
LBS Research Online

M Bikard, K Vakili and F Teodoridis
When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on
Academic Productivity
Article

This version is available in the LBS Research Online repository: https://lbsresearch.london.edu/
id/eprint/989/

Bikard, M, Vakili, K and Teodoridis, F

(2019)

When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Aca-
demic Productivity.

Organization Science, 30 (2). pp. 426-445. ISSN 1047-7039

DOI: https://doi.org/10.1287/orsc.2018.1235

INFORMS (Institute for Operations Research and Management Sciences)
https://pubsonline.informs.org/doi/abs/10.1287/ors...

Users may download and/or print one copy of any article(s) in LBS Research Online for purposes of
research and/or private study. Further distribution of the material, or use for any commercial gain, is
not permitted.

https://lbsresearch.london.edu/view/lbs_authors/2089690.html
https://lbsresearch.london.edu/view/lbs_authors/2089691.html
https://lbsresearch.london.edu/id/eprint/989/
https://lbsresearch.london.edu/id/eprint/989/
https://lbsresearch.london.edu/view/lbs_authors/2089690.html
https://lbsresearch.london.edu/view/lbs_authors/2089691.html
https://doi.org/10.1287/orsc.2018.1235
https://pubsonline.informs.org/doi/abs/10.1287/orsc.2018.1235


1 

 

When Collaboration Bridges Institutions:  

The Impact of University–Industry Collaboration on Academic Productivity1 

 

 

Michaël Bikard 

London Business School, Strategy and Entrepreneurship Department 

Sussex Place, London, NW1 4SA, UK 

mbikard@london.edu 

 

 

Keyvan Vakili 

London Business School, Strategy and Entrepreneurship Department 

Sussex Place, London, NW1 4SA, UK 

kvakili@london.edu  

 

 

Florenta Teodoridis  

University of Southern California, Marshall School of Business  

701 Exposition Blvd., Los Angeles, CA 90089, USA  

florenta.teodoridis@marshall.usc.edu  

 

 

Keywords: University-Industry Collaboration; Division of Labor; Scientific Productivity; Innovation; 

Interorganizational Relationships; Simultaneous Discoveries; Knowledge Production 

 

Acknowledgements: We would like to thank seminar participants at the Wharton Technology & Innovation 

Conference, Strategy Science Conference, West Coast Research Symposium of Technology Entrepreneurship, and 

Academy of Management Conference for helpful comments and suggestions. We would also like to thank senior 

editor Rajshree Agarwal and the anonymous reviewers for their valuable and constructive feedback on the paper. 

This paper was supported by funding from the London Business School.  

                                                           
1 All authors contributed equally.  



2 

 

When Collaboration Bridges Institutions:  

The Impact of University–Industry Collaboration on Academic Productivity 

 

 

Abstract 

Prior research suggests that academic scientists who collaborate with firms may experience lower 

publication rates in their collaborative lines of work due to industry’s insistence on intellectual property 

protection through patenting or secrecy. In contrast, we posit that university–industry collaboration can 

sometimes foster specialization and boost academic contribution to open science. Specifically, research 

lines with both scientific and commercial potential (i.e., in Pasteur’s quadrant) provide an opportunity for 

a productive division of tasks between academic scientists and their industry counterparts, whereby the 

former focus on exploiting the scientific opportunities and the latter focus on the commercial ones. The 

main empirical challenge of examining this proposition is that research projects that involve industry 

collaborators may be qualitatively different from those that do not. To address this issue, we exploit the 

occurrence of simultaneous discoveries where multiple scientists make roughly the same discovery around 

the same time. Following a simultaneous discovery, we compare the follow-on research output of academic 

scientists who collaborated with industry on the discovery with that of academic scientists who did not. We 

find that academic scientists with industry collaborators produced more follow-on publications and fewer 

follow-on patents than did academic scientists without industry collaborators. This effect is particularly 

salient when the research line has important commercial implications and when the industry partner is an 

established firm. 

 

Introduction 

Frequent collaboration between academia and industry is a hallmark of the knowledge economy. These 

collaborations are often encouraged at the national level,2 and many studies have emphasized their strategic 

importance for firms seeking to gain new knowledge, forge new relationships, and yield higher R&D 

productivity (Cockburn and Henderson 1998; Zucker, Darby, and Armstrong 2002; Owen-Smith and 

Powell 2004; Lacetera 2009). However, the opposite impact, that of industry collaboration on academic 

science, remains less understood and more contentious (e.g., Murray 2010; Perkmann et al. 2013). The 

academic institutional environment highly differs from that of industry (Merton 1973; Dasgupta and David 

1994), and some scholars have raised concerns that the corporate emphasis on commercialization might 

                                                           
2 See http://www.nih.gov/news-events/news-releases/nih-fund-collaborations-industry-identify-new-uses-existing-compounds 

and http://www.nih.gov/news-events/news-releases/nih-launches-collaborative-program-industry-researchers-spur-therapeutic-

development as examples of funding schemes to boost collaboration between academia and industry.  

http://www.nih.gov/news-events/news-releases/nih-fund-collaborations-industry-identify-new-uses-existing-compounds
http://www.nih.gov/news-events/news-releases/nih-launches-collaborative-program-industry-researchers-spur-therapeutic-development
http://www.nih.gov/news-events/news-releases/nih-launches-collaborative-program-industry-researchers-spur-therapeutic-development
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erode academic contribution to open science and weaken the norms of science in academia (Blumenthal, 

Campbell, et al. 1996; Mowery et al. 2001; Perkmann and Walsh 2009). 

At its core, this concern rests on the view that industry’s institutional environment conflicts with 

that of academia. Specifically, firms’ emphasis on commercialization and appropriation of their intellectual 

property rights through patenting and secrecy can limit their academic collaborators’ contribution to open 

science (Blumenthal, Campbell, et al. 1996; Louis et al. 2001; Goldfarb 2008; Perkmann and Walsh 2009; 

Toole and Czarnitzki 2010; Murray 2010; Evans 2010b; Shibayama, Walsh, and Baba 2012; Czarnitzki, 

Grimpe, and Toole 2014), induce a guarded behavior among scientists (Blumenthal, Campbell, et al. 1996; 

Campbell et al. 2000, 2002), and eventually reduce public disclosure of research output in terms of scientific 

publications (Czarnitzki, Grimpe, and Toole 2014; Lee 2000; Thursby and Thursby 2002). The adverse 

effects of industry collaboration on academic scientists’ productivity and output could be particularly 

heightened in areas with higher commercial potential and thus higher appropriation risks. The problem is 

compounded by concerns of shifts in academic institutional norms from freedom of science (Merton 1973) 

toward knowledge transfer through commercialization (e.g., Azoulay, Ding, and Stuart 2009). Prior 

research shows that industrial practices of secrecy, patenting, and entrepreneurship have already spread 

across the halls of academia to some extent (e.g., Argyres and Liebeskind 1998; Stuart and Ding 2006; 

Bercovitz and Feldman 2008).  

In contrast, we propose that, under certain circumstances, collaboration might provide an 

opportunity for productive specialization across institutional environments. Rather than channeling industry 

practices into academia, industry collaboration might instead reinforce traditional characteristics of the 

academic institutional environment by increasing publication and lowering patenting rates. In research lines 

that have both scientific and commercial potential, collaboration between academia and industry might lead 

to a more productive division of tasks and responsibilities, where each side would be able to focus on what 

their institutional environment rewards most: academia on more fundamental scientific insights, and 

industry on commercialization (Merton 1973; Aghion, Dewatripont, and Stein 2008; Sauermann and 

Stephan 2013).  
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Prior research suggests that academic institutions possess a relative competitive advantage in 

investigating more basic, fundamental questions, whereas firms maintain a relative advantage in 

development and commercialization. Scientists sort into either academia or industry according to their 

preferences. Scientists with a stronger “taste for science” or preferences for non-pecuniary returns are more 

likely to join academia; scientists with relatively stronger preference for applied research and monetary 

incentives sort into industry (Roach and Sauermann 2010; Agarwal and Ohyama 2013). In addition, the 

academic institutional environment is particularly amenable to the exchange of knowledge and materials, 

as well as to curiosity-driven research, whereas firms’ resources and expertise foster efficient 

commercialization (Bush 1945; Nelson 1959; Merton 1973; Rosenberg and Nelson 1994; Aghion, 

Dewatripont, and Stein 2008; Sauermann and Stephan 2013). Therefore, from firms’ point of view, 

collaborating with academia enables them to focus on areas in which they are the strongest, while relying 

on their academic partners to explore the projects’ more fundamental aspects. Active collaboration during 

a project can ensure that the knowledge created by the academic side will quickly and seamlessly transfer 

to the corporate partner. Likewise, collaborating with industry can give academic scientists access to 

resources, skills, and equipment that might be valuable for fulfilling the scientific potential of a line of 

research, without the pressure to spend much time on its commercialization. In a sense, then, in research 

lines that have both scientific and commercial potential, collaboration might be an arena in which the 

specificities of the academic institutional environment can be leveraged and reinforced.  

Hence, by offering the opportunity for specialization and a more productive allocation of tasks on 

lines of research with both scientific and commercial potential, industry collaboration might bolster 

academic contribution to open science. We expect academic scientists who collaborate with industry in 

projects that offer both scientific and commercial potential to experience higher subsequent publication 

rates within the collaborative lines of works. We further expect to see increased levels of specialization 

when academic scientists collaborate with established companies, rather than startups, given that the former 

usually possess better commercialization capabilities and generally more resources to leverage during the 

collaboration.  
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The empirical challenge in testing these arguments is considerable because scientists do not 

randomly choose their research projects. Firms and academic scientists strategically select the research 

questions they want to pursue. Thus, the type of research projects pursued through university–industry 

collaboration is likely to be systematically different from those solely pursued in academia. This makes 

comparisons between academic productivity and engagement with commercialization across different types 

of projects ill-suited for testing our predictions. Since academic scientists are on average more likely to 

work on applied projects when they collaborate with firms than when they do not, a finding that academic 

researchers are on average less scientifically productive when they work with firms might simply indicate 

that academic scientists work with firms on lines of research that are on average less scientifically 

promising.  

To address this challenge, our empirical strategy holds the line of research constant by exploiting 

a phenomenon known as multiple or simultaneous discoveries (Merton 1957). In our data, simultaneous 

discoveries are instantiated as scientific achievements that are published at the same time by two or more 

different scientific teams. When two teams make roughly the same discovery at about the same time, they 

face the same level of scientific and commercialization opportunities following that discovery.  

We use a sample of 33 such simultaneous discoveries, each involving 2 or 3 teams. In each of those 

instances, at least one academic team collaborated with a firm, and at least one other did not. For each team 

disclosing a simultaneous discovery, we track the corresponding author’s follow-on contribution to open 

science and engagement with commercialization for the line of research associated with the simultaneous 

discovery. We use scientific publications as indicators of contribution to open science and patents as 

indicators of engagement with the commercialization process.3 Specifically, we count the corresponding 

authors’ publications and patents that were built upon the simultaneous discovery – i.e., follow-on 

publications and follow-on patents respectively.  

                                                           
3 We consider patenting of scientific discoveries as a step in the long commercialization process of discoveries.  
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Consistent with our predictions, our results suggest that following a simultaneous discovery, 

academic scientists with industry collaborators produce more follow-on publications and fewer follow-on 

patents than academic scientists who made the same discovery without an industry collaborator. In our data, 

academic scientists who collaborate with firms produce 50% more citation-weighted publications. Our 

results also suggest that scientists who collaborate with firms produce fewer citation-weighted patents than 

their academic peers who do not collaborate with industry. Moreover, we find that the results are driven by 

discoveries that combine both high scientific and high commercial potential (as opposed to high scientific 

potential only) and discoveries where the industry partner is an established firm (as opposed to a startup). 

We further show that the higher levels of publication output built upon discoveries with industry partners 

do not come at the expense of a decline in publication output outside the collaborative research line.  

Our empirical design based on simultaneous discoveries ensures that the estimated differences in 

research output are not driven by differences in the types of research projects pursued by scientists who 

choose to collaborate with industry. However, the teams in our sample are not randomly formed. Hence, 

differences in publication output might be attributed to several potential sources. It is possible that scientists 

who choose to collaborate with industry have higher publication and lower patenting capabilities in the first 

place (Mindruta 2013). It is also possible that the estimated differences might be driven by physical and 

monetary capital provided by industry collaborators, independent of their active collaboration in the project. 

Finally, consistent with our theory, differences could be driven by academic scientists’ greater ability to 

specialize in knowledge production when they collaborate with firms. To distinguish between these factors, 

we show that, before publishing their simultaneous discoveries, academic scientists with industry 

collaborators had no more (and in fact slightly fewer) publications than scientists without industry 

collaborators. We further show that our results are not driven by simple industry sponsorship in the form 

of financial or physical capital. Overall, our findings are consistent with the idea that in research lines with 

both scientific and commercial potential, collaboration can provide an arena in which the complementarities 

between academia and industry enhance the research productivity of academic scientists.  
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Our paper makes three main contributions. First, the current literature on cross-institutional 

collaboration has highlighted that those partnerships can constitute a bridge or a channel across which 

travels not only knowledge (Zucker, Darby, and Armstrong 2002; Owen-Smith and Powell 2004) but also 

norms and practices (Czarnitzki, Grimpe, and Toole 2014; Evans 2010b). We complement this work by 

showing that cross-institutional collaboration constitutes also an opportunity for productive specialization 

in creative work. Second, our results contribute to the literature that has highlighted the potentially negative 

impact of tight academia–industry relationships for the academic institutional environment (Argyres and 

Liebeskind 1998; Shibayama, Walsh, and Baba 2012). The traditional argument is that increased closeness 

between academia and industry fosters hybridization and decreases the distinctiveness of the academic 

institutional environment. As a result, academic contribution to open science might suffer. In contrast, we 

argue that, when scientific knowledge can contribute to both fundamental understanding and the 

development of commercial technologies, increased closeness between academia and industry can reinforce 

the distinctive features of the academic institutional environment. Finally, empirical studies of the impact 

of scientific collaboration for creative performance are complicated by the fact that collaboration is a choice 

(e.g., Mindruta 2013). Here we propose that some of the issues associated with this selection process can 

be addressed by focusing on simultaneous discoveries as sets of “natural experiments.” 

Industry Collaboration and Academic Productivity 

Collaboration as a Conduit through Which Industrial Practices Flow into Academia 

Historically, the key mandate of universities has been to generate and disseminate knowledge (Bush 1945). 

A defining characteristic of academic researchers is autonomy, such that scientists are free to select the 

projects they undertake and have creative control over the research methods they pursue and how they 

choose to disseminate their findings (Aghion, Dewatripont, and Stein 2008). With the increased 

collaboration between industry and academia over the past few decades, many have expressed concerns 

that too much involvement with industry’s commercialization activities and profit-seeking agendas may 

distort the institutional norms that have long governed academic research (Mowery et al. 2001). In 

particular, scholars have argued that collaboration between industry and academia acts as a bridge between 
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the two institutional environments, and hence, industrial orientation toward economic gains and secrecy 

might travel over that bridge and erode the traditional academic emphasis on openness and publication. 

Scholars discussing the negative implications of university–industry collaboration point out that 

industry collaboration is likely to harm academic productivity because industrial practices of appropriation 

through secrecy and intellectual property rights clash with academic incentives to publish and disseminate 

the results of their research fast and widely (Merton 1973; Dasgupta and David 1994; Stephan 1996). Firms 

often impose publication restrictions on their academic collaborators within the collaborative lines of 

research (e.g., Lee 2000; Thursby and Thursby 2002). Surveys of academic researchers have associated 

collaboration with industry with higher levels of secrecy, less sharing in general, and more publication 

delays (Blumenthal, Causino, et al. 1996; Blumenthal et al. 1997; Louis et al. 2001; Evans 2010b; 

Shibayama, Walsh, and Baba 2012; Czarnitzki, Grimpe, and Toole 2014). For example, in a survey of 210 

life-science companies, Blumenthal et al. (1996) found that among the companies that supported academic 

research, 82% asked academic scientists to keep their findings confidential for some time to allow for patent 

applications, and that 56% require confidentiality for longer than the time needed for patent application. 

Relationships with industry might deter sharing because of the emphasis on confidentiality, but the impact 

might also be deeper, as sharing norms might progressively shift from generalized to more direct forms of 

exchange (Shibayama, Walsh, and Baba 2012). Similar problems were reported in cases of industry 

sponsorship: an indirect form of university–industry collaboration. For example, in a recent survey of 1,060 

German academic researchers, Czarnitzki, Grimpe, and Toole (2014) found that, compared with other forms 

of funding, industry sponsorship increases the expected probability of publication delay from 14% to 33%, 

and that of secrecy (complete or partial ban on publishing research results) from 11.2% to 35%. Other 

research shows that patenting a scientific discovery—as is often the case in university–industry 

collaborations—may negatively affect scientists’ investment in follow-on research based on that discovery 

(Murray and Stern 2007; Williams 2013). Overall, then, academic scientists working with industry are 

likely to find it on average more difficult to publish their research results. 
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In addition to the issue of publication restrictions, industry collaboration could also harm academic 

productivity by inducing scientists to undertake commercialization-related activities that are unlikely to 

lead to scientific publications (Goldfarb 2008; Perkmann and Walsh 2009; Toole and Czarnitzki 2010). 

Some empirical studies have linked academic scientists’ involvement with industry to a decrease in their 

contribution to open science. In particular, Toole and Czarnitzki (2010) study the impact on academic 

productivity of life-scientists’ involvement in for-profit firms through the SBIR program. Using a case-

cohort sampling design, they find that the yearly publication rate of academic scientists decreases by 19% 

after they become involved in the program, which indicates a considerable “brain drain” away from 

academic science and toward commercial activities. 

The potential negative impact of industry collaboration on academic scientists’ contribution to open 

science seems especially alarming considering that the scientists who work with firms tend to be some of 

the most productive in their fields (Blumenthal, Campbell, et al. 1996; Zucker and Darby 1996; Stuart and 

Ding 2006; Toole and Czarnitzki 2010; Mindruta 2012). 

Collaboration as an Arena for a Productive Division of Tasks between Academia and Industry 

In studying collaborations across academia and industry, prior research has generally considered (a) that 

collaboration acts as a bridge and (b) that this bridge erodes the differences opposing each institutional 

environment. In so doing, that literature has therefore uncovered an important negative facet of cross-

institutional collaboration.  

In contrast, we argue that under certain circumstances, academia–industry collaboration may foster 

specialization across institutional environments. Collaboration, we argue, is not just a channel through 

which practices and norms can diffuse; it is also an arena in which the complementarities across institutional 

environments can be leveraged. In projects with both scientific (basic) and commercial (applied) 

opportunities, academia and industry can mutually benefit if each party focuses on what it does best; i.e., if 

academia focuses on developing fundamental understanding, and industry focuses on commercialization. 

In such projects, industry collaboration might reinforce the particularities of the academic institutional 

environment by creating an opportunity for academic scientists to specialize and devote their efforts mostly 
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toward exploiting the scientific potential of the project while being minimally distracted by the 

commercialization process.  

A large stream of research argues that firms can benefit from collaborating with academia on 

research projects (Cockburn and Henderson 1998; Zucker, Darby, and Armstrong 2002; Furman and 

MacGarvie 2009). Academic publications can improve R&D efficiency if that scientific knowledge is 

relevant to the firm (Nelson 1982; Fleming and Sorenson 2004; Bikard 2018). Academic findings can also 

open up new market opportunities for firms (Zucker, Darby, and Brewer 1998) and help them overcome 

technological barriers (Cohen, Nelson, and Walsh 2002). 

We argue that academic scientists can likewise benefit from collaborating with industry. The 

presence of an industry partner can help academic scientists achieve greater levels of specialization by 

focusing on their basic research activities and leave the commercialization aspects, such as patenting and 

licensing, to their industry collaborators. Past research suggests that academia is relatively less efficient 

than industry when it comes to commercialization (Rosenberg and Nelson 1994; Aghion, Dewatripont, and 

Stein 2008). To the extent that academic scientists also care about the ultimate application of their research 

(Murray 2010; D’Este and Perkmann 2011; Stephan 2012), industry collaboration might also increase their 

motivation to invest in those lines of research. Besides, industry collaboration might even help scientists 

invest more heavily in lines of research with commercialization opportunities. Prior research suggests that 

industry involvement in a research domain, particularly in the form of patenting, may dissuade academic 

scientists from investing in follow-on research due to potential litigation risks (Heller and Eisenberg 1998; 

Murray and Stern 2007). The under-exploitation of such research lines could give firms incentives to correct 

the resulting deficit through collaboration. 

The benefits from greater specialization are likely to be further amplified by the fact that academic 

scientists might find industry to be a valuable source of skills, equipment, and material and financial 

resources, but also of ideas (Mansfield 1995; D’Este and Perkmann 2011; Tartari and Breschi 2012). D’Este 

and Perkmann (2011), for example, surveyed 1,088 grant holders from the UK’s Engineering and Physical 

Sciences Research Council who had engaged with industry and asked them about their motivation for doing 
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so. Interestingly, their results highlight four key drivers: access to funding, commercialization, learning, 

and access to in-kind resources. Industry and academia usually differ in how they approach research; they 

may use different perspectives to formulate research questions, and different methods to investigate them 

(Rosenberg 1994; Mansfield 1995; Siegel et al. 1999; Evans 2010a). Hence, collaboration with industry 

can give academic scientists access to new and different insights and knowledge assets, which could in turn 

increase their research output. A long stream of research on creativity suggests that by bringing together 

diverse perspective, insights, and knowledge, collaboration can help innovative teams break away from 

intellectual lock-in and explore new, otherwise unexplored territories (Hargadon and Sutton 1997; Reagans, 

Zuckerman, and McEvily 2004; Uzzi and Spiro 2005; Fleming, Mingo, and Chen 2007; Teodoridis 2017). 

Using a theoretical model, Hong and Page (2004) demonstrate how a diverse team of randomly selected 

individuals may outperform a homogeneous team of best-performing ones because individuals with varied 

backgrounds and perspectives could evaluate the same opportunities differently, and hence exploit a more 

heterogeneous set of opportunities.  

Following these arguments, we postulate that scientists collaborating with industry on certain 

projects might generate higher levels of follow-on contribution to open science (e.g., publication) and lower 

involvement in commercialization activities (e.g., patenting). Industry collaboration in a particular line of 

research might accentuate some institutional characteristics that are distinctively academic. We therefore 

predict the following: 

Hypothesis 1 (H1): For a given research project with both academic and applied potential, an 

academic scientist with an industry collaborator is likely to produce more follow-on scientific 

publications than an academic scientist without an industry collaborator. 

Hypothesis 2 (H2): For a given research project with both academic and applied potential, an 

academic scientist with an industry collaborator is likely to produce fewer follow-on patents than 

an academic scientist without an industry collaborator. 

An efficient and productive specialization and division of tasks and responsibilities between 

academia and industry along their domains of expertise requires that the collaborative project at hand offer 
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high potential for both scientific research and commercialization, which enables each party to focus on 

what it does best. To offer additional insight, we focus on the moderating effect of the commercial potential 

of a line of research.4 

The above predictions challenge the idea that the pursuit of economic returns in industry negatively 

affects the research output of collaborating academic scientists. If, as prior research suggests, appropriation 

concerns lead to more secrecy, one should expect secrecy and intellectual property protection to play a more 

significant role in projects with more commercial potential. In contrast, our arguments suggest that higher 

commercial potential may provide better conditions for specialization through a productive allocation of 

tasks and efforts. Hence, we predict the following: 

Hypothesis 3 (H3): Commercial potential of a research project positively moderates the 

relationship between academia–industry collaboration and the follow-on scientific publications of 

academic scientists.  

Furthermore, we expect the experience level of industry partners to positively moderate the benefits 

that academic scientists accrue from their collaboration with industry. Established companies, as opposed 

to startups, have deeper industry-specific knowledge, better commercial capabilities, and generally more 

resources to share with their academic partners. Given the central role of these factors in facilitating 

specialization and a productive division of tasks and responsibilities between the two types of institutions, 

we expect that academic scientists who collaborate with established companies yield more benefit than 

those who collaborate with startups. This prediction also contradicts what prior research suggests. 

Established companies are usually more embedded in the industry mindset of rent-seeking and protecting 

intellectual property rights, and hence are expected to be more cautious with publishing the outcomes of 

their research projects. Startups, on the other hand, may use these publications as signals of their quality 

and be more supportive of contribution to open science. However, we argue that the knowledge assets and 

                                                           
4 While we believe scientific potential as a moderating factor could also offer interesting deeper insights, we are limited by our 

empirical context, in which all research projects have considerable scientific potential. The lowest number of academic citations to 

a paper in our sample is 66, which already puts that paper in the top 1% of highly cited papers in its respective field.  
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commercialization capabilities of established companies better support the hypothesized productive 

collaboration between academia and industry. Hence, we predict the following:  

Hypothesis 4 (H4): Collaboration with established companies positively moderates the relationship 

between academia–industry collaboration and the follow-on scientific publications of academic 

scientists.  

Data and Empirical Strategy 

The core challenge in examining the impact of industry–academia collaboration on subsequent research 

productivity of academic scientists is that scientists strategically select the research questions they want to 

pursue. Thus, the research projects that are pursued through university–industry collaboration may 

fundamentally differ from those pursued solely in academia or industry. Consequently, any estimated effect 

of university–industry collaboration on subsequent research productivity captures both the effect of 

collaboration and the effect of choosing a particular research question.  

In an ideal setting, we would observe the same research question assigned randomly and 

simultaneously to two teams: one composed only of academic collaborators and one that includes industry 

collaborators. We would then want to observe follow-on publication and patenting efforts of academic 

scientists from both teams within the respective line of research and to measure the differences between 

those efforts. In the absence of such an ideal experiment, we use a novel empirical approach exploiting the 

existence of simultaneous discoveries.  

Simultaneous discoveries are scientific discoveries that are independently conducted by two or 

more teams of scientists and reported in what we call paper twins: papers published on the same discovery 

around the same time. Paper twins are hence dual instances of the same scientific discovery by different 

teams in different environments. The following example resulted from a discovery that was simultaneously 

made by scientists from the Harvard Medical School and scientists at the University of Utah and Heidelberg 

University working in collaboration with Myriad Pharmaceutical: 

Strack et al. (September 2003) “AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 

functioning in virus budding” Cell 
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(Affiliations: Department of Cancer Immunology and AIDS Dana-Farber Cancer Institute and 

Department of Pathology, Harvard Medical School) 

“HIV-1 and other retroviruses exit infected cells by budding from the plasma membrane, a process 

requiring membrane fission. The primary late assembly (L) domain in the p6 region of HIV-1 Gag 

mediates the detachment of the virion by recruiting host Tsg101, a component of the class E vacuolar 

protein sorting (Vps) machinery. We now show that HIV Gag p6 contains a second region involved in 

L domain function that binds AIP1, a homolog of the yeast class E Vps protein Bro1. Further, AIP1 

interacts with Tsg101 and homologs of a subunit of the yeast class E Vps protein complex ESCRT-III. 

AIP1 also binds to the L domain in EIAV p9, and this binding correlates perfectly with L domain 

function. These observations identify AIP1 as a component of the viral budding machinery, which 

serves to link a distinct region in the L domain of HIV-1 p6 and EIAV p9 to ESCRT-III.” 

 

von Schwedler et al. (September 2003) “The protein network of HIV budding” Cell 

(Affiliations: Department of Biochemistry, University of Utah; Department of Pathology, 

Heidelberg University; Myriad Pharmaceuticals Inc.) 

“HIV release requires Tsg101, a cellular factor that sorts proteins into vesicles that bud into 

multivesicular bodies (MVB). To test whether other proteins involved in MVB biogenesis (the class E 

proteins) also participate in HIV release, we identified 22 candidate human class E proteins. These 

proteins were connected into a coherent network by 43 different protein-protein interactions, with AIP1 

playing a key role in linking complexes that act early (Tsg101/ESCRT-I) and late (CHMP4/ESCRT-

III) in the pathway. AIP1 also binds the HIV-1 p6 and EIAV p9 proteins, indicating that it can function 

directly in virus budding. Human class E proteins were found in HIV-1 particles, and dominant-

negative mutants of late-acting human class E proteins arrested HIV-1 budding through plasma and 

endosomal membranes. These studies define a protein network required for human MVB biogenesis 

and indicate that the entire network participate in the release of HIV and probably many other viruses.” 

 

These excerpts describe two sets of independent findings regarding the role of the same protein 

components in the HIV viral budding process. One of the papers (Strack et al. 2003) was written by a 

research team within academia, the other (von Schwedler et al. 2003) in a collaborative effort between 

scientists in academia and a firm (Myriad Pharmaceuticals Inc.). The two papers were published back-to-

back in the September 2003 volume of the journal Cell.  
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The use of simultaneous discoveries helps us control for the strategic selection into particular 

research questions by different scientists and hence isolate the effect of university–industry collaboration. 

In particular, we assume that when two different teams report the same discovery, they face the same level 

of follow-on scientific and commercial opportunity to pursue based on that discovery. This approach allows 

us to observe academic scientists’ behavior with respect to subsequent knowledge production based on the 

discovery when influenced by industry collaboration, while controlling for the otherwise hard-to-observe 

counterfactual of the same project undertaken absent industry collaboration.  

In addition, we assume that the collaborative teams on simultaneous discoveries are formed in 

expectation of certain complementarities. Indeed, in addition to strategically choosing their research 

projects, scientists also choose their collaborators. However, there might be other factors determining a 

choice of collaborators that do not necessarily speak to complementarities as assumed by our theory. For 

example, scientists who collaborate with industry may have higher publishing and lower patenting 

capabilities. In our empirical analysis, we address these concerns directly, while discussing limitations. 

Data 

Our dataset contains 72 scientific publications disclosing 33 simultaneous discoveries.5 As noted above, in 

each paper twin in our sample, one paper is authored by only academic scientists, and the other results from 

collaboration between academia and industry. The main (corresponding) author on all publications is an 

academic scientist.6  

The algorithm used to build this dataset is based on the insight that two papers disclosing the same 

simultaneous discovery are systematically cited together in the follow-on scientific literature, not only in 

the same papers, but also within the same parentheses, or adjacently (Cozzens 1989). Figure 1A in the 

                                                           
5 Twenty-seven of the simultaneous discoveries were reported in two publications, and 6 were disclosed in three papers.  
6 The corresponding author is clearly identified on each publication as the main point of contact between the authorship team and 

all external parties. The corresponding author is generally the more senior individual who takes responsibility for the research, 

provides the intellectual input, and approves the research design and protocols. In about 70% of the papers in our sample, the 

corresponding author is the same as the last author. In most cases where the corresponding author is the first author, we could 

confirm that the first author was the senior scientist running the lab. Our focus on the corresponding author as the main author is 

in line with previous literature (e.g., Furman and Stern 2011; Furman, Jensen, and Murray 2012; Zucker et al. 1998). 
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appendix summarizes the algorithm used to construct the sample of simultaneous discoveries. The 

algorithm is based on the method developed by Bikard (2012). 

We collected data about each paper from three bibliographical databases: ISI Web of Science, 

Scopus, and PubMed. Details about the main (corresponding) scientists were collected from various public 

sources, such as the scientists’ public profiles. Publication data (through October 2013) were collected from 

two bibliographical databases: Scopus and PubMed. Most discoveries in our sample are in life sciences in 

areas such as cell biology, stem cell, and immunology. The sample includes discoveries in physics as well. 

Our patent dataset is the result of the intersection of two sets of patent data which we built 

separately. First, we collected all the patents that build on each simultaneous discovery. To do so, we built 

a script that used the Harvard Dataverse patent data (Li et al. 2014), which is based on USPTO data, to 

identify the set of patents that cite either of the papers disclosing the simultaneous discovery. Patent 

citations to papers indicate that the inventors drew on the knowledge disclosed in the scientific paper as 

part of the invention process (e.g., Azoulay, Graff Zivin, and Sampat 2012; Roach and Cohen 2012). 

Therefore, we consider those patents to constitute inventive activity building on the simultaneous discovery. 

Second, we collected all the U.S. patents awarded by each corresponding author in our sample. To do so, 

we searched the USPTO website for each scientist’s name. To address the issue of different inventors 

having the same name (disambiguation), we assessed each patent separately and established the inventor’s 

identity based on application date, inventor’s address, and patent topic. Our dataset of follow-on patents by 

the academic scientists is the intersection between these two sets.  

Empirical Strategy 

For each simultaneous discovery, we compare the follow-on research output of the main authors after the 

publication of the simultaneous discovery. We define follow-on research output of a scientist as the count 

of scientific papers that list the scientist as an author and cite her initial paper reporting the simultaneous 

discovery. By fixing the initial discovery, we can attribute differences in the follow-on research output of 

scientists to the composition of their teams for their initial discovery, i.e., the difference in their involvement 

with industry. To better isolate the effect of university–industry collaboration, we further control for several 
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observable characteristics of the main scientists and their respective teams. Table 1 lists the set of variables 

used in our analyses and explains how they are defined and constructed.  

-- Table 1 approximately here – 

Formally, we use the following regression equation to estimate the effect of university–industry 

collaboration on follow-on publications of corresponding scientists on each twin paper: 

𝑓𝑜𝑙𝑙𝑜𝑤_𝑜𝑛_𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑖𝑝

= 𝑓(𝛽𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑎_𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦_𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑝 + 𝛼𝑋𝑖𝑝 + 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦𝑝 + 𝜀𝑖𝑝) 

where 𝑓𝑜𝑙𝑙𝑜𝑤_𝑜𝑛_𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑖𝑝 is the number of academic publications of scientist 𝑖 citing the 

initial simultaneous discovery 𝑝 after its publication. 𝑋𝑖𝑝 is a vector of controls at the scientist-discovery 

level, including scientist’s academic experience, her past academic publication and patent stock, a dummy 

capturing whether the scientist was affiliated with an institution in the United States, the number of authors 

listed on the paper reporting the initial simultaneous discovery 𝑝, the share of authors affiliated with 

institutions in the United States, the share of female authors, and a dummy capturing whether the paper was 

supported by any industry grants or not. Simultaneous discovery fixed effects are captured by 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦𝑝. 

The inclusion of discovery fixed effects ensures that all the comparisons are between the main scientists 

who made a simultaneous discovery around the same time and hence faced the same subsequent scientific 

and commercial opportunity. In other words, we do not rely on comparisons across discoveries and only 

compare scientists who made the same discovery around the same time. Because the dependent variable is 

a count, we use a Poisson model with robust standard errors. The results are robust to the use of a more 

restricted set of control variables as well as to alternative specifications including negative binomial and 

ordinary least squares (OLS) estimation models.  

Following our theoretical arguments, to the extent that collaboration between academia and 

industry leads to a better allocation of tasks and responsibilities, and the associated positive effect on 

research output of academic scientists overcomes the potential negative effects proposed in prior literature, 

we expect 𝛽 to be positive and significant. Otherwise, in the absence of any positive effect, or where the 
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negative effects argued in prior literature are greater than the positive effects argued in this study, 𝛽 would 

be negative or non-significant.  

We use the same regression method to identify the impact of academia–industry collaboration on 

follow-on patenting by each scientist (H2). The follow-on patenting efforts are measured as the count of 

patents that cite the original discovery (in their non-patent references) and list the main scientist behind the 

discovery as an inventor. Note that the follow-on patents are not necessarily patents granted on the original 

discovery itself. Rather, these are generally patents filed on subsequent commercial developments informed 

by the simultaneous discovery. Following our theoretical arguments, we expect the effect of university–

industry collaboration to be negative.  

To test H3 and H4, we add interaction terms between our dummy variable 

𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑎_𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑦_𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑝 and variables capturing whether the discovery has high 

commercial potential or not (H3) and whether the industry partner on discovery 𝑝 was an established 

company or not (H4). We use the total count of patents that have cited any of the twin papers reporting a 

simultaneous discovery as a proxy for the commercial potential of that discovery. We do not include the 

variable alone in the regressions since its effect is captured by discovery fixed effects. We then categorize 

discoveries that are above the median in commercial potential as discoveries with high commercial 

potential. The results are robust to using a continuous measure of commercial potential. To identify whether 

a company partner was established or not, we use the age of the company partner at the time of each 

discovery. Companies with more than 10 years of experience at the time of collaboration are categorized 

as established. Again, we only include the variable in its interaction form because its direct effect is captured 

by the discovery fixed effect. The results are robust to neighboring cutoff years for this categorization. We 

also perform several additional robustness analyses that we discuss in more detail below. 

Boundary Conditions 

Note that our theory and empirical analysis are not generalizable to the whole spectrum of scientific projects 

but instead apply to those projects with both scientific and commercial potential. Hence, if one thinks of 

the landscape of scientific publications in terms of Donald Stokes’ (1997) typology, our twin papers would 
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be better representatives of papers in Pasteur’s quadrant, where discoveries have both scientific and 

commercial potential. This selection corresponds directly to our theoretical argument. 

How large is the population of papers to which our findings are potentially generalizable? While it 

is difficult to assess how many papers, of the massive universe of scientific publications, have both scientific 

and commercial potential, we can note that papers that stand at the interface between science and technology 

are known to be particularly important (Ahmadpoor and Jones 2017). We can also provide some perspective 

by comparing our sample of paper twins to other (non-twin) manuscripts published by the same authors. 

To do this, we collected all publications by the corresponding authors in our sample that were published in 

the same year as the twin papers. We used the same publication year as the twins to ensure that the difference 

between the twin and non-twin publications by each scientist is not driven by her tenure or changes in the 

opportunity landscape in her field over time. A main author in our sample has produced on average 9.1 

other papers (st.dev=8.6) in the same year as her twin paper. Next, we categorized all papers published by 

the corresponding authors into four categories: 1) twin papers without industry collaborators; 2) twin papers 

with industry collaborators; 3) non-twin, academia-only papers by scientists who had no industry 

collaborators on their twin papers; and 4) non-twin, academia-only papers by scientists who had industry 

collaborators on their twin papers. We compared these four categories on two main dimensions: the count 

of academic citations, and whether the papers were cited in any subsequent patent (0/1 dummy). We used 

citations in subsequent patents as a proxy for the commercial potential of a scientific publication. We further 

log-normalized the number of academic citations to address their skewed distribution. Figures 1 and 2 

compare the distributions of these two variables across the four categories. The twin papers have on average 

higher rates of both paper citations and patent citations. This is expected considering the nature of twin 

discoveries. The distribution of paper citations as well as the existence of a patent citation is tilted toward 

the right in both figures. However, there is a good overlap between the distributions of twin papers and 

non-twin, academia-only papers. Specifically, Figure 3 overlays the distributions for twins without industry 

collaborators (first category) onto the distributions for academia-only, non-twins (second and fourth 
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categories). The overlap suggests that twin papers still represent an important part of academia-only 

publications. 

-- Figures 1, 2 and 3 approximately here – 

Descriptive Statistics 

We provide summary statistics for our main variables in Table 2. The average number of follow-on 

publications for each author-paper was 20.9, and the average number of follow-on patents was 0.44. 

Approximately 22% of corresponding authors obtained a follow-on patent citing their twin papers in the 

sample. The oldest of the simultaneous discoveries dated back to 1996, and the most recent occurred in 

2008. On average, about 10 authors collaborated on each discovery paper. In 64% of discovery papers, the 

corresponding author was affiliated with a U.S. institution. Also, 61% of the authors on each discovery 

paper were affiliated with U.S. institutions. A typical main author had about 16 years of experience and 

about 113 papers and 2 patents before the publication of the discovery paper. Approximately 30% of authors 

on the discovery papers were women, and about 26% of the discovery papers were supported by industry 

grants.  

-- Table 2 approximately here – 

The list of all universities and non-for-profit research organizations involved with the discoveries 

in our sample is relatively long. Of the 750 scientists involved in these simultaneous discoveries, about 77 

researchers are affiliated with a company and the rest with an academic institution. In total, there are 183 

unique academic or non-for-profit research institutions in our sample. Some of the most frequent institutions 

are the Institute for Cancer Research (London, UK), Harvard University, the University of California, the 

University of Michigan, Yale University, the Salk Institute, the University of Texas, Dana-Farber Cancer 

Institute, Max Planck Institute, the University of Iowa, the University of Utah, Columbia University, Duke 

University, Imperial College London, Scripps Research Institute, and Rockefeller University. 

Furthermore, in total, 25 unique companies are involved as collaborators on the papers in our 

sample. A few companies are involved with more than one discovery in our sample. We define startup firms 

as firms that were 10 years old or younger at the time of their collaboration on the simultaneous discovery. 
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The established companies in our sample are Novartis, Merck, Schering-Plough, Bayer, GSK, Genentech, 

Xerox Corporation, the EMMES Corporation, Mitsubishi, Elan Corporation, and Amgen. Of these, the 

youngest is Amgen, which was established in 1980. The list of startups includes Millennium 

Pharmaceuticals, NeuroSpheres Ltd., Athersys, Virologic, Caprion Pharmaceuticals, Ligand 

Pharmaceuticals, Lexicon Pharmaceuticals, Regeneron Pharmaceuticals, Perlegen Sciences, Sangamo 

Biosciences, ATABIS GmbH, deCODE Genetics, and Myriad Pharmaceuticals. The startups in our sample 

were all founded after 1991. 

Results 

As a first step, we report some simple comparative statistics. In approximately 59% of the cases, the 

academic authors who had industry collaborators produced more follow-on research than those who had no 

industry collaborators. Also, when comparing the twins, after excluding the cases where none of the 

corresponding authors of either twin produced any follow-on patents, in 64% of the cases the academic 

scientists who had an industry collaborator produced fewer follow-on patents than the academic scientists 

who had no industry collaborators on their twin discovery. Table 3 further compares the normalized number 

of follow-on and pre-discovery papers by authors with and without industry collaborators. Due to the count 

nature of data and the substantial across-twin variance in our sample, we need to normalize the publication 

rates to be able to meaningfully compare the two groups of scientists. We use the within-twin averages for 

normalization. For example, take two academic scientists as main authors on two papers reporting a 

simultaneous discovery, who have 40 and 50 pre-discovery papers and 10 and 20 follow-on papers, 

respectively. To normalize the numbers, we divide the number of pre-discovery papers of each scientist by 

45 (the average of 40 and 50) and the number of follow-on papers by 15 (the average of 10 and 20). The 

normalized figures show that academic scientists with industry collaborators produce approximately 15% 

fewer pre-discovery papers than those without industry collaborators. In contrast, the number of follow-on 

papers by scientists with industry collaborators is about 8% larger than that of scientists without industry 

collaborators. The difference between the change in the number of pre-discovery and follow-on papers by 

scientists with and without industry collaborators is significant at the 10% level. These comparative 
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statistics are in line with H1. However, they cannot effectively distinguish between cross-twin and within-

twin variances. We address this issue in our estimations by using twin fixed effects in all specifications.  

-- Table 3 approximately here – 

In Table 4, we report results of our main estimating equation: the impact of university–industry 

collaboration on the count of main scientists’ follow-on academic publications and patents. Model 4-1 

shows the impact of university–industry collaboration on the count of follow-on academic publications. 

Consistent with H1, the results suggest that scientists with industry collaborators produce 37% more follow-

on publications than scientists without industry collaborators. The difference amounts to approximately 7.7 

additional follow-on papers published based on the original discovery—an increase of 0.44 standard 

deviations. In model 4-2, we adjust our dependent variable to take into account the quality of follow-on 

academic publications. As in prior research, we use the number of citations that an academic publication 

received as a proxy for its quality. The results show that industry collaboration has a similar positive effect 

on the quality-adjusted number of follow-on academic publications. Industry collaboration is associated 

with an additional 1,542 citation-weighted follow-on publications—an increase of 0.35 standard 

deviations.7  

-- Table 4 approximately here -- 

Model 4-3 shows the estimated impact of university–industry collaboration on follow-on patenting 

by the main scientists. The estimates suggest that, compared with those having no industry collaborators, 

scientists who collaborated with industry partners on their simultaneous discoveries produce more than 

99% fewer patents building on their discovery. In model 4-4, we again adjust the number of patents based 

on their quality, as measured by the number of citations. The estimated effect of industry collaboration is 

similar to that reported in model 4-3. The results are consistent with H2. The large estimates suggest that 

the effect is largely driven by whether the corresponding authors patent or not. Hence, in Table 5 we 

repeated our estimations using Logit and Probit estimation models with a dummy dependent variable 

                                                           
7 All subsequent analyses include the full set of controls; however, due to space considerations, we do not report these values. 

Tables with the full set of controls are available upon request. 
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indicating whether the main author has any follow-on patents (DV=1) or not (DV=0) based on her 

simultaneous discovery.8 The results are qualitatively similar to those reported in Table 4; however, the 

effects are not significant at the 10% level (P=0.13 in the Probit model and P=0.16 in the Logit model). The 

standard deviations are larger potentially due to the loss of approximately 20% of the observable variance 

from the cases where both corresponding authors of matched twin papers have produced follow-on patents 

based on their simultaneous discovery. Overall, our finding on the impact of industry collaboration on 

follow-on patenting persists. Nevertheless, given our small sample size and the rare nature of patenting 

incidents, the estimations are rather sensitive to the choice of statistical model. This implies that the 

interpretation of magnitude of patenting effects should be considered with care. While we provide these 

figures, we do so with the goal of drawing attention to the theoretically important effect on patenting. We 

hope that future research can more robustly estimate the magnitude of this effect.9  

-- Table 5 approximately here -- 

In model 6-1 of Table 6, we investigate how the commercial potential of a discovery moderates the 

effect of industry collaboration on scientists’ follow-on research output. The estimate indicates that the 

positive effect of academia–industry collaboration on scientists’ research productivity is driven by the 

subset of discoveries with high commercial potential. For the category of discoveries with high commercial 

potential, scientists with industry collaborators produce 54% more follow-on publications than scientists 

without industry collaborators, calculated based on the sum of the direct effect and the interaction effect. 

The estimated effect is equivalent to 11 additional follow-on publications—an increase of approximately 

                                                           
8 We could not obtain convergence on our estimations based on Logit and Probit models with the full set of control variables due 

to the limited observable variance and few degrees of freedom. Hence, in our robustness checks with Logit and Probit estimations, 

we use a more limited set of control variables. More specifically, we only control for whether the main author is affiliated with an 

institution in the U.S. (particularly because we use the sample of patents filed with the USPTO) and the main author’s past patenting 

experience. 
9 To provide additional evidence on patenting behavior, we note that 13 firms in our sample have obtained patents based on the 

simultaneous discoveries on which they had collaborated with academia. To put it differently, in 40% of the cases firms in our 

sample obtained patents that cited their simultaneous discoveries. In the absence of an appropriate counterfactual, we cannot 

accurately evaluate whether this number is large or small. However, a recent analysis by Ahmadpoor and Jones (2017) suggest that 

approximately 20% of papers produced by firms are subsequently cited in patents. This suggests that collaboration with academia 

in our sample may have boosted firms’ follow-on commercialization outputs. It is also possible that for discoveries published later 

in our sample, we do not observe enough time periods to better evaluate the output of the commercialization efforts of collaborating 

firms.  
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0.65 standard deviations. In contrast, for discoveries with low commercial potential, the effect is negative 

and not statistically significant. This negative effect suggests that academia–industry collaboration on 

projects with low commercial potential may lead to negative effects in research productivity of academic 

scientists, as argued in prior research. In other words, in the absence of the conditions for specialization and 

a productive division of tasks and responsibilities, collaboration with industry may potentially harm 

academic scientists’ research output. Model 6-2 repeats the same estimation using the quality-adjusted 

number of follow-on publications as the dependent variable. The estimates are similar and overall consistent 

with our prediction in H3.  

-- Table 6 approximately here – 

In models 6-3 and 6-4 of Table 6 we present estimation results testing our fourth hypothesis, namely 

the moderating role of collaboration with established companies versus startups. Consistent with our 

prediction, the estimated interaction effect in model 6-3 indicates that scientists with industry collaborators 

produced approximately 67% more follow-on publications (equivalent to approximately 14 additional 

follow-on publications or an increase of 0.8 standard deviations) than scientists without industry 

collaborators. In contrast, there is no significant difference between scientists who collaborated with 

startups (companies with 10 years or less of experience) and those without industry collaborators. Model 

6-4 repeats the previous estimation with a quality-adjusted number of follow-on publications as the 

dependent variable. The results are consistent and support H4.  

In Table 7 we repeat the estimations reported in interaction models 6-2 and 6-4 using negative 

binomial and OLS regressions with discovery fixed effects. The results are similar to those reported with 

the Poisson model. While the estimated negative effect of industry collaboration on projects with low 

commercial potential is larger in these estimates, the net positive effect on citation-weighted follow-on 

publications based on discoveries with high potential (calculated as the sum of the direct effect and the 

interaction effect) is comparable to that reported in Table 6. 

-- Table 7 approximately here – 
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Alternative Explanations and Robustness Tests 

While we control for each scientist’s past publication stock in all models reported in Table 4, one may still 

be concerned that the positive impact of academia–industry collaboration on scientists’ follow-on research 

output may be driven by the selection of more productive scientists into collaboration with industry. In 

other words, it is possible that scientists with higher research productivity are more likely to collaborate 

with industry, and that the same scientists continue to publish more based on the simultaneous discoveries. 

To address this concern, we test the relationship between the likelihood of collaboration with industry and 

each author’s past research productivity, patenting activity, academic experience, and location. Since the 

dependent variable is a 0/1 dummy variable, we use a logit estimation model. We also include discovery 

fixed effects to ensure that the comparison takes place between scientists reporting the same discovery. The 

estimates in model 8-1 of Table 8 suggest that collaboration with industry is negatively associated with past 

research productivity in our dataset. Further, the estimates indicate that collaboration with industry is not 

correlated with past patenting activity of scientists or with their academic experience. In model 8-2, we 

repeat the estimations using an OLS regression and find similar results. Overall, the estimates suggest that 

the positive effects reported in Table 4 (in support of H1) are not driven by selection of more productive 

scientists into collaboration with industry.  

-- Table 8 approximately here -- 

For each pair of corresponding authors on twin papers, we also compare their non-twin, academia-

only papers published in the same year as their twin papers. We compare the non-twin papers on three main 

dimensions: the number of academic citations received, whether they received any patent citations 

subsequently, and the number of authors on each paper. A higher similarity in non-twin papers by the 

corresponding authors behind a simultaneous discovery provides further evidence that the differences in 

follow-on research output of scientists who collaborated with industry are not driven by scientists’ average 

higher quality. The results are presented in Table A1 in the appendix. The estimates show no significant 

difference in the non-twin papers produced by the authors involved in simultaneous discoveries—whether 

they had an industry partner or not. Overall, the results support the assumption that the output of 
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corresponding authors who had industry collaborators at the time of publishing their twin papers was similar 

to the output of those who did not have collaborators from industry. 

Even though the previous analysis shows that the differences in the experience of the corresponding 

authors on twin papers is unlikely to explain the differences in their follow-on research output, it is still 

possible that the corresponding authors with industry collaborators had a more senior or more experienced 

team of co-authors on their side. In other words, the increase in their follow-on research output may be 

associated with the presence of more experienced co-authors and not that of an industry partner. To address 

this concern, we first identified the status of every author on every twin paper at the time of its publication 

using publicly available information. We then categorized the authors into research faculty, university 

research staff (such as graduate students and postdocs), industry scientists, and unidentified. We could 

identify the status of 60% of the authors of twin papers in our sample. Models 1 to 3 of Table A2 in the 

appendix show the results of estimating the difference in number of faculty, the number of research staff 

(grad students and postdocs), and the number of individuals with unidentified status between the teams with 

industry collaborators and the teams without. Furthermore, we collected all pre-discovery publications by 

all authors in each authorship team using the Scopus database. To the extent that the team with industry 

collaboration has more experienced individuals, we should expect that team to also have a higher level of 

total pre-discovery publications. Model 4 of Table A2 shows the results of estimating the authorship team’s 

total number of pre-discovery publications on whether the team involved industry partners. We find no 

significant difference between the two teams. 

Another possible alternative interpretation of our results is that the increase in scientists’ follow-on 

research output linked to industry collaboration may have come at the expense of research output in areas 

outside the discovery’s line of research. In other words, what we are interpreting as an increase in research 

output driven by specialization and a complementary allocation of tasks may simply be due to a shift in the 

research direction of scientists collaborating with industry. In Table 9, we test the impact of academia–

industry collaboration on scientists’ research output outside the discovery line of research. The effect on 

both the simple count and the quality-adjusted count of publications, reported in models (9-1) and (9-2) 
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respectively, shows that we find no evidence that industry collaboration affects scientists’ research output 

in areas that are not directly related to the collaborative line of research.  

-- Table 9 approximately here – 

Furthermore, to ensure that our results are driven not by industry sponsorship but by active 

collaboration with industry, we also test the effect of industry grants on follow-on research productivity of 

scientists using a larger sample of 1,151 papers written by academic scientists and disclosing 540 

simultaneous discoveries. Some of those academic scientists received industry sponsorship for their 

discovery, and others did not. To build the sample of industry grants, we manually collected the 

acknowledgments sections of all the papers in the sample and extracted all mentions of funding support 

from industry. Our results in Table 10 suggests that industry sponsorship has no significant effect on follow-

on research productivity of scientists, and that the effects reported here rely on the mechanism of active 

collaboration between academia and industry, as hypothesized. 

-- Table 10 approximately here – 

Our results are also robust to the inclusion of a more restricted set of control variables (to allow for 

more degrees of freedom) as shown in Table A3 in the appendix.  

Discussion and Conclusion 

Our paper draws upon literatures on collaboration, institutions, and creativity to examine the implications 

of industry–academia collaborations for academic research. Specifically, we model the influence of 

industry collaboration on academic scientists’ follow-on publishing and patenting rates. This question has 

received increasing attention in light of widespread concerns that industry collaboration might corrupt 

traditional academic norms. In this study we argue that when a research line has both scientific and 

commercial potential, the collaboration between academia and industry can enable specialization and a 

better allocation of tasks and responsibilities across the two types of institutions, leading to greater 

complementarity. More specifically, academic scientists can achieve higher levels of scientific output by 

gaining access to skills, insights, resources, and equipment from firms, while leaving the applied and 

commercial aspects of the research line to their industry partner.  
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We face an important empirical challenge in investigating the impact of industry collaboration for 

academic scientists because those scientists do not randomly sort into research projects that involve industry 

collaboration. Prior findings that industry collaboration is associated with fewer publications and more 

patents in academia might be a consequence of norm contamination, but they might also reflect the fact that 

academic scientists collaborate with firms on their more applied projects with lower scientific potential. 

This paper attempts to address the challenge of project selection by focusing on a set of simultaneous 

discoveries, in which an academic scientist collaborating only with other academic scientists makes the 

same discovery as one collaborating with industry. We observe 33 such events, which we use as a small set 

of natural experiments to investigate the existence of systematic differences in the subsequent publishing 

and patenting patterns of scientists with and without industry collaborators for those lines of work. 

Holding the line of research constant, we find that academic scientists who collaborate with 

industry produce significantly more follow-on publications and fewer patents than academic scientists who 

do not. Collaboration with industry is associated with 50% more follow-on citation-weighted publications 

and 99% fewer follow-on citation-weighted patents. As mentioned above, the magnitude effect of patenting 

should be interpreted with care considering our small sample size and the rarity of patenting events in the 

sample. Moreover, the effects do not appear to be driven either by the sorting of more capable scientists 

into collaborations with industry, or by the fact that firms might induce academic scientists to invest more 

in their line of research of interest at the expense of other research projects. Rather, we find evidence 

consistent with specialization and the existence of a better allocation of tasks and responsibilities between 

academia and industry, wherein academic scientists focus more on publishing and invest less in patenting. 

In line with this argument, our main effects are most pronounced for the lines of research that have high 

commercial potential and those projects that involve collaborations with mature, established companies. To 

be clear, our findings rely on the assumption that academic and industry scientists engage in collaboration 

based on some foreseen complementarities. In other words, our results do not suggest that for any research 

project in Pasteur’s quadrant, any random collaboration between academia and industry would have 
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positive benefits for academic scientists. The complementarities need to be there for these collaborations to 

be fruitful.  

Our conversations with several authors of simultaneous discoveries in our sample further 

corroborate our quantitative estimations. For example, when asked about the role of university and industry 

in their collaborative projects on drug development, a leading faculty member at a prominent West Coast 

university noted: 

More and more, you are seeing the enlightened companies getting their molecules out there into 

academic labs so people can play around with them. [Companies] make drugs and reagents, but 

they often don’t have the very sophisticated and elegant systems that we have to interrogate things 

in vivo…We have these fairly elegant, genetically-engineered models that really recapitulate what 

happens in human cancer.  

Another academic scientist from a prominent university made a similar remark, highlighting that 

industry collaboration can provide access to capabilities that can speed up research: 

The fact that we collaborated with [firm] meant that we could go faster. That did give us a 

competitive advantage because they had this capability of doing high throughput two-hybrid 

screening. 

Scientists in industry shared similar sentiments regarding the complementarities between academia 

and industry in their collaborative projects. As an example, when asked about his simultaneous discovery 

and the allocation of tasks and efforts between his team in industry and his collaborators in academia, a 

senior scientist in a large East Coast pharmaceutical company responded: 

[In] this case we were sharing our mice with the academic labs… [and] they would do the analysis 

of the mice. The company would set up a material transfer agreement that handles the legalities of 

sending the mice over to the academic labs. There would be hypotheses that would be set up front 

in terms of the experiments that would be carried on in the academic lab. Then we’ll send the mice, 

they would do the experimental stuff and then they looked to see if they find something interesting. 
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The company cannot do all the science itself. So one of the things I did at [my company] was to 

make reagents and send them to the academic labs as soon as possible, so you maximize the value 

of the reagents that you are generating. So it’s a way to connect with academic labs, a way to know 

the science before it comes out as a publication, it’s a way of helping the field move forward.  

When asked whether the publication of findings would help the company’s competitors, he responded that 

…making new medicine has a 99% failure rate. So if you’re going to be super-conservative and be 

closed and siloed away from everyone, you are actually increasing the odds that you are not going 

to be able to deliver anything. So I think what you gain is more than what you lose by being 

transparent.  

Overall, our results emphasize a hitherto under-recognized positive aspect of industry collaboration 

for academic productivity. By conceptualizing university–industry collaboration as a channel through 

which norms travel, prior literature has highlighted that the misalignment in objectives between academic 

and industrial scientists often leads to tensions among collaborators. These tensions, in turn, might affect 

creative performance negatively (Blumenthal, Campbell, et al. 1996; Louis et al. 2001; Perkmann and 

Walsh 2009; Toole and Czarnitzki 2010; Evans 2010). We propose that this view of cross-institutional 

collaboration is incomplete. Under some circumstances, collaboration can be a source of productive 

specialization (Bikard, Murray, and Gans 2015; Vakili 2016; Teodoridis 2017; Teodoridis, Bikard, and 

Vakili 2018). When collaboration bridges institutions, the differences in the skills and objectives of 

individuals across the institutional boundary can open the door to an efficient distribution of tasks and 

responsibilities, potentially leading to net gains in productivity. 

Scientists in industry and in academia have different approaches to scientific research, but they also 

tend to work on different types of projects (Sauermann and Stephan 2013). While practices such as secrecy 

and patenting are well-suited to efficient commercialization, they are barriers to sharing and publication 

when it comes to fundamental research (Arrow 1962; Aghion, Dewatripont, and Stein 2008). Thus, industry 

relationships that foster the spread of commercial practices in universities could hurt fundamental inquiry 

in academia (Campbell et al. 2000; Evans 2010b; Murray and Stern 2007; Murray 2010; Shibayama, Walsh, 



31 

 

and Baba 2012). One should note, however, that fundamental inquiry and commercialization are not two 

ends of the same continuum. Research projects can have at the same time high scientific and high 

commercial potential (Stokes 1997), therefore raising the question of the appropriate institutional 

environment for this type of projects. Our results suggest that in those cases, the institutional environments 

of industry and academia are in some ways complements rather than substitutes. For those projects, 

proximity to industry does not erode the distinctive features of the academic institutional environments but 

appears instead to reinforce them. 

Our findings are not without limitations and therefore open the door to further research. Our 

empirical strategy relies on using simultaneous discoveries to ensure that the compared scientists are 

working on the same line of research. Still, industry collaboration is not randomly assigned in our data; 

hence it is reasonable to assume that there may still be some systematic differences between the scientists 

who work with firms and those who do not. As mentioned, our theory assumes that academic and industry 

scientists engage in collaboration based on some foreseen complementarities. While we do not specifically 

identify the source of such complementarities, we take steps to control for some observable characteristics 

that may speak more to individual team-member capabilities rather than team complementarities (Agarwal 

and Ohyama 2013). Future research should consider the role of additional attributes (e.g., location, 

proximity, skill complementarities) to determine the optimal conditions under which collaboration with 

industry on projects with both scientific and commercialization potential is most efficient for knowledge 

production in academia.  

Institutional diversity creates opportunities for specialization and a more productive organization 

of creative work. When the same work presents differential values across disparate institutional 

environments, collaboration can make it possible to take advantage of cross-institutional differences. This 

type of cross-institutional collaboration can be found in various other forms of public–private partnerships 

(e.g., Battilana and Lee 2014). Our study calls for future research on contingencies and factors under which, 

instead of creating unproductive conflicts of interests, misallocation of resources and efforts, and wasteful 

organizational resistance, such institutional diversity can increase the productivity of all involved parties.  
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Figure 1. Academic Citation Distribution of Twin and Non-Twin 

Papers Published by Corresponding Authors in the Same Year  

 

Figure 2. Patent Citation (0/1) Distribution of Twin and Non-Twin Papers 

Published by Corresponding Authors in the Same Year 

 

Figure 3. Overlap in Academic Citations between Academia-Only Twins and Non-Twins by Both Groups of Corresponding Authors 
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Table 1. Variable Definitions  

Variable Definition 

Main author’s follow-on papers  
Number of papers by the main scientists of a simultaneous discovery citing the 

original paper that reports the discovery. 

Main author’s citation-weighted follow-on 

papers 

Citation-weighted number of papers by the main scientists of a simultaneous 

discovery citing the original paper that reports the discovery.  

Main author’s follow-on patents  
Number of patents by the main scientists of a simultaneous discovery citing the 

original paper that reports the discovery. 

Main author’s citation-weighted follow-on 

patents 

Citation-weighted number of patents by the main scientists of a simultaneous 

discovery citing the original paper that reports the discovery. 

Main author’s total post-twin papers 

outside the simultaneous discovery line of 

research 

Total number of papers by the main scientists of a simultaneous discovery that 

do not cite the original paper reporting the discovery. 

Academia–industry collaboration 
A dummy variable equal to 1 if the paper that reports a simultaneous discovery 

is a collaborative work between academia and industry; 0 otherwise.  

Number of authors The number of authors on the paper that reports the simultaneous discovery. 

Main author’s experience  Number of years since author’s latest degree. 

Main author affiliated with a U.S. 

institution 

A dummy variable equal to 1 if the main author on the paper reporting a 

simultaneous discovery is affiliated with an institution in the U.S.; 0 otherwise. 

Share of authors affiliated with U.S. 

institutions 

Share of authors affiliated with U.S. institutions on the paper that reports a 

simultaneous discovery. 

Share of female authors Share of female authors on the paper that reports a simultaneous discovery. 

Industry grant 
A dummy variable equal to 1 if the paper reporting a simultaneous discovery is 

supported by an industry grant; 0 otherwise. 

Discovery’s commercial potential Total number of patents that cite a simultaneous discovery. 

 

Table 2. Summary Statistics      

Variable N Mean Std. Dev. Min Max 

Main author’s follow-on papers  72 20.944 17.489 3 85 

Main author’s citation-weighted follow-on papers 72 3,041.583 4,414.692 66 26,560 

Main author’s follow-on patents  72 0.444 0.962 0 4 

Main author’s citation-weighted follow-on patents 72 0.583 1.392 0 7 

Main author’s total post-discovery non-twin papers 72 249.903 255.040 5 1365 

Academia–industry collaboration 72 0.458 0.502 0 1 

Number of authors 72 10.236 9.737 2 65 

Main author’s past paper count 72 113.153 115.926 1 447 

Main author’s past patent count 72 1.875 4.587 0 32 

Main author’s experience  72 16.239 8.496 -2 39 

Main author affiliated with a U.S. institution 72 0.639 0.484 0 1 

Share of authors affiliated with U.S. institutions 72 0.614 0.408 0 1 

Share of female authors 72 0.298 0.185 0 0.667 

Industry grant 72 0.264 0.444 0 1 

Discovery’s commercial potential 72 26.750 62.380 0 345 

 

Table 3. Summary Statistics   

Variable Normalized past paper count Normalized follow-on papers 

Scientists with industry collaborators 
0.826 

(0.561) 

0.940 

(0.437) 

Scientists without industry collaborators 
0.967 

(0.533) 

0.868 

(0.431) 

 

  



38 

 

Table 4. Impact of Academia–Industry Collaboration on Follow-On Publications and Patents  

 Poisson Model 

 DV = Main 

author’s follow-

on papers 

 

DV = Main author’s 

citation-weighted 

follow-on papers 

 

DV = Main 

author’s follow-

on patents 

 

DV = Main 

author’s citation-

weighted follow-on 

patents 

 (4-1)  (4-2)  (4-3)  (4-4) 

Academia–industry 

collaboration (0/1) 

0.313***  0.410***  -7.514*  -6.513** 

(0.118)  (0.126)  (4.051)  (2.954) 

Number of authors 
-0.018**  0.012  0.692***  0.655*** 

(0.012)  (0.011)  (0.264)  (0.216) 

Log(main author’s past paper 

count+1) 

0.158**  0.551***  -4.083  -3.068** 

(0.078)  (0.074)  (3.806)  (2.746) 

Log(main author’s past patent 

count+1) 

0.034  -0.037  1.726  1.143 

(0.091)  (0.112)  (1.712)  (1.326) 

Log(main author’s academic 

experience+3) 

0.323  -0.330  5.457  4.941 

(0.208)  (0.269)  (4.588)  (3.301) 

Main author affiliated with a U.S. 

institution 

0.040  1.280***  22.740  19.862 

(0.294)  (0.432)  (23.669)  (18.040) 

Share of authors affiliated with 

U.S. institutions 

-0.730**  -1.580***  -12.240  -10.522 

(0.333)  (0.422)  (19.194)  (15.206) 

Share of female authors 
-0.912  -1.499**  -16.803  -14.991 

(0.566)  (0.673)  (16.792)  (12.603) 

Industry grant 
-0.265  -0.208  7.723  6.732* 

(0.250)  (0.269)  (5.588)  (4.016) 

Twin fixed effects Yes  Yes  Yes  Yes 

        

Observations 72  72  72  72 

Log likelihood -258.588  -14,593.686  -23.412  -24.043 

Paper-twin FE 33  33  33  33 
Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level. *** p<0.01, ** p<0.05, * p<0.1 

 

Table 5. Robustness Checks of Patent Results with Logit Regression 

 Logit Model Probit Model 

 DV = Main author having a follow-on 

patent based on twin paper 
DV = Main author having a follow-on 

patent based on twin paper 

 (5-1) (5-2) 

Academia–industry 

collaboration (0/1) 
-1.734 -1.086 

(1.240) (0.724) 

   
Controls Yes Yes 
Twin fixed effects Yes Yes 

   

Observations 16 16 

Log likelihood -9.172 -9.121 

Paper-twin FE 7 7 

Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level. 

 *** p<0.01, ** p<0.05, * p<0.1 
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Table 6. Role of Commercial Potential and Industry Partner Type 

 Poisson Model 

 DV = Main 

author’s follow-

on papers 
 

DV = Main author’s 

citation-weighted 

follow-on papers 
 

DV = Main 

author’s follow-

on papers 
 

DV = Main author’s 

citation-weighted 

follow-on papers 

 (6-1)  (6-2)  (6-3)  (6-4) 

Academia–industry 

collaboration (0/1) 

-0.198  -0.070  -0.033  -0.051 

(0.261)  (0.279)  (0.178)  (0.213) 
        

Academia–industry 

collaboration × Discovery 

has high commercial 

potential 

 

0.631** 
 

 

0.529* 
   

 

(0.279) 
 

(0.302) 
   

 

        

Academia–industry 

collaboration × Industry 

partner is established 

    0.549***  0.716*** 

    
(0.214)  (0.276) 

        

Full set of controls Yes  Yes  Yes  Yes 

Twin fixed effects Yes  Yes  Yes  Yes 
        

Observations 72  72  72  72 

Log likelihood -248.811  -14,032.785  -249.623  -12,935.984 

Paper-twin FE 33  33  33  33 
Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level. *** p<0.01, ** p<0.05, * p<0.1 

 

 

Table 7. Robustness Tests with Negative Binomial and OLS Regressions 

 Negative Binomial OLS 

 DV = Main 

author’s follow-

on papers 
 

DV = Main author’s 

citation-weighted 

follow-on papers 
 

DV = Main 

author’s 

follow-on 

papers 

 

DV = Main 

author’s citation-

weighted follow-

on papers 

 (7-1)  (7-2)  (7-3)  (7-4) 

Academia–industry 

collaboration (0/1) 
-0.508  -0.427  -0.517  -0.384 

(0.369)  (0.297)  (0.480)  (0.343) 
        

Academia–industry 

collaboration × Discovery has 

high commercial potential 

 

0.870** 
 

 

  

0.934* 

 

 

 

 

(0.391)    (0.5343)   
        

Academia–industry 

collaboration × Industry 

partner is established 

  1.122***    1.133** 

  
(0.388)    (0.441) 

        

Full set of controls Yes  Yes  Yes  Yes 

Twin fixed effects Yes  Yes  Yes  Yes 
        

Observations 72  72  72  72 

Log likelihood -581.368  -578.205     
R-squared     0.763  0.784 

Paper-twin FE 33  33  33  33 
Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 8. Likelihood of Collaborating with Industry Based on Main Author’s Past Performance 

 LOGIT MODEL  OLS MODEL 

 DV = Academia–Industry 

collaboration 
 

DV = Academia–Industry 

Collaboration 

 (8-1)  (8-2) 

Log(main author’s past paper 

count+1) 

-0.839**  -0.171 

(0.381)  (0.102) 

Log(main author’s past patent 

count+1) 

0.358  0.069 

(0.456)  (0.147) 

Log(main author’s academic 

experience+3) 

-0.187  -0.027 

(1.029)  (0.300) 

Main author affiliated with a U.S. 

institution 

0.621  0.134 

(0.870)  (0.252) 

Industry grant 
0.606  0.121 

(0.959)  (0.301) 

Twin fixed effects Yes  Yes 
    

Observations 72  72 

R-squared 0.110  0.162 

Paper-twin FE 33  33 
Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level. *** p<0.01, ** p<0.05, * p<0.1 

 

Table 9. Impact of Academia–Industry Collaboration on Main Author’s Research Direction  

  Poisson Model   

 

DV = Main author’s total post-

twin papers outside the 

simultaneous discovery line of 

research 

  

DV = Main author’s total citation-

weighted post-twin papers outside 

the simultaneous discovery line of 

research 

  (9-1)   (9-2) 

Academia–industry collaboration (0/1) 
-0.042  0.094 

(0.096)  (0.088) 

Full set of controls Yes  Yes 

Twin fixed effects Yes  Yes 

      

Observations 72  72 

Log likelihood -684.090  -46,197.167 

Paper-twin FE 33   33 
Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 Table 10. Impact of Industry Sponsorship on Main Author’s Research Output  

  Poisson Model   

 

DV = Main author’s follow-on 

papers 
  

DV = Main author’s citation-

weighted follow-on papers 

  (10-1)   (10-2) 

Industry grant (0/1) 
-0.084  -0.030 

(0.084)  (0.109) 

Full set of control Yes  Yes 

Twin fixed effects Yes  Yes 

      

Observations 1,151  1,151 

Log likelihood -4,607.276  -342,205.520 

Paper-twin FE 540   540 
Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix  

When Collaboration Bridges Institutions:  

The Impact of University–Industry Collaboration on Academic Productivity 

 

Table A1- The Comparison between Non-Twin Papers of Scientists with Industry Collaborators 

and Those without Industry Collaborators 

 POISSON MODEL LOGIT MODEL POISSON MODEL 

 DV = NUMBER OF 

ACADEMIC 

CITATIONS RECEIVED  

DV = WHETHER THE 

PAPER CITED IN A 

PATENT (=1, 0 

OTHERWISE)  

DV = NUMBER OF 

AUTHORS 

 (A1-1) (A1-2) (A1-3) 

Academia–industry 

collaboration on the twin 

published in the same year (0/1) 

0.031 0.153 0.102 

(0.154) (0.197) (0.086) 

Twin fixed effects Yes Yes Yes 
    

Observations 447 372 447 

Log-likelihood -45572.015 -217.310 -1515.973 

Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level. *** p<0.01, ** 

p<0.05, * p<0.1 

 

 

 

Table A2- The Comparison of the Composition of Authorship Team within Twins 

 POISSON MODEL 

 
DV = 

NUMBER 

OF 

FACULTY  

DV = NUMBER OF 

RESEARCH STAFF 

(GRAD STUDENTS 

& POSTDOCS) 

DV = NUMBER OF 

AUTHORS W/ 

UNIDENTIFIED 

STATUS 

DV = NUMBER OF 

TOTAL PRE-

DISCOVERY 

PUBLICATIONS OF THE 

AUTHORSHIP TEAM 

 (A2-1) (A2-2) (A2-3) (A2-4) 

Academia–

industry 

collaboration 

(0/1) 

 

0.249 
 

0.055 
 

0.096 

 

0.090 

(0.170) (0.136) (0.127) (0.201) 

     

Twin fixed 

effects 
Yes Yes Yes 

Yes 

     

Observations 72 72 72 72 

Log-likelihood -103.990 -82.281 -147.784 -5,299.343 

Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level.   

*** p<0.01, ** p<0.05, * p<0.1 
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Table A3- Robustness Checks with the Limited Control Set 

 POISSON MODEL 

 
DV = MAIN 

AUTHOR’S 

FOLLOW-ON 

PAPERS 

DV = MAIN 

AUTHOR’S 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

DV = MAIN 

AUTHOR’S 

FOLLOW-ON 

PAPERS 

DV = MAIN 

AUTHOR’S 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

DV = MAIN 

AUTHOR’S 

FOLLOW-ON 

PAPERS 

DV = MAIN 

AUTHOR’S 

CITATION-

WEIGHTED 

FOLLOW-ON 

PAPERS 

 (A3-1) (A3-2) (A3-3) (A3-4) (A3-5) (A3-6) 

Academia-industry 

collaboration (0/1) 
0.226* 0.267** -0.357 -0.243 -0.081 -0.086 

(0.118) (0.133) (0.277) (0.305) (0.161) (0.198) 
       

Academia-industry 

collaboration × 

Discovery has high 

commercial potential 

  
0.736** 

(0.300) 

0.584* 

(0.335) 
  

       

Academia-industry 

collaboration × 

Industry partner is 

established 

    
0.485** 

(0.221) 

0.502** 

(0.249) 

       

Log(main author’s past 

paper count+1) 
0.233*** 0.519*** 0.205*** 0.506*** 0.238*** 0.494*** 

(0.083) (0.083) (0.069) (0.106) (0.052) (0.097) 
       

Main author affiliated 

with a U.S. institution 
-0.409** -0.330* -0.402** -0.332 -0.443** -0.385** 

(0.083) (0.083) (0.161) (0.204) (0.175) (0.189) 
       

Twin fixed effects Yes Yes Yes Yes Yes Yes 
       

Observations 72 72 72 72 72 72 

Log likelihood -282.218 -20,592.058 -267.057 -19,753.719 -273.451 -19,553.834 

Paper-twin FE 33 33 33 33 33 33 

Robust standard errors are reported in parentheses. The level of analysis is at the twin-paper level.  

 *** p<0.01, ** p<0.05, * p<0.1 

 

 

 


