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Secondary Market Liquidity and Security Design:

Theory and Evidence from ABS Markets

Nils Friewald⇤ Christopher A. Hennessy† Rainer Jankowitsch‡
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Abstract

We develop a theory of primary market discounts demanded by ex ante identical strategic

uninformed investors facing heterogeneous carrying cost realizations. Such investors demand

primary market discounts equaling expected secondary market trading losses plus carrying costs.

Security design is shown to complement strategic trading ability, as repackaging cash flow gives

uninformed investors flexible exit options. Issuers minimize discounts by splitting cash flow

into tranched debt claims, with secondary market liquidity increasing in seniority. The optimal

number of tranches increases with cash flow information-sensitivity and decreases with carrying

costs. Deadweight loss is socially excessive due to excessively thin tranches. Consistent with the

model, empirical tests confirm ABS trading costs decrease and trading volume increases with

seniority, while the number of tranches increases with information-sensitivity.
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The financial crisis of 2007/8 illustrated the hazards of investing in assets with illiquid secondary

markets. Amihud and Mendelson (1986) show rational investors should anticipate illiquidity and

demand primary market discounts. However, Garleanu and Pedersen (2004) caution against over-

stating illiquidity costs, showing that primary market discounts must be understood as being atten-

uated by investors’ ability to trade strategically. Indeed, strategic trading is an important weapon

in investors’ arsenal allowing them to reduce the e↵ective costs of secondary market liquidity. For

example, if expected underpricing is severe, an investor facing a liquidity shock has the option to

hold onto his claim. Conversely, if carrying costs are high, an investor can liquidate despite getting

a less-than-fair price.

In this paper we argue the ability to trade strategically represents incomplete protection against

the costs of secondary market liquidity. In particular, we show that in order for uninformed investors

to reap the full benefits of strategic trading, underlying cash flow streams should be repackaged

into a more diverse set of claims, allowing investors to make refined bespoke liquidation decisions.

In other words, security design and strategic trading must be understood as complements. Issuers

who exploit this complementarity benefit from a reduction in primary market discounts.

To illustrate the argument, suppose, as we do, that uninformed investors face identically dis-

tributed heterogeneous carrying costs shocks, but are reluctant to sell due to adverse selection

(underpricing) arising from the presence of an informed speculator who trades strategically in sec-

ondary markets. An uninformed investor holding a claim on the entire cash flow faces a crude

all-or-nothing trading decision when hit with a liquidity shock: incur trading losses on the entire

cash flow or bear carrying costs on the entire cash flow. If instead the issuer splits the cash flow into

multiple securities with varying degrees of information-sensitivity, the same investor hit with a liq-

uidity shock can make refined trading decisions, retaining (selling) those claims for which expected

trading losses are greater (less) than his carrying cost, resulting in higher surplus.

We flush out the implications of the preceding exit option argument using a tractable strategic

trading framework in the spirit of Spiegel and Subrahmanyam (1992) which may be of independent

interest given its tractability. The model considers a continuum of uninformed investors facing

carrying cost shocks that are identical ex ante but heterogeneous ex post, taking on J possible val-

ues. An uninformed competitive liquidity provider stands ready to buy securities in the secondary

market.1 Liquidity provision is hindered by the existence of a speculator endowed with a private

signal of the true cumulative distribution function (good or bad) governing cash flow. The good (F )

and bad (F ) distribution functions have common supports, with the former dominant according to

the hazard rate order.

We show uninformed investors demand primary market discounts equal to the sum of expected

trading losses incurred by those uninformed investors who choose to sell plus expected carrying costs

borne by those who choose to retain, with investors making the sell/retain decision on a security-

by-security basis. The issuer’s objective is to package the cash flow in the form that minimizes the

1In 2012, Market Axess reported 80 broker-dealers as active on its ABS E-trading platform.
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total primary market discount demanded by uninformed investors accounting for their strategic

trading.2 Payo↵ mappings on admissible securities must be monotone in realized cash flow and

non-negative.

We begin by showing financial structure is irrelevant if all uninformed investors face a fully

absorbing carrying cost shock. Intuitively, nuance is lost on such investors since they liquidate all

claim-holdings in the secondary market, leaving the total trading base and primary market discount

unchanged. We next show that in selecting the optimal packaging, attention can be confined to no

more than J + 1 securities. Intuitively, the issuer should consider creating a claim tailored to each

ex post liquidity clientele as defined by realized carrying cost. Consistent with observed practices

in ABS markets, the optimal structuring features tranched debt claims. Intuitively, a sequence of

prioritized debt claims minimizes expected underpricing per unit of funding raised by each liquidity

clientele.

Marginal increases in cumulative face value (“detachment point”) result in lower carrying costs,

as more funds are raised. However, this results in higher expected trading losses as the traded basis

increases. At interior optima, marginal reductions in carrying costs are equated with marginal

increases in uninformed trading losses. Therefore, optimal detachment points are decreasing in

cash flow information-sensitivity, but increasing in carrying costs. Since higher detachment points

(thicker tranches) imply a reduction in the total number of tranches, it follows that the optimal

number of tranches is increasing in cash flow information-sensitivity and decreasing in carrying

costs. For example, pass-through securities are optimal for extremely safe cash flows, while high

information-sensitivity cash flows are optimally packaged into J tranched debt claims plus a fully

illiquid equity claim.

Post-crisis, commentators criticized the “slicing-and-dicing” pervasive in ABS markets. How-

ever, our analysis reveals that tranching actually minimizes the expected costs of secondary market

illiquidity for uninformed investors, the very same illiquidity that commentators bemoaned at the

height of the crisis. Nevertheless, our analysis reveals a conflict between issuer incentives and social

welfare. In particular, the issuer minimizes the sum of expected carrying costs and uninformed

trading losses. A social planner seeking to minimize deadweight loss would ignore the latter, since

trading losses are simply a transfer across investors. We show expected carrying costs (deadweight

loss) decrease monotonically in tranche detachment point cuto↵s. It follows that such a social

planner would choose higher detachment points, resulting in a reduction in the number of tranches.

In this subtle sense, the critics of thinly sliced tranches have a point.

The models of Allen and Gale (1988) and DeMarzo (2005) can also be understood as predicting

the optimality of multiple tranched claims. The former rationalizes alternative security designs as

arising from market incompleteness. The latter rationalizes an infinite number of tranched debt

claims as maximizing an issuer’s payo↵ in separating equilibria, with tranche granularity due to

granularity of the support for cash flow, which is privately observed by the issuer. Both models

2Hennessy (2013) shows an issuer with the discretion to retain will hold either residual equity or nothing.
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are silent on the issue of secondary market liquidity, the central mechanism in our model. A

key distinguishing prediction of our proposed theory is that secondary market liquidity should

increase with seniority. A second subtle distinguishing prediction is that there should be a positive

relationship between the priority position of the most junior traded claim in a pool and that same

claim’s illiquidity.

We take these distinguishing predictions to the data using a unique set of data covering all trans-

actions on the ABS market provided by the Financial Industry Regulatory Authority (FINRA).

Dealers and brokers are mandated to report virtually all ABS transactions to the Trade Reporting

and Compliance Engine (TRACE) starting on May 16, 2011.3

Our comprehensive data set covers the whole ABS market and allows, for the first time, a

clean test of the relationship between ABS security design and secondary market liquidity. Given

the previous opacity of the ABS market such an analysis has not been possible before. In our

empirical analysis we use trading volume and round-trip costs as proxy for liquidity. We emphasize

that our round-trip cost measure reflects the cost of trading more accurately compared to other

well established measures in the academic literature because it relies on dealer-specific information,

which our data comprises. More importantly, in contrast to earlier studies, we employ granular

measures of seniority based on the detailed description of each security for the whole ABS market.

We compute the exact numerical priority position and the detachment point of each tranche within

its pool. Existing work on ABS instead relies on either credit ratings that could be interpreted

as crude proxies for seniority or use coarse seniority levels by classifying tranches into junior,

mezzanine, and senior claims, see e.g., Hollifield et al. (2014) and Friewald et al. (2015). Both

papers provide evidence that better rated securities have indeed lower transaction costs. However,

credit ratings do not provide a clean test for the relation of tranche seniority and liquidity as

ratings primarily reflect credit risk. Empirically, we observe that tranches that do di↵er in their

tranche priority often exhibit exactly the same credit rating. Indeed, our results still hold true even

after controlling for credit ratings. Consequently, such crude measures of seniority hinder a proper

analysis of the relation between tranche priority and liquidity. Thus, the mixed evidence of a positive

relation between tranche seniority and liquidity uncovered in Friewald et al. (2015) may follow from

their usage of coarse seniority levels. This is not surprising given that many tranches with in fact

di↵erent tranche priorities are classified into the same seniority level. Moreover, their results may

also be distorted by the absence of controlling for pooled-fixed e↵ects. In our empirical analysis we

thus first assign each tranche to its underlying pool permitting us to compute detachment points

of each tranche, crucial information about tranche priority.

Consistent with model predictions, we find that liquidity increases monotonically in seniority.

For example, in pair-wise comparisons between all possible neighboring tranches within each pool,

the more senior of the two tranches is more liquid for 64.89% of the observations, with an average

3This data set has been also used in other papers, albeit with a di↵erent research focus. See, e.g., Atanasov and
Merrick (2013), Bessembinder et al. (2013), Hollifield et al. (2014) and Friewald et al. (2015).
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di↵erence in round-trip costs of 11.35 basis points. For tranches with a priority position di↵erence of

15, the more senior claim is more liquid for 80.00% of the observations, with an average di↵erence

in round-trip costs of 114.77 basis points. A regression analysis confirms that these results are

statistically and economically significant. Consistent with the model, we also document a positive

relationship between the numerical priority position of the most junior traded claim in a pool and

that same claim’s illiquidity.

These empirical results should be of general interest to those seeking a better understanding of

the relationship between seniority and liquidity. Spiegel (2008) cites as puzzling the fact that senior

corporate debt is less liquid than junior corporate equity. Such evidence is not a controlled test

for the e↵ect of priority on liquidity given that corporate debt and equity are traded on di↵erent

platforms. Further, in contrast to ABS, corporate securities are not equivalent to the passive

cash flow waterfalls assumed by existing theories, discussed below, of security design under hidden

information. As shown by Hennessy and Zechner (2011), moral hazard (hidden action) can cause

senior corporate debt to become less liquid than equity.

Gorton and Pennacchi (1990) analyze security design when uninformed investors face informed

speculators and have a demand for safe storage. Uninformed investors carve out a safe debt claim

which they use to carry funds across periods. In their model, the marketing of a single riskless

debt claim eliminates adverse selection costs. Nachman and Noe (1994) analyze the optimal design

of a single marketed security when the issuer is privately informed at the time the security is

designed. With a fixed issuer funding target, the equilibrium necessarily entails pooling. They

show that under technical conditions, including monotonicity, debt is the optimal funding source.

Intuitively, debt minimizes cross-subsidies from high to low types as informally argued by Myers

and Majluf (1984). DeMarzo and Du�e (1999) and Biais and Mariotti (2005) show debt is the

optimal marketed claim for a liquidity-motivated issuer designing one security before observing

private information and before choosing the quantity to be marketed.

Axelson (2007) determines the one optimal marketed security for a price-impacting uninformed

issuer facing informed bidders. In contrast, we analyze the optimal set of marketed securities to

be sold to atomistic uninformed investors who trade non-cooperatively, while facing an informed

speculator. As in Axelson (2007), there is a tradeo↵ between carrying costs and trading loss

discounts, but one that is less mechanical. In his model, the issuer incurs a carrying cost on his

retained claim and trading losses on the marketed claim. In our model, carrying costs and trading

losses hit multiple marketed claims with the extent depending on endogenous secondary market

trading in each security.

Boot and Thakor (1993) and Fulghieri and Lukin (2001) consider the optimal bifurcation (split-

ting) of marketed cash flows by a privately informed issuer who wants to stimulate informed spec-

ulation in a pooling equilibrium. In these models, tranching marketed cash flows promotes infor-

mation production by relaxing speculator wealth constraints. Essentially, these models rationalize

tranching as a device for helping the informed to better exploit non-strategic uninformed investors.
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Conversely, in our model, granular tranching is a device for helping strategic uninformed investors

help themselves.

While the security design theories discussed above o↵er a partial explanation of observed ABS

structures, they also have limitations in this regard. After all, the marketed portion of ABS rarely

comes in the form of a single debt claim. Rather, the marketed portion of ABS is generally split

into multiple tranches. A more complete theory of ABS design must explain granular prioritization

amongst marketed claims, in addition to the empirical regularities we document.

The remainder of the paper is as follows. Section 1 describes the economic setting. Section

2 presents a theory of discounts associated with adverse selection and carrying costs. Section 3

analyzes the optimal packaging of cash flow to minimize the total discount. Section 4 contains the

empirical analysis.

1 Assumptions

There is one asset. It generates a single cash payment x 2 X ⌘ [x, x] ✓ R
++

accruing in the final

period. The c.d.f. governing cash flow is determined by the latent profitability state ! 2 {!,!}.
The two profitability states are equiprobable. If the state is ! (!), cash flow is distributed according

to the c.d.f. F (F ). Each c.d.f. is continuously di↵erentiable, and the respective densities f and f

are strictly positive on X .

It is assumed F stochastically dominates F according to the hazard rate order.4

Assumption 1:
f(x)

1� F (x)


f(x)

1� F (x)
8 x 2 X .

We recall hazard rate dominance implies F stochastically dominates F in the first-order sense:

F (x)  F (x) 8 x 2 X .

There are three periods: 1, 2, and 3. Long-term investors are present at all dates and are

uninformed regarding the profitability state. Short-term investors enter in period 2 and consist of

an informed speculator and an uninformed liquidity provider.5 All investors are risk-neutral, value

consumption equally at all dates, and have access to a riskless storage technology delivering zero

interest.

At the start of period 1 the rights to the cash flow x are held by the issuer. The issuer only

values consumption in period 1 and so wants to sell all rights to the cash flow in the primary

market. Alternatively, one may think of the issuer as being forced to sell all claims on the asset

4We thank an anonymous referee for pointing out the feasibility of replacing likelihood ratio dominance with
weaker hazard rate dominance.

5Equivalently, one could assume short-term investors are present in period 1 but have limited wealth or high
discount rates from period 1 to 2.
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by a regulator in order to comply with capital requirements. The issuer’s objective is to maximize

the amount the long-term investors are willing to pay for claims backed by the cash flow. That is,

the issuer minimizes the illiquidity discount demanded by uninformed investors. That uninformed

investors determine primary market prices follows Holmström and Tirole (1993) and Maug (1998),

for example.

The key model feature is that structuring anticipates non-cooperative liquidations of multiple

securities held by price-taking agents (the long-term investors) in competitive secondary markets.

This may be contrasted with models in which a single price-impacting decisionmaker decides how

much to sell of one pre-designated marketable security, e.g. DeMarzo and Du�e (1999) and Axelson

(2007).

Let A denote the set of admissible security payo↵ mappings. All payo↵ functions a 2 A must

satisfy the following limited liability and monotonicity constraints:

Assumption 2 : 0  a(x)  x 8 x 2 X .

Assumption 3 : a is non-decreasing on X .

An extant literature including Innes (1990), Nachman and Noe (1994), DeMarzo and Du�e

(1999), DeMarzo (2005), and Axelson (2007) considers that decreasing securities may be inadmis-

sible. This requirement can be understood as a response to two ex post moral hazard problems

that arise if some securities are decreasing. First, if an agent’s claim is decreasing, he can gain from

destroying cash flow through sabotage. Second, if one agent’s claim is decreasing, the other agent

can gain from making a clandestine contribution to the cash pool.

For an arbitrary measurable mapping a : X !R, let:

µa ⌘
Z x

x
a(x)f(x)dx

µ

a
⌘

Z x

x
a(x)f(x)dx.

It is readily verified that Assumptions 1 and 3 imply:6

µa � µ

a
8 a 2 A. (1)

Long-term investors are identical ex ante and thus have identical willingness to pay in the

primary market. Prior to secondary market trading, long-term investors face exogenous shocks

that bias them toward selling or holding securities. The shocks are identically distributed and

correlated. In particular, at the start of period 2 each long-term investor privately learns about his

6In fact, the result follows from first-order stochastic dominance and monotonicity.
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own cost to selling securities in the secondary market or holding them until period 3.

A subset of the long-term investors face carrying cost shocks that bias them against holding

securities until the cash flow accrues in period 3. An investor falling into carrying cost category j

faces a cost that will absorb a fraction cj of period 3 payo↵s. There are J � 1 possible carrying

cost categories, with

0 < c

1

< . . . < cJ  1.

An equal fraction � of long-term investors experience costs falling into each of the J carrying

cost categories. This fraction is a binary random variable drawn from {�, �}. It is assumed that

0 < � < �  1, and J�  1. The random variable � is labeled the liquidity demand state since,

as shown below, the volume of securities sold by the long-term investors will be scaled by �. That

is, the state variable � will serve to shift the supply of securities tendered by uninformed investors.

The liquidity demand state is not observed by any agent and is uncorrelated with the profitability

state !.7 The high liquidity demand state � occurs with probability  , where 0 <  < 1.

The remaining measure 1�J� of long-term investors do not experience carrying costs. Instead,

they face a fully absorbing selling cost if they liquidate their holdings in the secondary market. As

real-world examples, one can think of the carrying costs as taxes on terminal dividends and selling

costs as pecuniary (e.g. tax) or non-pecuniary (hassle) costs of financial transactions. Alterna-

tively, one can think of the carrying cost as capturing outside investment opportunities or pressing

consumption needs. Similarly, the selling cost can be thought of as a reduced-form agency cost of

holding excess cash at the interim date. For example, it may be easy for managers to divert surplus

cash from outside investors and so investors may prohibit premature liquidations.

For further motivation of carrying and selling costs, the reader is referred to the discussion in

Garleanu and Pedersen (2004). Their model features shocks that are analogous to the carrying and

selling costs posited here. In particular, their model features positive and negative carrying costs

with positive carrying costs biasing agents toward selling and negative costs biasing them toward

holding.

At the start of period 2 short-term investors enter. There are two short-term investors: a

competitive liquidity provider and a speculator. At the start of period 2, the speculator observes

a noisy signal of the profitability state ! which is correct with probability � 2 (1/2, 1]. At the

end of period 2, the liquidity provider stands ready to buy securities on competitive terms. As

in Kyle (1985), the speculator and the long-term investors submit market orders. There is no

market segmentation and the liquidity provider observes orders in all markets. After observing

the aggregate sell orders across markets, the liquidity provider buys securities at prices equal to

their respective conditional expected payo↵s. Note, the adverse selection problem would vanish

trivially if the liquidity provider could simply buy and hold the entire cash flow stream from period

1 to period 3. In reality, broker-dealers face legal restrictions and costs limiting their ability and

willingness to carry inventory over long horizons.

7If the two were correlated then the so-called uninformed investors would have information regarding fundamentals.

7



In period 3 cash flow is verified and investors are paid.

2 A Theory of Illiquidity Discounts

This section considers secondary market trading and pricing if the entire cash flow were to be

marketed as one security. This allows us to exposit the process of price formation before tackling

the issue of optimal structuring in light of the pricing process. The analysis may be of independent

interest even to those uninterested in security design since we o↵er a tractable theory of illiquidity

discounts.

The equilibrium concept is perfect Bayesian equilibrium (PBE) in pure strategies. For a security

k with payo↵ function ak and for each carrying cost category j, let �j
k be an indicator function

equal to 1 if a long-term investor with carrying cost cj will find it optimal to sell the security in

the secondary market.

For an arbitrary security k, aggregate secondary market selling by uninformed investors, denoted

uk, is a binary random variable:

uk 2 {uk, uk}. (2)

uk ⌘ �

JX

j=1

�j
k

uk ⌘ �

JX

j=1

�j
k.

The variable � denotes the updated belief of the liquidity provider regarding the probability of

the profitability state being !. This belief is based on observed sell orders across all markets. The

liquidity provider sets the secondary market price of each security according to:

Pk = �µk + (1� �)µ
k

8 ak 2 A. (3)

Table 1 depicts potential order flow configurations. The third column of Table 1 can be under-

stood as follows. In light of the trading pattern of the uninformed investors, the only profitable

trading strategy for the informed speculator is to short-sell (u� u) units if she observes a negative

signal. This order size has the potential to confound the liquidity provider regarding the specu-

lator’s signal. To see this, note that the aggregate sell order �u can arise from either: negative

speculator signal and low uninformed investor selling volume or positive signal and high uninformed

investor selling volume.

Consider now the liquidity provider’s updated beliefs (final column in Table 1). There are three

possible aggregate order flows. Upon observing the aggregate sell order �u, the liquidity provider

knows the speculator observed the signal ! and so forms the belief � = �. Upon observing the

8



aggregate sell order �(2u � u), the liquidity provider knows the speculator observed the signal !

and so forms the belief � = 1 � �. In these two cases, order flow reveals the signal observed by

the speculator and there is zero expected profit from informed trading. In contrast, the liquidity

provider is confounded upon observing the aggregate sell order �u. Here he uses Bayes’ rule to

form the updated belief:8

�n ⌘ 1� � �  + 2� . (4)

Consider now the liquidation decision of one of our atomistic long-term investors hit by a

carrying cost shock. We conjecture he liquidates if and only if the realized carrying cost shock

is above some threshold. In particular, it is optimal to sell if his expectation of the secondary

market price exceeds the expected terminal payo↵ net of his carrying cost cj . His expectation of

the secondary market price is conditioned on the fact that he has drawn a positive carrying cost.

This conditional price expectation can be computed as the sum over conditional probabilities of

each liquidity demand state times the expected price in each liquidity demand state. From Table

1 the expected price is:

E[Px|cj > 0] =


 �

 � + (1�  )�

�
1

2

h
µx + µ

x
� (1�  )(2� � 1)(µx � µ

x
)
i

(5)

+


(1�  )�

 � + (1�  )�

�
1

2

h
µx + µ

x
+  (2� � 1)(µx � µ

x
)
i

=
1

2
(µx + µ

x
)� 1

2

(2� � 1) (1�  )(� � �)

 � + (1�  )�
(µx � µ

x
).

Equation (5) shows that uninformed investors facing carrying cost shocks are vulnerable to under-

pricing since the conditional expectation of the secondary market price is less than the expected

terminal payo↵. Intuitively, each long-term investor views his own carrying cost shock as suggestive

of high uninformed liquidity demand (� = �). And with high uninformed selling volume, he ex-

pects a lower secondary market price given that the liquidity provider views high selling volume as

suggesting the speculator received a negative signal regarding the profitability state !. Consistent

with this intuition, equation (5) shows the conditional expectation of underpricing is increasing in

�, with zero underpricing had the speculator been endowed with a completely uninformative signal

(� = 1/2).

A long-term investor experiencing a carrying cost finds it optimal to sell if the conditional

expectation of the secondary market price is greater than the expected terminal payo↵ net of

8In response to o↵-equilibrium sell orders, LP believes speculator observed the negative signal.
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carrying costs, or:

1

2
(µx + µ

x
)� 1

2

(2� � 1) (1�  )(� � �)

 � + (1�  )�
(µx � µ

x
) � 1

2
(µx + µ

x
)(1� cj) (6)

m

cj � �x.

where

�k ⌘
(2� � 1) (1�  )(� � �)

 � + (1�  )�

µk � µ

k

µk + µ

k

8 ak 2 A. (7)

The variable �k measures the conditional expectation of security underpricing as a percentage of

the expected terminal payo↵ on security k. A long-term investor prefers to liquidate his position

in security k if and only if his carrying cost exceeds expected percentage underpricing (cj � �k).

Consider now the expected trading gain of the speculator if the entire cash flow is wrapped as

one security. From Table 1 it follows the speculator’s expected trading gain is:

G =
ux � ux

2

"
(1� �)(1�  )[�nµx + (1� �n)µx

� µx] + (1� �) [(1� �)µx + �µ

x
� µx]

+�(1�  )[�nµx + (1� �n)µx
� µ

x
] + � [(1� �)µx + �µ

x
� µ

x
]

#
(8)

=
1

2
(2� � 1) (1�  )(µx � µ

x
)(� � �)

JX

j=1

�j
x.

Holding fixed the trading decisions of the uninformed investors (�j
x), the speculator’s expected

trading gain G is increasing in her signal precision, increasing in the wedge between expected

cash flow across the two profitability states, and increasing in the variability of shocks hitting the

uninformed investors as captured by the wedge between the two liquidity demand states. Of course,

this ceteris paribus reasoning is subject to caveat since variation in the underlying parameters a↵ects

the willingness-to-trade of uninformed investors.

The primary market valuation of the total securitized cash flow is denoted V . The willingness-

to-pay of long-term investors is equal to expected cash flow less expected trading losses and carrying

costs. Since the liquidity provider makes zero expected profit, the speculator’s expected trading

gain must be just equal to the expected trading losses of uninformed investors.

Let VPT denote the primary market valuation attained under a pass-through structure in which

the entire cash flow is sold o↵ as an equity claim paying x. Using the prior expression for speculator

trading gains and accounting for expected carrying costs we have:

VPT =
1

2
(µx + µ

x
)� 1

2
(2� � 1) (1�  )(� � �)(µx � µ

x
)

JX

j=1

�j
x (9)

�1

2
[ � + (1�  )�](µx + µ

x
)

JX

j=1

(1� �j
x)cj .
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Equation (9) illustrates the role endogenous trading plays in mitigating illiquidity discounts.

To illustrate, consider the e↵ect of a discrete increase in speculator signal precision. This would

give rise to a discrete increase in expected uninformed investor trading losses in the absence of a

change in their trading. However, it is apparent that marginal uninformed investors, with cj just

above the initial �x(�), would respond to a discrete increase in expected trading losses by retaining

rather than selling. It follows that the e↵ect of changes in � on informed trading gains (equation

(8)) and uninformed trading losses is ambiguous. However, the net e↵ect of changes in � on the

primary market discount is unambiguous. To see this, note that we can rewrite the primary market

valuation of a pass-through security (9) as follows:

VPT =
1

2
(µx +µ

x
)� 1

2
[ �+(1� )�](µx +µ

x
)cj +

1

2
[ �+(1� )�](µx +µ

x
)

JX

j=1

(cj ��x)
+

. (10)

Equation (10) illustrates the e↵ect of exit option value on primary market discounts. The second

term in the equation captures the primary market discount that would arise in the absence of the

option to sell in the secondary market. The final term captures uninformed seller surplus arising

from the optimal exercise of exit options. Since expected fractional trading loss (�x) is increasing

�, as shown in equation (7), it is apparent that primary market value is decreasing in �.

Returning to equation (9) it is apparent that the e↵ect of a marginal increase in some carrying

cost parameter cj on the primary market discount of a pass-through security depends on whether

it is above or below �x. In particular, an uninformed investor experiencing a carrying cost cj < �x

finds it optimal to hold rather than sell, implying this carrying cost will be capitalized into the

primary market discount. Conversely, an uninformed investor experiencing cj0 > �x finds it optimal

to sell rather than hold, implying any increase in the carrying cost cj0 will have no e↵ect on the

primary market discount. Rational trading by uninformed investors truncates the e↵ect of carrying

costs on primary market discounts.

3 Optimal Structuring

The previous section considered the primary market discount on a pass-through equity security

in light of rational trading by uninformed investors. We now consider whether and how an issuer

can increase the total amount raised in the primary market by repackaging the total cash flow into

separate securities. We begin by showing that tranching of claims is indeed optimal. We then move

on to a detailed discussion of the optimal tranche detachment points, followed by a discussion of

microstructure implications.
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3.1 The Optimality of Tranched Claims

The objective of the issuer is to minimize the primary market discount demanded by the uninformed

investors. This discount is given by:

D =

1

2

(2� � 1) (1�  )(� � �)
KP
k=1

(µk � µ

k
)

JP
j=1

�j
k

+1

2

[ � + (1�  )�]
KP
k=1

(µk + µ

k
)

JP
j=1

(1� �j
k)cj .

(11)

The first term in the discount expression represents expected trading losses of those uninformed

investors who liquidate, while the second term captures carrying costs borne by those who do not

liquidate.

Repeating the same argument as that applied in the context of the pass-through security, it is

readily verified that the trading rule for uninformed investors takes the form:

cj � �k ) �j
k = 1. (12)

That is, each uninformed investor evaluates trading security-by-security, only liquidating those

claims for which the expected percentage uninformed trading loss is less than their idiosyncratic

carrying cost. The next proposition follows directly from the preceding inequality and equation

(11).

Proposition 1. If uninformed investors face a homogeneous carrying cost c = 1, all structurings

of the cash flow result in the same primary market valuation as that arising from a pass-through

structure.

The preceding proposition is useful in showing a technical di�culty that may arise in predicating

theories of security design on investors hit with extreme forms of shocks. In particular, if c = 1

then trading loss discounts will hit the entire cash flow regardless of how it is packaged, leaving the

primary market discount unchanged.

The following identity is useful in pinning down the optimal structuring:

KX

k=1

ak = a )
KX

k=1

 
µk + µ

k

µk + µ

k

!
�k = �a; {ak 2 A}. (13)

Identity (13) states that the weighted average of the expected percentage trading losses of a set of

securities is just equal to the expected percentage trading loss on a security that wraps them into

one security. The identity leads to the following lemma.

Lemma 1. Given J possible interim-date carrying cost realizations, any primary market valuation

attainable with more than J + 1 securities is attainable with no more than J + 1 securities.

12



It is useful to provide here the proof of the preceding lemma since it anticipates the construction

of the optimal structuring. Suppose the issuer were to market the cash flows as more than J + 1

securities. One could sort these securities into J + 1 mutually exclusive baskets, with basket j

consisting of those securities k satisfying:

cj�1

< �k  cj

with any remaining fully illiquid securities grouped into basket 0. That is, for j 2 {1, 2, . . . , J},
each of the original securities in basket j would have been liquidated by those long-term investors

experiencing carrying costs cj and higher. The securities in basket 0 would not have been liquidated

by any long-term investor. From identity (13) it follows that bundling together the securities in

basket j results in a new security, call it Security j, with

cj�1

< �j  cj (14)

�

0

> cJ .

By construction, for each j 2 {1, 2, . . . , J}, Security j will be liquidated by those long-term investors

experiencing carrying costs cj and higher. Security 0 will not be liquidated by any long-term

investor. It follows from equation (11) that the primary market discount is left unchanged by such

a repackaging of securities.

Following the proof of Lemma 1 we now pin down the optimal design of each Security j for

j 2 {0, 1, 2, . . . , J} as defined above. That is, each security will be indexed by the lowest carrying

cost category that will sell it in the secondary market. Security 0 is not sold by any long-term

investor. Letting k index the security and j index the investor carrying cost category, the primary

market discount is:

D =
1

2
(2� � 1) (1�  )(� � �)

JX

k=1

2

4(µk � µ

k
)

0

@
JX

j=1

�j
k

1

A

3

5 (15)

+
1

2
[ � + (1�  )�]

JX

k=1

2

4(µk + µ

k
)

0

@
JX

j=1

(1� �j
k)cj

1

A

3

5

+
1

2
[ � + (1�  )�](µ

0

+ µ

0

)
JX

j=1

cj .

As shown in the appendix, rearranging terms in equation (15) and dropping irrelevant con-

stants, minimizing the primary market discount is equivalent to maximizing the following objective
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function:

JX

k=1

JX

j=1

�j
k[( � + (1�  )�)cj(µk + µ

k
)� (2� � 1) (1�  )(� � �)(µk � µ

k
)]. (16)

Rearranging terms in the preceding equation allows us to rewrite the maximand from the

preceding equation as a weighted sum of the expected security payo↵s:

JX

k=1

JX

j=k

[jµ
k
� 

j
µk] (17)



j ⌘ (2� � 1) (1�  )(� � �) + ( � + (1�  )�)cj



j ⌘ (2� � 1) (1�  )(� � �)� ( � + (1�  )�)cj .

In turn, as shown in the appendix, expected security payo↵s can be expressed as:

µk =

Z x

0

(1� F (x))�k(x)dx (18)

�k ⌘ a

0
k.

Substituting equation (18) into equation (17), and letting

⌦k(x) ⌘

0

@
JX

j=k



j

1

A (1� F (x))�

0

@
JX

j=k



j

1

A (1� F (x))

the program can be written as an infinite-dimensional linear-programming problem:9

max
{�k}k=J

k=1

Z x

0

JX

k=1

⌦k(x)�k(x)dx (19)

subject to
JX

k=1

�k(x)  1 8 x 2 X

�k(x) � 0 8 x 2 X .

Notice, in the preceding program we have ignored the incentive constraints (14) ensuring that

the uninformed investors will liquidate the respective securities as posited. This is valid since, as

shown in the appendix, the neglected constraints are slack at the unconstrained optimum.

Inspecting the program it is apparent the optimal control policy can be pinned down in two

steps. In the first step, at each point x in the state space we must identify amongst securities

9We thank an anonymous referee for suggesting this simpler linear-programming approach as opposed to an
optimal control approach.
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k 2 {1, . . . , J} the security, call it h, with the highest value of ⌦k(x). For the second step, if ⌦h(x)

is positive then it is optimal to assign security h the cash flow increment, with �⇤h(x) = 1. If instead

⌦h(x) is negative then it is optimal to assign incremental cash flow to the fully illiquid security,

Security 0, with �⇤
0

(x) = 1.

To begin our characterization of the optimal structuring, we begin by noting that:

⌦
1

(x) > . . . > ⌦J(x) > 0. (20)

From the preceding equation it follows there is some right neighborhood of x over which it is optimal

to assign all cash flow to Security 1, which is the security that will be sold by all investors hit with

carrying cost shocks. We have the following proposition.

Proposition 2. An optimal structuring always features a super-senior claim that will be liquidated

by each investor hit with a carrying cost shock. If a pass-through structure is optimal, it will be

liquidated by each investor hit with a carrying cost shock.

As shown in the appendix, the following proposition follows directly from comparison of the

various ⌦k values.

Proposition 3. Packaging the entire cash flow as a pass-through security is optimal if


f(x)

f(x)

�
[(2� � 1) (1�  )(� � �)� ( � + (1�  )�)c

1

]

 (2� � 1) (1�  )(� � �) + ( � + (1�  )�)cj .

Otherwise the optimal structuring consists of k + 1 tranched claims with k being maximal amongst

j 2 {1, . . . , J} satisfying


f(x)

f(x)

�
[(2� � 1) (1�  )(� � �)� ( � + (1�  )�)cj ] (21)

> (2� � 1) (1�  )(� � �) + ( � + (1�  )�)cj .

The face value on each tranche j is ✓j defined implicitly by

1� F (⇥j)

1� F (⇥j)
=

(2� � 1) (1�  )(� � �) + ( � + (1�  )�)cj
(2� � 1) (1�  )(� � �)� ( � + (1�  )�)cj

(22)

where ⇥j ⌘
jX

t=1

✓t.

Liquidity is decreasing in the tranche index, with the expected percentage uninformed trading loss

on each tranche j satisfying

cj�1

< �j < cj . (23)
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Proposition 2 and 3 o↵er a number of testable implications. We begin with a discussion of

Proposition 2. First, the proposition predicts that all securitizations should feature an ultra-senior

claim that is highly liquid. Second, the proposition shows that a pass-through structure should

only be utilized in those instances where the underlying cash flow stream has very low information-

sensitivity. The third implication, related to the first and second, is that pass-through securities

should be very liquid.

Consider next Proposition 3. The proposition shows that the optimal set of exit options to

provide to uninformed investors is a basket of tranched debt claims. Uninformed investors hit with

low carrying cost shocks will liquidate only the more senior tranches. Those hit with higher carrying

cost shocks will work their way down the menu and also sell more junior tranches. Intuitively,

giving uninformed investors such a menu increases their expected seller surplus. We leave to the

next subsection a discussion of the determinants of the optimal detachment points (⇥j) for the

various tranches.

The final statement of Proposition 3 o↵ers an important empirical prediction, distinguishing

our theory of multiple tranches from that of Allen and Gale (1988) and DeMarzo (2005). While

their theories are silent on the question of secondary market liquidity, we predict that illiquidity as

measured by expected percentage uninformed trading losses, is increasing in the tranche index. As

discussed below, this implies lower trading volume and higher transactions costs.

3.2 Optimal Detachment Points

The derivation of the optimal contract in Proposition 3 may obscure the tradeo↵s determining the

optimal detachment points (⇥j) for the various tranches. In order to illustrate the tradeo↵s in the

simplest possible way, consider a marginal increase in some detachment point ⇥n holding fixed all

other detachment points. This is implemented via a marginal increase in ✓n while holding fixed

all other detachment points. That is, the tranche n is allowed to eat into tranche n + 1 at the

margin. Using the fact that only tranches n and n+ 1 are a↵ected by the contemplated zero-sum

perturbation, from equation (15) it follows:

D

0(✓n) =
1

2
(2� � 1) (1�  )(� � �)[µ0

n(✓n)� µ

0
n
(✓n)]

| {z }
Marginal Expected Trading Loss

� 1

2
[ � + (1�  )�][µ0

n(✓n) + µ

0
n
(✓n)]cn

| {z }
Marginal Expected Carrying Costs

.

(24)

The first term in the preceding equation captures the increase in expected uninformed trading

losses incurred on the senior tranche. The second term captures the reduction in expected carrying

costs, as investors with carrying costs cn raise a bit more funding in the secondary market. Using

the fact that

µ

0
n(✓n) = 1� F (⇥n) (25)
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we have the following first-order condition:

(2� � 1) (1�  )(� � �)[(1� F (⇥n))� (1� F (⇥n))] (26)

= ( � + (1�  )�)cn[(1� F (⇥n)) + (1� F (⇥n))].

The first-order condition states that the optimal detachment points equates marginal trading losses

with marginal carrying costs. Rearranging terms in the preceding equation one arrives at the

optimality condition in equation (22) of Proposition 3.

It is instructive to contrast the issuer’s choice of detachment point with that preferred by a

social planner seeking to minimize deadweight losses (DWL). Given that uninformed investor

trading losses constitute a transfer to the informed speculator, it follows from equation (24) that

the marginal e↵ect of an increase in detachment point ⇥n is given by:

DWL

0(✓n) = �1

2
[ � + (1�  )�][µ0

n(✓n) + µ

0
n
(✓n)]cn

| {z }
< 0.

Marginal Expected Carrying Costs

(27)

The next result follows directly from the preceding inequality and Proposition 3.

Proposition 4. In order to minimize expected deadweight carrying costs, each detachment ⇥n

should be increased to the point that the incentive constraint �n  cn binds. These constraints are

slack at the detachment points chosen by the issuer, as defined by equation (22).

Consider next the comparative statics properties of the detachment points that will be chosen

by the issuer. It is readily verified that the right-side of equation (22) is decreasing in � and

increasing in cj . And we recall that hazard rate dominance implies the left-side of the equation is

increasing in ⇥j . It follows that an optimal structuring entails the following comparative statics:

@⇥j

@�

< 0 (28)

@⇥j

@cj
> 0.

The intuition for these comparative statics is best understood by returning to equation (24) captur-

ing the e↵ect of a marginal increase in a detachment point. Here, a marginal increase in � increases

marginal trading losses and so it is optimal to lower the detachment point. Conversely, an increase

in cj raises the marginal benefit to reducing carrying costs and so it is optimal to increase ⇥j . Thus,

it is apparent that optimal spacing between detachment points is dictated by the configuration of

(c
1

, . . . , cJ).

It is apparent from Proposition 3 that an optimal structuring may very well consist of less

than J + 1 claims. From condition (21) it follows the optimal number of claims is increasing in

information-sensitivity, as measured by the ratio f(x) to f(x). Intuitively, as shown above, the
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position of each detachment point reflects the tradeo↵ between trading losses and carrying costs.

Higher information-sensitivity increases expected trading losses which induces a leftward shift of

tranche detachment points. This implies an increase in the total number of securities.

Another empirical prediction we take to the data is that there should be a positive relationship

between the number of tranches and the underlying cash flow information-sensitivity (�x). For

example, the first statement in Proposition 3 indicates that a cash flow stream with very low

information-sensitivity is optimally packaged as a fully liquid pass-through security. Conversely,

if the underlying cash flow has very high information-sensitivity, it is optimally packaged as J

debt claims and a fully illiquid residual equity claim (our Security 0). Here, the liquidity of the

debt claims decreases monotonically in priority position with �

1

< c

1

and �J 2 (cJ�1

, cJ). Cash

flow streams with intermediate information-sensitivity are optimally packaged as k

⇤ claims, with

k

⇤ 2 {2, . . . , J}. Here claim k

⇤ will be a residual equity claim with intermediate liquidity, specifically

�k⇤ 2 (ck⇤�1

, ck⇤).

The preceding analysis implies the following novel prediction: There should be a positive rela-

tionship between the most junior traded security’s priority position and the illiquidity of that same

security. To see this, consider again a cash flow stream with very high information-sensitivity. As

discussed above, the most junior traded security will have priority position J and will have low

liquidity since �J 2 (cJ�1

, cJ). And note, this relationship is not mechanical. For example, if our

theory did not hold, an issuer could package a cash flow stream with very low information-sensitivity

into many tranches with even the most junior traded security being very liquid. Then one would

observe a claim sitting low in the priority structure but retaining high liquidity. In contrast, we

would here predict a junior-most priority position equal to 1 and maximum liquidity.

Consider next the e↵ect of an increase in speculator signal precision. It was shown above,

equation (28), that each of the optimal detachment points is decreasing in �. This implies an

increase in the number of tranches, consistent with condition (21).

Conversely, consider the e↵ect of increasing each of the carrying costs by a discrete amount. It

follows from condition (21) that the optimal number of tranches will fall. Intuitively, we have seen

that in response to higher carrying costs it is optimal to increase each of the detachment points.

This implies a decrease in the total number of tranches.

We summarize these results in the following proposition.

Proposition 5. Each of the optimal detachment points ⇥n is decreasing in speculator signal pre-

cision, increasing in cn and invariant to cm for all m 6= n. The optimal number of tranches is

decreasing in carrying costs, and increasing in both speculator signal precision and the information-

sensitivity of cash flow. Across pools, there is a positive relationship between the priority position

of the most junior traded claim and that claim’s information-sensitivity (�).

18



3.3 Volume and Price Impact

This subsection considers the model’s implications in terms of liquidity measures of interest to

market microstructure researchers.

Consider first trading volume. Recall from Table 1 that total trading volume is increasing in

uninformed trading volume un. Respectively, expected uninformed trading on tranche n is given

by:

E[un] = [ � + (1�  )�]
JX

j=1

�cj��n . (29)

It follows from equation (23) that expected trading volume is predicted to increase monotonically

with seniority. Intuitively, expected percentage uninformed trading losses are lower on more se-

nior claims, so uninformed trading volume increases endogenously for claims high in the priority

structure.

Consider next the predicted relationship between seniority and secondary market price impact.

One proxy for liquidity in the model is �, expected percentage underpricing as computed by an

uninformed investor. As discussed above, it follows from equation (23) that expected percentage

underpricing is lower for more senior claims.

Another measure of liquidity is the price-order flow relationship. We recall from Table 1 that

for each security there are three possible order flows. From Table 1 it follows that the respective

price of tranche n under, call it Pn, under high, medium and low order flows is given by:

P

H
n = �µn + (1� �)µ

n

P

M
n = (1�� �  + 2� )µa + (� +  � 2� )µ

a

P

L
n = (1� �)µa + �µ

a
.

The price change associated with a move from low to medium order flow, normalized by the change

in order flow is:
P

M
n � P

L
n

un�un

=
 (2� � 1)(µn�µ

n
)

un�un

=
 (2� � 1)(µn�µ

n
)

(� � �)
JP

j=1

�cj��n

. (30)

A normalized measure of price impact can be obtained by dividing the preceding price-flow

slope by the average price. We obtain:

(PM
n � P

L
n )/(un�un)

E[P ]
= 2


 � + (1�  )�

(1�  )(� � �)

�2

4
JX

j=1

�cj��n

3

5
�1

�n. (31)

It follow from the preceding equation that normalized price impact is predicted to increase mono-

tonically with the detachment point. This is due to two e↵ects. First, the expected percentage
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uninformed trading loss is higher for lower tranches, since the incentive constraints are slack with

cn�1

< �n < cn. Second, as captured by the penultimate term, trading volume is declining with

the tranche detachment point since uninformed investors are less willing to liquidate their positions

in light of such high expected trading losses.

Consider next the price-flow relationship associated with a move from medium to higher order

flow. Again, a normalized measure of price impact can be obtained by dividing the price-flow slope

by the average price. We obtain:

(PH
n � P

M
n )/(un�un)

E[P ]
= 2


 � + (1�  )�

 (� � �)

�2

4
JX

j=1

�cj��n

3

5
�1

�n. (32)

Once again we see that normalized price impact is predicted to increase monotonically with the

tranche detachment point.

4 Empirical Tests

This section provides an empirical analysis that tests various implications of the presented model.

We make use of a unique data set, covering all transactions of the ABS market provided to us by

FINRA. This sample allows quantifying the liquidity for a wide range of structured securities and,

thus, provides an ideal setting to compare the di↵erence in liquidity of securities within and across

various underlying asset pools. In particular, we first test whether senior tranches are more liquid

than junior tranches. In a further analysis we test for a positive relationship between the numerical

priority position of the most junior traded claim in a pool and that same claim’s illiquidity.

4.1 Data Description

The opacity in the over-the-counter market of structured products certainly played a key role during

the financial crisis. FINRA, thus, launched a project to improve the transparency of the US fixed-

income structured product market. Since May 16, 2011 dealers and brokers have to report virtually

all transactions to the Trade Reporting and Compliance Engine (TRACE). Our data set covers

the initial phase of this transparency project and comprises all transactions and product specific

information from May 2011 to June 2012. FINRA classifies the structured product market into

three subsegments: Asset-Backed Securities (ABS), Collateralized Mortgage Obligations (CMO)

and Mortgage-Back Securities (MBS). We focus on the ABS subsegment as the structure of these

securities are most closely linked to the presented model.10

10The subsegment of MBS cover only pass-through securities with either implicit or explicit guarantees from
government-sponsored enterprises and, thus, are not directly comparable to more risky securities without such guar-
antees. The CMO market consists of tranched securities that are often based on complex underlying pools, e.g. they
may have more than just one loan group. See, for example, Friewald et al. (2015) and Ghent et al. (2014) for a
detailed description of the structured product market.
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ABS are created by bundling loans, such as automobile loans, credit card debt or real estate

loans. In most cases, multiple securities are o↵ered on a given portfolio. These tranches are all

based on a single pool of underlying loans, but have di↵erent levels of risk. Consistent with the

model payments are first distributed in a “waterfall” structure to the holders of the lowest-risk

securities, and then sequentially to the holders of higher-risk securities, in order of seniority.

For these securities, we have all transactions available, comprising the price, volume, buy/sell

side indicator and a coded identity of the dealer that stands behind the trade. Our security-

related data are on a monthly basis and comprise the coupon, maturity, issuer, loan type and

updated outstanding amount which reflects incurred losses and/or prepayments (i.e., it represents

the current tranche size). For each tranche we know its seniority class (priority position) which is

given as an integer number where 1 refers to the most senior tranche and higher numbers reflect

more junior tranches. Given the detailed security description we are able to assign each security to

its underlying pool and compute the total number of tranches within that pool. We obtain credit

ratings from Standard & Poor’s, Moodys and Fitch from Bloomberg and assign integer numbers

to these ratings, e.g., in the notation of Standard & Poor’s AAA=1, AA+=2, . . ., C=21. For the

empirical analysis we compute for each tranche its detachment point which we define as the ratio

of the total size of all relatively more senior tranches to the total pool size.11

We apply various cleaning and filtering procedures on our transaction data set. For a detailed

description of the filters we refer to Friewald et al. (2015). Based on our final data set, we estimate

liquidity on a security-level using two di↵erent measures: transaction costs and trading volume. To

determine the transaction costs, we use the round-trip cost measure by following Goldstein et al.

(2007) and define it as the relative price di↵erence (to the mid-price and given in basis points) for

a given dealer, between buying a certain amount of a security and selling the same amount of this

security within a particular time period. Note that a round-trip can consist of a either a single or

a sequence of trades as long as the overall buy and sell amounts match. For our empirical analysis

we include round-trips taking place within a time period of at most 30 days.12 We emphasize

that compared to other liquidity measures our round-trip cost measure reflects the cost of trading

more accurately, since our data allow us to assign each single trade to a particular dealer. For a

further discussion on the round-trip cost measure we refer the reader to, e.g., Friewald et al. (2015).

The second liquidity measure that we use is the average trading volume per round-trip trade. We

use monthly averages of both measures in our empirical analysis to ensure that we have the same

sampling frequency as for the security-related information.

Table 2 shows the total number of monthly observations for the round-trip cost measure and

the trading volume, the underlying tranches and pools for the time period between May 2011 and

11We use this definition in our empirical analysis for the sake of consistency with the seniority class. In our notation,
the seniority class 1 has detachment point zero and represent the most senior security. Higher detachment points
reflect more junior tranches.

12Thus, according to our definition, the observation, e.g., of a single buy- or sell transaction within the specified
time period would not be su�cient to compute a round-trip cost.
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June 2012. Overall, the sample covers 2193 pools for which we observe 5816 traded securities

(tranches) with 18015 security/month observations. The pools are based on auto, credit card,

mortgage/commercial real estate and other loans (e.g., student loans or boat leasing).

Table 3 provides descriptive statistics for our liquidity measures (round-trip cost measure and

trading volume) and the basic characteristics of the traded ABS securities. On average, we observe

round-trip costs of 45.8 bp and a trading volume per round-trip trade of $5.9 million. Both liquidity

measures exhibit substantial variation, i.e., for the round-trip cost the 10%-quantile is around 1

bp and the 90%-quantile 115 bp. The corresponding figures for the trade volume are $0.1 and

$13.6 million, respectively. The average pool has around 16 tranches with an inter-quartile range

from 4 to 27. The average seniority class is 4.6, indicating that traded tranches tend to be more

senior. Note that the most subordinated tranches are frequently retained and, thus, not o↵ered to

investors. Similarly, we find that the mean detachment point is 26.5%, i.e., only a quarter of the

pool size, on average, is more senior compared to the traded tranche. The average credit rating

corresponds to A+ (in the Standard and Poor’s jargon) but for less than half of the observations

credit information is available. The average tranche size is around $300 million with a coupon of

3.7% and maturity of 19.4 years, again showing considerable variations across observations.

4.2 Results

Using our liquidity measures we now test various implications that follow from the theoretical

model. An important prediction of the model is that tranching – as part of the ABS design – is

used to o↵er securities with di↵ering levels of liquidity to the investors to serve their particular

ex-post liquidity needs. The model predicts that a security’s liquidity is increasing in its seniority.

We first test this empirical prediction by comparing transaction costs and trading volumes across

tranches of all underlying asset pools. In a second step, we control for the underlying asset pool

by analyzing the liquidity di↵erences of securities within the same pool.

Figure 1 shows the average round-trip costs for the di↵erent seniority classes (priority position)

in Panel (a). We do not provide results beyond seniority class 18 as the corresponding tranches

represent less than 1% of the total observations. In Panel (b) we plot round-trip costs for 20

equidistant buckets based on the detachment points where bucket 1 refers to the most senior

tranches with detachment points between 0% and 5%. Both panels clearly show that more senior

tranches tend to be more liquid, e.g., seniority class 1 in Panel (a) exhibits round-trip costs of

around 30 bp whereas seniority classes beyond 15 have costs of around 150 bp. Note, that a

seniority class of 1 also reflects pass-through securities, i.e., a security with just one single tranche.

However, pass-through securities are a real exception in the ABS subsegment as we only observe

11 pass-throughs with around 40 observations in our sample. The average round-trip cost measure

of these instruments is 32.8 bp and, thus, the liquidity of these securities is comparable to the level

of liquidity of the most senior tranches, consistent with our theoretical predictions.

Figure 2 provides similar results when using the trading volume as a liquidity measure. Again,
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the results are consistent with the underlying theory. In particular, we find that the higher the

tranche seniority (based either on the seniority class or detachment point) the higher the trading

volume, which confirms our previous results. For example, for the detachment point bucket 1 we

observe an average trading volume of $7 million whereas for bucket 20 the trading volume is roughly

$3 million. Since both the round-trip cost measure and trading volumes share similar properties

we only focus on the round-trip measure in the remaining part of our analysis.

In the next step of the analysis, we hold fix the underlying asset pool and, thus, compare the

liquidity of ABS securities within the same pool. In doing so, we consider all possible combinations

of tranche pairs of a given pool and month and compute the di↵erence in their seniority class.

For example, assume for a given pool in a given month that two tranches are traded, one having

seniority class 3 and the other 7. Thus, the senior class di↵erence of this pair is 4. We then compute

for each such pair the di↵erence of the round-trip costs between the more junior and the more senior

tranche. Given our previous example, we would compute the di↵erence in the round-trip costs of

seniority class 7 and 3. Based on all observed pairs with a given seniority class di↵erence we then

compute the relative frequency with the more senior tranche being more liquid.

Table 4 reports the results for seniority class di↵erences between 1 and 15 (again, higher dif-

ferences represent less than 1% of the observations). The results show that within a given pool

the more senior tranches tend to be more liquid, i.e., for a given pair the likelihood of observing

the more senior tranche to be more liquid is always greater than 50%. For example, considering

pairs with a di↵erence in their seniority classes of 1 which refer to directly consecutive tranches, the

frequency that the more senior tranche is more liquid amounts to 65%.13 The average di↵erence in

their round-trip costs is approximately 11 bp. Moreover, we observe that the greater the di↵erence

in the seniority classes of a given pair the more likely it is that the more senior tranche is more

liquid and the larger the di↵erence in their round-trip cost measure. For example, given a di↵erence

in the seniority class of 15 we find that in 80% of the observations the more senior tranche is more

liquid, with a round-trip cost di↵erence of 115 bp.

As a final test of the model prediction regarding the relation between seniority and liquidity,

we employ regression-based models using fixed pool e↵ects throughout our analysis and report

the results for di↵erent specifications in Table 5. We regress the round-trip cost measure on the

seniority class in specification (1) and on the detachment point in specification (2). We find that

liquidity significantly decreases with seniority class, i.e., on average, round-trip costs increase by 7.1

bp, going from one tranche to the next subordinated tranche. Similarly, increasing the detachment

point by 10% (i.e., making the tranche more junior) increases round-trip costs by about 7.2 bp,

on average. In specification (3) and (4) we use the security’s coupon, maturity and tranche size as

further explanatory variables, while additionally controlling for the securities’ credit ratings. The

relation between liquidity and tranche seniority remains statistically and economically significant.

13We expect this figure to be lower than the model’s prediction of 100% due to market microstructure noise, such
as asynchronous trading.
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We also find that security characteristics are related to liquidity. For example, securities with

a higher time-to-maturity tend to be less liquid while the larger the tranche size the lower the

round-trip costs.

We close our empirical analysis by testing a novel model prediction. Recall, the model pre-

dicts that more information-sensitive underlying cash flow streams should be packaged into more

tranches. Consistent with this prediction, we have seen that pass-through securities in our sam-

ple have high liquidity. That is, issuers apparently package low information-sensitivity cash flow

streams as pass-throughs.

We would like to conduct a more general test of the prediction that high information-sensitivity

of the underlying cash flow causes issuers to choose a higher number of tranches. Unfortunately,

information-sensitivity is not directly observable. However, from Proposition 5 we know that across

pools there should be a positive relationship between the illiquidity of the most junior traded tranche

and its numerical seniority class. For example, if the underlying cash pool has high information-

sensitivity, the most junior traded tranche will be highly illiquid and this same tranche will have a

high numerical seniority class. That is, high information-sensitivity causes both high illiquidity of

claims and a large number of tranches. And we recall that if our theory did not hold, an issuer could

package a cash flow stream with very low information-sensitivity into many tranches with even the

most junior traded security being very liquid, in which case one would observe the conjunction of

low illiquidity but a high number of traded tranches.

In Figure 3, the round-trip cost of the most junior traded tranche is on the horizontal axis,

and the numerical seniority class of that same security is on the vertical axis. Consistent with the

theory, the number of tranches does indeed appear to increase with our proxy for underlying cash

flow information-sensitivity. Table 6 contains the corresponding regression analysis. The dependent

variable is the numerical seniority class of the most junior traded claim, with the key explanatory

variable being the illiquidity (round-trip cost) of this same claim. We here see that controlling for

coupon, maturity, tranche size and credit rating, the information-sensitivity proxy helps predict

the number of tranches.

5 Conclusion

This paper presents a tractable theoretical framework for analyzing adverse selection discounts in

competitive securities markets, accounting for strategic secondary market trading by uninformed

investors. With discretionary liquidation decisions, the adverse selection cost borne by an unin-

formed investor is equal to the minimum of expected trading losses and carrying costs. We consider

how an issuer can package securities in order to minimize adverse selection discounts, accounting

for strategic trading. Security design is shown to complement strategic trading. An issuer mini-

mizes adverse selection discounts by splitting cash flow into tranched debt claims. This o↵ers the

uninformed investors a rich set of exit options. In the proposed theory, liquidity is increasing in
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seniority. In contrast with existing empirical work that focuses on corporate debt and equity, we

present empirical evidence from the ABS market consistent with notion that liquidity increases in

seniority.

Our paper can be understood as a natural extension of a research program initiated by Spiegel

and Subrahmanyam (1992), who considered strategic trading in a Kyle-type framework, but ignored

the issue of optimal structuring. The analysis suggests it may be productive to move microstructure-

based models of corporate finance away from assuming the uninformed do not trade strategically.

Indeed, novel and interesting theories of corporate finance may emerge if one considers that all

agents optimize.
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A Appendix: Proofs and Derivations

Derivation of Objective Function

The objective is to minimize:

(2� � 1) (1�  )(� � �)
JX

k=1

(µk � µ

k
)

JX

j=1

�j
k + [ � + (1�  )�]

JX

k=1

(µk + µ

k
)

JX

j=1

(1� �j
k)cj(33)

+[ � + (1�  )�](µ
0

+ µ

0

)
JX

j=1

cj .

Expanding the second term in the preceding equation and grouping terms, we can say that the

objective is to minimize:
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Dropping the final term in the preceding equation, which is a constant, and multiplying by �1, the

objective is to maximize:
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We express the maximand concisely as:
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Next consider that we can rewrite the expected payo↵ on any security as follows using integration
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Lemma 2. Necessary and su�cient conditions for ⌦h(x) to be positive and maximal amongst all

⌦j(x) for j 2 {1, . . . , J} are

[1� F (x)]h�1 � [1� F (x)]h�1

and

[1� F (x)]h  [1� F (x)]h.

Proof: To begin, we note the following equalities.

A1 : ⌦j(x) = ⌦j�1

(x) + [(1� F (x))j�1 � (1� F (x))j�1]; j 2 {2, . . . , J}

A2 : ⌦j+1

(x) = ⌦j(x) + [(1� F (x))j � (1� F (x))j ]; j 2 {1, . . . , J � 1}

A3 : ⌦J(x) = �[(1� F (x))J � (1� F (x))J ].

Further, note that the term in square-brackets in A1 and A2 decreases strictly with the index j.

Consider first the case in which the stated conditions are met for h 2 {2, . . . , J � 1}. From A1
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we have:

[1� F (x)]h�1 � [1� F (x)]h�1 (39)

m
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From A2 we have:
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And finally, from A3 we have:

[1� F (x)]h  [1� F (x)]h ) [1� F (x)]J < [1� F (x)]J , ⌦J(x) > 0. (41)

Consider next the case in which the stated conditions are met for h = 1. From A2 we have:

[1� F (x)]1  [1� F (x)]1 (42)

m

⌦
1
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2

(x)

+

⌦j(x) > ⌦j+1

(x) : j > 1.

And from A3 we have:

[1� F (x)]1  [1� F (x)]1 ) [1� F (x)]J < [1� F (x)]J , ⌦J(x) > 0. (43)
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Consider finally the case in which the stated conditions are met for h = J. From A1 we have:

[1� F (x)]J�1 � [1� F (x)]J�1 (44)

m

⌦J(x) � ⌦J�1

(x)

+

⌦j(x) > ⌦j�1

(x) : j < J.

And from A3 we have:

[1� F (x)]J  [1� F (x)]J , ⌦J(x) � 0.⌅ (45)

Proposition 3

Under the first condition stipulated in the proposition, it follows from Lemma 2 that ⌦
1

(x) is

maximal and positive for all x and so it is optimal to assign all cash flow to Security 1. For the

second part of the proposition, suppose k is maximal amongst j 2 {1, . . . , J} satisfying:


f(x)

f(x)

�


j
> 

j
.

Then it follows from Lemma 2 that for each j 2 {1, .., k} it is optimal to cease assigning incremental

cash flows to Security j and to begin assigning them to Security j + 1 at ✓j such that:

[1� F (✓j)]
j = [1� F (✓j)]

j
.

If k = J, the final residual security is the fully illiquid Security 0.

Incentive Compatibility

As a final step, we must verify that each security is sold and retained by the posited categories

of investors. The first incentive condition is that investors with carrying cost cj (and higher) are
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willing to sell security j. We demand:
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From Lemma 2 the term in square brackets in the preceding integrand is positive if �j(x) 6= 0.

The second incentive is that investors with carrying cost cj�1

(and lower) do not want to sell

security j. Following the same steps as above, we demand:
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From Lemma 2 the term in square brackets in the preceding integrand is negative if �j(x) 6= 0.

The final incentive condition is that none of the investors want to sell security 0 should that

security be issued. To verify that this is the case, it is su�cient to check that even the investor

with the highest carrying cost does not want to sell that security. We then demand:
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And we recall, Security 0 gets incremental cash flow only if the preceding integrand is negative,

since:

⌦J(x)  0 , 1  1� F (x)
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Table 1: Order Flow Possibilities. This table lists secondary market order flow possibilities
and liquidity provider beliefs in responds to those order flows.

ABS All Auto Card Real Estate Other

Observations 18015 3050 396 9520 5049
Tranches 5816 633 85 2798 2300
Pools 2193 236 58 751 1148

Table 2: Sample Characteristics. This table reports the number of monthly observations of
round-trip cost measures and trading volumes for ABS securities, the underlying number of traded
tranches (securities) and pools for the time period between May 2011 and June 2012.
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Q

0.10 Q

0.25 Mean Q

0.75 Q

0.90 N

Round-trip costs (bp) 0.78 4.37 45.84 46.29 114.99 18015
Trading volume (millions) 0.11 0.48 5.87 5.80 13.57 18015
Number of tranches in pool 4.00 6.00 16.40 27.00 30.00 18015
Seniority class 1.00 2.00 4.58 6.00 8.00 18015
Detachment point (%) 0.00 0.00 26.46 44.76 83.09 18015
Coupon (%) 0.64 1.25 3.65 5.45 5.92 18015
Maturity (years) 2.85 5.55 19.35 30.96 35.85 18015
Tranche size (millions) 22.32 59.26 311.90 408.10 783.74 18015
Credit rating 1.00 1.00 4.97 7.00 15.50 8341

Table 3: Descriptive Statistics. This table reports the 10%, 25%, 75%, 90% quantiles and the
mean of the round-trip cost measure, trading volume and basic characteristics of ABS securities
in our sample. The characteristics provide the total number of tranches within the corresponding
pool, seniority class (where 1 refers to the most senior tranche and higher numbers to more junior
tranches), detachment point (defined as the ratio of the total size of the relatively more senior
tranches to the total pool size), coupon, maturity, tranche size and the security’s credit rating
(AAA=1,. . ., C=21).

Di↵erence in Frequency of more senior tranche Di↵erence in
seniority class Observations to be more liquid (in %) round-trip costs (bp)

1 3500 64.89 11.35
2 2181 66.44 18.28
3 1602 67.67 28.40
4 975 67.38 31.92
5 698 67.19 46.33
6 472 72.03 56.29
7 294 70.41 69.96
8 192 73.96 101.72
9 140 72.14 85.65
10 106 66.98 112.70
11 77 74.03 102.07
12 58 74.14 130.32
13 34 67.65 107.22
14 31 83.87 140.09
15 15 80.00 114.77

Table 4: Pairwise Liquidity Comparisons. This table reports for all possible combinations of
tranche pairs of a given pool and month the di↵erence in their seniority class, the total number of
pairs, the average frequency of observing the more senior tranche to be more liquid and the average
di↵erence in their round-trip costs.
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(1) (2) (3) (4)

Seniority class 7.056⇤⇤⇤ 4.332⇤⇤⇤

(17.554) (9.647)
Detachment point 71.965⇤⇤⇤ 45.050⇤⇤⇤

(24.599) (12.010)
Coupon �0.550 �3.064⇤⇤⇤

(�0.547) (�2.824)
Maturity 3.297⇤⇤⇤ 2.240⇤⇤⇤

(5.608) (3.624)
Tranche size �0.011⇤⇤⇤ �0.003

(�4.627) (�1.296)

Fixed e↵ect (Pool) Y Y Y Y

Credit ratings N N Y Y

Adj. R2 0.052 0.050 0.102 0.100
Num. obs. 18015 18015 18015 18015
⇤⇤⇤p < 0.01, ⇤⇤p < 0.05, ⇤p < 0.1

Table 5: Regression Analysis of Liquidity Determinants. This table reports the results of
regressing the round-trip cost measure on the seniority class in specification (1) and the detachment
point in (2), respectively. In specification (3) and (4) we use the security’s coupon, maturity and
tranche size as further explanatory variables, while additionally controlling for credit rating. We
report t-statistics based on robust standard errors in parenthesis, correcting for heteroskedasticity.

35



(1) (2)

Intercept 4.752⇤⇤⇤ 2.191⇤⇤⇤

(66.688) (15.891)
Round-trip costs 0.005⇤⇤⇤ 0.002⇤⇤⇤

(8.305) (3.679)
Coupon 0.281⇤⇤⇤

(10.492)
Maturity 0.099⇤⇤⇤

(12.040)
Tranche size 0.001⇤⇤⇤

(4.485)

Credit ratings N Y

Adj. R2 0.021 0.182
Num. obs. 4782 4782
⇤⇤⇤p < 0.01, ⇤⇤p < 0.05, ⇤p < 0.1

Table 6: Information-Sensitivity and Number of Tranches. This table reports the results
of regressing the seniority class of the most subordinated tranche of each pool on the round-trip
cost measure in specification (1). In specification (2) we use the security’s coupon, maturity and
tranche size as further explanatory variables, while additionally controlling for credit rating. We
report t-statistics based on robust standard errors in parenthesis, correcting for heteroskedasticity.
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(a) Transaction costs and seniority classes.
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(b) Transaction costs and detachment points.
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Figure 1: Round-trip Costs and Seniority. This figure shows the average round-trip cost
measure for di↵erent seniority classes in Panel (a) and for equidistant buckets based on the detach-
ment points in Panel (b) for ABS securities. A seniority class of 1 refers to the most senior tranche
and higher numbers to more junior tranches. We define the detachment point for each tranche as
the ratio of the total size of all relatively more senior tranches to the overall size of the pool, e.g.,
the detachment point of the most senior tranche is zero.
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(a) Trading volume and seniority classes.
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(b) Trading volume and detachment points.
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Figure 2: Trading Volumes and Seniority. This figure shows the average trading volume
per round-trip for di↵erent seniority classes in Panel (a) and for equidistant buckets based on the
detachment points in Panel (b) for ABS securities. A seniority class of 1 refers to the most senior
tranche and higher numbers to more junior tranches. We define the detachment point for each
tranche as the ratio of the total size of all relatively more senior tranches to the overall size of the
pool, e.g., the detachment point of the most senior tranche is zero.
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Figure 3: Information-Sensitivity and Number of Tranches. This figure shows the seniority
class (priority position) of the most junior traded tranche of each pool and the average round-trip
cost of these tranches.
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