, finance professionals (including the CFO and

company directors) are more comfortable with a valuation model based on estimates of period-

by-period FCF. What marketers can bring to the table are customer-based methods for estimat-

ing these period-by-period cash flows. As developed in Section 2.2 above, we feel that the
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C(·, ·) matrix lies at the heart of any such effort, and we now turn our attention to the develop-

ment of a model that can be calibrated on publicly available data used to project C(·, ·) far into

the future, thereby giving us the required inputs for computing future period-by-period cash

flow.

4 Model Development

Our goal is to develop a model of customer behavior that can be used to generate long-run

projections of R(m) and A(m), one whose parameters can be estimated using only publicly

reported ADD, LOSS, END, and REV numbers. It is important that our approach to parameter

estimation accounts for the “missingness” and aggregation associated with the data reported

by companies. This “missingness” typically takes on one of two forms. First, there is the

issue of left-censoring. For example, while Sirius XM (one of the companies considered in our

empirical analysis) began commercial operations in 2001/2002,7 it started disclosing paying

customer data in Q3 2008. Second, there is the issue that some measures are reported for

some period of time (e.g., END) before being complemented by other measures (e.g., ADD and

LOSS). With respect to aggregation, the publicly disclosed customer data is typically reported

quarterly with the associated unit of time being the quarter, whereas the firm is operating on a

finer time interval (which, for the purposes of our analysis, we assume to be the month).8

At the heart of this work are models for the customer acquisition and retention processes

that allow us to project C(·, ·) into the future. Coupled with a model for ARPU(m), we can

then generate our projections of R(m).

We start by describing our model for the retention process. This assumes we know how

many customers the firm acquires each month. We then describe our model for the customer

acquisition process, one that takes into consideration the possibility of reacquiring customers

7The two companies that later merged to form Sirius XM started commercial operations in September 2001
and February 2002.

8Our model can also be used in situations where customer data is only reported annually with minimal modifi-
cation.
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who have previously churned, and then examine how to jointly estimate the parameters of these

two models. Finally, we present a simple model for the evolution of ARPU(m), and then

outline how to bring together all of these submodels to generate the desired projections of

R(m).

4.1 The Retention Process

Let the survival function SR(m′ − m|m) denote the probability that a customer acquired in

month m remains an customer for at least m′ −m months. Having acquired A(m) = C(m,m)

customers in month m, it follows that

C(m,m′) = C(m,m)× SR(m′ −m|m) ,m′ ≥ m. (12)

Our objective is to specify an accurate yet parsimonious survival model for the duration of

customers’ relationships with the firm. In addition to capturing the effects of (cross-sectional)

heterogeneity and duration dependence, we want to accommodate time-varying covariates to

control for the effects of seasonality and macroeconomic conditions.

We use a proportional hazards model with a Weibull baseline, and capture cross-sectional

heterogeneity in the baseline churn propensity using a gamma distribution. This is a well-

accepted model for duration data and has been proven to be quite effective and robust in a

number of different application settings (Morrison and Schmittlein 1980; Moe and Fader 2002;

Schweidel, Fader, and Bradlow 2008b).

Given a customer’s individual-specific baseline propensity to churn (λR), a homogeneous re-

tention process shape parameter (cR), time-varying retention covariates (XR(m,m′) = [xR(m), xR(m+

1), . . . , xR(m′)]), and the coefficients associated with the retention covariates (βR),

SR(m′ −m|m,XR(m+ 1,m′);λR, cR,βR) = exp(−λRBR(m,m′)) ,
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where

BR(m,m′) =
m′∑

i=m+1

[(i−m)cR − (i−m− 1)cR ]eβRxR(i). (13)

Following Schweidel, Fader, and Bradlow (2008b) and Jamal and Bucklin (2006), we expect

cR ≥ 1. When cR = 1, it reduces to an exponential baseline proportional hazards model.

Assuming λR is distributed gamma(rR, αR) across the population, the unconditional proba-

bility that a customer acquired in month m survives at least m′ −m months is

SR(m′ −m|m,XR(m+ 1,m′); rR, αR, cR,βR)

=

∫ ∞
0

S(m′ −m|m,XR(m+ 1,m′);λR, cR,βR)f(λR|rR, αR)dλR

=

(
αR

αR +BR(m,m′ −m)

)rR

. (14)

Plugging this survival function into Equation 12 allows us to predict the number of active

customers in future months for the month m cohort. Therefore, if we know C(m,m) over all

months, we can predict the remainder of the upper triangular matrix in Figure 1 as well as the

number of customers lost each month (Equation 6). Estimates of LOSSq and ENDq follow from

Equations 9 and 10 for all q = 1, 2, . . ..

In theory, we could estimate the model parameters (rR, αR, cR,βR) by minimizing the sum

of squared differences between our model-based estimates of LOSSq and the reported numbers.

However this assumes we know the monthly customer acquisition numbers, A(m), which is

not the case. We only have quarterly customer additions ADDq and some of these observations

are probably missing. We therefore need to develop a model of the acquisition process whose

parameters can be estimated using the reported ADDq data. These two models will be estimated

simultaneously to give us the required A(m) and L(m) numbers.
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4.2 The Acquisition Process

At first glance, specifying a model for the acquisition of customers over time seems to be a

relatively simple exercise. The Bass model (1969) or a simplified variant such as the logistic

internal-influence model (as used by GLS and SSW) would appear to be the obvious choice.

However, for the following four reasons, this is not the case:

1. It assumes that all churning customers disappear forever — once an acquired customer

has churned, he/she cannot re-enter the pool of ‘potential adopters.’ SSW attempt to

overcome this problem by using the logistic internal-influence model to characterize the

number of net total customers (i.e., the number of customers after churn).9

2. It assumes the population size is fixed, when we know that the number of potential cus-

tomers is typically increasing over time due to population growth.

3. The Bass model and its simplified variants have a number of unfavorable properties, most

notably the fact that the resulting adoption curve is symmetric about the period of peak

acquisition. In real datasets, skewness about the peak is almost always present.

4. It ignores the effects of seasonality and macro-economic events.

We therefore develop a model from first principles that addresses each of these issues.

Let POP (m) denote the size of the population in month m, with POP (0) being the popu-

lation size when the firm first commences operations. We assume POP (m) is non-decreasing

over time.

Each month sees the formation of a new prospect pool of size M(m). We set M(0), the

size of firm’s prospect pool when it commences operations, to the size of the population at that

time. The size of the prospect pool in the company’s second month of operation is simply the

increase in the size of the population over the preceding month. Thereafter, the size of the

9Libai, Muller, and Peres (2009) extend the basic Bass model to allow for lost customers re-entering the pool
of potential adopters, but they assume a constant retention rate.
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prospect pool is equal to the growth in the population during the preceding month, plus the

number of customers who churned in the previous month:

M(m) =


POP (m) m = 0

POP (m)− POP (m− 1) + L(m− 1) m = 1, 2, 3, ...

(15)

We assume that population growth is the only source of potential adopter growth over time,

aside from previously churned customers.

Once a prospect pool has formed, some time will elapse before individuals within that

pool are acquired as customers.10 Let FA(m′ − m|m) denote the probability that a member

of prospect pool m is aquired by the end of month m′. It follows that the total number of new

customers in month m is

A(m) =
m−1∑
i=0

M(i)×
[
FA(m− i|i)− FA(m− i− 1|i)

]
. (16)

We model the time it takes for a prospect to become a customer using a split-hazard model.

A proportion πNA of each prospect pool will never be acquired. For those that are potential

customers, we characterize the time to acquisition using a proportional hazards model with a

Weibull baseline, and capture cross-sectional heterogeneity in the baseline acquisition propen-

sity using a gamma distribution.

Given a prospect’s individual-specific baseline propensity to be acquired (λA), a homoge-

neous acquisition shape parameter (cA), time-varying acquisition covariates (XA(m+ 1,m′) =

[xA(m + 1), xA(m + 2), . . . , xA(m′)]), and the coefficients associated with the acquisition

covariates (βA),

FA(m′−m|m,XA(m+1,m′);λA, cA, πNA,βA) = (1−πNA)
[
1−exp(−λABA(m,m′))

]
, (17)

10In line with most of the work on modeling the diffusion of innovations, we ignore the intermediate role of
awareness as we do not have sufficient data to account for it.
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where

BA(m,m′) =
m′∑

i=m+1

[(i−m)cA − (i−m− 1)cA ]eβAxA(i). (18)

Assuming λA is distributed gamma(rA, αA) across the population distribution, the unconditional

probability that a customer from prospect pool m will be acquired by the end of month m′ is

FA(m′ −m|m,XA(m+ 1,m′); rA, αA, cA, πNA,βA)

=

∫ ∞
0

FA(m′ −m|m,XA(m+ 1,m′);λA, cA, πNA,βA)f(λA|rA, αA)dλA

= (1− πNA)

[
1−

(
αA

αA +BA(m,m′)

)rA
]
. (19)

This acquisition model is flexible yet parsimonious. Parsimony is especially important in

limited data settings (such as those considered here) because, as shown in Van den Bulte and

Lilien (1997), ill-conditioning is a serious enough problem with small sample sizes that adding

new predictors to alleviate model misspecification concerns may make the resulting model fit

(and forecast) worse than it had been prior to the introduction of those covariates.

4.3 Parameter Estimation for the Acquisition and Retention Processes

We estimate the parameters of the acquisition and retention process models jointly using non-

linear least squares, minimizing the sum of squared differences between the actual and model-

based estimates of quarterly acquisitions and losses. Let ψ denote the acquisition and retention

process model parameters collectively, ψ ≡ (rA, αA, cA, πNA,βA, rR, αR, cR,βR), and let Q be

the number of quarters from the commencement of the firm’s commercial operations to the end

of the model calibration period.

If the firm reports the quarterly numbers from the very start of its operations, our parameters

are those that minimize the following sum-of-squared errors:

SSEFULL =

Q∑
q=1

{(
ADDq − ÂDDq

)2
+
(
LOSSq − L̂OSSq

)2}
+
(
ENDQ − ÊNDQ

)2
, (20)
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where ÂDDq, L̂OSSq, and ÊNDq are the model-based estimates of these quantities computed

using ψ̂.11 Note that we optimize over all parameters jointly because of the dependence of the

retention process on the acquisition process (i.e., customers cannot churn until they have been

acquired) and vice versa (i.e., churning customers enter future prospect pools).

Equation 20 assumes that there is no missing data. However, this is rarely, if ever, the case.

Most companies start disclosing ending customer count data (ENDq) some number of quarters

into the company’s operations (call it qA), then begin disclosing customer ADD and LOSS data

in a later quarter (call it qB, where qB ≥ qA). In such cases, our parameters are those that

minimize the following sum-of-squared errors:

SSEMISS =

qB∑
q=qA+1

[(
ENDq − ENDq−1

)
−
(
ÊNDq − ÊNDq−1

)]2
+

Q∑
q=qB+1

{(
ADDq − ÂDDq

)2
+
(
LOSSq − L̂OSSq

)2}
+
(
ENDQ − ÊNDQ

)2
, (21)

This accounts for the shortened contiguous customer addition and loss data, and the missingness

present at the beginning of the time series.

4.4 Average Revenue Per User

We make use of a simple time-series model to capture (and project) the evolution ofARPU(m).

Assuming linear growth in ARPU,12 we can use a simple time-trend regression:

ARPU(m) = β0 + β1m+ ε(m), ε(m) ∼ N (0, σ2). (22)

The mean of many economic and financial time series is non-stationary (Zivot and Wang

11This assumes the firm started operation at the beginning of a reporting quarter, as discussed in Section 2.2. If
this is not the case, minor modifications to Equations 20 and 21 are needed.

12If we assume that ARPU grows at a constant growth rate over time, we would use log
(
ARPU(m)

)
=

β0 + β1m+ ε(m).
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2006). When this is so, the fitted residuals of the regression given in Equation 22 will fail tests

for non-stationarity, the most popular of which is the Augmented Dickey-Fuller test (Dickey and

Fuller 1979; Elliott, Rothenberg, and Stock 1996). If this is the case, the parameter estimates

from Equation 22 are invalid, and we should instead use an ARIMA(0,1,0) model:

ARPU(m) = ARPU(m− 1) + β0 + ε(m), ε(m) ∼ N (0, σ2). (23)

The parameters of either model are estimated using maximum likelihood13.

ARPU(m) is a standard internally reported measure for a subscription-based firm. Some

firms do report quarterly ARPU publicly, but this data cannot be used in general because there

are no well-accepted standards for calculating it. As Dish stated in its 2014 annual filing,

“We are not aware of any uniform standards for calculating ARPU and believe presentations of

ARPU may not be calculated consistently by other companies in the same or similar businesses.”

As there is no standard definition of ARPU, different firms may have different definitions for it,

picking and choosing what sources of revenue to include in the numerator. As such, the reported

ARPU numbers may not be representative of all revenue derived from the customer base.

Revenue numbers are more reliable. However, they are only provided quarterly, so we need

to impute monthly revenues. For m ∈ {3q − 2, 3q − 1, 3q}, the revenue in month m is equal to

the customer-weighted share of total revenue in quarter q:

R(m) =
C(.,m− 1) + C(.,m)

C(., 3q − 3) + 2C(., 3q − 2) + 2C(., 3q − 1) + C(., 3q)
× REVq . (24)

(Strictly speaking, we are using Ĉ(·, ·), computed using the estimated parameters of the acquisi-

tion and retention processes.) Having imputed R(m), our estimates of ARPU(m) follow from

Equation 7.

13As in GLS and SSW, we assume that spend and churn are uncorrelated. The data is too limited to identify
such a correlation, and the lack of heterogeneity in spend limits the practical benefit of allowing for it.
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4.5 Bringing It All Together

Taking a step back, recall that our goal since Section 2.2 has been to generate long-term pro-

jections of R(m) and A(m), from which we can compute estimates of period-by-period FCF

and then the value of the firm. We now outline the process by which we compute these revenue

numbers using the models described above.

1. We estimate the parameters of the acquisition and retention processes (Section 4.3). As-

suming the firm has been in operation forQ quarters, we then compute our estimate of the

3Q× 3Q matrix C(·, ·), the diagonal of which is our estimate of the number of customers

acquired each month over this time period, and the rows of which are estimates of the

number of customers in each cohort that survive each of the subsequent months.

2. As outlined in Section 4.4, we use Ĉ(·, ·) and the reported quarterly revenue numbers to

impute the corresponding monthly revenue numbers, from which we estimate the param-

eters of our model for average revenue per user.

3. In order to project C(·, ·) into the future, we need estimates of POP (m) over the time

horizon of interest. In some cases, such data may be available from a secondary source.

In the absence of such a source, we can use a simple model for forecasting POP (m).

For example, we could use the long-run compound growth rate in POP (m) and assume

it holds going into the future.

4. Having projected C(·, ·) far into the future (i.e., to a point in time where the present value

of any associated cash flows is effectively zero), we compute the column totals C(.,m)

to give us the total number of customers for each month.

5. We compute expected ARPU(m) across this time horizon using Equation 22 or 23. Re-

arranging Equation 7, it follows that

R(m) = ARPU(m)× C(.,m− 1) + C(.,m)

2
. (25)
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With the revenues estimated, the remainder of our valuation model is for all intents and purposes

the same as what a financial professional would do when building a DCF valuation model. In

the next section, we bring this valuation model to life from start to finish using data for two

public companies.

5 Empirical Analyses

We first apply our model of customer behavior to data from Dish Network Corporation (Nasdaq:

DISH), a large pay-TV service provider. We estimate the parameters of the model, evaluate its

in-sample fit, evaluate the predictive validity of the model by performing rolling two-year-ahead

forecasts over all possible calibration periods, and compare its performance to that of the models

of customer behavior proposed by GLS and SSW. After demonstrating the validity of the model,

we then use its revenue projections (along with the associated estimates of customer acquisition)

to arrive at our estimate of the value of Dish’s shareholder’s equity. Next, to further establish the

robustness of our proposed model, we apply it to a second publicly-traded company, Sirius XM

Holdings (Nasdaq: SIRI), a satellite radio service provider. We conclude by exploring some

other insights into customer behavior that can be derived using the model.

5.1 Dish Network

Dish commenced operations in March 1996 (DISH 2015),14 and end-of-period customer counts

were first disclosed that quarter. However the gross customer acquisition data is left censored —

the first time that gross customer additions were disclosed was seven quarters later, in Q1 1998

(i.e., with reference to Equation 21, qA = 0 while qB = 7). All historical customer data (ADDq,

LOSSq, ENDq and REVq) come from Dish’s quarterly and annual reports, Forms 10-Q and 10-

K, respectively. We model this customer data up to and including Q1 2015 (i.e., Q = 77). The

14While Dish Network was technically incorporated in 1980, the relevant starting date for our analysis is when
Dish actually commenced commercial operations and could thus begin acquiring customers.
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vast majority of Dish’s revenues come from its subscriber base.15

We use the same four time-varying covariates in our models of the acquisition and retention

processes: three quarterly dummy variables to capture seasonal fluctuations in the propensity to

sign-up to and churn from the service, and a “Great Recession” dummy variable to account for

the diminished propensity to sign-up and the increased propensity to churn during that reces-

sion.16 Given the nature of the Dish’s service offering, our unit of population is the household.

We use data on US household growth provided in the US Census Bureau’s CPS/HVS data ta-

bles.

5.1.1 Parameter Estimates and Evaluation of Fit

We first estimate the parameters of the acquisition and retention models using all the available

data. The parameters are reported in Table 2; the associated model SSE is 310,821. The story

told by these parameters is consistent with what Dish has disclosed in its public filings. With

reference to the coefficients of the quarterly dummies, consider Dish’s comments on the season-

ality of its operations in its 2015 annual report: “Historically, the first half of the year generally

produces fewer gross new subscriber activations than the second half of the year, as is typical in

the pay-TV industry. In addition, the first and fourth quarters generally produce a lower churn

rate than the second and third quarters.”

[Table 2 about here.]

The negative effect of the 2008 recession on Dish’s financials is unmistakeable; its effect

upon acquisition and retention propensities was greater than all of the respective seasonal terms.

The coefficient in the acquisition model is negative because customers have a lower propensity

15In Q1 2015, 0.9% of Dish’s revenue were derived from equipment sales, which are not core to the business
and have not been growing over time. Dish has made investments in wireless spectrum over the past three years —
wireless spectrum is a non-operating asset — but earns no revenue from it, and the core operations of the business
do not depend upon it.

16The “Great Recession” started December 2007 and ended June 2009 (http://www.nber.org/cycles.
html).

21

http://www.nber.org/cycles.html
http://www.nber.org/cycles.html


to acquire services during recession, while the coefficient in the retention model is positive

because customers have a higher propensity to churn during recession.

In Figure 2, we plot model estimates for gross customer additions, losses, and end-of-period

total customer counts against what we actually observed. (The grey area indicates the duration

of the Great Recession.) We must backcast gross customer additions and losses because Dish

did not disclose ADD and LOSS data prior to Q1 1998. Our resulting fits are good; we see a

clear seasonal pattern within acquisitions and losses, and lower acquisitions and higher losses

during the recession of 2008. Dish appears to be past the point of peak adoption, a sentiment

echoed by Dish CEO Charlie Ergen in Dish’s Q1 2015 conference call: “My general sense is

that the linear pay television business probably peaked a couple of years ago and that it’s in a

very slight decline.’

[Figure 2 about here.]

Average revenue per user is modeled as per Section 4.4. We assume linear growth, which

is consistent with comments made in Dish’s annual financial reports. First fitting the sim-

ple time-trend regression given in Equation 22, we find that the model residuals fail the Aug-

mented Dickey Fuller unit root test (t = −2.6, p = .31). We therefore model ARPU using the

ARIMA(0,1,0) model specified in Equation 23, with β̂0 = 0.246 (s.e. .091) and an associated

R2 of 93%.

5.1.2 Predictive Validation and Comparison

While the analysis presented above shows that our in-sample fit is very good, it does not give us

any real insight into the predictive validity of our model or how our model’s predictions compare

to those of alternative models (i.e., those presented in GLS and SSW). These are important

questions, as the quality of our estimate of firm value is a direct function of the quality of the

projections of revenue (and customer acquisitions) coming from our model.

To shed light on these questions, we perform a rolling validation in which we vary the

model calibration period and compare the model predictions of ADD, LOSS, and END with
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the actual numbers reported by Dish. Letting Q = 10, 11, . . . , 69 (corresponding to all possible

calibration periods ending from Q2 1998 to Q1 2013), we calibrate our model upon all data up

to and including quarter Q, and then predict ADD, LOSS, and END for the next two years (i.e.,

ADDQ+q∗ , LOSSQ+q∗ , and ENDQ+q∗ for q∗ = 1, 2, . . . , 8). Because of missing data, only 3

quarters of ADD and LOSS data are available when Q = 10, making it a reasonable starting

point to the rolling analysis. As a result, our evaluation of model performance is based on

predictions made using 60 different calibration periods.

In Figure 3, we plot all resulting predictions over all calibration periods for ADD (first

column), LOSS (second column), and END (third column) using GLS (first row), SSW (second

row), and our proposed model (third row). While the general patterns of over- and under-

estimation are similar for SSW and GLS, we see that the overall predictive validity of SSW is

generally better than that of GLS. GLS underestimates future ADD, LOSS, and END figures,

often severely so. This is primarily because the logistic internal-influence model for ADD

and constant retention rate model for LOSS are unable to capture the underlying dynamics in

customer behavior over time. Since SSW models END (rather than ADD) using the logistic

internal-influence model, their resulting predictions for END are generally quite well-behaved

and well-calibrated. Both methods have the most difficulty forecasting ADD, as evidenced

by the large deviations between the predictions in grey and the actual data in black. This is

important as ADD is an important input for these models’ respective valuation models.

[Figure 3 about here.]

In contrast, our proposed model forecasts ADD, LOSS, and END very accurately, as ev-

idenced by the tight correspondence between the grey and black lines in the bottom row of

Figure 3. In contrast to the forecasts associated with the GLS and SSW models, this correspon-

dence remains tight even for short calibration periods, which is further proof of the robustness

of the model’s predictions.

To summarize the relative performance of these three models, we compute the absolute

percentage error in the ADD, LOSS, and END forecasts for each of the (rolling) eight holdout
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quarters and take the average across the 60 different calibration periods. The resulting MAPE

numbers are reported in Table 3. We see that the MAPE figures associated with the SSW model

are generally half those of the GLS model, while the MAPE figures for our proposed method

are generally one third smaller than those of SSW.

[Table 3 about here.]

These conclusions are not affected by the fact that our model incorporates the effects of

covariates while the model of GLS and SSW do not. We created variants of the GLS and SSW

models that include the quarterly seasonality and Great Recession effects (through a logit for-

mulation for retention, and a proportional hazards specification for acquisition (GLS) and end-

ing customers (SSW)), and do not observe any significant changes to our conclusions regarding

the relative performance of the three models.

5.1.3 Valuation Results

Have demonstrated the performance of our proposed model, we now to turn to the primary

reason why it was developed in the first place: computing an estimate of the value of the firm.

We first project revenues (Section 4.5) far enough into the future so that all subsequent

profits/losses have no effect on our valuation; we choose 50 years. We forecast that POP will

continue to grow at a per-month growth rate of 0.06% into the future; this is equal to the histor-

ical monthly US household growth rate over the period from March 1996 to March 2015.

Our revenue projections drive detailed financial projections that are used to estimate future

free cash flows, the weighted average cost of capital, the value of non-operating assets, and net

debt. We then add the value of the operating assets to the non-operating assets and subtract the

net debt to arrive at our best estimate of shareholder value using Equation 1 — see Table 4.

We estimate a stock price of $64.62 based on Q1 2015 results, which were disclosed on May

11, 2015. The end-of-day stock price that day was $66.38, implying that we are within 3% of

the then-current stock price. Holding all else constant, the Dish Network stock price estimates
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computed using the GLS and SSW models for customer acquisition and retention were $48.84

and $63.72, respectively.

[Table 4 about here.]

Our valuation and the corresponding implied stock price are point estimates. So as to get

a sense of the uncertainty in these estimates, we undertake the following sensitivity analysis.

First, holding the parameters of the retention and ARPU processes constant, we draw a new set

of parameter values for the acquisition process model via bootstrap resampling of the model

residuals (Efron and Tibshirani 1993, Chapter 9). Given this set of parameters, we compute

the resulting revenue numbers, the corresponding estimate of the value of the firm and the

implied stock price. We do this for 500 draws and compute a 95% interval for our implied

stock price. We repeat this for the retention process (holding the parameters of the acquisition

and ARPU processes constant) and the ARPU process (holding the parameters of the acquisi-

tion and retention processes constant). The interval associated with the acquisition process is

[$64.48, $64.77] (+/ − 0.2%). The equivalent intervals for the retention and ARPU processes

are [$62.47, $66.78] (+/ − 3.4%) and [$62.76, $66.49] (+/ − 3.0%), respectively. This sug-

gests that it would be most beneficial to investors if Dish were to provide more or better data

regarding customer retention (e.g., by disclosing LOSS figures monthly instead of quarterly).

5.2 Sirius XM

To test the robustness of our framework, we repeat our valuation exercise for a second company,

Sirius XM, which is a broadcasting company that provides satellite radio services in the United

States. Sirius XM is a good complementary example to that of Dish for a number of reasons:

1. Sirius XM is a relatively high-growth business, while Dish is a mature business. We note

that ADD, LOSS, and END are all past their peak for Dish (Figure 2), while they are

increasing for Sirius XM.
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2. Sirius XM suffers from more severe missingness than Dish. Sirius XM was formed by

the merger of Sirius Satellite and XM Satellite, which began commercial operations in

February 2002 and November 2001, respectively. Neither Sirius nor XM disclosed ADD,

LOSS, or END data for paying customers. It was not until after the merger that these data

were first publicly disclosed (Q3 2008). As a result, almost half of Sirius XM’s customer

data is missing.

3. Sirius XM is a high fixed-cost business because its satellite radios are pre-installed in most

new vehicles, while Dish Network is a high variable-cost business. Most of Sirius XM’s

operating expenses, net of subscriber acquisition costs (SAC), are fixed in nature, while

most of Dish’s operating expenses are variable. All else being equal, this substantially

increases the marginal profitability of new Sirius XM users.

4. Sirius XM has a very different customer base and customer profile than Dish. Sirius

XM has a larger number of customers, each of whom generates less revenue but is much

cheaper to acquire.

5. Sirius XM sells almost entirely into cars, whereas Dish sells almost entirely into homes.

All else being equal, this makes Sirius XM a more cyclical business than Dish.

See Table 5 for a comparison of the two companies on the basis of some basic measures.

[Table 5 about here.]

Despite these differences, we proceed with virtually the same model. The main change is

that the population unit for Sirius XM is cars (as opposed to households for Dish). The market

size for Sirius XM is equal to the number of vehicles on the road, as provided by the Bureau

of Transportation Statistics. Correspondingly, we use vehicle sales, as defined/provided by

Federal Reserve Bank of St. Louis, as our macroeconomic covariate. We denote the coefficient

associated with the vehicle sales covariate by βV S .
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The parameter estimates of the acquisition and retention process models are reported in

Table 6; the associated model SSE is 146,799.17 Once again, we assume linear growth when

modeling average revenue per user. Fitting a simple time-trend regression (Equation 22) to

the data, we find that the residuals do not fail the Augmented Dickey Fuller unit root test (test

statistic: t = −3.56, p = .04); the associated parameter estimates are β̂0 = 9.643 (s.e. .218)

and β̂1 = 0.041 (s.e. .002), with R2 = 88%.

[Table 6 about here.]

In Figure 4, we plot model estimates for ADD, LOSS, and END against what we actually

observed. We overlay a set of two-year rolling predictions corresponding to all possible cali-

bration periods ending from Q3 2010 to Q1 2013, as we had done for Dish in Section 5.1.2. As

was the case with Dish, the in-sample and out-of-sample fits for Sirius XM in terms of all three

customer metrics are good.

[Figure 4 about here.]

As with Dish, we project revenues 50 years into the future. We project both future vehicles

on the road and vehicle sales assuming monthly growth rates are equal to their respective his-

torical cumulative average growth rates from 1980 until 2015. We perform a detailed margin

and cash flow analysis to turn the revenue projections into monthly free cash flow projections.

The resulting valuation is presented in Table 7. We estimate Sirius XM’s operating assets to

be worth $27.1B. After adding non-operating assets (Sirius XM has approximately $1.1B in

net operating loss carry-forwards) and subtracting net debt, we estimate shareholder value to

be $23.4B using Equation 1. This implies a stock price of $4.24 based on Sirius XM’s Q1

2015 results, which were released on April 28, 2015. The end-of-day stock price that day was

$3.90. Holding all else constant, the Sirius XM stock price estimates computed using GLS’s

and SSW’s models for customer acquisition and retention were $0.41 and $6.55, respectively.

17Unlike Dish, the Weibull-Gamma baseline retention process for Sirius XM is not significantly different from
a Weibull baseline. We retain the more general formulation for consistency with Dish.
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[Table 7 about here.]

5.3 Additional Insights

Confident that our model provides sensible valuation estimates, we return to Dish to study other

insights that we are able to draw from the model beyond stock price estimates. We look at

the remaining/residual lifetime and lifetime value of Dish customers as a function of the length

of their relationship (i.e., tenure) with the firm. We then decompose Dish’s current customer

equity (CCE) by tenure. While these seem like fairly ordinary applications of a customer-level

model, it is important to keep in mind that we are doing these analyses with no customer-level

data; all we have are the aggregated summaries that companies disclose to the public.

5.3.1 Comparison of Residual Value by Tenure

Let us consider a Dish customer acquired at the end of Q1 2015 whom we call Recent Robin,

and another Dish customer acquired 10 years earlier at the end of Q1 2005 whom we call Long-

time Larry. One quantity of managerial interest is the expected remaining (or residual) lifetime

of Recent Robin and how it compares to the expected residual lifetime of Longtime Larry. The

GLS and SSW models both assume that all customers are equal and thus Recent Robin and

Longtime Larry would be expected to share the same expected future lifetime. However, we

intuitively expect that Longtime Larry is likely to remain a customer for a longer period of

time because his long history with Dish thus far suggests that he has a lower churn propensity.

By definition, the expected residual lifetime of a customer acquired in month m who is still a

customer in month M equals

∞∑
i=0

S(M + i−m|m,XR(m,M + i); rR, αR, cR,βR)

S(M −m|m,XR(m,M); rR, αR, cR,βR)
. (26)

(See the Appendix for details of how we perform this calculation.) The expected residual life-

time of Recent Robin and Longtime Larry are 5.5 years and 9.4 years, respectively. This differ-
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ence is in line with our intuition.

Investors should be interested in the expected lifetime of customers. Longer expected cus-

tomer lifetimes imply more stable future cash flows, all else being equal, because future cash

flows are less reliant on the acquisition of new customers. At Dish, we see that not only do

older customers have longer residual lifetimes, but also that all customers live for a relatively

long time, which should be heartening to investors. Reducing investors’ perceived risk of future

cash flows reduces the cost of capital, raising firm valuation.

Another quantity of interest is the residual lifetime value (RLV) of customers.18 Calculating

this using nothing but the information provided in a firm’s financial statements requires careful

consideration of what expenses are fixed versus variable, and a proper handling of subscriber

acquisition costs. (See the Appendix for details of how we perform this calculation.) We es-

timate that the (pre-tax) RLV associated with Recent Robin to be $1,426, excluding average

initial acquisition costs of $854, while Longtime Larry is worth $1,932. While it is not possible

to provide predictive validation of these customer insights because of the aggregated nature of

the data, the predictive valuation analysis that we performed provides general validity for these

results.

This information is useful to many stakeholders:

• Investors may track CLV relative to SAC per customer, viewing these metrics as financial

barometers of customer health. Unfavorable trends in these figures (as has been evident at

Dish, for example) could be indicative of decreasing customer (and thus firm) profitabil-

ity.

• Competitors, comparable companies, and investors will be interested in the absolute level

of CLV and RLV for benchmarking purposes. If a competitor estimates its own CLV to be

18We make the distinction between CLV, which we reserve for as-yet-to-be acquired customers, and RLV, which
applies to existing customers. Subject to minor accounting issues, these two quantities are equal when the we
have constant retention rates (i.e., there is no heterogeneity across customers and/or duration dependence within
customer). However, this is rarely the case and it is therefore important to make this distinction (Fader and Hardie
2010).
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less than Dish’s, there may be opportunities to “close the gap,” identifying what it could

be that is causing the gap in average customer profitability. Investors may ask the same

question and demand that changes be made to improve CLV and RLV.

While the preceding analysis has focused on expected residual lifetime and lifetime value,

we can examine the distribution of these quantities across all possible Recent Robins and Long-

time Larrys. In Figure 5 we provide a histogram representing 1MM samples from their respec-

tive RLV distributions. This provides us with additional color regarding the riskiness of future

cash flows associated with new and existing customers. For example, we estimate that there is a

41% chance that the company will incur a loss on a Recent Robin (i.e., 41% of Recent Robin’s

RLV samples (Figure 5) lie to the left of $854, the SAC per customer for Dish). We infer a long

right tail to Longtime Larry’s pre-tax RLV — this drives up Longtime Larry’s expected pre-tax

RLV, but also implies a much higher variance about that expectation. Longtime Larry is more

valuable but is also more risky (McCarthy, Fader, and Hardie 2016).

[Figure 5 about here.]

5.3.2 Customer-Base Decomposition

The raw data available from virtually any public source reveals nothing about the tenure of

existing customers or how these “lifetimes” vary across the customer base. As suggested by the

examples of Recent Robin and Longtime Larry, this can be important information to outside

investors. Fortunately, as just demonstrated, our proposed model makes it easy for analysts to

infer these lifetimes. We can go further and segment the customer base on this basis.

The proportion of currently active customers (i.e., active at the end quarter Q) who were

born in month m is equal to

Ĉ(m, 3Q)∑3Q
i=1 Ĉ(i, 3Q)

. (27)

While knowing the count of customers within each segment is helpful, the value of those cus-
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tomers is probably of greater interest to investors and managers. Recall that the sum of RLV

across all the firm’s current customers is called current customer equity (CCE). It follows that

the proportion of total CCE, as at the end of quarter Q, coming from customers who were born

in month m is the RLV-weighted analog of Equation 27:

Ĉ(m, 3Q)E(RLVm,3Q)∑3Q
i=1 Ĉ(i, 3Q)E(RLVi,3Q)

, (28)

where RLVm,3Q is the residual lifetime value of a customer acquired in month m who is still ac-

tive in month 3Q. The resulting decomposition of Dish’s customer base is presented in Table 8.

We estimate, for example, that approximately one-eighth of Dish’s customer base is comprised

of highly loyal/inertial customers who have been Dish subscribers for 10+ years. We also in-

fer that longer-lived segments comprise proportionally more of the total value of the customer

base because they are inferred to have higher residual lifetime values, as is evident from our

comparison of Recent Robin and Longtime Larry above.

[Table 8 about here.]

This decomposition, and other granular inferences that can be drawn from our model, can

provide useful insights for investors. In some sense, the overall corporate valuation shown

earlier isn’t necessarily very insightful by itself; it merely captures the “voice” of the financial

market. It could be argued that the real value of our proposed approach is the ability to go

beyond the macro valuation estimate to offer useful, operational diagnostics to better understand

where that value is coming from, and what it might mean to the firm, its competitors, suppliers,

investors, and possibly even public policy makers. In the case of Dish, the considerable amount

of value coming from long-lived customers is indicative of a very mature business, and implies

that the valuation of the business as a whole will be much more dependent on and sensitive to

changes in the company’s ability to retain existing companies, rather than acquire new ones.

In contrast, Sirius XM’s valuation is far more dependent on the the firm’s ability to acquire

new users and to earn a high rate of return on the firm’s investment in those new users. This is
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important information for investors and managers alike.

6 General Discussion and Future Work

As noted at the outset of the paper, our objective has been to create a realistic model for cus-

tomer acquisition and retention (which can be estimated using data publicly reported by firms

with a subscription-based business model), and embed it within a standard financial frame-

work for corporate valuation. Looking beyond the methods developed here, we hope this pa-

per will serve as a call to action for firms, analysts, and investors to perform these kinds of

analyses on a more regular and rigorous basis. We have provided several use cases for the

insights that can be derived from our analyses, including but not limited to comparing CLV

across comparable/competing firms, performing customer value segmentation, and providing

investors with improved forward-looking sales visibility. All of this is possible because we

have performed our valuation using a flexible, general-purpose model of customer behavior in

contractual/subscription settings.

While our model is particularly suited to third parties analyzing publicly traded compa-

nies using their public disclosures, we contend that this same exercise can — and should be —

undertaken internally as well. Firms can easily implement an equivalent version of this model

using internal company data, enhancing its overall validity. While the estimation procedures

differ slightly (given access to more granular data), the models for customer acquisition, reten-

tion, and spending, along with the proposed valuation framework, would remain essentially the

same. Measuring and tracking CLV and RLV can improve the ROI of a company’s acquisition

and retention spending, and our valuation framework gives company executives the ability to

estimate how much value this ROI improvement has created for the overall value of the firm.

This provides executives with an important key performance indicator to hold themselves and

their marketing managers accountable to.

While our model is more flexible than previously published customer-based corporate val-
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uation models (e.g., in terms of the dynamics that it can accommodate), it has nevertheless

remained parametrically parsimonious because the available data is limited — and will likely

stay that way for the foreseeable future. For example, it is highly unlikely that firms will begin

to disclose the kinds of data required to properly account for other sources of customer value,

such as the referral value of a customer (Kemper 2010; Kumar et al. 2010; Kumar, Petersen,

and Leone 2007), the impact of social media (Luo, Zhang, and Duan 2013; Yu, Duan, and Cao

2013), customer satisfaction (Anderson, Fornell, and Mazvancheryl 2004; Homburg, Koschate,

and Hoyer 2005; Luo and Bhattacharya 2006), or heterogeneity in the spend per customer (Mc-

Carthy, Fader, and Hardie 2016). At the same time, indirect proxies for these factors may be

obtainable in some cases through external data sources for a small subset of companies.

Furthermore, it may seem tempting to add in other “bells and whistles” to further enrich

the model specification used here. We should be open to such possibilities but are cautious

about our ability to do so. For instance, it may be the case that individual-level acquisition

and retention propensities are correlated (i.e., customers who take longer to acquire may have a

lower propensity to churn once they have been acquired or vice versa — see Schweidel, Fader,

and Bradlow (2008a) — but our ability to empirically identify such a correlation is very limited,

increasing the risk that we over-burden the limited data we have available. Many other theoret-

ically reasonable extensions (e.g., allowing for cross-cohort effects (Gopalakrishnan, Bradlow,

and Fader 2016), or specifying a more complicated market potential model) will likely suffer

from similar issues. Bodapati and Gupta (2004) warn us that when data is highly aggregated,

even identifying heterogeneity (in their setting, using a finite mixture model) can be challeng-

ing. Model parsimony is a good thing.

Another limitation we readily acknowledge is that our framework is appropriate only for

subscription-based businesses, for whom attrition is observed (Fader and Hardie 2009). For

noncontractual settings (where attrition is unobserved), we can specify an alternative model for

the number of customers matrix. However, it is not clear what kinds of metrics a company

operating in such a setting would have to disclose in order for an outside analyst to be able to
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estimate C(·, ·) and perform the valuation task in a valid manner. This is an important area of

future research.

We have focused our attention strictly upon conducting the valuation process for one com-

pany at a time, but our predictive accuracy may be improved if we were to develop a hierar-

chical Bayesian model, estimating the parameters for many companies at the same time. This

may alleviate some of our data inadequacy issues by “borrowing strength” across firms, but

will require considerable methodological advancements to properly “share” information across

firms and handle aggregated missing data.

Beyond the methodological improvements, our valuation framework could provide perspec-

tive to the ongoing discussion among marketing scholars regarding the accounting of customer

equity and advertising spending. Consistent with Srinivasan (2015), the vast majority of Dish’s

SAC is expensed and not capitalized (82% in Q1 2015) — the primary component of SAC that

is capitalized is spending to purchase satellite receivers, which are then owned by Dish and

depreciated over a useful life of approximately 4 years. In contrast, just acquired customers

have, on average, a longer “useful life” of 5.5 years (Section 5.3), and yet are not considered

assets (Wiesel, Skiera, and Villanueva 2008). As a result, subscriber acquisition activities create

costs that are incurred immediately but whose benefits are received in the future; as such, the

income statement is not reflective of the underlying economic condition of the business. It is no

surprise, then, that Dish was generally unprofitable earlier in its history, and profitable in recent

years.

As companies increasingly recognize the importance and merit of customer-centric business

strategies (Fader 2012), and in turn disclose customer data on a more regular and thorough ba-

sis, there will be a growing opportunity for marketing scholars to study the behavior of large,

publicly traded companies through their customer data in conjunction with their financial state-

ments. We hope that this paper lays a sound foundation for how future analyses will incorporate,

and shed further light on, company valuation.
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Appendix

RLV can be expressed mathematically as

E(RLV ) =

∫ ∞
t′

E[V (t)]S(t|t > t′)d(t− t′) dt ,

where t′ is the age of the customer at the point in time where their residual lifetime value is

computed, E[V (t)] is the expected net cash flow of the customer at time t (assuming they are

alive at that time), S(t|t > t′)) is the probability that the customer has remained alive to at least

time t (given they were alive at t′, and d(t− t′) is a discount factor that reflects the present value

of money received at time t (Fader and Hardie 2015).

This is acceptable as a mathematical representation of the definition of (expected) RLV but

is of limited use in practice, as it ignores the accounting issues identified in Section 5.3.1. How-

ever, these accounting issues are considered when performing our valuation and an intermediate

result from these calculations can be used to compute RLV. The intermediate result of interest

is EBITDASAC, earnings before interest, taxes, depreciation, amortization, and subscriber ac-

quisition costs.

Let τ (k)m,M be the kth sampled residual lifetime of a customer acquired in month m who is

still active in month M , which is drawn from the distribution

P (Tm,M = τ) =
SR(τ +M −m− 1|m)− SR(τ +M −m|m)

SR(M −m|m)
, τ = 1, 2, . . . . (A1)

The expected residual lifetime of a customer acquired in month m who is still active in

month M can be computed as the average of many samples drawn from this distribution:

E(Tm,M) =
1

K

K∑
k=1

τ
(k)
m,M . (A2)

We set K = 1,000,000 in our analysis.

Given monthly EBITDASAC numbers, the value of an average customer in month M +m∗
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is
EBITDASAC(M +m∗)[

Ĉ(.,M +m∗ − 1) + Ĉ(.,M +m∗)
]
/2
.

Therefore, the pre-tax RLV of a customer with sampled residual lifetime τ (k)m,M , is

rlv(k)
m,M =

∞∑
m∗=1

EBITDASAC(M +m∗)[
Ĉ(.,M +m∗ − 1) + Ĉ(.,M +m∗)

]
/2

1(m∗ ≤ τ
(k)
m,M)

(1 + WACC)m∗
, (A3)

(The empirical distribution of these draws is plotted in Figure 5.) Averaging over these sampled

realizations of residual lifetime gives us the expected RLV of a customer acquired in month m

who is still active in month M ,

E(RLVm,M) =
1

K

K∑
k=1

rlv(k)
m,M . (A4)

36



References

Anderson, Eugene W, Claes Fornell, and Sanal K. Mazvancheryl (2004), “Customer Satisfac-

tion and Shareholder Value,” Journal of Marketing, 68 (October), 172–185.

Andon, Paul, Jane Baxter, and Graham Bradley (2001), “Calculating the Economic Value of

Customers to an Organisation,” Australian Accounting Review, 11 (23), 62–72.

Bass, Frank M. (1969), “A New Product Growth Model for Consumer Durables,” Management

Science, 15 (5), 215–227.

Baxter, Robbie Kellman (2015), The Membership Economy: Find Your Super Users, Master the

Forever Transaction, and Build Recurring Revenue. New York, NY: McGraw-Hill Professional.

Blattberg, Robert C. and John Deighton (1996), “Manage Marketing by the Customer Equity

Test,” Harvard Business Review, 74 (July–August), 136–144.

Bodapati, Anand V. and Sachin Gupta (2004), “The Recoverability of Segmentation Structure

From Store-Level Aggregate Data,” Journal of Marketing Research, 41 (August), 351–364.

Bonacchi, Massimiliano, Mascia Ferrari, and Massimiliano Pellegrini (2008), “The Lifetime

Value Scorecard: From E-Metrics to Internet Customer Value,” in Performance Measurement

and Management Control: Measuring and Rewarding Performance (Studies in Managerial and

Financial Accounting, Volume 18), Marc J. Epstein and Jean-François Manzoni, eds. Bingley,

UK: Emerald Group Publishing Limited, 77–100.

Bonacchi, Massimiliano, Kalin Kolev, and Baruch Lev (2015), “Customer Franchise: A Hidden,

Yet Crucial, Asset,” Contemporary Accounting Research, 32 (Fall), 1024–1049.

Bonacchi, Massimiliano and Paolo Perego (2012), “Measuring and Managing Customer Life-

time Value: A CLV Scorecard and Cohort Analysis in a Subscription-Based Enterprise,” Man-

agement Accounting Quarterly, 14 (Fall), 27–39.

Boyce, Gordon (2000), “Valuing Customers and Loyalty: The Rhetoric of Customer Focus

Versus the Reality of Alienation and Exclusion of (Devalued) Customers,” Critical Perspectives

37



on Accounting, 11 (December), 649–689.

Damodaran, Aswath (2005), “Valuation Approaches and Metrics: A Survey of the Theory and

Evidence,” Foundations and Trends in Finance, 1 (8), 693–784.

——— (2012), Investment Valuation: Tools and Techniques for Determining the Value of Any

Asset, 3rd edn. Hoboken, NJ: John Wiley & Sons.

Day, George and Liam Fahey (1988), “Valuing Market Strategies,” Journal of Marketing, 52

(July), 45–57.

Dickey, David A. and Wayne A. Fuller (1979), “Distribution of the Estimators for Autoregres-

sive Time Series with a Unit Root,” Journal of the American Statistical Association, 74 (366a),

427–431.

DISH (2015), Dish Network Corporation, Form 10-K (Annual Report for the Fiscal Year Ended

December 31, 2014).

Doyle, Peter (2000), Value-Based Marketing: Marketing Strategies for Corporate Growth and

Shareholder Value. Chichester, UK: John Wiley & Sons.

Efron, Bradley and Robert J. Tibshirani (1993), An Introduction to the Bootstrap. Boca Raton,

FL: Chapman & Hall/CRC.

Elliott, Graham, Thomas J. Rothenberg, and James H. Stock (1996), “Efficient Tests for an

Autoregressive Unit Root,” Econometrica, 64 (4), 813–836.

Eskin, Gerald J. (1973), “Dynamic Forecasts of New Product Demand Using a Depth of Repeat

Model,” Journal of Marketing Research, 10 (May), 115–129.

Fader, Peter (2012), Customer Centricity: Focus on the Right Customers for Strategic Advan-

tage, 2nd edn. Philadelphia, PA: Wharton Digital Press.

Fader, Peter S. and Bruce G.S. Hardie (2009), “Probability Models for Customer-Base Analy-

sis,” Journal of Interactive Marketing, 23 (1), 61–69.

38



——— and ——— (2010), “Customer-Base Valuation in a Contractual Setting: The Perils of

Ignoring Heterogeneity,” Marketing Science, 29 (1), 85–93.

——— and ——— (2015), “Simple Probability Models for Computing CLV and CE,” in Hand-

book of Research on Customer Equity in Marketing, V. Kumar and Denish Shah, eds. Chel-

tenham, UK: Edward Elgar Publishing, 77–100.

——— , ——— and Chun-Yao Huang (2004), “A Dynamic Changepoint Model for New Prod-

uct Sales Forecasting,” Marketing Science, 23 (1), 50–65.

Fisher, John C. and Robert H. Pry (1971), “A Simple Substitution Model of Technological

Change,” Technological Forecasting and Social Change, 3, 75–88.

Fourt, Louis A. and Joseph W. Woodlock (1960), “Early Prediction of Market Success for New

Grocery Products,” Journal of Marketing, 25 (October), 31–38.

Gopalakrishnan, Arun, Eric T. Bradlow, and Peter S. Fader (2016), “A Cross-Cohort Change-

point Model for Customer-Base Analysis,” Marketing Science, (forthcoming).

Gourio, François and Leena Rudanko (2014), “Customer Capital,” The Review of Economic

Studies, 81 (3), 1102–1136.

Greenwald, Bruce, Judd Kahn, Paul D. Sonkin, and Michael Van Biema (2004), Value Investing:

From Graham to Buffett and Beyond. Hoboken, NJ: John Wiley & Sons.

Gupta, Sunil., Donald R. Lehmann, and Jennifer Ames Stuart (2004), “Valuing Customers,”

Journal of Marketing Research, 41 (February), 7–18.

Hand, John R.M. (2015), “Discussion of ‘Customer Franchise — A Hidden, Yet Crucial, As-

set’,” Contemporary Accounting Research, 32 (Fall), 1050–1052.

Holthausen, Robert W. and Mark E. Zmijewski (2014), Corporate Valuation: Theory, Evidence

and Practice. Westmont, IL: Cambridge Business Publishers.

Homburg, Christian, Nicole Koschate, and Wayne D. Hoyer (2005), “Do Satisfied Customers

39



Really Pay More? A Study of the Relationship Between Customer Satisfaction and Willingness

to Pay,” Journal of Marketing, 69 (April), 84–96.

Jamal, Zainab and Randolph E. Bucklin (2006), “Improving the Diagnosis and Prediction of

Customer Churn: A Heterogeneous Hazard Modeling Approach,” Journal of Interactive Mar-

keting, 20 (3–4), 16–29.

Janzer, Anne H. (2015), Subscription Marketing: Strategies for Nurturing Customers in a World

of Churn. Mountain View, CA: Cuesta Park Consulting.

Kemper, Andreas (2010), Valuation of Network Effects in Software Markets: A Complex Net-

works Approach. Heidelberg: Physica-Verlag.

Kim, Namwoon, Vijay Mahajan, and Rajendra K. Srivastava (1995), “Determining the Going

Market Value of a Business in an Emerging Information Technology Industry: The Case of

the Cellular Communications Industry,” Technological Forecasting and Social Change, 49 (3),

257–279.

Koller, Tim, Marc Goedhart, and David Wessels (2015), Valuation: Measuring and Managing

the Value of Companies, 6th edn. Hoboken, NJ: John Wiley & Sons.

Kumar, V., Lerzan Aksoy, Bas Donkers, Rajkumar Venkatesan, Thorsten Wiesel, and Sebastian

Tillmanns (2010), “Undervalued or Overvalued Customers: Capturing Total Customer Engage-

ment Value,” Journal of Service Research, 13 (3), 297–310.

Kumar, V., J. Andrew Petersen, and Robert P. Leone (2007), “How Valuable is Word of Mouth?”

Harvard Business Review, 85 (October), 139–146.

Kumar, V. and Denish Shah (2009), “Expanding the Role of Marketing: From Customer Equity

to Market Capitalization,” Journal of Marketing, 73 (November), 119–136.

——— and ——— (2015), Handbook of Research on Customer Equity in Marketing. Chel-

tenham, UK: Edward Elgar Publishing.

Libai, Barak, Eitan Muller, and Renana Peres (2009), “The Diffusion of Services,” Journal of

40



Marketing Research, 46 (April), 163–175.

Luo, Xueming and C.B. Bhattacharya (2006), “Corporate Social Responsibility, Customer Sat-

isfaction, and Market Value,” Journal of Marketing, 70 (October), 1–18.

Luo, Xueming, Jie Zhang, and Wenjing Duan (2013), “Social Media and Firm Equity Value,”

Information Systems Research, 24 (March), 146–163.

Martı́nez-Jerez, Francisco Ası́s, Thomas J. Steenburgh, Jill Avery, and Lisa Brem (2013), “Hub-

spot: Lower Churn through Greater CHI,” Harvard Business School Case 9-110-052. Boston,

MA: Harvard Business School Publishing.

McCarthy, Daniel, Peter S. Fader, and Bruce G.S. Hardie (2016), “V(CLV): Examining Vari-

ance in Models of Customer Lifetime Value.” (Accessed October 15, 2016), [available at

http://ssrn.com/abstract=2739475].

Moe, Wendy W. and Peter S. Fader (2002), “Using Advance Purchase Orders to Forecast New

Product Sales,” Marketing Science, 21 (3), 347–364.

Morrison, Donald G. and David C. Schmittlein (1980), “Jobs, Strikes, and Wars: Probability

Models for Duration,” Organizational Behavior and Human Performance, 25 (2), 224–251.

Pfeifer, Phillip E. (2011), “On Estimating Current-Customer Equity Using Company Summary

Data,” Journal of Interactive Marketing, 25 (1), 1–14.

———, Mark E. Haskins, and Robert M. Conroy (2005), “Customer Lifetime Value, Customer

Profitability, and the Treatment of Acquisition Spending,” Journal of Managerial Issues, 17

(Spring), 11–25.

Rappaport, Alfred (1986), Creating Shareholder Value: The New Standard for Business Perfor-

mance. New York, NY: Free Press.

SCAC (2004), “Case Summary: Netflix, Inc. Securities Litigation,” Securities Class Action

Clearinghouse, Stanford Law School. (Accessed October 15, 2015), [available at http://

securities.stanford.edu/filings-case.html?id=103168].

41

http://ssrn.com/abstract=2739475
http://securities.stanford.edu/filings-case.html?id=103168
http://securities.stanford.edu/filings-case.html?id=103168


Schulze, Christian, Bernd Skiera, and Thorsten Wiesel (2012), “Linking Customer and Finan-

cial Metrics to Shareholder Value: The Leverage Effect in Customer-Based Valuation,” Journal

of Marketing, 76 (March), 17–32.

Schweidel, David A., Peter S. Fader, and Eric T. Bradlow (2008a), “A Bivariate Timing Model

of Customer Acquisition and Retention,” Marketing Science, 27 (5), 829–843.

———, ———, and ——— (2008b), “Understanding Service Retention Within and Across

Cohorts Using Limited Information,” Journal of Marketing, 72 (January), 82–94.

Skiera, Bernd and Christian Schulze (2014), “Customer-Based Valuation: Similarities and Dif-

ferences to Traditional Discounted Cash Flow Models,” in Handbook of Service Marketing Re-

search, Roland T. Rust and Ming-Hui Huang, eds. Cheltenham, UK: Edward Elgar Publishing,

123–134.

Srinivasan, Shuba (2015), “Capitalizing Advertising Spending,” presentation to the Marketing

Accountability Standards Board.

Srivastava, Rajendra K., Tasadduq A. Shervani, and Liam Fahey (1997), “Driving Shareholder

Value: The Role of Marketing in Reducing Vulnerability and Volatility of Cash Flows,” Journal

of Market-Focused Management, 2 (1), 49–64.

———, ———, and ——— (1998), “Market-Based Assets and Shareholder Value: A Frame-

work for Analysis,” Journal of Marketing, 62 (January), 2–18.

Van den Bulte, Christophe and Gary L. Lilien (1997), “Bias and Systematic Change in the

Parameter Estimates of Macro-Level Diffusion Models,” Marketing Science, 16 (4), 338–353.

Warrillow, John (2015), The Automatic Customer: Creating a Subscription Business in Any

Industry. New York, NY: Portfolio/Penguin.

Wiesel, Thorsten, Bernd Skiera, and Julián Villanueva (2008), “Customer Equity: An Integral

Part of Financial Reporting,” Journal of Marketing, 72 (March), 1–14.

Yu, Yang, Wenjing Duan, and Qing Cao (2013), “The Impact of Social and Conventional Media

42



on Firm Equity Value: A Sentiment Analysis Approach,” Decision Support Systems, 55 (4),

919–926.

Zivot, Eric and Jiahui Wang (2006), Modeling Financial Time Series with S-Plusr, 2nd edn.

New York: Springer Science+Business Media.

43



Figure 1: The “Number of Customers” Matrix
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Figure 2: Dish Network: Customer Additions, Losses and End-of-Period Customer
Counts (Recession in Grey)
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Figure 3: Dish Network: Rolling Two-Year Predictive Validation Plots
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Figure 4: Sirius XM: Customer Additions, Losses and End-of-Period Customer Counts
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Figure 5: Histogram of 1MM Sampled RLV’s — Recent Robin and Longtime Larry
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Table 2: Parameter Estimates: Dish Network

Acquisition Retention
Param. Std. Err. Param. Std. Err.

r 11.440 5.123 1.648 0.232
α 29861.183 12406.027 81.196 4.897
c 2.001 .011 1.423 0.056
βQ1 −.052 .008 −.079 .007
βQ2 −.057 .007 .036 .009
βQ3 .036 .008 .107 .008
βRec −.099 .011 .129 .010
πNA .525 .006
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Table 3: DISH: MAPE of Predictions of ADD, LOSS, and END by Forecasting Horizon

Quantity Horizon GLS SSW Proposed
ADD Q+1 26.0 14.7 8.2

Q+2 29.2 16.4 9.5
Q+3 32.5 16.4 10.4
Q+4 36.5 16.3 11.3
Q+5 41.1 17.7 13.2
Q+6 45.5 19.8 14.5
Q+7 50.6 21.5 15.6
Q+8 55.8 22.9 16.0

LOSS Q+1 26.0 14.7 8.2
Q+2 29.2 16.4 9.5
Q+3 32.5 16.4 10.4
Q+4 36.5 16.3 11.3
Q+5 41.1 17.7 13.2
Q+6 45.5 19.8 14.5
Q+7 50.6 21.5 15.6
Q+8 55.8 22.9 16.0

END Q+1 26.0 14.7 8.2
Q+2 29.2 16.4 9.5
Q+3 32.5 16.4 10.4
Q+4 36.5 16.3 11.3
Q+5 41.1 17.7 13.2
Q+6 45.5 19.8 14.5
Q+7 50.6 21.5 15.6
Q+8 55.8 22.9 16.0
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Table 4: Dish Valuation Summary (End of Q1 2015)

Value of Operating Assets $15.7B
Non-Operating Assets - Net Debt $14.1B
Shareholder Value $29.9B
Shares Outstanding 462.1MM
Implied Stock Price $64.62

Actual Stock Price $66.38
Over(under)-estimation (2.7%)
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Table 5: Comparison of Dish and Sirus XM (at point of valuation)

Dish Sirius XM
Total Paying Customers 13.8MM 22.9MM
Monthly ARPU $88.72 $16.72
Weighted Average Cost of Capital 7.2% 6.9%
SAC / Customer $716.46 $82.06
ARPU Growth Per Year $2.95 $0.49
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Table 6: Parameter Estimates: Sirius XM

Acquisition Retention
Param. Std. Err. Param. Std. Err.

r 0.208 .239 153.206 35.129
α 7983.761 9213.648 2671.833 602.632
c 2.228 .154 1.066 .085
βQ1 −.106 .012 .029 .014
βQ2 −.049 .014 −.039 .016
βQ3 −.047 .013 .003 .015
βVS .077 .003 −.013 .003
πNA .011 .075
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Table 7: Sirius XM Valuation Summary (End of Q1 2015)

Value of Operating Assets $27.1B
Non-Operating Assets - Net Debt −$3.7B
Shareholder Value $23.4B
Shares Outstanding 5513.7MM
Implied Stock Price $4.24

Actual Stock Price $3.90
Over(under)-estimation 7.4%
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Table 8: Decomposition of Current Customer Equity (End of Q1 2015) by Tenure

Tenure (years) % Customer base % CCE
0–2 31 28
2–5 31 29
5–10 25 27
10+ 12 16
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